1
0
mirror of https://git.FreeBSD.org/src.git synced 2025-01-16 15:11:52 +00:00
freebsd/sys/dev/usb/ohci.c
2002-01-26 12:25:32 +00:00

3040 lines
74 KiB
C

/* $NetBSD: ohci.c,v 1.74 2000/02/29 21:37:00 augustss Exp $ */
/* $FreeBSD$ */
/*
* Copyright (c) 1998 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Lennart Augustsson (lennart@augustsson.net) at
* Carlstedt Research & Technology.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* USB Open Host Controller driver.
*
* OHCI spec: ftp://ftp.compaq.com/pub/supportinformation/papers/hcir1_0a.exe
* USB spec: http://www.usb.org/developers/data/usb11.pdf
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#if defined(__NetBSD__) || defined(__OpenBSD__)
#include <sys/kernel.h>
#include <sys/device.h>
#include <sys/select.h>
#elif defined(__FreeBSD__)
#include <sys/module.h>
#include <sys/bus.h>
#include <machine/bus_pio.h>
#include <machine/bus_memio.h>
#if defined(DIAGNOSTIC) && defined(__i386__) && defined(__FreeBSD__)
#include <machine/cpu.h>
#endif
#endif
#include <sys/queue.h>
#include <machine/bus.h>
#include <machine/endian.h>
#include <dev/usb/usb.h>
#include <dev/usb/usbdi.h>
#include <dev/usb/usbdivar.h>
#include <dev/usb/usb_mem.h>
#include <dev/usb/usb_quirks.h>
#include <dev/usb/ohcireg.h>
#include <dev/usb/ohcivar.h>
#if defined(__FreeBSD__)
#include <machine/clock.h>
#define delay(d) DELAY(d)
#endif
#if defined(__OpenBSD__)
struct cfdriver ohci_cd = {
NULL, "ohci", DV_DULL
};
#endif
#ifdef OHCI_DEBUG
#define DPRINTF(x) if (ohcidebug) logprintf x
#define DPRINTFN(n,x) if (ohcidebug>(n)) logprintf x
int ohcidebug = 1;
#else
#define DPRINTF(x)
#define DPRINTFN(n,x)
#endif
/*
* The OHCI controller is little endian, so on big endian machines
* the data strored in memory needs to be swapped.
*/
#if defined(__FreeBSD__)
#if BYTE_ORDER == BIG_ENDIAN
#define htole32(x) (bswap32(x))
#define le32toh(x) (bswap32(x))
#else
#define htole32(x) (x)
#define le32toh(x) (x)
#endif
#endif
struct ohci_pipe;
Static ohci_soft_ed_t *ohci_alloc_sed(ohci_softc_t *);
Static void ohci_free_sed(ohci_softc_t *, ohci_soft_ed_t *);
Static ohci_soft_td_t *ohci_alloc_std(ohci_softc_t *);
Static void ohci_free_std(ohci_softc_t *, ohci_soft_td_t *);
Static ohci_soft_itd_t *ohci_alloc_sitd(ohci_softc_t *);
Static void ohci_free_sitd(ohci_softc_t *,ohci_soft_itd_t *);
#if 0
Static void ohci_free_std_chain(ohci_softc_t *,
ohci_soft_td_t *, ohci_soft_td_t *);
#endif
Static usbd_status ohci_alloc_std_chain(struct ohci_pipe *,
ohci_softc_t *, int, int, u_int16_t, usb_dma_t *,
ohci_soft_td_t *, ohci_soft_td_t **);
#if defined(__NetBSD__) || defined(__OpenBSD__)
Static void ohci_shutdown(void *v);
Static void ohci_power(int, void *);
#endif
Static usbd_status ohci_open(usbd_pipe_handle);
Static void ohci_poll(struct usbd_bus *);
Static void ohci_softintr __P((struct usbd_bus *));
Static void ohci_waitintr(ohci_softc_t *,
usbd_xfer_handle);
Static void ohci_rhsc(ohci_softc_t *, usbd_xfer_handle);
Static usbd_status ohci_device_request(usbd_xfer_handle xfer);
Static void ohci_add_ed(ohci_soft_ed_t *, ohci_soft_ed_t *);
