mirror of
https://git.FreeBSD.org/src.git
synced 2025-01-04 12:52:15 +00:00
a4cd5630b0
non-i386, non-unix, and generatable files have been trimmed, but can easily be added in later if needed. gcc-2.7.2.1 will follow shortly, it's a very small delta to this and it's handy to have both available for reference for such little cost. The freebsd-specific changes will then be committed, and once the dust has settled, the bmakefiles will be committed to use this code.
3525 lines
103 KiB
C
3525 lines
103 KiB
C
/* Breadth-first and depth-first routines for
|
||
searching multiple-inheritance lattice for GNU C++.
|
||
Copyright (C) 1987, 89, 92, 93, 94, 1995 Free Software Foundation, Inc.
|
||
Contributed by Michael Tiemann (tiemann@cygnus.com)
|
||
|
||
This file is part of GNU CC.
|
||
|
||
GNU CC is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2, or (at your option)
|
||
any later version.
|
||
|
||
GNU CC is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GNU CC; see the file COPYING. If not, write to
|
||
the Free Software Foundation, 59 Temple Place - Suite 330,
|
||
Boston, MA 02111-1307, USA. */
|
||
|
||
/* High-level class interface. */
|
||
|
||
#include "config.h"
|
||
#include "tree.h"
|
||
#include <stdio.h>
|
||
#include "cp-tree.h"
|
||
#include "obstack.h"
|
||
#include "flags.h"
|
||
#include "rtl.h"
|
||
#include "output.h"
|
||
|
||
#define obstack_chunk_alloc xmalloc
|
||
#define obstack_chunk_free free
|
||
|
||
void init_search ();
|
||
extern struct obstack *current_obstack;
|
||
extern tree abort_fndecl;
|
||
|
||
#include "stack.h"
|
||
|
||
/* Obstack used for remembering decision points of breadth-first. */
|
||
static struct obstack search_obstack;
|
||
|
||
/* Methods for pushing and popping objects to and from obstacks. */
|
||
struct stack_level *
|
||
push_stack_level (obstack, tp, size)
|
||
struct obstack *obstack;
|
||
char *tp; /* Sony NewsOS 5.0 compiler doesn't like void * here. */
|
||
int size;
|
||
{
|
||
struct stack_level *stack;
|
||
obstack_grow (obstack, tp, size);
|
||
stack = (struct stack_level *) ((char*)obstack_next_free (obstack) - size);
|
||
obstack_finish (obstack);
|
||
stack->obstack = obstack;
|
||
stack->first = (tree *) obstack_base (obstack);
|
||
stack->limit = obstack_room (obstack) / sizeof (tree *);
|
||
return stack;
|
||
}
|
||
|
||
struct stack_level *
|
||
pop_stack_level (stack)
|
||
struct stack_level *stack;
|
||
{
|
||
struct stack_level *tem = stack;
|
||
struct obstack *obstack = tem->obstack;
|
||
stack = tem->prev;
|
||
obstack_free (obstack, tem);
|
||
return stack;
|
||
}
|
||
|
||
#define search_level stack_level
|
||
static struct search_level *search_stack;
|
||
|
||
static tree lookup_field_1 ();
|
||
static int lookup_fnfields_1 ();
|
||
static void dfs_walk ();
|
||
static int markedp ();
|
||
static void dfs_unmark ();
|
||
static void dfs_init_vbase_pointers ();
|
||
|
||
static tree vbase_types;
|
||
static tree vbase_decl, vbase_decl_ptr;
|
||
static tree vbase_decl_ptr_intermediate;
|
||
static tree vbase_init_result;
|
||
|
||
/* Allocate a level of searching. */
|
||
static struct search_level *
|
||
push_search_level (stack, obstack)
|
||
struct stack_level *stack;
|
||
struct obstack *obstack;
|
||
{
|
||
struct search_level tem;
|
||
|
||
tem.prev = stack;
|
||
return push_stack_level (obstack, (char *)&tem, sizeof (tem));
|
||
}
|
||
|
||
/* Discard a level of search allocation. */
|
||
static struct search_level *
|
||
pop_search_level (obstack)
|
||
struct stack_level *obstack;
|
||
{
|
||
register struct search_level *stack = pop_stack_level (obstack);
|
||
|
||
return stack;
|
||
}
|
||
|
||
/* Search memoization. */
|
||
struct type_level
|
||
{
|
||
struct stack_level base;
|
||
|
||
/* First object allocated in obstack of entries. */
|
||
char *entries;
|
||
|
||
/* Number of types memoized in this context. */
|
||
int len;
|
||
|
||
/* Type being memoized; save this if we are saving
|
||
memoized contexts. */
|
||
tree type;
|
||
};
|
||
|
||
/* Obstack used for memoizing member and member function lookup. */
|
||
|
||
static struct obstack type_obstack, type_obstack_entries;
|
||
static struct type_level *type_stack;
|
||
static tree _vptr_name;
|
||
|
||
/* Make things that look like tree nodes, but allocate them
|
||
on type_obstack_entries. */
|
||
static int my_tree_node_counter;
|
||
static tree my_tree_cons (), my_build_string ();
|
||
|
||
extern int flag_memoize_lookups, flag_save_memoized_contexts;
|
||
|
||
/* Variables for gathering statistics. */
|
||
static int my_memoized_entry_counter;
|
||
static int memoized_fast_finds[2], memoized_adds[2], memoized_fast_rejects[2];
|
||
static int memoized_fields_searched[2];
|
||
static int n_fields_searched;
|
||
static int n_calls_lookup_field, n_calls_lookup_field_1;
|
||
static int n_calls_lookup_fnfields, n_calls_lookup_fnfields_1;
|
||
static int n_calls_get_base_type;
|
||
static int n_outer_fields_searched;
|
||
static int n_contexts_saved;
|
||
|
||
/* Local variables to help save memoization contexts. */
|
||
static tree prev_type_memoized;
|
||
static struct type_level *prev_type_stack;
|
||
|
||
/* This list is used by push_class_decls to know what decls need to
|
||
be pushed into class scope. */
|
||
static tree closed_envelopes = NULL_TREE;
|
||
|
||
/* Allocate a level of type memoization context. */
|
||
static struct type_level *
|
||
push_type_level (stack, obstack)
|
||
struct stack_level *stack;
|
||
struct obstack *obstack;
|
||
{
|
||
struct type_level tem;
|
||
|
||
tem.base.prev = stack;
|
||
|
||
obstack_finish (&type_obstack_entries);
|
||
tem.entries = (char *) obstack_base (&type_obstack_entries);
|
||
tem.len = 0;
|
||
tem.type = NULL_TREE;
|
||
|
||
return (struct type_level *)push_stack_level (obstack, (char *)&tem, sizeof (tem));
|
||
}
|
||
|
||
/* Discard a level of type memoization context. */
|
||
|
||
static struct type_level *
|
||
pop_type_level (stack)
|
||
struct type_level *stack;
|
||
{
|
||
obstack_free (&type_obstack_entries, stack->entries);
|
||
return (struct type_level *)pop_stack_level ((struct stack_level *)stack);
|
||
}
|
||
|
||
/* Make something that looks like a TREE_LIST, but
|
||
do it on the type_obstack_entries obstack. */
|
||
static tree
|
||
my_tree_cons (purpose, value, chain)
|
||
tree purpose, value, chain;
|
||
{
|
||
tree p = (tree)obstack_alloc (&type_obstack_entries, sizeof (struct tree_list));
|
||
++my_tree_node_counter;
|
||
TREE_TYPE (p) = NULL_TREE;
|
||
((HOST_WIDE_INT *)p)[3] = 0;
|
||
TREE_SET_CODE (p, TREE_LIST);
|
||
TREE_PURPOSE (p) = purpose;
|
||
TREE_VALUE (p) = value;
|
||
TREE_CHAIN (p) = chain;
|
||
return p;
|
||
}
|
||
|
||
static tree
|
||
my_build_string (str)
|
||
char *str;
|
||
{
|
||
tree p = (tree)obstack_alloc (&type_obstack_entries, sizeof (struct tree_string));
|
||
++my_tree_node_counter;
|
||
TREE_TYPE (p) = 0;
|
||
((int *)p)[3] = 0;
|
||
TREE_SET_CODE (p, STRING_CST);
|
||
TREE_STRING_POINTER (p) = str;
|
||
TREE_STRING_LENGTH (p) = strlen (str);
|
||
return p;
|
||
}
|
||
|
||
/* Memoizing machinery to make searches for multiple inheritance
|
||
reasonably efficient. */
|
||
#define MEMOIZE_HASHSIZE 8
|
||
typedef struct memoized_entry
|
||
{
|
||
struct memoized_entry *chain;
|
||
int uid;
|
||
tree data_members[MEMOIZE_HASHSIZE];
|
||
tree function_members[MEMOIZE_HASHSIZE];
|
||
} *ME;
|
||
|
||
#define MEMOIZED_CHAIN(ENTRY) (((ME)ENTRY)->chain)
|
||
#define MEMOIZED_UID(ENTRY) (((ME)ENTRY)->uid)
|
||
#define MEMOIZED_FIELDS(ENTRY,INDEX) (((ME)ENTRY)->data_members[INDEX])
|
||
#define MEMOIZED_FNFIELDS(ENTRY,INDEX) (((ME)ENTRY)->function_members[INDEX])
|
||
/* The following is probably a lousy hash function. */
|
||
#define MEMOIZED_HASH_FN(NODE) (((long)(NODE)>>4)&(MEMOIZE_HASHSIZE - 1))
|
||
|
||
static struct memoized_entry *
|
||
my_new_memoized_entry (chain)
|
||
struct memoized_entry *chain;
|
||
{
|
||
struct memoized_entry *p =
|
||
(struct memoized_entry *)obstack_alloc (&type_obstack_entries,
|
||
sizeof (struct memoized_entry));
|
||
bzero ((char *) p, sizeof (struct memoized_entry));
|
||
MEMOIZED_CHAIN (p) = chain;
|
||
MEMOIZED_UID (p) = ++my_memoized_entry_counter;
|
||
return p;
|
||
}
|
||
|
||
/* Make an entry in the memoized table for type TYPE
|
||
that the entry for NAME is FIELD. */
|
||
|
||
tree
|
||
make_memoized_table_entry (type, name, function_p)
|
||
tree type, name;
|
||
int function_p;
|
||
{
|
||
int index = MEMOIZED_HASH_FN (name);
|
||
tree entry, *prev_entry;
|
||
|
||
memoized_adds[function_p] += 1;
|
||
if (CLASSTYPE_MTABLE_ENTRY (type) == 0)
|
||
{
|
||
obstack_ptr_grow (&type_obstack, type);
|
||
obstack_blank (&type_obstack, sizeof (struct memoized_entry *));
|
||
CLASSTYPE_MTABLE_ENTRY (type) = (char *)my_new_memoized_entry ((struct memoized_entry *)0);
|
||
type_stack->len++;
|
||
if (type_stack->len * 2 >= type_stack->base.limit)
|
||
my_friendly_abort (88);
|
||
}
|
||
if (function_p)
|
||
prev_entry = &MEMOIZED_FNFIELDS (CLASSTYPE_MTABLE_ENTRY (type), index);
|
||
else
|
||
prev_entry = &MEMOIZED_FIELDS (CLASSTYPE_MTABLE_ENTRY (type), index);
|
||
|
||
entry = my_tree_cons (name, NULL_TREE, *prev_entry);
|
||
*prev_entry = entry;
|
||
|
||
/* Don't know the error message to give yet. */
|
||
TREE_TYPE (entry) = error_mark_node;
|
||
|
||
return entry;
|
||
}
|
||
|
||
/* When a new function or class context is entered, we build
|
||
a table of types which have been searched for members.
|
||
The table is an array (obstack) of types. When a type is
|
||
entered into the obstack, its CLASSTYPE_MTABLE_ENTRY
|
||
field is set to point to a new record, of type struct memoized_entry.
|
||
|
||
A non-NULL TREE_TYPE of the entry contains an access control error message.
|
||
|
||
The slots for the data members are arrays of tree nodes.
|
||
These tree nodes are lists, with the TREE_PURPOSE
|
||
of this list the known member name, and the TREE_VALUE
|
||
as the FIELD_DECL for the member.
|
||
|
||
For member functions, the TREE_PURPOSE is again the
|
||
name of the member functions for that class,
|
||
and the TREE_VALUE of the list is a pairs
|
||
whose TREE_PURPOSE is a member functions of this name,
|
||
and whose TREE_VALUE is a list of known argument lists this
|
||
member function has been called with. The TREE_TYPE of the pair,
|
||
if non-NULL, is an error message to print. */
|
||
|
||
/* Tell search machinery that we are entering a new context, and
|
||
to update tables appropriately.
|
||
|
||
TYPE is the type of the context we are entering, which can
|
||
be NULL_TREE if we are not in a class's scope.
|
||
|
||
USE_OLD, if nonzero tries to use previous context. */
|
||
void
|
||
push_memoized_context (type, use_old)
|
||
tree type;
|
||
int use_old;
|
||
{
|
||
int len;
|
||
tree *tem;
|
||
|
||
if (prev_type_stack)
|
||
{
|
||
if (use_old && prev_type_memoized == type)
|
||
{
|
||
#ifdef GATHER_STATISTICS
|
||
n_contexts_saved++;
|
||
#endif
|
||
type_stack = prev_type_stack;
|
||
prev_type_stack = 0;
|
||
|
||
tem = &type_stack->base.first[0];
|
||
len = type_stack->len;
|
||
while (len--)
|
||
CLASSTYPE_MTABLE_ENTRY (tem[len*2]) = (char *)tem[len*2+1];
|
||
return;
|
||
}
|
||
/* Otherwise, need to pop old stack here. */
|
||
type_stack = pop_type_level (prev_type_stack);
|
||
prev_type_memoized = 0;
|
||
prev_type_stack = 0;
|
||
}
|
||
|
||
type_stack = push_type_level ((struct stack_level *)type_stack,
|
||
&type_obstack);
|
||
type_stack->type = type;
|
||
}
|
||
|
||
/* Tell search machinery that we have left a context.
|
||
We do not currently save these contexts for later use.
|
||
If we wanted to, we could not use pop_search_level, since
|
||
poping that level allows the data we have collected to
|
||
be clobbered; a stack of obstacks would be needed. */
|
||
void
|
||
pop_memoized_context (use_old)
|
||
int use_old;
|
||
{
|
||
int len;
|
||
tree *tem = &type_stack->base.first[0];
|
||
|
||
if (! flag_save_memoized_contexts)
|
||
use_old = 0;
|
||
else if (use_old)
|
||
{
|
||
len = type_stack->len;
|
||
while (len--)
|
||
tem[len*2+1] = (tree)CLASSTYPE_MTABLE_ENTRY (tem[len*2]);
|
||
|
||
prev_type_stack = type_stack;
|
||
prev_type_memoized = type_stack->type;
|
||
}
|
||
|
||
if (flag_memoize_lookups)
|
||
{
|
||
len = type_stack->len;
|
||
while (len--)
|
||
CLASSTYPE_MTABLE_ENTRY (tem[len*2])
|
||
= (char *)MEMOIZED_CHAIN (CLASSTYPE_MTABLE_ENTRY (tem[len*2]));
|
||
}
|
||
if (! use_old)
|
||
type_stack = pop_type_level (type_stack);
|
||
else
|
||
type_stack = (struct type_level *)type_stack->base.prev;
|
||
}
|
||
|
||
/* Get a virtual binfo that is found inside BINFO's hierarchy that is
|
||
the same type as the type given in PARENT. To be optimal, we want
|
||
the first one that is found by going through the least number of
|
||
virtual bases. DEPTH should be NULL_PTR. */
|
||
static tree
|
||
get_vbase (parent, binfo, depth)
|
||
tree parent, binfo;
|
||
unsigned int *depth;
|
||
{
|
||
tree binfos;
|
||
int i, n_baselinks;
|
||
tree rval = NULL_TREE;
|
||
|
||
if (depth == 0)
|
||
{
|
||
unsigned int d = (unsigned int)-1;
|
||
return get_vbase (parent, binfo, &d);
|
||
}
|
||
|
||
if (BINFO_TYPE (binfo) == parent && TREE_VIA_VIRTUAL (binfo))
|
||
{
|
||
*depth = 0;
|
||
return binfo;
|
||
}
|
||
|
||
*depth = *depth - 1;
|
||
|
||
binfos = BINFO_BASETYPES (binfo);
|
||
n_baselinks = binfos ? TREE_VEC_LENGTH (binfos) : 0;
|
||
|
||
/* Process base types. */
|
||
for (i = 0; i < n_baselinks; i++)
|
||
{
|
||
tree base_binfo = TREE_VEC_ELT (binfos, i);
|
||
tree nrval;
|
||
|
||
if (*depth == 0)
|
||
break;
|
||
|
||
nrval = get_vbase (parent, base_binfo, depth);
|
||
if (nrval)
|
||
rval = nrval;
|
||
}
|
||
*depth = *depth+1;
|
||
return rval;
|
||
}
|
||
|
||
/* Convert EXPR to a virtual base class of type TYPE. We know that
|
||
EXPR is a non-null POINTER_TYPE to RECORD_TYPE. We also know that
|
||
the type of what expr points to has a virtual base of type TYPE. */
|
||
tree
|
||
convert_pointer_to_vbase (type, expr)
|
||
tree type;
|
||
tree expr;
|
||
{
|
||
tree vb = get_vbase (type, TYPE_BINFO (TREE_TYPE (TREE_TYPE (expr))), NULL_PTR);
|
||
return convert_pointer_to_real (vb, expr);
|
||
}
|
||
|
||
/* This is the newer recursive depth first search routine. */
|
||
#if 0 /* unused */
|
||
/* Return non-zero if PARENT is directly derived from TYPE. By directly
|
||
we mean it's only one step up the inheritance lattice. We check this
|
||
by walking horizontally across the types that TYPE directly inherits
|
||
from, to see if PARENT is among them. This is used by get_binfo and
|
||
by compute_access. */
|
||
static int
|
||
immediately_derived (parent, type)
|
||
tree parent, type;
|
||
{
|
||
if (TYPE_BINFO (type))
|
||
{
|
||
tree binfos = BINFO_BASETYPES (TYPE_BINFO (type));
|
||
int i, n_baselinks = binfos ? TREE_VEC_LENGTH (binfos) : 0;
|
||
|
||
for (i = 0; i < n_baselinks; i++)
|
||
{
|
||
tree base_binfo = TREE_VEC_ELT (binfos, i);
|
||
|
||
if (parent == BINFO_TYPE (base_binfo))
|
||
return 1;
|
||
}
|
||
}
|
||
return 0;
|
||
}
|
||
#endif
|
||
|
||
/* Check whether the type given in BINFO is derived from PARENT. If
|
||
it isn't, return 0. If it is, but the derivation is MI-ambiguous
|
||
AND protect != 0, emit an error message and return error_mark_node.
|
||
|
||
Otherwise, if TYPE is derived from PARENT, return the actual base
|
||
information, unless a one of the protection violations below
|
||
occurs, in which case emit an error message and return error_mark_node.
|
||
|
||
If PROTECT is 1, then check if access to a public field of PARENT
|
||
would be private. Also check for ambiguity. */
|
||
|
||
tree
|
||
get_binfo (parent, binfo, protect)
|
||
register tree parent, binfo;
|
||
int protect;
|
||
{
|
||
tree type;
|
||
int dist;
|
||
tree rval = NULL_TREE;
|
||
|
||
if (TREE_CODE (parent) == TREE_VEC)
|
||
parent = BINFO_TYPE (parent);
|
||
else if (! IS_AGGR_TYPE_CODE (TREE_CODE (parent)))
|
||
my_friendly_abort (89);
|
||
|
||
if (TREE_CODE (binfo) == TREE_VEC)
|
||
type = BINFO_TYPE (binfo);
|
||
else if (IS_AGGR_TYPE_CODE (TREE_CODE (binfo)))
|
||
type = binfo;
|
||
else
|
||
my_friendly_abort (90);
|
||
|
||
dist = get_base_distance (parent, binfo, protect, &rval);
|
||
|
||
if (dist == -3)
|
||
{
|
||
cp_error ("fields of `%T' are inaccessible in `%T' due to private inheritance",
|
||
parent, type);
|
||
return error_mark_node;
|
||
}
|
||
else if (dist == -2 && protect)
|
||
{
|
||
cp_error ("type `%T' is ambiguous base class for type `%T'", parent,
|
||
type);
|
||
return error_mark_node;
|
||
}
|
||
|
||
return rval;
|
||
}
|
||
|
||
/* This is the newer depth first get_base_distance routine. */
|
||
static int
|
||
get_base_distance_recursive (binfo, depth, is_private, basetype_path, rval,
|
||
rval_private_ptr, new_binfo_ptr, parent, path_ptr,
|
||
protect, via_virtual_ptr, via_virtual)
|
||
tree binfo, basetype_path, *new_binfo_ptr, parent, *path_ptr;
|
||
int *rval_private_ptr, depth, is_private, rval, protect, *via_virtual_ptr,
|
||
via_virtual;
|
||
{
|
||
tree binfos;
|
||
int i, n_baselinks;
|
||
|
||
if (BINFO_TYPE (binfo) == parent || binfo == parent)
|
||
{
|
||
if (rval == -1)
|
||
{
|
||
rval = depth;
|
||
*rval_private_ptr = is_private;
|
||
*new_binfo_ptr = binfo;
|
||
*via_virtual_ptr = via_virtual;
|
||
}
|
||
else
|
||
{
|
||
int same_object = (tree_int_cst_equal (BINFO_OFFSET (*new_binfo_ptr),
|
||
BINFO_OFFSET (binfo))
|
||
&& *via_virtual_ptr && via_virtual);
|
||
|
||
if (*via_virtual_ptr && via_virtual==0)
|
||
{
|
||
*rval_private_ptr = is_private;
|
||
*new_binfo_ptr = binfo;
|
||
*via_virtual_ptr = via_virtual;
|
||
}
|
||
else if (same_object)
|
||
{
|
||
if (*rval_private_ptr && ! is_private)
|
||
{
|
||
*rval_private_ptr = is_private;
|
||
*new_binfo_ptr = binfo;
|
||
*via_virtual_ptr = via_virtual;
|
||
}
|
||
return rval;
|
||
}
|
||
|
||
rval = -2;
|
||
}
|
||
return rval;
|
||
}
|
||
|
||
binfos = BINFO_BASETYPES (binfo);
|
||
n_baselinks = binfos ? TREE_VEC_LENGTH (binfos) : 0;
|
||
depth += 1;
|
||
|
||
/* Process base types. */
|
||
for (i = 0; i < n_baselinks; i++)
|
||
{
|
||
tree base_binfo = TREE_VEC_ELT (binfos, i);
|
||
|
||
/* Find any specific instance of a virtual base, when searching with
|
||
a binfo... */
|
||
if (BINFO_MARKED (base_binfo) == 0 || TREE_CODE (parent) == TREE_VEC)
|
||
{
|
||
int via_private
|
||
= (protect
|
||
&& (is_private
|
||
|| (!TREE_VIA_PUBLIC (base_binfo)
|
||
&& !is_friend (BINFO_TYPE (binfo), current_scope ()))));
|
||
int this_virtual = via_virtual || TREE_VIA_VIRTUAL (base_binfo);
|
||
int was;
|
||
|
||
/* When searching for a non-virtual, we cannot mark
|
||
virtually found binfos. */
|
||
if (! this_virtual)
|
||
SET_BINFO_MARKED (base_binfo);
|
||
|
||
#define WATCH_VALUES(rval, via_private) (rval == -1 ? 3 : via_private)
|
||
|
||
was = WATCH_VALUES (rval, *via_virtual_ptr);
|
||
rval = get_base_distance_recursive (base_binfo, depth, via_private,
|
||
binfo, rval, rval_private_ptr,
|
||
new_binfo_ptr, parent, path_ptr,
|
||
protect, via_virtual_ptr,
|
||
this_virtual);
|
||
/* watch for updates; only update if path is good. */
|
||
if (path_ptr && WATCH_VALUES (rval, *via_virtual_ptr) != was)
|
||
BINFO_INHERITANCE_CHAIN (base_binfo) = binfo;
|
||
if (rval == -2 && *via_virtual_ptr == 0)
|
||
return rval;
|
||
|
||
#undef WATCH_VALUES
|
||
|
||
}
|
||
}
|
||
|
||
return rval;
|
||
}
|
||
|
||
/* Return the number of levels between type PARENT and the type given
|
||
in BINFO, following the leftmost path to PARENT not found along a
|
||
virtual path, if there are no real PARENTs (all come from virtual
|
||
base classes), then follow the leftmost path to PARENT.
|
||
|
||
Return -1 if TYPE is not derived from PARENT.
|
||
Return -2 if PARENT is an ambiguous base class of TYPE, and PROTECT is
|
||
non-negative.
|
||
Return -3 if PARENT is private to TYPE, and PROTECT is non-zero.
|
||
|
||
If PATH_PTR is non-NULL, then also build the list of types
|
||
from PARENT to TYPE, with TREE_VIA_VIRTUAL and TREE_VIA_PUBLIC
|
||
set.
|
||
|
||
PARENT can also be a binfo, in which case that exact parent is found
|
||
and no other. convert_pointer_to_real uses this functionality.
|
||
|
||
If BINFO is a binfo, its BINFO_INHERITANCE_CHAIN will be left alone. */
|
||
|
||
int
|
||
get_base_distance (parent, binfo, protect, path_ptr)
|
||
register tree parent, binfo;
|
||
int protect;
|
||
tree *path_ptr;
|
||
{
|
||
int rval;
|
||
int rval_private = 0;
|
||
tree type;
|
||
tree new_binfo = NULL_TREE;
|
||
int via_virtual;
|
||
int watch_access = protect;
|
||
|
||
if (TREE_CODE (parent) != TREE_VEC)
|
||
parent = TYPE_MAIN_VARIANT (parent);
|
||
|
||
if (TREE_CODE (binfo) == TREE_VEC)
|
||
type = BINFO_TYPE (binfo);
|
||
else if (IS_AGGR_TYPE_CODE (TREE_CODE (binfo)))
|
||
{
|
||
type = binfo;
|
||
binfo = TYPE_BINFO (type);
|
||
|
||
if (path_ptr)
|
||
BINFO_INHERITANCE_CHAIN (binfo) = NULL_TREE;
|
||
}
|
||
else
|
||
my_friendly_abort (92);
|
||
|
||
if (parent == type || parent == binfo)
|
||
{
|
||
/* If the distance is 0, then we don't really need
|
||
a path pointer, but we shouldn't let garbage go back. */
|
||
if (path_ptr)
|
||
*path_ptr = binfo;
|
||
return 0;
|
||
}
|
||
|
||
if (path_ptr)
|
||
watch_access = 1;
|
||
|
||
rval = get_base_distance_recursive (binfo, 0, 0, NULL_TREE, -1,
|
||
&rval_private, &new_binfo, parent,
|
||
path_ptr, watch_access, &via_virtual, 0);
|
||
|
||
dfs_walk (binfo, dfs_unmark, markedp);
|
||
|
||
/* Access restrictions don't count if we found an ambiguous basetype. */
|
||
if (rval == -2 && protect >= 0)
|
||
rval_private = 0;
|
||
|
||
if (rval && protect && rval_private)
|
||
return -3;
|
||
|
||
/* find real virtual base classes. */
|
||
if (rval == -1 && TREE_CODE (parent) == TREE_VEC
|
||
&& parent == binfo_member (BINFO_TYPE (parent),
|
||
CLASSTYPE_VBASECLASSES (type)))
|
||
{
|
||
BINFO_INHERITANCE_CHAIN (parent) = binfo;
|
||
new_binfo = parent;
|
||
rval = 1;
|
||
}
|
||
|
||
if (path_ptr)
|
||
*path_ptr = new_binfo;
|
||
return rval;
|
||
}
|
||
|
||
/* Search for a member with name NAME in a multiple inheritance lattice
|
||
specified by TYPE. If it does not exist, return NULL_TREE.
|
||
If the member is ambiguously referenced, return `error_mark_node'.
|
||
Otherwise, return the FIELD_DECL. */
|
||
|
||
/* Do a 1-level search for NAME as a member of TYPE. The caller must
|
||
figure out whether it can access this field. (Since it is only one
|
||
level, this is reasonable.) */
|
||
static tree
|
||
lookup_field_1 (type, name)
|
||
tree type, name;
|
||
{
|
||
register tree field = TYPE_FIELDS (type);
|
||
|
||
#ifdef GATHER_STATISTICS
|
||
n_calls_lookup_field_1++;
|
||
#endif
|
||
while (field)
|
||
{
|
||
#ifdef GATHER_STATISTICS
|
||
n_fields_searched++;
|
||
#endif
|
||
if (DECL_NAME (field) == NULL_TREE
|
||
&& TREE_CODE (TREE_TYPE (field)) == UNION_TYPE)
|
||
{
|
||
tree temp = lookup_field_1 (TREE_TYPE (field), name);
|
||
if (temp)
|
||
return temp;
|
||
}
|
||
if (DECL_NAME (field) == name)
|
||
{
|
||
if ((TREE_CODE(field) == VAR_DECL || TREE_CODE(field) == CONST_DECL)
|
||
&& DECL_ASSEMBLER_NAME (field) != NULL)
|
||
GNU_xref_ref(current_function_decl,
|
||
IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (field)));
|
||
return field;
|
||
}
|
||
field = TREE_CHAIN (field);
|
||
}
|
||
/* Not found. */
|
||
if (name == _vptr_name)
|
||
{
|
||
/* Give the user what s/he thinks s/he wants. */
|
||
if (TYPE_VIRTUAL_P (type))
|
||
return CLASSTYPE_VFIELD (type);
|
||
}
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* There are a number of cases we need to be aware of here:
|
||
current_class_type current_function_decl
|
||
* global NULL NULL
|
||
* fn-local NULL SET
|
||
* class-local SET NULL
|
||
* class->fn SET SET
|
||
* fn->class SET SET
|
||
|
||
Those last two make life interesting. If we're in a function which is
|
||
itself inside a class, we need decls to go into the fn's decls (our
|
||
second case below). But if we're in a class and the class itself is
|
||
inside a function, we need decls to go into the decls for the class. To
|
||
achieve this last goal, we must see if, when both current_class_decl and
|
||
current_function_decl are set, the class was declared inside that
|
||
function. If so, we know to put the decls into the class's scope. */
|
||
|
||
tree
|
||
current_scope ()
|
||
{
|
||
if (current_function_decl == NULL_TREE)
|
||
return current_class_type;
|
||
if (current_class_type == NULL_TREE)
|
||
return current_function_decl;
|
||
if (DECL_CLASS_CONTEXT (current_function_decl) == current_class_type)
|
||
return current_function_decl;
|
||
|
||
return current_class_type;
|
||
}
|
||
|
||
/* Compute the access of FIELD. This is done by computing
|
||
the access available to each type in BASETYPES (which comes
|
||
as a list of [via_public/basetype] in reverse order, namely base
|
||
class before derived class). The first one which defines a
|
||
access defines the access for the field. Otherwise, the
|
||
access of the field is that which occurs normally.
|
||
|
||
Uses global variables CURRENT_CLASS_TYPE and
|
||
CURRENT_FUNCTION_DECL to use friend relationships
|
||
if necessary.
|
||
|
||
This will be static when lookup_fnfield comes into this file.
|
||
|
||
access_public means that the field can be accessed by the current lexical
|
||
scope.
|
||
|
||
access_protected means that the field cannot be accessed by the current
|
||
lexical scope because it is protected.
|
||
|
||
access_private means that the field cannot be accessed by the current
|
||
lexical scope because it is private. */
|
||
|
||
#if 0
|
||
#define PUBLIC_RETURN return (DECL_PUBLIC (field) = 1), access_public
|
||
#define PROTECTED_RETURN return (DECL_PROTECTED (field) = 1), access_protected
|
||
#define PRIVATE_RETURN return (DECL_PRIVATE (field) = 1), access_private
|
||
#else
|
||
#define PUBLIC_RETURN return access_public
|
||
#define PROTECTED_RETURN return access_protected
|
||
#define PRIVATE_RETURN return access_private
|
||
#endif
|
||
|
||
#if 0
|
||
/* Disabled with DECL_PUBLIC &c. */
|
||
static tree previous_scope = NULL_TREE;
|
||
#endif
|
||
|
||
enum access_type
|
||
compute_access (basetype_path, field)
|
||
tree basetype_path, field;
|
||
{
|
||
enum access_type access;
|
||
tree types;
|
||
tree context;
|
||
int protected_ok, via_protected;
|
||
extern int flag_access_control;
|
||
#if 1
|
||
/* Replaces static decl above. */
|
||
tree previous_scope;
|
||
#endif
|
||
int static_mem =
|
||
((TREE_CODE (field) == FUNCTION_DECL && DECL_STATIC_FUNCTION_P (field))
|
||
|| (TREE_CODE (field) != FUNCTION_DECL && TREE_STATIC (field)));
|
||
|
||
if (! flag_access_control)
|
||
return access_public;
|
||
|
||
/* The field lives in the current class. */
|
||
if (BINFO_TYPE (basetype_path) == current_class_type)
|
||
return access_public;
|
||
|
||
#if 0
|
||
/* Disabled until pushing function scope clears these out. If ever. */
|
||
/* Make these special cases fast. */
|
||
if (current_scope () == previous_scope)
|
||
{
|
||
if (DECL_PUBLIC (field))
|
||
return access_public;
|
||
if (DECL_PROTECTED (field))
|
||
return access_protected;
|
||
if (DECL_PRIVATE (field))
|
||
return access_private;
|
||
}
|
||
#endif
|
||
|
||
/* We don't currently support access control on nested types. */
|
||
if (TREE_CODE (field) == TYPE_DECL)
|
||
return access_public;
|
||
|
||
previous_scope = current_scope ();
|
||
|
||
context = DECL_CLASS_CONTEXT (field);
|
||
if (context == NULL_TREE)
|
||
context = DECL_CONTEXT (field);
|
||
|
||
/* Fields coming from nested anonymous unions have their DECL_CLASS_CONTEXT
|
||
slot set to the union type rather than the record type containing
|
||
the anonymous union. In this case, DECL_FIELD_CONTEXT is correct. */
|
||
if (context && TREE_CODE (context) == UNION_TYPE
|
||
&& ANON_AGGRNAME_P (TYPE_IDENTIFIER (context)))
|
||
context = DECL_FIELD_CONTEXT (field);
|
||
|
||
/* Virtual function tables are never private. But we should know that
|
||
we are looking for this, and not even try to hide it. */
|
||
if (DECL_NAME (field) && VFIELD_NAME_P (DECL_NAME (field)) == 1)
|
||
PUBLIC_RETURN;
|
||
|
||
/* Member found immediately within object. */
|
||
if (BINFO_INHERITANCE_CHAIN (basetype_path) == NULL_TREE)
|
||
{
|
||
/* Are we (or an enclosing scope) friends with the class that has
|
||
FIELD? */
|
||
if (is_friend (context, previous_scope))
|
||
PUBLIC_RETURN;
|
||
|
||
/* If it's private, it's private, you letch. */
|
||
if (TREE_PRIVATE (field))
|
||
PRIVATE_RETURN;
|
||
|
||
/* ARM $11.5. Member functions of a derived class can access the
|
||
non-static protected members of a base class only through a
|
||
pointer to the derived class, a reference to it, or an object
|
||
of it. Also any subsequently derived classes also have
|
||
access. */
|
||
else if (TREE_PROTECTED (field))
|
||
{
|
||
if (current_class_type
|
||
&& static_mem
|
||
&& ACCESSIBLY_DERIVED_FROM_P (context, current_class_type))
|
||
PUBLIC_RETURN;
|
||
else
|
||
PROTECTED_RETURN;
|
||
}
|
||
else
|
||
PUBLIC_RETURN;
|
||
}
|
||
|
||
/* must reverse more than one element */
|
||
basetype_path = reverse_path (basetype_path);
|
||
types = basetype_path;
|
||
via_protected = 0;
|
||
access = access_default;
|
||
protected_ok = static_mem && current_class_type
|
||
&& ACCESSIBLY_DERIVED_FROM_P (BINFO_TYPE (types), current_class_type);
|
||
|
||
while (1)
|
||
{
|
||
tree member;
|
||
tree binfo = types;
|
||
tree type = BINFO_TYPE (binfo);
|
||
int private_ok = 0;
|
||
|
||
/* Friends of a class can see protected members of its bases.