Static void ohci_rem_ed(ohci_soft_ed_t *, ohci_soft_ed_t *);
Static void ohci_hash_add_td(ohci_softc_t *,
ohci_soft_td_t *);
Static void ohci_hash_rem_td(ohci_softc_t *,
ohci_soft_td_t *);
Static ohci_soft_td_t *ohci_hash_find_td(ohci_softc_t *,
ohci_physaddr_t);
Static usbd_status ohci_setup_isoc(usbd_pipe_handle pipe);
Static void ohci_device_isoc_enter(usbd_xfer_handle);
Static usbd_status ohci_allocm(struct usbd_bus *, usb_dma_t *,
u_int32_t);
Static void ohci_freem(struct usbd_bus *, usb_dma_t *);
Static usbd_xfer_handle ohci_allocx(struct usbd_bus *);
Static void ohci_freex(struct usbd_bus *, usbd_xfer_handle);
Static usbd_status ohci_root_ctrl_transfer(usbd_xfer_handle);
Static usbd_status ohci_root_ctrl_start(usbd_xfer_handle);
Static void ohci_root_ctrl_abort(usbd_xfer_handle);
Static void ohci_root_ctrl_close(usbd_pipe_handle);
Static void ohci_root_ctrl_done (usbd_xfer_handle);
Static usbd_status ohci_root_intr_transfer(usbd_xfer_handle);
Static usbd_status ohci_root_intr_start(usbd_xfer_handle);
Static void ohci_root_intr_abort(usbd_xfer_handle);
Static void ohci_root_intr_close(usbd_pipe_handle);
Static void ohci_root_intr_done (usbd_xfer_handle);
Static usbd_status ohci_device_ctrl_transfer(usbd_xfer_handle);
Static usbd_status ohci_device_ctrl_start(usbd_xfer_handle);
Static void ohci_device_ctrl_abort(usbd_xfer_handle);
Static void ohci_device_ctrl_close(usbd_pipe_handle);
Static void ohci_device_ctrl_done (usbd_xfer_handle);
Static usbd_status ohci_device_bulk_transfer(usbd_xfer_handle);
Static usbd_status ohci_device_bulk_start(usbd_xfer_handle);
Static void ohci_device_bulk_abort(usbd_xfer_handle);
Static void ohci_device_bulk_close(usbd_pipe_handle);
Static void ohci_device_bulk_done (usbd_xfer_handle);
Static usbd_status ohci_device_intr_transfer(usbd_xfer_handle);
Static usbd_status ohci_device_intr_start(usbd_xfer_handle);
Static void ohci_device_intr_abort(usbd_xfer_handle);
Static void ohci_device_intr_close(usbd_pipe_handle);
Static void ohci_device_intr_done (usbd_xfer_handle);
Static usbd_status ohci_device_isoc_transfer(usbd_xfer_handle);
Static usbd_status ohci_device_isoc_start(usbd_xfer_handle);
Static void ohci_device_isoc_abort(usbd_xfer_handle);
Static void ohci_device_isoc_close(usbd_pipe_handle);
Static void ohci_device_isoc_done (usbd_xfer_handle);
Static usbd_status ohci_device_setintr(ohci_softc_t *sc,
struct ohci_pipe *pipe, int ival);
Static int ohci_str(usb_string_descriptor_t *, int, const char *);
Static void ohci_timeout(void *);
Static void ohci_rhsc_able(ohci_softc_t *, int);
Static void ohci_close_pipe(usbd_pipe_handle pipe,
ohci_soft_ed_t *head);
Static void ohci_abort_xfer(usbd_xfer_handle xfer,
usbd_status status);
Static void ohci_abort_xfer_end(void *);
Static void ohci_device_clear_toggle(usbd_pipe_handle pipe);
Static void ohci_noop(usbd_pipe_handle pipe);
#ifdef OHCI_DEBUG
Static void ohci_dumpregs(ohci_softc_t *);
Static void ohci_dump_tds(ohci_soft_td_t *);
Static void ohci_dump_td(ohci_soft_td_t *);
Static void ohci_dump_ed(ohci_soft_ed_t *);
#endif
#define OWRITE4(sc, r, x) bus_space_write_4((sc)->iot, (sc)->ioh, (r), (x))