|
||
Note that classes are their own friends. */
|
||
if (is_friend (type, previous_scope))
|
||
{
|
||
protected_ok = 1;
|
||
private_ok = 1;
|
||
}
|
||
|
||
member = purpose_member (type, DECL_ACCESS (field));
|
||
if (member)
|
||
{
|
||
access = (enum access_type) TREE_VALUE (member);
|
||
break;
|
||
}
|
||
|
||
types = BINFO_INHERITANCE_CHAIN (types);
|
||
|
||
/* If the next type was VIA_PROTECTED, then fields of all remaining
|
||
classes past that one are *at least* protected. */
|
||
if (types)
|
||
{
|
||
if (TREE_VIA_PROTECTED (types))
|
||
via_protected = 1;
|
||
else if (! TREE_VIA_PUBLIC (types) && ! private_ok)
|
||
{
|
||
access = access_private;
|
||
break;
|
||
}
|
||
}
|
||
else
|
||
break;
|
||
}
|
||
reverse_path (basetype_path);
|
||
|
||
/* No special visibilities apply. Use normal rules. */
|
||
|
||
if (access == access_default)
|
||
{
|
||
if (is_friend (context, previous_scope))
|
||
access = access_public;
|
||
else if (TREE_PRIVATE (field))
|
||
access = access_private;
|
||
else if (TREE_PROTECTED (field))
|
||
access = access_protected;
|
||
else
|
||
access = access_public;
|
||
}
|
||
|
||
if (access == access_public && via_protected)
|
||
access = access_protected;
|
||
|
||
if (access == access_protected && protected_ok)
|
||
access = access_public;
|
||
|
||
#if 0
|
||
if (access == access_public)
|
||
DECL_PUBLIC (field) = 1;
|
||
else if (access == access_protected)
|
||
DECL_PROTECTED (field) = 1;
|
||
else if (access == access_private)
|
||
DECL_PRIVATE (field) = 1;
|
||
else my_friendly_abort (96);
|
||
#endif
|
||
return access;
|
||
}
|
||
|
||
/* Routine to see if the sub-object denoted by the binfo PARENT can be
|
||
found as a base class and sub-object of the object denoted by
|
||
BINFO. This routine relies upon binfos not being shared, except
|
||
for binfos for virtual bases. */
|
||
static int
|
||
is_subobject_of_p (parent, binfo)
|
||
tree parent, binfo;
|
||
{
|
||
tree binfos = BINFO_BASETYPES (binfo);
|
||
int i, n_baselinks = binfos ? TREE_VEC_LENGTH (binfos) : 0;
|
||
|
||
if (parent == binfo)
|
||
return 1;
|
||
|
||
/* Process and/or queue base types. */
|
||
for (i = 0; i < n_baselinks; i++)
|
||
{
|
||
tree base_binfo = TREE_VEC_ELT (binfos, i);
|
||
if (TREE_VIA_VIRTUAL (base_binfo))
|
||
base_binfo = TYPE_BINFO (BINFO_TYPE (base_binfo));
|
||
if (is_subobject_of_p (parent, base_binfo))
|
||
return 1;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/* See if a one FIELD_DECL hides another. This routine is meant to
|
||
correspond to ANSI working paper Sept 17, 1992 10p4. The two
|
||
binfos given are the binfos corresponding to the particular places
|
||
the FIELD_DECLs are found. This routine relies upon binfos not
|
||
being shared, except for virtual bases. */
|
||
static int
|
||
hides (hider_binfo, hidee_binfo)
|
||
tree hider_binfo, hidee_binfo;
|
||
{
|
||
/* hider hides hidee, if hider has hidee as a base class and
|
||
the instance of hidee is a sub-object of hider. The first
|
||
part is always true is the second part is true.
|
||
|
||
When hider and hidee are the same (two ways to get to the exact
|
||
same member) we consider either one as hiding the other. */
|
||
return is_subobject_of_p (hidee_binfo, hider_binfo);
|
||
}
|
||
|
||
/* Very similar to lookup_fnfields_1 but it ensures that at least one
|
||
function was declared inside the class given by TYPE. It really should
|
||
only return functions that match the given TYPE. */
|
||
static int
|
||
lookup_fnfields_here (type, name)
|
||
tree type, name;
|
||
{
|
||
int index = lookup_fnfields_1 (type, name);
|
||
tree fndecls;
|
||
|
||
if (index <= 0)
|
||
return index;
|
||
fndecls = TREE_VEC_ELT (CLASSTYPE_METHOD_VEC (type), index);
|
||
while (fndecls)
|
||
{
|
||
if (TYPE_MAIN_VARIANT (DECL_CLASS_CONTEXT (fndecls))
|
||
== TYPE_MAIN_VARIANT (type))
|
||
return index;
|
||
fndecls = TREE_CHAIN (fndecls);
|
||
}
|
||
return -1;
|
||
}
|
||
|
||
/* Look for a field named NAME in an inheritance lattice dominated by
|
||
XBASETYPE. PROTECT is zero if we can avoid computing access
|
||
information, otherwise it is 1. WANT_TYPE is 1 when we should only
|
||
return TYPE_DECLs, if no TYPE_DECL can be found return NULL_TREE.
|
||
|
||
It was not clear what should happen if WANT_TYPE is set, and an
|
||
ambiguity is found. At least one use (lookup_name) to not see
|
||
the error. */
|
||
tree
|
||
lookup_field (xbasetype, name, protect, want_type)
|
||
register tree xbasetype, name;
|
||
int protect, want_type;
|
||
{
|
||
int head = 0, tail = 0;
|
||
tree rval, rval_binfo = NULL_TREE, rval_binfo_h;
|
||
tree type, basetype_chain, basetype_path;
|
||
enum access_type this_v = access_default;
|
||
tree entry, binfo, binfo_h;
|
||
enum access_type own_access = access_default;
|
||
int vbase_name_p = VBASE_NAME_P (name);
|
||
|
||
/* rval_binfo is the binfo associated with the found member, note,
|
||
this can be set with useful information, even when rval is not
|
||
set, because it must deal with ALL members, not just non-function
|
||
members. It is used for ambiguity checking and the hidden
|
||
checks. Whereas rval is only set if a proper (not hidden)
|
||
non-function member is found. */
|
||
|
||
/* rval_binfo_h and binfo_h are binfo values used when we perform the
|
||
hiding checks, as virtual base classes may not be shared. The strategy
|
||
is we always go into the the binfo hierarchy owned by TYPE_BINFO of
|
||
virtual base classes, as we cross virtual base class lines. This way
|
||
we know that binfo of a virtual base class will always == itself when
|
||
found along any line. (mrs) */
|
||
|
||
char *errstr = 0;
|
||
|
||
/* Set this to nonzero if we don't know how to compute
|
||
accurate error messages for access control. */
|
||
int index = MEMOIZED_HASH_FN (name);
|
||
|
||
/* If we are looking for a constructor in a templated type, use the
|
||
unspecialized name, as that is how we store it. */
|
||
if (IDENTIFIER_TEMPLATE (name))
|
||
name = constructor_name (name);
|
||
|
||
if (TREE_CODE (xbasetype) == TREE_VEC)
|
||
{
|
||
type = BINFO_TYPE (xbasetype);
|
||
basetype_path = xbasetype;
|
||
}
|
||
else if (IS_AGGR_TYPE_CODE (TREE_CODE (xbasetype)))
|
||
{
|
||
type = xbasetype;
|
||
basetype_path = TYPE_BINFO (xbasetype);
|
||
BINFO_VIA_PUBLIC (basetype_path) = 1;
|
||
BINFO_INHERITANCE_CHAIN (basetype_path) = NULL_TREE;
|
||
}
|
||
else my_friendly_abort (97);
|
||
|
||
if (CLASSTYPE_MTABLE_ENTRY (type))
|
||
{
|
||
tree tem = MEMOIZED_FIELDS (CLASSTYPE_MTABLE_ENTRY (type), index);
|
||
|
||
while (tem && TREE_PURPOSE (tem) != name)
|
||
{
|
||
memoized_fields_searched[0]++;
|
||
tem = TREE_CHAIN (tem);
|
||
}
|
||
if (tem)
|
||
{
|
||
if (protect && TREE_TYPE (tem))
|
||
{
|
||
error (TREE_STRING_POINTER (TREE_TYPE (tem)),
|
||
IDENTIFIER_POINTER (name),
|
||
TYPE_NAME_STRING (DECL_FIELD_CONTEXT (TREE_VALUE (tem))));
|
||
return error_mark_node;
|
||
}
|
||
if (TREE_VALUE (tem) == NULL_TREE)
|
||
memoized_fast_rejects[0] += 1;
|
||
else
|
||
memoized_fast_finds[0] += 1;
|
||
return TREE_VALUE (tem);
|
||
}
|
||
}
|
||
|
||
#ifdef GATHER_STATISTICS
|
||
n_calls_lookup_field++;
|
||
#endif
|
||
if (protect && flag_memoize_lookups && ! global_bindings_p ())
|
||
entry = make_memoized_table_entry (type, name, 0);
|
||
else
|
||
entry = 0;
|
||
|
||
rval = lookup_field_1 (type, name);
|
||
|
||
if (rval || lookup_fnfields_here (type, name) >= 0)
|
||
{
|
||
if (rval)
|
||
{
|
||
if (want_type)
|
||
{
|
||
if (TREE_CODE (rval) != TYPE_DECL)
|
||
{
|
||
rval = purpose_member (name, CLASSTYPE_TAGS (type));
|
||
if (rval)
|
||
rval = TYPE_MAIN_DECL (TREE_VALUE (rval));
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (TREE_CODE (rval) == TYPE_DECL
|
||
&& lookup_fnfields_here (type, name) >= 0)
|
||
rval = NULL_TREE;
|
||
}
|
||
}
|
||
|
||
if (protect && rval)
|
||
{
|
||
if (TREE_PRIVATE (rval) | TREE_PROTECTED (rval))
|
||
this_v = compute_access (basetype_path, rval);
|
||
if (TREE_CODE (rval) == CONST_DECL)
|
||
{
|
||
if (this_v == access_private)
|
||
errstr = "enum `%D' is a private value of class `%T'";
|
||
else if (this_v == access_protected)
|
||
errstr = "enum `%D' is a protected value of class `%T'";
|
||
}
|
||
else
|
||
{
|
||
if (this_v == access_private)
|
||
errstr = "member `%D' is a private member of class `%T'";
|
||
else if (this_v == access_protected)
|
||
errstr = "member `%D' is a protected member of class `%T'";
|
||
}
|
||
}
|
||
|
||
if (entry)
|
||
{
|
||
if (errstr)
|
||
{
|
||
/* This depends on behavior of lookup_field_1! */
|
||
tree error_string = my_build_string (errstr);
|
||
TREE_TYPE (entry) = error_string;
|
||
}
|
||
else
|
||
{
|
||
/* Let entry know there is no problem with this access. */
|
||
TREE_TYPE (entry) = NULL_TREE;
|
||
}
|
||
TREE_VALUE (entry) = rval;
|
||
}
|
||
|
||
if (errstr && protect)
|
||
{
|
||
cp_error (errstr, name, type);
|
||
return error_mark_node;
|
||
}
|
||
return rval;
|
||
}
|
||
|
||
basetype_chain = build_tree_list (NULL_TREE, basetype_path);
|
||
TREE_VIA_PUBLIC (basetype_chain) = TREE_VIA_PUBLIC (basetype_path);
|
||
TREE_VIA_PROTECTED (basetype_chain) = TREE_VIA_PROTECTED (basetype_path);
|
||
TREE_VIA_VIRTUAL (basetype_chain) = TREE_VIA_VIRTUAL (basetype_path);
|
||
|
||
/* The ambiguity check relies upon breadth first searching. */
|
||
|
||
search_stack = push_search_level (search_stack, &search_obstack);
|
||
binfo = basetype_path;
|
||
binfo_h = binfo;
|
||
|
||
while (1)
|
||
{
|
||
tree binfos = BINFO_BASETYPES (binfo);
|
||
int i, n_baselinks = binfos ? TREE_VEC_LENGTH (binfos) : 0;
|
||
tree nval;
|
||
|
||
/* Process and/or queue base types. */
|
||
for (i = 0; i < n_baselinks; i++)
|
||
{
|
||
tree base_binfo = TREE_VEC_ELT (binfos, i);
|
||
if (BINFO_FIELDS_MARKED (base_binfo) == 0)
|
||
{
|
||
tree btypes;
|
||
|
||
SET_BINFO_FIELDS_MARKED (base_binfo);
|
||
btypes = my_tree_cons (NULL_TREE, base_binfo, basetype_chain);
|
||
TREE_VIA_PUBLIC (btypes) = TREE_VIA_PUBLIC (base_binfo);
|
||
TREE_VIA_PROTECTED (btypes) = TREE_VIA_PROTECTED (base_binfo);
|
||
TREE_VIA_VIRTUAL (btypes) = TREE_VIA_VIRTUAL (base_binfo);
|
||
if (TREE_VIA_VIRTUAL (base_binfo))
|
||
btypes = tree_cons (NULL_TREE,
|
||
TYPE_BINFO (BINFO_TYPE (TREE_VEC_ELT (BINFO_BASETYPES (binfo_h), i))),
|
||
btypes);
|
||
else
|
||
btypes = tree_cons (NULL_TREE,
|
||
TREE_VEC_ELT (BINFO_BASETYPES (binfo_h), i),
|
||
btypes);
|
||
obstack_ptr_grow (&search_obstack, btypes);
|
||
tail += 1;
|
||
if (tail >= search_stack->limit)
|
||
my_friendly_abort (98);
|
||
}
|
||
}
|
||
|
||
/* Process head of queue, if one exists. */
|
||
if (head >= tail)
|
||
break;
|
||
|
||
basetype_chain = search_stack->first[head++];
|
||
binfo_h = TREE_VALUE (basetype_chain);
|
||
basetype_chain = TREE_CHAIN (basetype_chain);
|
||
basetype_path = TREE_VALUE (basetype_chain);
|
||
if (TREE_CHAIN (basetype_chain))
|
||
BINFO_INHERITANCE_CHAIN (basetype_path) = TREE_VALUE (TREE_CHAIN (basetype_chain));
|
||
else
|
||
BINFO_INHERITANCE_CHAIN (basetype_path) = NULL_TREE;
|
||
|
||
binfo = basetype_path;
|
||
type = BINFO_TYPE (binfo);
|
||
|
||
/* See if we can find NAME in TYPE. If RVAL is nonzero,
|
||
and we do find NAME in TYPE, verify that such a second
|
||
sighting is in fact valid. */
|
||
|
||
nval = lookup_field_1 (type, name);
|
||
|
||
if (nval || lookup_fnfields_here (type, name)>=0)
|
||
{
|
||
if (nval && nval == rval && SHARED_MEMBER_P (nval))
|
||
{
|
||
/* This is ok, the member found is the same [class.ambig] */
|
||
}
|
||
else if (rval_binfo && hides (rval_binfo_h, binfo_h))
|
||
{
|
||
/* This is ok, the member found is in rval_binfo, not
|
||
here (binfo). */
|
||
}
|
||
else if (rval_binfo==NULL_TREE || hides (binfo_h, rval_binfo_h))
|
||
{
|
||
/* This is ok, the member found is here (binfo), not in
|
||
rval_binfo. */
|
||
if (nval)
|
||
{
|
||
rval = nval;
|
||
if (entry || protect)
|
||
this_v = compute_access (basetype_path, rval);
|
||
/* These may look ambiguous, but they really are not. */
|
||
if (vbase_name_p)
|
||
break;
|
||
}
|
||
else
|
||
{
|
||
/* Undo finding it before, as something else hides it. */
|
||
rval = NULL_TREE;
|
||
}
|
||
rval_binfo = binfo;
|
||
rval_binfo_h = binfo_h;
|
||
}
|
||
else
|
||
{
|
||
/* This is ambiguous. */
|
||
errstr = "request for member `%D' is ambiguous";
|
||
protect = 2;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
{
|
||
tree *tp = search_stack->first;
|
||
tree *search_tail = tp + tail;
|
||
|
||
if (entry)
|
||
TREE_VALUE (entry) = rval;
|
||
|
||
if (rval_binfo)
|
||
{
|
||
type = BINFO_TYPE (rval_binfo);
|
||
|
||
if (rval)
|
||
{
|
||
if (want_type)
|
||
{
|
||
if (TREE_CODE (rval) != TYPE_DECL)
|
||
{
|
||
rval = purpose_member (name, CLASSTYPE_TAGS (type));
|
||
if (rval)
|
||
rval = TYPE_MAIN_DECL (TREE_VALUE (rval));
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (TREE_CODE (rval) == TYPE_DECL
|
||
&& lookup_fnfields_here (type, name) >= 0)
|
||
rval = NULL_TREE;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (rval == NULL_TREE)
|
||
errstr = 0;
|
||
|
||
/* If this FIELD_DECL defines its own access level, deal with that. */
|
||
if (rval && errstr == 0
|
||
&& ((protect&1) || entry)
|
||
&& DECL_LANG_SPECIFIC (rval)
|
||
&& DECL_ACCESS (rval))
|
||
{
|
||
while (tp < search_tail)
|
||
{
|
||
/* If is possible for one of the derived types on the path to
|
||
have defined special access for this field. Look for such
|
||
declarations and report an error if a conflict is found. */
|
||
enum access_type new_v;
|
||
|
||
if (this_v != access_default)
|
||
new_v = compute_access (TREE_VALUE (TREE_CHAIN (*tp)), rval);
|
||
if (this_v != access_default && new_v != this_v)
|
||
{
|
||
errstr = "conflicting access to member `%D'";
|
||
this_v = access_default;
|
||
}
|
||
own_access = new_v;
|
||
CLEAR_BINFO_FIELDS_MARKED (TREE_VALUE (TREE_CHAIN (*tp)));
|
||
tp += 1;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
while (tp < search_tail)
|
||
{
|
||
CLEAR_BINFO_FIELDS_MARKED (TREE_VALUE (TREE_CHAIN (*tp)));
|
||
tp += 1;
|
||
}
|
||
}
|
||
}
|
||
search_stack = pop_search_level (search_stack);
|
||
|
||
if (errstr == 0)
|
||
{
|
||
if (own_access == access_private)
|
||
errstr = "member `%D' declared private";
|
||
else if (own_access == access_protected)
|
||
errstr = "member `%D' declared protected";
|
||
else if (this_v == access_private)
|
||
errstr = TREE_PRIVATE (rval)
|
||
? "member `%D' is private"
|
||
: "member `%D' is from private base class";
|
||
else if (this_v == access_protected)
|
||
errstr = TREE_PROTECTED (rval)
|
||
? "member `%D' is protected"
|
||
: "member `%D' is from protected base class";
|
||
}
|
||
|
||
if (entry)
|
||
{
|
||
if (errstr)
|
||
{
|
||
tree error_string = my_build_string (errstr);
|
||
/* Save error message with entry. */
|
||
TREE_TYPE (entry) = error_string;
|
||
}
|
||
else
|
||
{
|
||
/* Mark entry as having no error string. */
|
||
TREE_TYPE (entry) = NULL_TREE;
|
||
}
|
||
}
|
||
|
||
if (errstr && protect)
|
||
{
|
||
cp_error (errstr, name, type);
|
||
rval = error_mark_node;
|
||
}
|
||
return rval;
|
||
}
|
||
|
||
/* Try to find NAME inside a nested class. */
|
||
tree
|
||
lookup_nested_field (name, complain)
|
||
tree name;
|
||
int complain;
|
||
{
|
||
register tree t;
|
||
|
||
tree id = NULL_TREE;
|
||
if (TREE_CHAIN (current_class_type))
|
||
{
|
||
/* Climb our way up the nested ladder, seeing if we're trying to
|
||
modify a field in an enclosing class. If so, we should only
|
||
be able to modify if it's static. */
|
||
for (t = TREE_CHAIN (current_class_type);
|
||
t && DECL_CONTEXT (t);
|
||
t = TREE_CHAIN (DECL_CONTEXT (t)))
|
||
{
|
||
if (TREE_CODE (DECL_CONTEXT (t)) != RECORD_TYPE)
|
||
break;
|
||
|
||
/* N.B.: lookup_field will do the access checking for us */
|
||
id = lookup_field (DECL_CONTEXT (t), name, complain, 0);
|
||
if (id == error_mark_node)
|
||
{
|
||
id = NULL_TREE;
|
||
continue;
|
||
}
|
||
|
||
if (id != NULL_TREE)
|
||
{
|
||
if (TREE_CODE (id) == FIELD_DECL
|
||
&& ! TREE_STATIC (id)
|
||
&& TREE_TYPE (id) != error_mark_node)
|
||
{
|
||
if (complain)
|
||
{
|
||
/* At parse time, we don't want to give this error, since
|
||
we won't have enough state to make this kind of
|
||
decision properly. But there are times (e.g., with
|
||
enums in nested classes) when we do need to call
|
||
this fn at parse time. So, in those cases, we pass
|
||
complain as a 0 and just return a NULL_TREE. */
|
||
error ("assignment to non-static member `%s' of enclosing class `%s'",
|
||
lang_printable_name (id),
|
||
IDENTIFIER_POINTER (TYPE_IDENTIFIER
|
||
(DECL_CONTEXT (t))));
|
||
/* Mark this for do_identifier(). It would otherwise
|
||
claim that the variable was undeclared. */
|
||
TREE_TYPE (id) = error_mark_node;
|
||
}
|
||
else
|
||
{
|
||
id = NULL_TREE;
|
||
continue;
|
||
}
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
return id;
|
||
}
|
||
|
||
/* TYPE is a class type. Return the index of the fields within
|
||
the method vector with name NAME, or -1 is no such field exists. */
|
||
static int
|
||
lookup_fnfields_1 (type, name)
|
||
tree type, name;
|
||
{
|
||
register tree method_vec = CLASSTYPE_METHOD_VEC (type);
|
||
|
||
if (method_vec != 0)
|
||
{
|
||
register tree *methods = &TREE_VEC_ELT (method_vec, 0);
|
||
register tree *end = TREE_VEC_END (method_vec);
|
||
|
||
#ifdef GATHER_STATISTICS
|
||
n_calls_lookup_fnfields_1++;
|
||
#endif
|
||
if (*methods && name == constructor_name (type))
|
||
return 0;
|
||
|
||
while (++methods != end)
|
||
{
|
||
#ifdef GATHER_STATISTICS
|
||
n_outer_fields_searched++;
|
||
#endif
|
||
if (DECL_NAME (*methods) == name)
|
||
break;
|
||
}
|
||
if (methods != end)
|
||
return methods - &TREE_VEC_ELT (method_vec, 0);
|
||
}
|
||
|
||
return -1;
|
||
}
|
||
|
||
/* Starting from BASETYPE, return a TREE_BASELINK-like object
|
||
which gives the following information (in a list):
|
||
|
||
TREE_TYPE: list of basetypes needed to get to...