#define OREAD4(sc, r) bus_space_read_4((sc)->iot, (sc)->ioh, (r))
#define OREAD2(sc, r) bus_space_read_2((sc)->iot, (sc)->ioh, (r))
/* Reverse the bits in a value 0 .. 31 */
Static u_int8_t revbits[OHCI_NO_INTRS] =
{ 0x00, 0x10, 0x08, 0x18, 0x04, 0x14, 0x0c, 0x1c,
0x02, 0x12, 0x0a, 0x1a, 0x06, 0x16, 0x0e, 0x1e,
0x01, 0x11, 0x09, 0x19, 0x05, 0x15, 0x0d, 0x1d,
0x03, 0x13, 0x0b, 0x1b, 0x07, 0x17, 0x0f, 0x1f };
struct ohci_pipe {
struct usbd_pipe pipe;
ohci_soft_ed_t *sed;
union {
ohci_soft_td_t *td;
ohci_soft_itd_t *itd;
} tail;
/* Info needed for different pipe kinds. */
union {
/* Control pipe */
struct {
usb_dma_t reqdma;
u_int length;
ohci_soft_td_t *setup, *data, *stat;
} ctl;
/* Interrupt pipe */
struct {
int nslots;
int pos;
} intr;
/* Bulk pipe */
struct {
u_int length;
int isread;
} bulk;
/* Iso pipe */
struct iso {
int next, inuse;
} iso;
} u;
};
#define OHCI_INTR_ENDPT 1
Static struct usbd_bus_methods ohci_bus_methods = {
ohci_open,
ohci_softintr,
ohci_poll,
ohci_allocm,
ohci_freem,
ohci_allocx,
ohci_freex,
};
Static struct usbd_pipe_methods ohci_root_ctrl_methods = {
ohci_root_ctrl_transfer,
ohci_root_ctrl_start,
ohci_root_ctrl_abort,
ohci_root_ctrl_close,
ohci_noop,
ohci_root_ctrl_done,
};
Static struct usbd_pipe_methods ohci_root_intr_methods = {
ohci_root_intr_transfer,
ohci_root_intr_start,
ohci_root_intr_abort,
ohci_root_intr_close,
ohci_noop,
ohci_root_intr_done,
};
Static struct usbd_pipe_methods ohci_device_ctrl_methods = {
ohci_device_ctrl_transfer,
ohci_device_ctrl_start,
ohci_device_ctrl_abort,
ohci_device_ctrl_close,
ohci_noop,
ohci_device_ctrl_done,
};
Static struct usbd_pipe_methods ohci_device_intr_methods = {
ohci_device_intr_transfer,
ohci_device_intr_start,
ohci_device_intr_abort,
ohci_device_intr_close,
ohci_device_clear_toggle,
ohci_device_intr_done,
};
Static struct usbd_pipe_methods ohci_device_bulk_methods = {
ohci_device_bulk_transfer,
ohci_device_bulk_start,
ohci_device_bulk_abort,
ohci_device_bulk_close,
ohci_device_clear_toggle,
ohci_device_bulk_done,
};
Static struct usbd_pipe_methods ohci_device_isoc_methods = {
ohci_device_isoc_transfer,
ohci_device_isoc_start,
ohci_device_isoc_abort,
ohci_device_isoc_close,
ohci_noop,
ohci_device_isoc_done,
};
#if defined(__NetBSD__) || defined(__OpenBSD__)
int
ohci_activate(self, act)
device_ptr_t self;
enum devact act;
{
struct ohci_softc *sc = (struct ohci_softc *)self;
int rv = 0;
switch (act) {
case DVACT_ACTIVATE:
return (EOPNOTSUPP);
break;
case DVACT_DEACTIVATE:
if (sc->sc_child != NULL)
rv = config_deactivate(sc->sc_child);
break;
}
return (rv);
}
int
ohci_detach(sc, flags)
struct ohci_softc *sc;
int flags;
{
int rv = 0;
if (sc->sc_child != NULL)
rv = config_detach(sc->sc_child, flags);
if (rv != 0)
return (rv);
#if defined(__NetBSD__) || defined(__OpenBSD__)
powerhook_disestablish(sc->sc_powerhook);
shutdownhook_disestablish(sc->sc_shutdownhook);
#endif
/* free data structures XXX */
return (rv);
}
#endif
ohci_soft_ed_t *
ohci_alloc_sed(sc)
ohci_softc_t *sc;
{
ohci_soft_ed_t *sed;
usbd_status err;
int i, offs;
usb_dma_t dma;
if (sc->sc_freeeds == NULL) {