|
||
TREE_VALUE: list of all functions in of given type
|
||
which have name NAME.
|
||
|
||
No access information is computed by this function,
|
||
other then to adorn the list of basetypes with
|
||
TREE_VIA_PUBLIC.
|
||
|
||
If there are two ways to find a name (two members), if COMPLAIN is
|
||
non-zero, then error_mark_node is returned, and an error message is
|
||
printed, otherwise, just an error_mark_node is returned.
|
||
|
||
As a special case, is COMPLAIN is -1, we don't complain, and we
|
||
don't return error_mark_node, but rather the complete list of
|
||
virtuals. This is used by get_virtuals_named_this. */
|
||
tree
|
||
lookup_fnfields (basetype_path, name, complain)
|
||
tree basetype_path, name;
|
||
int complain;
|
||
{
|
||
int head = 0, tail = 0;
|
||
tree type, rval, rval_binfo = NULL_TREE, rvals = NULL_TREE, rval_binfo_h;
|
||
tree entry, binfo, basetype_chain, binfo_h;
|
||
int find_all = 0;
|
||
|
||
/* rval_binfo is the binfo associated with the found member, note,
|
||
this can be set with useful information, even when rval is not
|
||
set, because it must deal with ALL members, not just function
|
||
members. It is used for ambiguity checking and the hidden
|
||
checks. Whereas rval is only set if a proper (not hidden)
|
||
function member is found. */
|
||
|
||
/* rval_binfo_h and binfo_h are binfo values used when we perform the
|
||
hiding checks, as virtual base classes may not be shared. The strategy
|
||
is we always go into the the binfo hierarchy owned by TYPE_BINFO of
|
||
virtual base classes, as we cross virtual base class lines. This way
|
||
we know that binfo of a virtual base class will always == itself when
|
||
found along any line. (mrs) */
|
||
|
||
/* For now, don't try this. */
|
||
int protect = complain;
|
||
|
||
char *errstr = 0;
|
||
|
||
/* Set this to nonzero if we don't know how to compute
|
||
accurate error messages for access control. */
|
||
int index = MEMOIZED_HASH_FN (name);
|
||
|
||
if (complain == -1)
|
||
{
|
||
find_all = 1;
|
||
protect = complain = 0;
|
||
}
|
||
|
||
/* If we are looking for a constructor in a templated type, use the
|
||
unspecialized name, as that is how we store it. */
|
||
if (IDENTIFIER_TEMPLATE (name))
|
||
name = constructor_name (name);
|
||
|
||
binfo = basetype_path;
|
||
binfo_h = binfo;
|
||
type = BINFO_TYPE (basetype_path);
|
||
|
||
/* The memoization code is in need of maintenance. */
|
||
if (!find_all && CLASSTYPE_MTABLE_ENTRY (type))
|
||
{
|
||
tree tem = MEMOIZED_FNFIELDS (CLASSTYPE_MTABLE_ENTRY (type), index);
|
||
|
||
while (tem && TREE_PURPOSE (tem) != name)
|
||
{
|
||
memoized_fields_searched[1]++;
|
||
tem = TREE_CHAIN (tem);
|
||
}
|
||
if (tem)
|
||
{
|
||
if (protect && TREE_TYPE (tem))
|
||
{
|
||
error (TREE_STRING_POINTER (TREE_TYPE (tem)),
|
||
IDENTIFIER_POINTER (name),
|
||
TYPE_NAME_STRING (DECL_CLASS_CONTEXT (TREE_VALUE (TREE_VALUE (tem)))));
|
||
return error_mark_node;
|
||
}
|
||
if (TREE_VALUE (tem) == NULL_TREE)
|
||
{
|
||
memoized_fast_rejects[1] += 1;
|
||
return NULL_TREE;
|
||
}
|
||
else
|
||
{
|
||
/* Want to return this, but we must make sure
|
||
that access information is consistent. */
|
||
tree baselink = TREE_VALUE (tem);
|
||
tree memoized_basetypes = TREE_PURPOSE (baselink);
|
||
tree these_basetypes = basetype_path;
|
||
while (memoized_basetypes && these_basetypes)
|
||
{
|
||
memoized_fields_searched[1]++;
|
||
if (TREE_VALUE (memoized_basetypes) != these_basetypes)
|
||
break;
|
||
memoized_basetypes = TREE_CHAIN (memoized_basetypes);
|
||
these_basetypes = BINFO_INHERITANCE_CHAIN (these_basetypes);
|
||
}
|
||
/* The following statement is true only when both are NULL. */
|
||
if (memoized_basetypes == these_basetypes)
|
||
{
|
||
memoized_fast_finds[1] += 1;
|
||
return TREE_VALUE (tem);
|
||
}
|
||
/* else, we must re-find this field by hand. */
|
||
baselink = tree_cons (basetype_path, TREE_VALUE (baselink), TREE_CHAIN (baselink));
|
||
return baselink;
|
||
}
|
||
}
|
||
}
|
||
|
||
#ifdef GATHER_STATISTICS
|
||
n_calls_lookup_fnfields++;
|
||
#endif
|
||
if (protect && flag_memoize_lookups && ! global_bindings_p ())
|
||
entry = make_memoized_table_entry (type, name, 1);
|
||
else
|
||
entry = 0;
|
||
|
||
index = lookup_fnfields_here (type, name);
|
||
if (index >= 0 || lookup_field_1 (type, name))
|
||
{
|
||
rval_binfo = basetype_path;
|
||
rval_binfo_h = rval_binfo;
|
||
}
|
||
|
||
if (index >= 0)
|
||
{
|
||
rval = TREE_VEC_ELT (CLASSTYPE_METHOD_VEC (type), index);
|
||
rvals = my_tree_cons (basetype_path, rval, rvals);
|
||
if (BINFO_BASETYPES (binfo) && CLASSTYPE_BASELINK_VEC (type))
|
||
TREE_TYPE (rvals) = TREE_VEC_ELT (CLASSTYPE_BASELINK_VEC (type), index);
|
||
|
||
if (entry)
|
||
{
|
||
TREE_VALUE (entry) = rvals;
|
||
TREE_TYPE (entry) = NULL_TREE;
|
||
}
|
||
|
||
return rvals;
|
||
}
|
||
rval = NULL_TREE;
|
||
|
||
if (basetype_path == TYPE_BINFO (type))
|
||
{
|
||
basetype_chain = CLASSTYPE_BINFO_AS_LIST (type);
|
||
TREE_VIA_PUBLIC (basetype_chain) = 1;
|
||
BINFO_VIA_PUBLIC (basetype_path) = 1;
|
||
BINFO_INHERITANCE_CHAIN (basetype_path) = NULL_TREE;
|
||
}
|
||
else
|
||
{
|
||
basetype_chain = build_tree_list (NULL_TREE, basetype_path);
|
||
TREE_VIA_PUBLIC (basetype_chain) = TREE_VIA_PUBLIC (basetype_path);
|
||
TREE_VIA_PROTECTED (basetype_chain) = TREE_VIA_PROTECTED (basetype_path);
|
||
TREE_VIA_VIRTUAL (basetype_chain) = TREE_VIA_VIRTUAL (basetype_path);
|
||
}
|
||
|
||
/* The ambiguity check relies upon breadth first searching. */
|
||
|
||
search_stack = push_search_level (search_stack, &search_obstack);
|
||
binfo = basetype_path;
|
||
binfo_h = binfo;
|
||
|
||
while (1)
|
||
{
|
||
tree binfos = BINFO_BASETYPES (binfo);
|
||
int i, n_baselinks = binfos ? TREE_VEC_LENGTH (binfos) : 0;
|
||
int index;
|
||
|
||
/* Process and/or queue base types. */
|
||
for (i = 0; i < n_baselinks; i++)
|
||
{
|
||
tree base_binfo = TREE_VEC_ELT (binfos, i);
|
||
if (BINFO_FIELDS_MARKED (base_binfo) == 0)
|
||
{
|
||
tree btypes;
|
||
|
||
SET_BINFO_FIELDS_MARKED (base_binfo);
|
||
btypes = my_tree_cons (NULL_TREE, base_binfo, basetype_chain);
|
||
TREE_VIA_PUBLIC (btypes) = TREE_VIA_PUBLIC (base_binfo);
|
||
TREE_VIA_PROTECTED (btypes) = TREE_VIA_PROTECTED (base_binfo);
|
||
TREE_VIA_VIRTUAL (btypes) = TREE_VIA_VIRTUAL (base_binfo);
|
||
if (TREE_VIA_VIRTUAL (base_binfo))
|
||
btypes = tree_cons (NULL_TREE,
|
||
TYPE_BINFO (BINFO_TYPE (TREE_VEC_ELT (BINFO_BASETYPES (binfo_h), i))),
|
||
btypes);
|
||
else
|
||
btypes = tree_cons (NULL_TREE,
|
||
TREE_VEC_ELT (BINFO_BASETYPES (binfo_h), i),
|
||
btypes);
|
||
obstack_ptr_grow (&search_obstack, btypes);
|
||
tail += 1;
|
||
if (tail >= search_stack->limit)
|
||
my_friendly_abort (99);
|
||
}
|
||
}
|
||
|
||
/* Process head of queue, if one exists. */
|
||
if (head >= tail)
|
||
break;
|
||
|
||
basetype_chain = search_stack->first[head++];
|
||
binfo_h = TREE_VALUE (basetype_chain);
|
||
basetype_chain = TREE_CHAIN (basetype_chain);
|
||
basetype_path = TREE_VALUE (basetype_chain);
|
||
if (TREE_CHAIN (basetype_chain))
|
||
BINFO_INHERITANCE_CHAIN (basetype_path) = TREE_VALUE (TREE_CHAIN (basetype_chain));
|
||
else
|
||
BINFO_INHERITANCE_CHAIN (basetype_path) = NULL_TREE;
|
||
|
||
binfo = basetype_path;
|
||
type = BINFO_TYPE (binfo);
|
||
|
||
/* See if we can find NAME in TYPE. If RVAL is nonzero,
|
||
and we do find NAME in TYPE, verify that such a second
|
||
sighting is in fact valid. */
|
||
|
||
index = lookup_fnfields_here (type, name);
|
||
|
||
if (index >= 0 || (lookup_field_1 (type, name)!=NULL_TREE && !find_all))
|
||
{
|
||
if (rval_binfo && !find_all && hides (rval_binfo_h, binfo_h))
|
||
{
|
||
/* This is ok, the member found is in rval_binfo, not
|
||
here (binfo). */
|
||
}
|
||
else if (rval_binfo==NULL_TREE || find_all || hides (binfo_h, rval_binfo_h))
|
||
{
|
||
/* This is ok, the member found is here (binfo), not in
|
||
rval_binfo. */
|
||
if (index >= 0)
|
||
{
|
||
rval = TREE_VEC_ELT (CLASSTYPE_METHOD_VEC (type), index);
|
||
/* Note, rvals can only be previously set if find_all is
|
||
true. */
|
||
rvals = my_tree_cons (basetype_path, rval, rvals);
|
||
if (TYPE_BINFO_BASETYPES (type)
|
||
&& CLASSTYPE_BASELINK_VEC (type))
|
||
TREE_TYPE (rvals) = TREE_VEC_ELT (CLASSTYPE_BASELINK_VEC (type), index);
|
||
}
|
||
else
|
||
{
|
||
/* Undo finding it before, as something else hides it. */
|
||
rval = NULL_TREE;
|
||
rvals = NULL_TREE;
|
||
}
|
||
rval_binfo = binfo;
|
||
rval_binfo_h = binfo_h;
|
||
}
|
||
else
|
||
{
|
||
/* This is ambiguous. */
|
||
errstr = "request for method `%D' is ambiguous";
|
||
rvals = error_mark_node;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
{
|
||
tree *tp = search_stack->first;
|
||
tree *search_tail = tp + tail;
|
||
|
||
while (tp < search_tail)
|
||
{
|
||
CLEAR_BINFO_FIELDS_MARKED (TREE_VALUE (TREE_CHAIN (*tp)));
|
||
tp += 1;
|
||
}
|
||
}
|
||
search_stack = pop_search_level (search_stack);
|
||
|
||
if (entry)
|
||
{
|
||
if (errstr)
|
||
{
|
||
tree error_string = my_build_string (errstr);
|
||
/* Save error message with entry. */
|
||
TREE_TYPE (entry) = error_string;
|
||
}
|
||
else
|
||
{
|
||
/* Mark entry as having no error string. */
|
||
TREE_TYPE (entry) = NULL_TREE;
|
||
TREE_VALUE (entry) = rvals;
|
||
}
|
||
}
|
||
|
||
if (errstr && protect)
|
||
{
|
||
cp_error (errstr, name);
|
||
rvals = error_mark_node;
|
||
}
|
||
|
||
return rvals;
|
||
}
|
||
|
||
/* BREADTH-FIRST SEARCH ROUTINES. */
|
||
|
||
/* Search a multiple inheritance hierarchy by breadth-first search.
|
||
|
||
TYPE is an aggregate type, possibly in a multiple-inheritance hierarchy.
|
||
TESTFN is a function, which, if true, means that our condition has been met,
|
||
and its return value should be returned.
|
||
QFN, if non-NULL, is a predicate dictating whether the type should
|
||
even be queued. */
|
||
|
||
HOST_WIDE_INT
|
||
breadth_first_search (binfo, testfn, qfn)
|
||
tree binfo;
|
||
int (*testfn)();
|
||
int (*qfn)();
|
||
{
|
||
int head = 0, tail = 0;
|
||
int rval = 0;
|
||
|
||
search_stack = push_search_level (search_stack, &search_obstack);
|
||
|
||
while (1)
|
||
{
|
||
tree binfos = BINFO_BASETYPES (binfo);
|
||
int n_baselinks = binfos ? TREE_VEC_LENGTH (binfos) : 0;
|
||
int i;
|
||
|
||
/* Process and/or queue base types. */
|
||
for (i = 0; i < n_baselinks; i++)
|
||
{
|
||
tree base_binfo = TREE_VEC_ELT (binfos, i);
|
||
|
||
if (BINFO_MARKED (base_binfo) == 0
|
||
&& (qfn == 0 || (*qfn) (binfo, i)))
|
||
{
|
||
SET_BINFO_MARKED (base_binfo);
|
||
obstack_ptr_grow (&search_obstack, binfo);
|
||
obstack_ptr_grow (&search_obstack, (HOST_WIDE_INT) i);
|
||
tail += 2;
|
||
if (tail >= search_stack->limit)
|
||
my_friendly_abort (100);
|
||
}
|
||
}
|
||
/* Process head of queue, if one exists. */
|
||
if (head >= tail)
|
||
{
|
||
rval = 0;
|
||
break;
|
||
}
|
||
|
||
binfo = search_stack->first[head++];
|
||
i = (HOST_WIDE_INT) search_stack->first[head++];
|
||
if (rval = (*testfn) (binfo, i))
|
||
break;
|
||
binfo = BINFO_BASETYPE (binfo, i);
|
||
}
|
||
{
|
||
tree *tp = search_stack->first;
|
||
tree *search_tail = tp + tail;
|
||
while (tp < search_tail)
|
||
{
|
||
tree binfo = *tp++;
|
||
int i = (HOST_WIDE_INT)(*tp++);
|
||
CLEAR_BINFO_MARKED (BINFO_BASETYPE (binfo, i));
|
||
}
|
||
}
|
||
|
||
search_stack = pop_search_level (search_stack);
|
||
return rval;
|
||
}
|
||
|
||
/* Functions to use in breadth first searches. */
|
||
typedef tree (*pft)();
|
||
typedef int (*pfi)();
|
||
|
||
int tree_needs_constructor_p (binfo, i)
|
||
tree binfo;
|
||
int i;
|
||
{
|
||
tree basetype;
|
||
my_friendly_assert (i != 0, 296);
|
||
basetype = BINFO_TYPE (BINFO_BASETYPE (binfo, i));
|
||
return TYPE_NEEDS_CONSTRUCTING (basetype);
|
||
}
|
||
|
||
static tree declarator;
|
||
|
||
static tree
|
||
get_virtuals_named_this (binfo)
|
||
tree binfo;
|
||
{
|
||
tree fields;
|
||
|
||
fields = lookup_fnfields (binfo, declarator, -1);
|
||
/* fields cannot be error_mark_node */
|
||
|
||
if (fields == 0)
|
||
return 0;
|
||
|
||
/* Get to the function decls, and return the first virtual function
|
||
with this name, if there is one. */
|
||
while (fields)
|
||
{
|
||
tree fndecl;
|
||
|
||
for (fndecl = TREE_VALUE (fields); fndecl; fndecl = DECL_CHAIN (fndecl))
|
||
if (DECL_VINDEX (fndecl))
|
||
return fields;
|
||
fields = next_baselink (fields);
|
||
}
|
||
return NULL_TREE;
|
||
}
|
||
|
||
static tree get_virtual_destructor (binfo, i)
|
||
tree binfo;
|
||
int i;
|
||
{
|
||
tree type = BINFO_TYPE (binfo);
|
||
if (i >= 0)
|
||
type = BINFO_TYPE (TREE_VEC_ELT (BINFO_BASETYPES (binfo), i));
|
||
if (TYPE_HAS_DESTRUCTOR (type)
|
||
&& DECL_VINDEX (TREE_VEC_ELT (CLASSTYPE_METHOD_VEC (type), 0)))
|
||
return TREE_VEC_ELT (CLASSTYPE_METHOD_VEC (type), 0);
|
||
return 0;
|
||
}
|
||
|
||
int tree_has_any_destructor_p (binfo, i)
|
||
tree binfo;
|
||
int i;
|
||
{
|
||
tree type = BINFO_TYPE (binfo);
|
||
if (i >= 0)
|
||
type = BINFO_TYPE (TREE_VEC_ELT (BINFO_BASETYPES (binfo), i));
|
||
return TYPE_NEEDS_DESTRUCTOR (type);
|
||
}
|
||
|
||
/* Given a class type TYPE, and a function decl FNDECL, look for a
|
||
virtual function in TYPE's hierarchy which FNDECL could match as a
|
||
virtual function. It doesn't matter which one we find.
|
||
|
||
DTORP is nonzero if we are looking for a destructor. Destructors
|
||
need special treatment because they do not match by name. */
|
||
tree
|
||
get_matching_virtual (binfo, fndecl, dtorp)
|
||
tree binfo, fndecl;
|
||
int dtorp;
|
||
{
|
||
tree tmp = NULL_TREE;
|
||
|
||
/* Breadth first search routines start searching basetypes
|
||
of TYPE, so we must perform first ply of search here. */
|
||
if (dtorp)
|
||
{
|
||
if (tree_has_any_destructor_p (binfo, -1))
|
||
tmp = get_virtual_destructor (binfo, -1);
|
||
|
||
if (tmp)
|
||
return tmp;
|
||
|
||
tmp = (tree) breadth_first_search (binfo,
|
||
(pfi) get_virtual_destructor,
|
||
tree_has_any_destructor_p);
|
||
return tmp;
|
||
}
|
||
else
|
||
{
|
||
tree drettype, dtypes, btypes, instptr_type;
|
||
tree basetype = DECL_CLASS_CONTEXT (fndecl);
|
||
tree baselink, best = NULL_TREE;
|
||
tree name = DECL_ASSEMBLER_NAME (fndecl);
|
||
|
||
declarator = DECL_NAME (fndecl);
|
||
if (IDENTIFIER_VIRTUAL_P (declarator) == 0)
|
||
return NULL_TREE;
|
||
|
||
baselink = get_virtuals_named_this (binfo);
|
||
if (baselink == NULL_TREE)
|
||
return NULL_TREE;
|
||
|
||
drettype = TREE_TYPE (TREE_TYPE (fndecl));
|
||
dtypes = TYPE_ARG_TYPES (TREE_TYPE (fndecl));
|
||
if (DECL_STATIC_FUNCTION_P (fndecl))
|
||
instptr_type = NULL_TREE;
|
||
else
|
||
instptr_type = TREE_TYPE (TREE_VALUE (dtypes));
|
||
|
||
for (; baselink; baselink = next_baselink (baselink))
|
||
{
|
||
for (tmp = TREE_VALUE (baselink); tmp; tmp = DECL_CHAIN (tmp))
|
||
{
|
||
if (! DECL_VINDEX (tmp))
|
||
continue;
|
||
|
||
btypes = TYPE_ARG_TYPES (TREE_TYPE (tmp));
|
||
if (instptr_type == NULL_TREE)
|
||
{
|
||
if (compparms (TREE_CHAIN (btypes), dtypes, 3))
|
||
/* Caller knows to give error in this case. */
|
||
return tmp;
|
||
return NULL_TREE;
|
||
}
|
||
|
||
if ((TYPE_READONLY (TREE_TYPE (TREE_VALUE (btypes)))
|
||
== TYPE_READONLY (instptr_type))
|
||
&& compparms (TREE_CHAIN (btypes), TREE_CHAIN (dtypes), 3))
|
||
{
|
||
tree brettype = TREE_TYPE (TREE_TYPE (tmp));
|
||
if (comptypes (brettype, drettype, 1))
|
||
/* OK */;
|
||
else if
|
||
(TREE_CODE (brettype) == TREE_CODE (drettype)
|
||
&& (TREE_CODE (brettype) == POINTER_TYPE
|
||
|| TREE_CODE (brettype) == REFERENCE_TYPE)
|
||
&& comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (brettype)),
|
||
TYPE_MAIN_VARIANT (TREE_TYPE (drettype)),
|
||
0))
|
||
/* covariant return type */
|
||
{
|
||
tree b = TREE_TYPE (brettype), d = TREE_TYPE (drettype);
|
||
if (TYPE_MAIN_VARIANT (b) != TYPE_MAIN_VARIANT (d))
|
||
{
|
||
tree binfo = get_binfo (b, d, 1);
|
||
if (binfo != error_mark_node
|
||
&& ! BINFO_OFFSET_ZEROP (binfo))
|
||
sorry ("adjusting pointers for covariant returns");
|
||
}
|
||
if (TYPE_READONLY (d) > TYPE_READONLY (b))
|
||
{
|
||
cp_error ("return type of `%#D' adds const", fndecl);
|
||
cp_error_at (" overriding definition as `%#D'",
|
||
tmp);
|
||
}
|
||
else if (TYPE_VOLATILE (d) > TYPE_VOLATILE (b))
|
||
{
|
||
cp_error ("return type of `%#D' adds volatile",
|
||
fndecl);
|
||
cp_error_at (" overriding definition as `%#D'",
|
||
tmp);
|
||
}
|
||
}
|
||
else if (IS_AGGR_TYPE_2 (brettype, drettype)
|
||
&& comptypes (brettype, drettype, 0))
|
||
{
|
||
error ("invalid covariant return type (must use pointer or reference)");
|
||
cp_error_at (" overriding `%#D'", tmp);
|
||
cp_error (" with `%#D'", fndecl);
|
||
}
|
||
else if (IDENTIFIER_ERROR_LOCUS (name) == NULL_TREE)
|
||
{
|
||
cp_error ("conflicting return type specified for virtual function `%#D'", fndecl);
|
||
cp_error_at (" overriding definition as `%#D'", tmp);
|
||
SET_IDENTIFIER_ERROR_LOCUS (name, basetype);
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
if (tmp)
|
||
{
|
||
best = tmp;
|
||
break;
|
||
}
|
||
}
|
||
if (best == NULL_TREE && warn_overloaded_virtual)
|
||
cp_warning_at ("conflicting specification deriving virtual function `%D'", fndecl);
|
||
|
||
return best;
|
||
}
|
||
}
|
||
|
||
/* Return the list of virtual functions which are abstract in type
|
||
TYPE that come from non virtual base classes. See
|
||
expand_direct_vtbls_init for the style of search we do. */
|
||
static tree
|
||
get_abstract_virtuals_1 (binfo, do_self, abstract_virtuals)
|
||
tree binfo, abstract_virtuals;
|
||
int do_self;
|
||
{
|
||
tree binfos = BINFO_BASETYPES (binfo);
|
||
int i, n_baselinks = binfos ? TREE_VEC_LENGTH (binfos) : 0;
|
||
|
||
for (i = 0; i < n_baselinks; i++)
|
||
{
|
||
tree base_binfo = TREE_VEC_ELT (binfos, i);
|
||
int is_not_base_vtable =
|
||
i != CLASSTYPE_VFIELD_PARENT (BINFO_TYPE (binfo));
|
||
if (! TREE_VIA_VIRTUAL (base_binfo))
|
||
abstract_virtuals
|
||
= get_abstract_virtuals_1 (base_binfo, is_not_base_vtable,
|
||
abstract_virtuals);
|
||
}
|
||
/* Should we use something besides CLASSTYPE_VFIELDS? */
|
||
if (do_self && CLASSTYPE_VFIELDS (BINFO_TYPE (binfo)))
|
||
{
|
||
tree virtuals = BINFO_VIRTUALS (binfo);
|
||
|
||
skip_rtti_stuff (&virtuals);
|
||
|
||
while (virtuals)
|
||
{
|
||
tree base_pfn = FNADDR_FROM_VTABLE_ENTRY (TREE_VALUE (virtuals));
|
||
tree base_fndecl = TREE_OPERAND (base_pfn, 0);
|
||
if (DECL_ABSTRACT_VIRTUAL_P (base_fndecl))
|
||
abstract_virtuals = tree_cons (NULL_TREE, base_fndecl, abstract_virtuals);
|
||
virtuals = TREE_CHAIN (virtuals);
|
||
}
|
||
}
|
||
return abstract_virtuals;
|
||
}
|
||
|
||
/* Return the list of virtual functions which are abstract in type TYPE.
|
||
This information is cached, and so must be built on a
|
||
non-temporary obstack. */
|
||
tree
|
||
get_abstract_virtuals (type)
|
||
tree type;
|
||
{
|
||
tree vbases;
|
||
tree abstract_virtuals = CLASSTYPE_ABSTRACT_VIRTUALS (type);
|
||
|
||
/* First get all from non-virtual bases. */
|
||
abstract_virtuals
|
||
= get_abstract_virtuals_1 (TYPE_BINFO (type), 1, abstract_virtuals);
|
||
|
||
for (vbases = CLASSTYPE_VBASECLASSES (type); vbases; vbases = TREE_CHAIN (vbases))
|
||
{
|
||
tree virtuals = BINFO_VIRTUALS (vbases);
|
||
|
||
skip_rtti_stuff (&virtuals);
|
||
|
||
while (virtuals)
|
||
{
|
||
tree base_pfn = FNADDR_FROM_VTABLE_ENTRY (TREE_VALUE (virtuals));
|
||
tree base_fndecl = TREE_OPERAND (base_pfn, 0);
|
||
if (DECL_ABSTRACT_VIRTUAL_P (base_fndecl))
|
||
abstract_virtuals = tree_cons (NULL_TREE, base_fndecl, abstract_virtuals);
|
||
virtuals = TREE_CHAIN (virtuals);
|
||
}
|
||
}
|
||
return nreverse (abstract_virtuals);
|
||
}
|
||
|
||
/* For the type TYPE, return a list of member functions available from
|
||
base classes with name NAME. The TREE_VALUE of the list is a chain of
|
||
member functions with name NAME. The TREE_PURPOSE of the list is a
|
||
basetype, or a list of base types (in reverse order) which were
|
||
traversed to reach the chain of member functions. If we reach a base
|
||
type which provides a member function of name NAME, and which has at
|
||
most one base type itself, then we can terminate the search. */
|
||
|
||
tree
|
||
get_baselinks (type_as_binfo_list, type, name)
|
||
tree type_as_binfo_list;
|
||
tree type, name;
|
||
{
|
||
int head = 0, tail = 0, index;
|
||
tree rval = 0, nval = 0;
|
||
tree basetypes = type_as_binfo_list;
|
||
tree binfo = TYPE_BINFO (type);
|
||
|
||
search_stack = push_search_level (search_stack, &search_obstack);
|
||
|
||
while (1)
|
||
{
|
||
tree binfos = BINFO_BASETYPES (binfo);
|
||
int i, n_baselinks = binfos ? TREE_VEC_LENGTH (binfos) : 0;
|
||
|
||
/* Process and/or queue base types. */
|
||
for (i = 0; i < n_baselinks; i++)
|
||
{
|
||
tree base_binfo = TREE_VEC_ELT (binfos, i);
|
||
tree btypes;
|
||
|
||
btypes = hash_tree_cons (TREE_VIA_PUBLIC (base_binfo),
|
||
TREE_VIA_VIRTUAL (base_binfo),
|
||
TREE_VIA_PROTECTED (base_binfo),
|
||
NULL_TREE, base_binfo,
|
||
basetypes);
|
||
obstack_ptr_grow (&search_obstack, btypes);
|
||
search_stack->first = (tree *)obstack_base (&search_obstack);
|
||
tail += 1;
|
||
}
|
||
|
||
dont_queue:
|
||
/* Process head of queue, if one exists. */
|
||
if (head >= tail)
|
||
break;
|
||
|
||
basetypes = search_stack->first[head++];
|
||
binfo = TREE_VALUE (basetypes);
|
||
type = BINFO_TYPE (binfo);
|
||
index = lookup_fnfields_1 (type, name);
|
||
if (index >= 0)
|
||
{
|
||
nval = TREE_VEC_ELT (CLASSTYPE_METHOD_VEC (type), index);
|
||
rval = hash_tree_cons (0, 0, 0, basetypes, nval, rval);
|
||
if (TYPE_BINFO_BASETYPES (type) == 0)
|
||
goto dont_queue;
|
||
else if (TREE_VEC_LENGTH (TYPE_BINFO_BASETYPES (type)) == 1)
|
||
{
|
||
if (CLASSTYPE_BASELINK_VEC (type))
|
||
TREE_TYPE (rval) = TREE_VEC_ELT (CLASSTYPE_BASELINK_VEC (type), index);
|
||
goto dont_queue;
|
||
}
|
||
}
|
||
nval = NULL_TREE;
|
||
}
|
||
|
||
search_stack = pop_search_level (search_stack);
|
||
return rval;
|
||
}
|
||
|
||
tree
|
||
next_baselink (baselink)
|
||
tree baselink;
|
||
{
|
||
tree tmp = TREE_TYPE (baselink);
|
||
baselink = TREE_CHAIN (baselink);
|
||
while (tmp)
|
||
{
|
||
/* @@ does not yet add previous base types. */
|
||
baselink = tree_cons (TREE_PURPOSE (tmp), TREE_VALUE (tmp),
|
||
baselink);
|
||
TREE_TYPE (baselink) = TREE_TYPE (tmp);
|
||
tmp = TREE_CHAIN (tmp);
|
||
}
|
||
return baselink;
|
||
}
|
||
|
||
/* DEPTH-FIRST SEARCH ROUTINES. */
|
||
|
||
/* Assign unique numbers to _CLASSTYPE members of the lattice
|
||
specified by TYPE. The root nodes are marked first; the nodes
|
||
are marked depth-fisrt, left-right. */
|
||
|
||
static int cid;
|
||
|
||
/* Matrix implementing a relation from CLASSTYPE X CLASSTYPE => INT.
|
||
Relation yields 1 if C1 <= C2, 0 otherwise. */
|
||
typedef char mi_boolean;
|
||
static mi_boolean *mi_matrix;
|
||
|
||
/* Type for which this matrix is defined. */
|
||
static tree mi_type;
|
||
|
||
/* Size of the matrix for indexing purposes. */
|
||
static int mi_size;
|
||
|
||
/* Return nonzero if class C2 derives from class C1. */
|
||
#define BINFO_DERIVES_FROM(C1, C2) \
|
||
((mi_matrix+mi_size*(BINFO_CID (C1)-1))[BINFO_CID (C2)-1])
|
||
#define TYPE_DERIVES_FROM(C1, C2) \
|
||
((mi_matrix+mi_size*(CLASSTYPE_CID (C1)-1))[CLASSTYPE_CID (C2)-1])
|
||
#define BINFO_DERIVES_FROM_STAR(C) \
|
||
(mi_matrix+(BINFO_CID (C)-1))
|
||
|
||
/* This routine converts a pointer to be a pointer of an immediate
|
||
base class. The normal convert_pointer_to routine would diagnose
|
||
the conversion as ambiguous, under MI code that has the base class
|
||
as an ambiguous base class. */
|
||
static tree
|
||
convert_pointer_to_single_level (to_type, expr)
|
||
tree to_type, expr;
|
||
{
|
||
tree binfo_of_derived;
|
||
tree last;
|
||
|
||
binfo_of_derived = TYPE_BINFO (TREE_TYPE (TREE_TYPE (expr)));
|
||
last = get_binfo (to_type, TREE_TYPE (TREE_TYPE (expr)), 0);
|
||
BINFO_INHERITANCE_CHAIN (last) = binfo_of_derived;
|
||
BINFO_INHERITANCE_CHAIN (binfo_of_derived) = NULL_TREE;
|
||
return build_vbase_path (PLUS_EXPR, build_pointer_type (to_type), expr, last, 1);
|
||
}
|
||
|
||
/* The main function which implements depth first search.
|
||
|
||
This routine has to remember the path it walked up, when
|
||
dfs_init_vbase_pointers is the work function, as otherwise there
|
||
would be no record. */
|
||
static void
|
||
dfs_walk (binfo, fn, qfn)
|
||
tree binfo;
|
||
void (*fn)();
|
||
int (*qfn)();
|
||
{
|
||
tree binfos = BINFO_BASETYPES (binfo);
|
||
int i, n_baselinks = binfos ? TREE_VEC_LENGTH (binfos) : 0;
|
||
|
||
for (i = 0; i < n_baselinks; i++)
|
||
{
|
||
tree base_binfo = TREE_VEC_ELT (binfos, i);
|
||
|
||
if (qfn == 0 || (*qfn)(base_binfo))
|
||
{
|
||
if (fn == dfs_init_vbase_pointers)
|
||
{
|
||
/* When traversing an arbitrary MI hierarchy, we need to keep
|
||
a record of the path we took to get down to the final base
|
||
type, as otherwise there would be no record of it, and just
|
||
trying to blindly convert at the bottom would be ambiguous.
|
||
|
||
The easiest way is to do the conversions one step at a time,
|
||
as we know we want the immediate base class at each step.
|
||
|
||
The only special trick to converting one step at a time,
|
||
is that when we hit the last virtual base class, we must
|
||
use the SLOT value for it, and not use the normal convert
|
||
routine. We use the last virtual base class, as in our
|
||
implementation, we have pointers to all virtual base
|
||
classes in the base object. */
|
||
|
||
tree saved_vbase_decl_ptr_intermediate
|
||
= vbase_decl_ptr_intermediate;
|
||
|
||
if (TREE_VIA_VIRTUAL (base_binfo))
|
||
{
|
||
/* No need for the conversion here, as we know it is the
|
||
right type. */
|
||
vbase_decl_ptr_intermediate
|
||
= (tree)CLASSTYPE_SEARCH_SLOT (BINFO_TYPE (base_binfo));
|
||
}
|
||
else
|
||
{
|
||
vbase_decl_ptr_intermediate
|
||
= convert_pointer_to_single_level (BINFO_TYPE (base_binfo),
|
||
vbase_decl_ptr_intermediate);
|
||
}
|
||
|
||
dfs_walk (base_binfo, fn, qfn);
|
||
|
||
vbase_decl_ptr_intermediate = saved_vbase_decl_ptr_intermediate;
|
||
} else
|
||
dfs_walk (base_binfo, fn, qfn);
|
||
}
|
||
}
|
||
|
||
fn (binfo);
|
||
}
|
||
|
||
/* Predicate functions which serve for dfs_walk. */
|
||
static int numberedp (binfo) tree binfo;
|
||
{ return BINFO_CID (binfo); }
|
||
static int unnumberedp (binfo) tree binfo;
|
||
{ return BINFO_CID (binfo) == 0; }
|
||
|
||
static int markedp (binfo) tree binfo;
|
||
{ return BINFO_MARKED (binfo); }
|
||
static int bfs_markedp (binfo, i) tree binfo; int i;
|
||
{ return BINFO_MARKED (BINFO_BASETYPE (binfo, i)); }
|
||
static int unmarkedp (binfo) tree binfo;
|
||
{ return BINFO_MARKED (binfo) == 0; }
|
||
static int bfs_unmarkedp (binfo, i) tree binfo; int i;
|
||
{ return BINFO_MARKED (BINFO_BASETYPE (binfo, i)) == 0; }
|
||
static int marked_vtable_pathp (binfo) tree binfo;
|
||
{ return BINFO_VTABLE_PATH_MARKED (binfo); }
|
||
static int bfs_marked_vtable_pathp (binfo, i) tree binfo; int i;
|
||
{ return BINFO_VTABLE_PATH_MARKED (BINFO_BASETYPE (binfo, i)); }
|
||
static int unmarked_vtable_pathp (binfo) tree binfo;
|
||
{ return BINFO_VTABLE_PATH_MARKED (binfo) == 0; }
|
||
static int bfs_unmarked_vtable_pathp (binfo, i) tree binfo; int i;
|
||
{ return BINFO_VTABLE_PATH_MARKED (BINFO_BASETYPE (binfo, i)) == 0; }
|
||
static int marked_new_vtablep (binfo) tree binfo;
|
||
{ return BINFO_NEW_VTABLE_MARKED (binfo); }
|
||
static int bfs_marked_new_vtablep (binfo, i) tree binfo; int i;
|
||
{ return BINFO_NEW_VTABLE_MARKED (BINFO_BASETYPE (binfo, i)); }
|
||
static int unmarked_new_vtablep (binfo) tree binfo;
|
||
{ return BINFO_NEW_VTABLE_MARKED (binfo) == 0; }
|
||
static int bfs_unmarked_new_vtablep (binfo, i) tree binfo; int i;
|
||
{ return BINFO_NEW_VTABLE_MARKED (BINFO_BASETYPE (binfo, i)) == 0; }
|
||
|
||
static int dfs_search_slot_nonempty_p (binfo) tree binfo;
|
||
{ return CLASSTYPE_SEARCH_SLOT (BINFO_TYPE (binfo)) != 0; }
|
||
|
||
static int dfs_debug_unmarkedp (binfo) tree binfo;
|
||
{ return CLASSTYPE_DEBUG_REQUESTED (BINFO_TYPE (binfo)) == 0; }
|
||
|
||
/* The worker functions for `dfs_walk'. These do not need to
|
||
test anything (vis a vis marking) if they are paired with
|
||
a predicate function (above). */
|
||
|
||
/* Assign each type within the lattice a number which is unique
|
||
in the lattice. The first number assigned is 1. */
|
||
|
||
static void
|
||
dfs_number (binfo)
|
||
tree binfo;
|
||
{
|
||
BINFO_CID (binfo) = ++cid;
|
||
}
|
||
|
||
static void
|
||
dfs_unnumber (binfo)
|
||
tree binfo;
|
||
{
|
||
BINFO_CID (binfo) = 0;
|
||
}
|
||
|
||
static void
|
||
dfs_mark (binfo) tree binfo;
|
||
{ SET_BINFO_MARKED (binfo); }
|
||
|
||
static void
|
||
dfs_unmark (binfo) tree binfo;
|
||
{ CLEAR_BINFO_MARKED (binfo); }
|
||
|
||
static void
|
||
dfs_mark_vtable_path (binfo) tree binfo;
|
||
{ SET_BINFO_VTABLE_PATH_MARKED (binfo); }
|
||
|
||
static void
|
||
dfs_unmark_vtable_path (binfo) tree binfo;
|
||
{ CLEAR_BINFO_VTABLE_PATH_MARKED (binfo); }
|
||
|
||
static void
|
||
dfs_mark_new_vtable (binfo) tree binfo;
|
||
{ SET_BINFO_NEW_VTABLE_MARKED (binfo); }
|
||
|
||
static void
|
||
dfs_unmark_new_vtable (binfo) tree binfo;
|
||
{ CLEAR_BINFO_NEW_VTABLE_MARKED (binfo); }
|
||
|
||
static void
|
||
dfs_clear_search_slot (binfo) tree binfo;
|
||
{ CLASSTYPE_SEARCH_SLOT (BINFO_TYPE (binfo)) = 0; }
|
||
|
||
static void
|
||
dfs_debug_mark (binfo)
|
||
tree binfo;
|
||
{
|
||
tree t = BINFO_TYPE (binfo);
|
||
|
||
/* Use heuristic that if there are virtual functions,
|
||
ignore until we see a non-inline virtual function. */
|
||
tree methods = CLASSTYPE_METHOD_VEC (t);
|
||
|
||
CLASSTYPE_DEBUG_REQUESTED (t) = 1;
|
||
|
||
/* If interface info is known, the value of (?@@?) is correct. */
|
||
if (methods == 0
|
||
|| CLASSTYPE_INTERFACE_KNOWN (t)
|
||
|| (write_virtuals == 2 && TYPE_VIRTUAL_P (t)))
|
||
return;
|
||
|
||
/* If debug info is requested from this context for this type, supply it.
|
||
If debug info is requested from another context for this type,
|
||
see if some third context can supply it. */
|
||
if (current_function_decl == NULL_TREE
|
||
|| DECL_CLASS_CONTEXT (current_function_decl) != t)
|
||
{
|
||
if (TREE_VEC_ELT (methods, 0))
|
||
methods = TREE_VEC_ELT (methods, 0);
|
||
else
|
||
methods = TREE_VEC_ELT (methods, 1);
|
||
while (methods)
|
||
{
|
||
if (DECL_VINDEX (methods)
|
||
&& DECL_THIS_INLINE (methods) == 0
|
||
&& DECL_ABSTRACT_VIRTUAL_P (methods) == 0)
|
||
{
|
||
/* Somebody, somewhere is going to have to define this
|
||
virtual function. When they do, they will provide
|
||
the debugging info. */
|
||
return;
|
||
}
|
||
methods = TREE_CHAIN (methods);
|
||
}
|
||
}
|
||
/* We cannot rely on some alien method to solve our problems,
|
||
so we must write out the debug info ourselves. */
|
||
TYPE_DECL_SUPPRESS_DEBUG (TYPE_NAME (t)) = 0;
|
||
rest_of_type_compilation (t, global_bindings_p ());
|
||
}
|
||
|
||
/* Attach to the type of the virtual base class, the pointer to the
|
||
virtual base class, given the global pointer vbase_decl_ptr.
|
||
|
||
We use the global vbase_types. ICK! */
|
||
static void
|
||
dfs_find_vbases (binfo)
|
||
tree binfo;
|
||
{
|
||
tree binfos = BINFO_BASETYPES (binfo);
|
||
int i, n_baselinks = binfos ? TREE_VEC_LENGTH (binfos) : 0;
|
||
|
||
for (i = n_baselinks-1; i >= 0; i--)
|
||
{
|
||
tree base_binfo = TREE_VEC_ELT (binfos, i);
|
||
|
||
if (TREE_VIA_VIRTUAL (base_binfo)
|
||
&& CLASSTYPE_SEARCH_SLOT (BINFO_TYPE (base_binfo)) == 0)
|
||
{
|
||
tree vbase = BINFO_TYPE (base_binfo);
|
||
tree binfo = binfo_member (vbase, vbase_types);
|
||
|
||
CLASSTYPE_SEARCH_SLOT (vbase)
|
||
= (char *) build (PLUS_EXPR, build_pointer_type (vbase),
|
||
vbase_decl_ptr, BINFO_OFFSET (binfo));
|
||
}
|
||
}
|
||
SET_BINFO_VTABLE_PATH_MARKED (binfo);
|
||
SET_BINFO_NEW_VTABLE_MARKED (binfo);
|
||
}
|
||
|
||
static void
|
||
dfs_init_vbase_pointers (binfo)
|
||
tree binfo;
|
||
{
|
||
tree type = BINFO_TYPE (binfo);
|
||
tree fields = TYPE_FIELDS (type);
|
||
tree this_vbase_ptr;
|
||
|
||
CLEAR_BINFO_VTABLE_PATH_MARKED (binfo);
|
||
|
||
/* If there is a rtti, it is the first field, though perhaps from
|
||
the base class. Otherwise, the first fields are virtual base class
|
||
pointer fields. */
|
||
if (CLASSTYPE_RTTI (type) && VFIELD_NAME_P (DECL_NAME (fields)))
|
||
/* Get past vtable for the object. */
|
||
fields = TREE_CHAIN (fields);
|
||
|
||
if (fields == NULL_TREE
|
||
|| DECL_NAME (fields) == NULL_TREE
|
||
|| ! VBASE_NAME_P (DECL_NAME (fields)))
|
||
return;
|
||
|
||
this_vbase_ptr = vbase_decl_ptr_intermediate;
|
||
|
||
if (build_pointer_type (type) != TYPE_MAIN_VARIANT (TREE_TYPE (this_vbase_ptr)))
|
||
my_friendly_abort (125);
|
||
|
||
while (fields && DECL_NAME (fields)
|
||
&& VBASE_NAME_P (DECL_NAME (fields)))
|
||
{
|
||
tree ref = build (COMPONENT_REF, TREE_TYPE (fields),
|
||
build_indirect_ref (this_vbase_ptr, NULL_PTR), fields);
|
||
tree init = (tree)CLASSTYPE_SEARCH_SLOT (TREE_TYPE (TREE_TYPE (fields)));
|
||
vbase_init_result = tree_cons (binfo_member (TREE_TYPE (TREE_TYPE (fields)),
|
||
vbase_types),
|
||
build_modify_expr (ref, NOP_EXPR, init),
|
||
vbase_init_result);
|
||
fields = TREE_CHAIN (fields);
|
||
}
|
||
}
|
||
|
||
/* Sometimes this needs to clear both VTABLE_PATH and NEW_VTABLE. Other
|
||
times, just NEW_VTABLE, but optimizer should make both with equal
|
||
efficiency (though it does not currently). */
|
||
static void
|
||
dfs_clear_vbase_slots (binfo)
|
||
tree binfo;
|
||
{
|
||
tree type = BINFO_TYPE (binfo);
|
||
CLASSTYPE_SEARCH_SLOT (type) = 0;
|
||
CLEAR_BINFO_VTABLE_PATH_MARKED (binfo);
|
||
CLEAR_BINFO_NEW_VTABLE_MARKED (binfo);
|
||
}
|
||
|
||
tree
|
||
init_vbase_pointers (type, decl_ptr)
|
||
tree type;
|
||
tree decl_ptr;
|
||
{
|
||
if (TYPE_USES_VIRTUAL_BASECLASSES (type))
|
||
{
|
||
int old_flag = flag_this_is_variable;
|
||
tree binfo = TYPE_BINFO (type);
|
||
flag_this_is_variable = -2;
|
||
vbase_types = CLASSTYPE_VBASECLASSES (type);
|
||
vbase_decl_ptr = decl_ptr;
|
||
vbase_decl = build_indirect_ref (decl_ptr, NULL_PTR);
|
||
vbase_decl_ptr_intermediate = vbase_decl_ptr;
|
||
vbase_init_result = NULL_TREE;
|
||
dfs_walk (binfo, dfs_find_vbases, unmarked_vtable_pathp);
|
||
dfs_walk (binfo, dfs_init_vbase_pointers, marked_vtable_pathp);
|
||
dfs_walk (binfo, dfs_clear_vbase_slots, marked_new_vtablep);
|
||
flag_this_is_variable = old_flag;
|
||
return vbase_init_result;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/* get the virtual context (the vbase that directly contains the
|
||
DECL_CLASS_CONTEXT of the FNDECL) that the given FNDECL is declared in,
|
||
or NULL_TREE if there is none.
|
||
|
||
FNDECL must come from a virtual table from a virtual base to ensure that
|
||
there is only one possible DECL_CLASS_CONTEXT.
|
||
|
||
We know that if there is more than one place (binfo) the fndecl that the
|
||
declared, they all refer to the same binfo. See get_class_offset_1 for
|
||
the check that ensures this. */
|
||
static tree
|
||
virtual_context (fndecl, t, vbase)
|
||
tree fndecl, t, vbase;
|
||
{
|
||
tree path;
|
||
if (get_base_distance (DECL_CLASS_CONTEXT (fndecl), t, 0, &path) < 0)
|
||
{
|
||
/* DECL_CLASS_CONTEXT can be ambiguous in t. */
|
||
if (get_base_distance (DECL_CLASS_CONTEXT (fndecl), vbase, 0, &path) >= 0)
|
||
{
|
||
while (path)
|
||
{
|
||
/* Not sure if checking path == vbase is necessary here, but just in
|
||
case it is. */
|
||
if (TREE_VIA_VIRTUAL (path) || path == vbase)
|
||
return binfo_member (BINFO_TYPE (path), CLASSTYPE_VBASECLASSES (t));
|
||
path = BINFO_INHERITANCE_CHAIN (path);
|
||
}
|
||
}
|
||
/* This shouldn't happen, I don't want errors! */
|
||
warning ("recoverable compiler error, fixups for virtual function");
|
||
return vbase;
|
||
}
|
||
while (path)
|
||
{
|
||
if (TREE_VIA_VIRTUAL (path))
|
||
return binfo_member (BINFO_TYPE (path), CLASSTYPE_VBASECLASSES (t));
|
||
path = BINFO_INHERITANCE_CHAIN (path);
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/* Fixups upcast offsets for one vtable.
|
||
Entries may stay within the VBASE given, or
|
||
they may upcast into a direct base, or
|
||
they may upcast into a different vbase.
|
||
|
||
We only need to do fixups in case 2 and 3.
|
||
|
||
This routine mirrors fixup_vtable_deltas in functionality, though
|
||
this one is runtime based, and the other is compile time based.
|
||
Conceivably that routine could be removed entirely, and all fixups
|
||
done at runtime.
|
||
|
||
VBASE_OFFSETS is an association list of virtual bases that contains
|
||
offset information, so the offsets are only calculated once. */
|
||
static void
|
||
expand_upcast_fixups (binfo, addr, orig_addr, vbase, t, vbase_offsets)
|
||
tree binfo, addr, orig_addr, vbase, t, *vbase_offsets;
|
||
{
|
||
tree virtuals = BINFO_VIRTUALS (binfo);
|
||
tree vc;
|
||
tree delta;
|
||
unsigned HOST_WIDE_INT n;
|
||
|
||
delta = purpose_member (vbase, *vbase_offsets);
|
||
if (! delta)
|
||
{
|
||
delta = (tree)CLASSTYPE_SEARCH_SLOT (BINFO_TYPE (vbase));
|
||
delta = build (MINUS_EXPR, ptrdiff_type_node, delta, addr);
|
||
delta = save_expr (delta);
|
||
delta = tree_cons (vbase, delta, *vbase_offsets);
|
||
*vbase_offsets = delta;
|
||
}
|
||
|
||
n = skip_rtti_stuff (&virtuals);
|
||
|
||
while (virtuals)
|
||
{
|
||
tree current_fndecl = TREE_VALUE (virtuals);
|
||
current_fndecl = FNADDR_FROM_VTABLE_ENTRY (current_fndecl);
|
||
current_fndecl = TREE_OPERAND (current_fndecl, 0);
|
||
if (current_fndecl
|
||
&& current_fndecl != abort_fndecl
|
||
&& (vc=virtual_context (current_fndecl, t, vbase)) != vbase)
|
||
{
|
||
/* This may in fact need a runtime fixup. */
|
||
tree idx = DECL_VINDEX (current_fndecl);
|
||
tree vtbl = BINFO_VTABLE (binfo);
|
||
tree nvtbl = lookup_name (DECL_NAME (vtbl), 0);
|
||
tree aref, ref, naref;
|
||
tree old_delta, new_delta;
|
||
tree init;
|
||
|
||
if (nvtbl == NULL_TREE
|
||
|| nvtbl == IDENTIFIER_GLOBAL_VALUE (DECL_NAME (vtbl)))
|
||
{
|
||
/* Dup it if it isn't in local scope yet. */
|
||
nvtbl = build_decl (VAR_DECL,
|
||
DECL_NAME (vtbl),
|
||
TYPE_MAIN_VARIANT (TREE_TYPE (BINFO_VTABLE (binfo))));
|
||
DECL_ALIGN (nvtbl) = MAX (TYPE_ALIGN (double_type_node),
|
||
DECL_ALIGN (nvtbl));
|
||
TREE_READONLY (nvtbl) = 0;
|
||
nvtbl = pushdecl (nvtbl);
|
||
init = NULL_TREE;
|
||
cp_finish_decl (nvtbl, init, NULL_TREE, 0, LOOKUP_ONLYCONVERTING);
|
||
DECL_VIRTUAL_P (nvtbl) = 1;
|
||
DECL_CONTEXT (nvtbl) = t;
|
||
init = build (MODIFY_EXPR, TREE_TYPE (nvtbl),
|
||
nvtbl, vtbl);
|
||
TREE_SIDE_EFFECTS (init) = 1;
|
||
expand_expr_stmt (init);
|
||
/* Update the vtable pointers as necessary. */
|
||
ref = build_vfield_ref (build_indirect_ref (addr, NULL_PTR), DECL_CONTEXT (CLASSTYPE_VFIELD (BINFO_TYPE (binfo))));
|
||
expand_expr_stmt (build_modify_expr (ref, NOP_EXPR,
|
||
build_unary_op (ADDR_EXPR, nvtbl, 0)));
|
||
}
|
||
assemble_external (vtbl);
|
||
aref = build_array_ref (vtbl, idx);
|
||
naref = build_array_ref (nvtbl, idx);
|
||
old_delta = build_component_ref (aref, delta_identifier, 0, 0);
|
||
new_delta = build_component_ref (naref, delta_identifier, 0, 0);
|
||
old_delta = build_binary_op (PLUS_EXPR, old_delta,
|
||
TREE_VALUE (delta), 0);
|
||
if (vc)
|
||
{
|
||
/* If this is set, we need to add in delta adjustments for
|
||
the other virtual base. */
|
||
tree vc_delta = purpose_member (vc, *vbase_offsets);
|
||
if (! vc_delta)
|
||
{
|
||
tree vc_addr = convert_pointer_to_real (vc, orig_addr);
|
||
vc_delta = (tree)CLASSTYPE_SEARCH_SLOT (BINFO_TYPE (vc));
|
||
vc_delta = build (MINUS_EXPR, ptrdiff_type_node,
|
||
vc_addr, vc_delta);
|
||
vc_delta = save_expr (vc_delta);
|
||
*vbase_offsets = tree_cons (vc, vc_delta, *vbase_offsets);
|
||
}
|
||
else
|
||
vc_delta = TREE_VALUE (vc_delta);
|
||
|
||
old_delta = build_binary_op (PLUS_EXPR, old_delta, vc_delta, 0);
|
||
}
|
||
|
||
TREE_READONLY (new_delta) = 0;
|
||
expand_expr_stmt (build_modify_expr (new_delta, NOP_EXPR,
|
||
old_delta));
|
||
}
|
||
++n;
|
||
virtuals = TREE_CHAIN (virtuals);
|
||
}
|
||
}
|
||
|
||
/* Fixup upcast offsets for all direct vtables. Patterned after
|
||
expand_direct_vtbls_init. */
|
||
static void
|
||
fixup_virtual_upcast_offsets (real_binfo, binfo, init_self, can_elide, addr, orig_addr, type, vbase, vbase_offsets)
|
||
tree real_binfo, binfo, addr, orig_addr, type, vbase, *vbase_offsets;
|
||
int init_self, can_elide;
|
||
{
|
||
tree real_binfos = BINFO_BASETYPES (real_binfo);
|
||
tree binfos = BINFO_BASETYPES (binfo);
|
||
int i, n_baselinks = real_binfos ? TREE_VEC_LENGTH (real_binfos) : 0;
|
||
|
||
for (i = 0; i < n_baselinks; i++)
|
||
{
|
||
tree real_base_binfo = TREE_VEC_ELT (real_binfos, i);
|
||
tree base_binfo = TREE_VEC_ELT (binfos, i);
|
||
int is_not_base_vtable =
|
||
i != CLASSTYPE_VFIELD_PARENT (BINFO_TYPE (real_binfo));
|
||
if (! TREE_VIA_VIRTUAL (real_base_binfo))
|
||
fixup_virtual_upcast_offsets (real_base_binfo, base_binfo,
|
||
is_not_base_vtable, can_elide, addr,
|
||
orig_addr, type, vbase, vbase_offsets);
|
||
}
|
||
#if 0
|
||
/* Before turning this on, make sure it is correct. */
|
||
if (can_elide && ! BINFO_MODIFIED (binfo))
|
||
return;
|
||
#endif
|
||
/* Should we use something besides CLASSTYPE_VFIELDS? */
|
||
if (init_self && CLASSTYPE_VFIELDS (BINFO_TYPE (real_binfo)))
|
||
{
|
||
addr = convert_pointer_to_real (binfo, addr);
|
||
expand_upcast_fixups (real_binfo, addr, orig_addr, vbase, type, vbase_offsets);
|
||
}
|
||
}
|
||
|
||
/* Build a COMPOUND_EXPR which when expanded will generate the code
|
||
needed to initialize all the virtual function table slots of all
|
||
the virtual baseclasses. MAIN_BINFO is the binfo which determines
|
||
the virtual baseclasses to use; TYPE is the type of the object to
|
||
which the initialization applies. TRUE_EXP is the true object we
|
||
are initializing, and DECL_PTR is the pointer to the sub-object we
|
||
are initializing.
|
||
|
||
When USE_COMPUTED_OFFSETS is non-zero, we can assume that the
|
||
object was laid out by a top-level constructor and the computed
|
||
offsets are valid to store vtables. When zero, we must store new
|
||
vtables through virtual baseclass pointers.
|
||
|
||
We setup and use the globals: vbase_decl, vbase_decl_ptr, vbase_types
|
||
ICK! */
|
||
|
||
void
|
||
expand_indirect_vtbls_init (binfo, true_exp, decl_ptr, use_computed_offsets)
|
||
tree binfo;
|
||
tree true_exp, decl_ptr;
|
||
int use_computed_offsets;
|
||
{
|
||
tree type = BINFO_TYPE (binfo);
|
||
if (TYPE_USES_VIRTUAL_BASECLASSES (type))
|
||
{
|
||
rtx fixup_insns = NULL_RTX;
|
||
int old_flag = flag_this_is_variable;
|
||
tree vbases = CLASSTYPE_VBASECLASSES (type);
|
||
vbase_types = vbases;
|
||
vbase_decl_ptr = true_exp ? build_unary_op (ADDR_EXPR, true_exp, 0) : decl_ptr;
|
||
vbase_decl = true_exp ? true_exp : build_indirect_ref (decl_ptr, NULL_PTR);
|
||
|
||
if (use_computed_offsets)
|
||
{
|
||
/* This is an object of type IN_TYPE, */
|
||
flag_this_is_variable = -2;
|
||
}
|
||
|
||
dfs_walk (binfo, dfs_find_vbases, unmarked_new_vtablep);
|
||
|
||
/* Initialized with vtables of type TYPE. */
|
||
for (; vbases; vbases = TREE_CHAIN (vbases))
|
||
{
|
||
tree addr;
|
||
if (use_computed_offsets)
|
||
addr = (tree)CLASSTYPE_SEARCH_SLOT (BINFO_TYPE (vbases));
|
||
else
|
||
{
|
||
#if 1
|
||
addr = convert_pointer_to_vbase (TREE_TYPE (vbases), vbase_decl_ptr);
|
||
#else
|
||
/* This should should never work better than the above. (mrs) */
|
||
tree vbinfo = get_binfo (TREE_TYPE (vbases),
|
||
TREE_TYPE (vbase_decl),
|
||
0);
|
||
|
||
/* See is we can get lucky. */
|
||
if (TREE_VIA_VIRTUAL (vbinfo))
|
||
addr = convert_pointer_to_real (vbinfo, vbase_decl_ptr);
|
||
else
|
||
{
|
||
/* We go through all these contortions to avoid this
|
||
call, as it will fail when the virtual base type
|
||
is ambiguous from here. We don't yet have a way
|
||
to search for and find just an instance of the
|
||
virtual base class. Searching for the binfo in
|
||
vbases won't work, as we don't have the vbase
|
||
pointer field, for all vbases in the main class,
|
||
only direct vbases. */
|
||
addr = convert_pointer_to_real (TREE_TYPE (vbases),
|
||
vbase_decl_ptr);
|
||
if (addr == error_mark_node)
|
||
continue;
|
||
}
|
||
#endif
|
||
}
|
||
|
||
/* Do all vtables from this virtual base. */
|
||
/* This assumes that virtual bases can never serve as parent
|
||
binfos. (in the CLASSTPE_VFIELD_PARENT sense) */
|
||
expand_direct_vtbls_init (vbases, TYPE_BINFO (BINFO_TYPE (vbases)),
|
||
1, 0, addr);
|
||
|
||
/* If we are using computed offsets we can skip fixups. */
|
||
if (use_computed_offsets)
|
||
continue;
|
||
|
||
/* Now we adjust the offsets for virtual functions that cross
|
||
virtual boundaries on an implicit upcast on vf call so that
|
||
the layout of the most complete type is used, instead of
|
||
assuming the layout of the virtual bases from our current type. */
|
||
|
||
if (flag_vtable_thunks)
|
||
{
|
||
/* We don't have dynamic thunks yet! So for now, just fail silently. */
|
||
}
|
||
else
|
||
{
|
||
tree vbase_offsets = NULL_TREE;
|
||
push_to_sequence (fixup_insns);
|
||
fixup_virtual_upcast_offsets (vbases,
|
||
TYPE_BINFO (BINFO_TYPE (vbases)),
|
||
1, 0, addr, vbase_decl_ptr,
|
||
type, vbases, &vbase_offsets);
|
||
fixup_insns = get_insns ();
|
||
end_sequence ();
|
||
}
|
||
}
|
||
|
||
if (fixup_insns)
|
||
{
|
||
extern tree in_charge_identifier;
|
||
tree in_charge_node = lookup_name (in_charge_identifier, 0);
|
||
if (! in_charge_node)
|
||
{
|
||
warning ("recoverable internal compiler error, nobody's in charge!");
|
||
in_charge_node = integer_zero_node;
|
||
}
|
||
in_charge_node = build_binary_op (EQ_EXPR, in_charge_node, integer_zero_node, 1);
|
||
expand_start_cond (in_charge_node, 0);
|
||
emit_insns (fixup_insns);
|
||
expand_end_cond ();
|
||
}
|
||
|
||
dfs_walk (binfo, dfs_clear_vbase_slots, marked_new_vtablep);
|
||
|
||
flag_this_is_variable = old_flag;
|
||
}
|
||
}
|
||
|
||
void
|
||
clear_search_slots (type)
|
||
tree type;
|
||
{
|
||
dfs_walk (TYPE_BINFO (type),
|
||
dfs_clear_search_slot, dfs_search_slot_nonempty_p);
|
||
}
|
||
|
||
/* get virtual base class types.
|
||
This adds type to the vbase_types list in reverse dfs order.
|
||
Ordering is very important, so don't change it. */
|
||
|
||
static void
|
||
dfs_get_vbase_types (binfo)
|
||
tree binfo;
|
||
{
|
||
if (TREE_VIA_VIRTUAL (binfo) && ! BINFO_VBASE_MARKED (binfo))
|
||
{
|
||
vbase_types = make_binfo (integer_zero_node, binfo,
|
||
BINFO_VTABLE (binfo),
|
||
BINFO_VIRTUALS (binfo), vbase_types);
|
||
TREE_VIA_VIRTUAL (vbase_types) = 1;
|
||
SET_BINFO_VBASE_MARKED (binfo);
|
||
}
|
||
SET_BINFO_MARKED (binfo);
|
||
}
|
||
|
||
/* get a list of virtual base classes in dfs order. */
|
||
tree
|
||
get_vbase_types (type)
|
||
tree type;
|
||
{
|
||
tree vbases;
|
||
tree binfo;
|
||
|
||
if (TREE_CODE (type) == TREE_VEC)
|
||
binfo = type;
|
||
else
|
||
binfo = TYPE_BINFO (type);
|
||
|
||
vbase_types = NULL_TREE;
|
||
dfs_walk (binfo, dfs_get_vbase_types, unmarkedp);
|
||
dfs_walk (binfo, dfs_unmark, markedp);
|
||
/* Rely upon the reverse dfs ordering from dfs_get_vbase_types, and now
|
||
reverse it so that we get normal dfs ordering. */
|
||
vbase_types = nreverse (vbase_types);
|
||
|
||
/* unmark marked vbases */
|
||
for (vbases = vbase_types; vbases; vbases = TREE_CHAIN (vbases))
|
||
CLEAR_BINFO_VBASE_MARKED (vbases);
|
||
|
||
return vbase_types;
|
||
}
|
||
|
||
static void
|
||
dfs_record_inheritance (binfo)
|
||
tree binfo;
|
||
{
|
||
tree binfos = BINFO_BASETYPES (binfo);
|
||
int i, n_baselinks = binfos ? TREE_VEC_LENGTH (binfos) : 0;
|
||
mi_boolean *derived_row = BINFO_DERIVES_FROM_STAR (binfo);
|
||
|
||
for (i = n_baselinks-1; i >= 0; i--)
|
||
{
|
||
int j;
|
||
tree base_binfo = TREE_VEC_ELT (binfos, i);
|
||
tree baseclass = BINFO_TYPE (base_binfo);
|
||
mi_boolean *base_row = BINFO_DERIVES_FROM_STAR (base_binfo);
|
||
|
||
/* Don't search if there's nothing there! MI_SIZE can be
|
||
zero as a result of parse errors. */
|
||
if (TYPE_BINFO_BASETYPES (baseclass) && mi_size > 0)
|
||
for (j = mi_size*(CLASSTYPE_CID (baseclass)-1); j >= 0; j -= mi_size)
|
||
derived_row[j] |= base_row[j];
|
||
TYPE_DERIVES_FROM (baseclass, BINFO_TYPE (binfo)) = 1;
|
||
}
|
||
|
||
SET_BINFO_MARKED (binfo);
|
||
}
|
||
|
||
/* Given a _CLASSTYPE node in a multiple inheritance lattice,
|
||
convert the lattice into a simple relation such that,
|
||
given to CIDs, C1 and C2, one can determine if C1 <= C2
|
||
or C2 <= C1 or C1 <> C2.
|
||
|
||
Once constructed, we walk the lattice depth fisrt,
|
||
applying various functions to elements as they are encountered.
|
||
|
||
We use xmalloc here, in case we want to randomly free these tables. */
|
||
|
||
#define SAVE_MI_MATRIX
|
||
|
||
void
|
||
build_mi_matrix (type)
|
||
tree type;
|
||
{
|
||
tree binfo = TYPE_BINFO (type);
|
||
cid = 0;
|
||
|
||
#ifdef SAVE_MI_MATRIX
|
||
if (CLASSTYPE_MI_MATRIX (type))
|
||
{
|
||
mi_size = CLASSTYPE_N_SUPERCLASSES (type) + CLASSTYPE_N_VBASECLASSES (type);
|
||
mi_matrix = CLASSTYPE_MI_MATRIX (type);
|
||
mi_type = type;
|
||
dfs_walk (binfo, dfs_number, unnumberedp);
|
||
return;
|
||
}
|
||
#endif
|
||
|
||
mi_size = CLASSTYPE_N_SUPERCLASSES (type) + CLASSTYPE_N_VBASECLASSES (type);
|
||
mi_matrix = (char *)xmalloc ((mi_size + 1) * (mi_size + 1));
|
||
mi_type = type;
|
||
bzero (mi_matrix, (mi_size + 1) * (mi_size + 1));
|
||
dfs_walk (binfo, dfs_number, unnumberedp);
|
||
dfs_walk (binfo, dfs_record_inheritance, unmarkedp);
|
||
dfs_walk (binfo, dfs_unmark, markedp);
|
||
}
|
||
|
||
void
|
||
free_mi_matrix ()
|
||
{
|
||
dfs_walk (TYPE_BINFO (mi_type), dfs_unnumber, numberedp);
|
||
|
||
#ifdef SAVE_MI_MATRIX
|
||
CLASSTYPE_MI_MATRIX (mi_type) = mi_matrix;
|
||
#else
|
||
free (mi_matrix);
|
||
mi_size = 0;
|
||
cid = 0;
|
||
#endif
|
||
}
|
||
|
||
/* If we want debug info for a type TYPE, make sure all its base types
|
||
are also marked as being potentially interesting. This avoids
|
||
the problem of not writing any debug info for intermediate basetypes
|
||
that have abstract virtual functions. Also mark member types. */
|
||
|
||
void
|
||
note_debug_info_needed (type)
|
||
tree type;
|
||
{
|
||
tree field;
|
||
dfs_walk (TYPE_BINFO (type), dfs_debug_mark, dfs_debug_unmarkedp);
|
||
for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
|
||
{
|
||
tree ttype;
|
||
if (TREE_CODE (field) == FIELD_DECL
|
||
&& IS_AGGR_TYPE (ttype = target_type (TREE_TYPE (field)))
|
||
&& dfs_debug_unmarkedp (TYPE_BINFO (ttype)))
|
||
note_debug_info_needed (ttype);
|
||
}
|
||
}
|
||
|
||
/* Subroutines of push_class_decls (). */
|
||
|
||
/* Add in a decl to the envelope. */
|
||
static void
|
||
envelope_add_decl (type, decl, values)
|
||
tree type, decl, *values;
|
||
{
|
||
tree context, *tmp;
|
||
tree name = DECL_NAME (decl);
|
||
int dont_add = 0;
|
||
|
||
/* virtual base names are always unique. */
|
||
if (VBASE_NAME_P (name))
|
||
*values = NULL_TREE;
|
||
|
||
/* Possible ambiguity. If its defining type(s)
|
||
is (are all) derived from us, no problem. */
|
||
else if (*values && TREE_CODE (*values) != TREE_LIST)
|
||
{
|
||
tree value = *values;
|
||
/* Only complain if we shadow something we can access. */
|
||
if (warn_shadow && TREE_CODE (decl) == FUNCTION_DECL
|
||
&& ((DECL_LANG_SPECIFIC (*values)
|
||
&& DECL_CLASS_CONTEXT (value) == current_class_type)
|
||
|| ! TREE_PRIVATE (value)))
|
||
/* Should figure out access control more accurately. */
|
||
{
|
||
cp_warning_at ("member `%#D' is shadowed", value);
|
||
cp_warning_at ("by member function `%#D'", decl);
|
||
warning ("in this context");
|
||
}
|
||
|
||
context = (TREE_CODE (value) == FUNCTION_DECL
|
||
&& DECL_VIRTUAL_P (value))
|
||
? DECL_CLASS_CONTEXT (value)
|
||
: DECL_CONTEXT (value);
|
||
|
||
if (context == type)
|
||
{
|
||
if (TREE_CODE (value) == TYPE_DECL
|
||
&& DECL_ARTIFICIAL (value))
|
||
*values = NULL_TREE;
|
||
else
|
||
dont_add = 1;
|
||
}
|
||
else if (context && TYPE_DERIVES_FROM (context, type))
|
||
{
|
||
/* Don't add in *values to list */
|
||
*values = NULL_TREE;
|
||
}
|
||
else
|
||
*values = build_tree_list (NULL_TREE, value);
|
||
}
|
||
else
|
||
for (tmp = values; *tmp;)
|
||
{
|
||
tree value = TREE_VALUE (*tmp);
|
||
my_friendly_assert (TREE_CODE (value) != TREE_LIST, 999);
|
||
context = (TREE_CODE (value) == FUNCTION_DECL
|
||
&& DECL_VIRTUAL_P (value))
|
||
? DECL_CLASS_CONTEXT (value)
|
||
: DECL_CONTEXT (value);
|
||
|
||
if (context && TYPE_DERIVES_FROM (context, type))
|
||
{
|
||
/* remove *tmp from list */
|
||
*tmp = TREE_CHAIN (*tmp);
|
||
}
|
||
else
|
||
tmp = &TREE_CHAIN (*tmp);
|
||
}
|
||
|
||
if (! dont_add)
|
||
{
|
||
/* Put the new contents in our envelope. */
|
||
if (TREE_CODE (decl) == FUNCTION_DECL)
|
||
{
|
||
*values = tree_cons (name, decl, *values);
|
||
TREE_NONLOCAL_FLAG (*values) = 1;
|
||
TREE_TYPE (*values) = unknown_type_node;
|
||
}
|
||
else
|
||
{
|
||
if (*values)
|
||
{
|
||
*values = tree_cons (NULL_TREE, decl, *values);
|
||
/* Mark this as a potentially ambiguous member. */
|
||
/* Leaving TREE_TYPE blank is intentional.
|
||
We cannot use `error_mark_node' (lookup_name)
|
||
or `unknown_type_node' (all member functions use this). */
|
||
TREE_NONLOCAL_FLAG (*values) = 1;
|
||
}
|
||
else
|
||
*values = decl;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Add the instance variables which this class contributed to the
|
||
current class binding contour. When a redefinition occurs, if the
|
||
redefinition is strictly within a single inheritance path, we just
|
||
overwrite the old declaration with the new. If the fields are not
|
||
within a single inheritance path, we must cons them.
|
||
|
||
In order to know what decls are new (stemming from the current
|
||
invocation of push_class_decls) we enclose them in an "envelope",
|
||
which is a TREE_LIST node where the TREE_PURPOSE slot contains the
|
||
new decl (or possibly a list of competing ones), the TREE_VALUE slot
|
||
points to the old value and the TREE_CHAIN slot chains together all
|
||
envelopes which needs to be "opened" in push_class_decls. Opening an
|
||
envelope means: push the old value onto the class_shadowed list,
|
||
install the new one and if it's a TYPE_DECL do the same to the
|
||
IDENTIFIER_TYPE_VALUE. Such an envelope is recognized by seeing that
|
||
the TREE_PURPOSE slot is non-null, and that it is not an identifier.
|
||
Because if it is, it could be a set of overloaded methods from an
|
||
outer scope. */
|
||
|
||
static void
|
||
dfs_pushdecls (binfo)
|
||
tree binfo;
|
||
{
|
||
tree type = BINFO_TYPE (binfo);
|
||
tree fields, *methods, *end;
|
||
tree method_vec;
|
||
|
||
for (fields = TYPE_FIELDS (type); fields; fields = TREE_CHAIN (fields))
|
||
{
|
||
/* Unmark so that if we are in a constructor, and then find that
|
||
this field was initialized by a base initializer,
|
||
we can emit an error message. */
|
||
if (TREE_CODE (fields) == FIELD_DECL)
|
||
TREE_USED (fields) = 0;
|
||
|
||
/* Recurse into anonymous unions. */
|
||
if (DECL_NAME (fields) == NULL_TREE
|
||
&& TREE_CODE (TREE_TYPE (fields)) == UNION_TYPE)
|
||
{
|
||
dfs_pushdecls (TYPE_BINFO (TREE_TYPE (fields)));
|
||
continue;
|
||
}
|
||
|
||
if (DECL_NAME (fields))
|
||
{
|
||
tree name = DECL_NAME (fields);
|
||
tree class_value = IDENTIFIER_CLASS_VALUE (name);
|
||
|
||
/* If the class value is not an envelope of the kind described in
|
||
the comment above, we create a new envelope. */
|
||
if (class_value == NULL_TREE || TREE_CODE (class_value) != TREE_LIST
|
||
|| TREE_PURPOSE (class_value) == NULL_TREE
|
||
|| TREE_CODE (TREE_PURPOSE (class_value)) == IDENTIFIER_NODE)
|
||
{
|
||
/* See comment above for a description of envelopes. */
|
||
closed_envelopes = tree_cons (NULL_TREE, class_value,
|
||
closed_envelopes);
|
||
IDENTIFIER_CLASS_VALUE (name) = closed_envelopes;
|
||
class_value = IDENTIFIER_CLASS_VALUE (name);
|
||
}
|
||
|
||
envelope_add_decl (type, fields, &TREE_PURPOSE (class_value));
|
||
}
|
||
}
|
||
|
||
method_vec = CLASSTYPE_METHOD_VEC (type);
|
||
if (method_vec != 0)
|
||
{
|
||
/* Farm out constructors and destructors. */
|
||
methods = &TREE_VEC_ELT (method_vec, 1);
|
||
end = TREE_VEC_END (method_vec);
|
||
|
||
while (methods != end)
|
||
{
|
||
/* This will cause lookup_name to return a pointer
|
||
to the tree_list of possible methods of this name. */
|
||
tree name = DECL_NAME (*methods);
|
||
tree class_value = IDENTIFIER_CLASS_VALUE (name);
|
||
|
||
/* If the class value is not an envelope of the kind described in
|
||
the comment above, we create a new envelope. */
|
||
if (class_value == NULL_TREE || TREE_CODE (class_value) != TREE_LIST
|
||
|| TREE_PURPOSE (class_value) == NULL_TREE
|
||
|| TREE_CODE (TREE_PURPOSE (class_value)) == IDENTIFIER_NODE)
|
||
{
|
||
/* See comment above for a description of envelopes. */
|
||
closed_envelopes = tree_cons (NULL_TREE, class_value,
|
||
closed_envelopes);
|
||
IDENTIFIER_CLASS_VALUE (name) = closed_envelopes;
|
||
class_value = IDENTIFIER_CLASS_VALUE (name);
|
||
}
|
||
|
||
/* Here we try to rule out possible ambiguities.
|
||
If we can't do that, keep a TREE_LIST with possibly ambiguous
|
||
decls in there. */
|
||
maybe_push_cache_obstack ();
|
||
envelope_add_decl (type, *methods, &TREE_PURPOSE (class_value));
|
||
pop_obstacks ();
|
||
|
||
methods++;
|
||
}
|
||
}
|
||
SET_BINFO_MARKED (binfo);
|
||
}
|
||
|
||
/* Consolidate unique (by name) member functions. */
|
||
static void
|
||
dfs_compress_decls (binfo)
|
||
tree binfo;
|
||
{
|
||
tree type = BINFO_TYPE (binfo);
|
||
tree method_vec = CLASSTYPE_METHOD_VEC (type);
|
||
|
||
if (method_vec != 0)
|
||
{
|
||
/* Farm out constructors and destructors. */
|
||
tree *methods = &TREE_VEC_ELT (method_vec, 1);
|
||
tree *end = TREE_VEC_END (method_vec);
|
||
|
||
for (; methods != end; methods++)
|
||
{
|
||
/* This is known to be an envelope of the kind described before
|
||
dfs_pushdecls. */
|
||
tree class_value = IDENTIFIER_CLASS_VALUE (DECL_NAME (*methods));
|
||
tree tmp = TREE_PURPOSE (class_value);
|
||
|
||
/* This was replaced in scope by somebody else. Just leave it
|
||
alone. */
|
||
if (TREE_CODE (tmp) != TREE_LIST)
|
||
continue;
|
||
|
||
if (TREE_CHAIN (tmp) == NULL_TREE
|
||
&& TREE_VALUE (tmp)
|
||
&& DECL_CHAIN (TREE_VALUE (tmp)) == NULL_TREE)
|
||
{
|
||
TREE_PURPOSE (class_value) = TREE_VALUE (tmp);
|
||
}
|
||
}
|
||
}
|
||
CLEAR_BINFO_MARKED (binfo);
|
||
}
|
||
|
||
/* When entering the scope of a class, we cache all of the
|
||
fields that that class provides within its inheritance
|
||
lattice. Where ambiguities result, we mark them
|
||
with `error_mark_node' so that if they are encountered
|
||
without explicit qualification, we can emit an error
|
||
message. */
|
||
void
|
||
push_class_decls (type)
|
||
tree type;
|
||
{
|
||
tree id;
|
||
struct obstack *ambient_obstack = current_obstack;
|
||
|
||
search_stack = push_search_level (search_stack, &search_obstack);
|
||
|
||
id = TYPE_IDENTIFIER (type);
|
||
#if 0
|
||
if (IDENTIFIER_TEMPLATE (id) != 0)
|
||
{
|
||
tree tmpl = IDENTIFIER_TEMPLATE (id);
|
||
push_template_decls (DECL_ARGUMENTS (TREE_PURPOSE (tmpl)),
|
||
TREE_VALUE (tmpl), 1);
|
||
overload_template_name (id, 1);
|
||
}
|
||
#endif
|
||
|
||
/* Push class fields into CLASS_VALUE scope, and mark. */
|
||
dfs_walk (TYPE_BINFO (type), dfs_pushdecls, unmarkedp);
|
||
|
||
/* Compress fields which have only a single entry
|
||
by a given name, and unmark. */
|
||
dfs_walk (TYPE_BINFO (type), dfs_compress_decls, markedp);
|
||
|
||
/* Open up all the closed envelopes and push the contained decls into
|
||
class scope. */
|
||
while (closed_envelopes)
|
||
{
|
||
tree new = TREE_PURPOSE (closed_envelopes);
|
||
tree id;
|
||
|
||
/* This is messy because the class value may be a *_DECL, or a
|
||
TREE_LIST of overloaded *_DECLs or even a TREE_LIST of ambiguous
|
||
*_DECLs. The name is stored at different places in these three
|
||
cases. */
|
||
if (TREE_CODE (new) == TREE_LIST)
|
||
{
|
||
if (TREE_PURPOSE (new) != NULL_TREE)
|
||
id = TREE_PURPOSE (new);
|
||
else
|
||
{
|
||
tree node = TREE_VALUE (new);
|
||
|
||
while (TREE_CODE (node) == TREE_LIST)
|
||
node = TREE_VALUE (node);
|
||
id = DECL_NAME (node);
|
||
}
|
||
}
|
||
else
|
||
id = DECL_NAME (new);
|
||
|
||
/* Install the original class value in order to make
|
||
pushdecl_class_level work correctly. */
|
||
IDENTIFIER_CLASS_VALUE (id) = TREE_VALUE (closed_envelopes);
|
||
if (TREE_CODE (new) == TREE_LIST)
|
||
push_class_level_binding (id, new);
|
||
else
|
||
pushdecl_class_level (new);
|
||
closed_envelopes = TREE_CHAIN (closed_envelopes);
|
||
}
|
||
current_obstack = ambient_obstack;
|
||
}
|
||
|
||
/* Here's a subroutine we need because C lacks lambdas. */
|
||
static void
|
||
dfs_unuse_fields (binfo)
|
||
tree binfo;
|
||
{
|
||
tree type = TREE_TYPE (binfo);
|
||
tree fields;
|
||
|
||
for (fields = TYPE_FIELDS (type); fields; fields = TREE_CHAIN (fields))
|
||
{
|
||
if (TREE_CODE (fields) != FIELD_DECL)
|
||
continue;
|
||
|
||
TREE_USED (fields) = 0;
|
||
if (DECL_NAME (fields) == NULL_TREE
|
||
&& TREE_CODE (TREE_TYPE (fields)) == UNION_TYPE)
|
||
unuse_fields (TREE_TYPE (fields));
|
||
}
|
||
}
|
||
|
||
void
|
||
unuse_fields (type)
|
||
tree type;
|
||
{
|
||
dfs_walk (TYPE_BINFO (type), dfs_unuse_fields, unmarkedp);
|
||
}
|
||
|
||
void
|
||
pop_class_decls (type)
|
||
tree type;
|
||
{
|
||
/* We haven't pushed a search level when dealing with cached classes,
|
||
so we'd better not try to pop it. */
|
||
if (search_stack)
|
||
search_stack = pop_search_level (search_stack);
|
||
}
|
||
|
||
void
|
||
print_search_statistics ()
|
||
{
|
||
#ifdef GATHER_STATISTICS
|
||
if (flag_memoize_lookups)
|
||
{
|
||
fprintf (stderr, "%d memoized contexts saved\n",
|
||
n_contexts_saved);
|
||
fprintf (stderr, "%d local tree nodes made\n", my_tree_node_counter);
|
||
fprintf (stderr, "%d local hash nodes made\n", my_memoized_entry_counter);
|
||
fprintf (stderr, "fields statistics:\n");
|
||
fprintf (stderr, " memoized finds = %d; rejects = %d; (searches = %d)\n",
|
||
memoized_fast_finds[0], memoized_fast_rejects[0],
|
||
memoized_fields_searched[0]);
|
||
fprintf (stderr, " memoized_adds = %d\n", memoized_adds[0]);
|
||
fprintf (stderr, "fnfields statistics:\n");
|
||
fprintf (stderr, " memoized finds = %d; rejects = %d; (searches = %d)\n",
|
||
memoized_fast_finds[1], memoized_fast_rejects[1],
|
||
memoized_fields_searched[1]);
|
||
fprintf (stderr, " memoized_adds = %d\n", memoized_adds[1]);
|
||
}
|
||
fprintf (stderr, "%d fields searched in %d[%d] calls to lookup_field[_1]\n",
|
||
n_fields_searched, n_calls_lookup_field, n_calls_lookup_field_1);
|
||
fprintf (stderr, "%d fnfields searched in %d calls to lookup_fnfields\n",
|
||
n_outer_fields_searched, n_calls_lookup_fnfields);
|
||
fprintf (stderr, "%d calls to get_base_type\n", n_calls_get_base_type);
|
||
#else
|
||
fprintf (stderr, "no search statistics\n");
|
||
#endif
|
||
}
|
||
|
||
void
|
||
init_search_processing ()
|
||
{
|
||
gcc_obstack_init (&search_obstack);
|
||
gcc_obstack_init (&type_obstack);
|
||
gcc_obstack_init (&type_obstack_entries);
|
||
|
||
/* This gives us room to build our chains of basetypes,
|
||
whether or not we decide to memoize them. */
|
||
type_stack = push_type_level (0, &type_obstack);
|
||
_vptr_name = get_identifier ("_vptr");
|
||
}
|
||
|
||
void
|
||
reinit_search_statistics ()
|
||
{
|
||
my_memoized_entry_counter = 0;
|
||
memoized_fast_finds[0] = 0;
|
||
memoized_fast_finds[1] = 0;
|
||
memoized_adds[0] = 0;
|
||
memoized_adds[1] = 0;
|
||
memoized_fast_rejects[0] = 0;
|
||
memoized_fast_rejects[1] = 0;
|
||
memoized_fields_searched[0] = 0;
|
||
memoized_fields_searched[1] = 0;
|
||
n_fields_searched = 0;
|
||
n_calls_lookup_field = 0, n_calls_lookup_field_1 = 0;
|
||
n_calls_lookup_fnfields = 0, n_calls_lookup_fnfields_1 = 0;
|
||
n_calls_get_base_type = 0;
|
||
n_outer_fields_searched = 0;
|
||
n_contexts_saved = 0;
|
||
}
|
||
|
||
static tree conversions;
|
||
static void
|
||
add_conversions (binfo)
|
||
tree binfo;
|
||
{
|
||
tree tmp = CLASSTYPE_FIRST_CONVERSION (BINFO_TYPE (binfo));
|
||
for (; tmp && IDENTIFIER_TYPENAME_P (DECL_NAME (tmp));
|
||
tmp = TREE_CHAIN (tmp))
|
||
conversions = tree_cons (DECL_NAME (tmp), TREE_TYPE (TREE_TYPE (tmp)),
|
||
conversions);
|
||
}
|
||
|
||
tree
|
||
lookup_conversions (type)
|
||
tree type;
|
||
{
|
||
conversions = NULL_TREE;
|
||
dfs_walk (TYPE_BINFO (type), add_conversions, 0);
|
||
return conversions;
|
||
}
|