DPRINTFN(2, ("ohci_alloc_sed: allocating chunk\n"));
err = usb_allocmem(&sc->sc_bus, OHCI_SED_SIZE * OHCI_SED_CHUNK,
OHCI_ED_ALIGN, &dma);
if (err)
return (0);
for(i = 0; i < OHCI_SED_CHUNK; i++) {
offs = i * OHCI_SED_SIZE;
sed = (ohci_soft_ed_t *)((char *)KERNADDR(&dma, offs));
sed->physaddr = DMAADDR(&dma, offs);
sed->next = sc->sc_freeeds;
sc->sc_freeeds = sed;
}
}
sed = sc->sc_freeeds;
sc->sc_freeeds = sed->next;
memset(&sed->ed, 0, sizeof(ohci_ed_t));
sed->next = 0;
return (sed);
}
void
ohci_free_sed(sc, sed)
ohci_softc_t *sc;
ohci_soft_ed_t *sed;
{
sed->next = sc->sc_freeeds;
sc->sc_freeeds = sed;
}
ohci_soft_td_t *
ohci_alloc_std(sc)
ohci_softc_t *sc;
{
ohci_soft_td_t *std;
usbd_status err;
int i, offs;
usb_dma_t dma;
int s;
if (sc->sc_freetds == NULL) {
DPRINTFN(2, ("ohci_alloc_std: allocating chunk\n"));
err = usb_allocmem(&sc->sc_bus, OHCI_STD_SIZE * OHCI_STD_CHUNK,
OHCI_TD_ALIGN, &dma);
if (err)
return (0);
s = splusb();
for(i = 0; i < OHCI_STD_CHUNK; i++) {
offs = i * OHCI_STD_SIZE;
std = (ohci_soft_td_t *)((char *)KERNADDR(&dma, offs));
std->physaddr = DMAADDR(&dma, offs);
std->nexttd = sc->sc_freetds;
sc->sc_freetds = std;
}
splx(s);
}
s = splusb();
std = sc->sc_freetds;
sc->sc_freetds = std->nexttd;
memset(&std->td, 0, sizeof(ohci_td_t));
std->nexttd = NULL;
ohci_hash_add_td(sc, std);
splx(s);
return (std);
}
void
ohci_free_std(sc, std)
ohci_softc_t *sc;
ohci_soft_td_t *std;
{
int s;
s = splusb();
ohci_hash_rem_td(sc, std);
std->nexttd = sc->sc_freetds;
sc->sc_freetds = std;
splx(s);
}
usbd_status
ohci_alloc_std_chain(opipe, sc, len, rd, flags, dma, std, rstd)
struct ohci_pipe *opipe;
ohci_softc_t *sc;
int len, rd;
u_int16_t flags;
usb_dma_t *dma;
ohci_soft_td_t *std, **rstd;
{
ohci_soft_td_t *next, *cur;
ohci_physaddr_t dataphys, dataphysend;
u_int32_t intr, tdflags;
int offset = 0;
int curlen;
DPRINTFN(len < 4096,("ohci_alloc_std_chain: start len=%d\n", len));
cur = std;
dataphysend = DMAADDR(dma, len - 1);
tdflags =
(rd ? OHCI_TD_IN : OHCI_TD_OUT) |
OHCI_TD_NOCC | OHCI_TD_TOGGLE_CARRY |
(flags & USBD_SHORT_XFER_OK ? OHCI_TD_R : 0);
for (;;) {
next = ohci_alloc_std(sc);
if (next == 0)
goto nomem;
dataphys = DMAADDR(dma, offset);
/* The OHCI hardware can handle at most one page crossing. */
#if defined(__NetBSD__) || defined(__OpenBSD__)
if (OHCI_PAGE(dataphys) == OHCI_PAGE(dataphysend) ||
OHCI_PAGE(dataphys) + OHCI_PAGE_SIZE == OHCI_PAGE(dataphysend))
#elif defined(__FreeBSD__)
/* XXX This is pretty broken: Because we do not allocate
* a contiguous buffer (contiguous in physical pages) we
* can only transfer one page in one go.
* So check whether the start and end of the buffer are on
* the same page.
*/
if (OHCI_PAGE(dataphys) == OHCI_PAGE(dataphysend))
#endif
{
/* we can handle it in this TD */
curlen = len;
} else {
/* XXX The calculation below is wrong and could
* result in a packet that is not a multiple of the
* MaxPacketSize in the case where the buffer does not
* start on an appropriate address (like for example in
* the case of an mbuf cluster). You'll get an early
* short packet.
*/
#if defined(__NetBSD__) || defined(__OpenBSD__)
/* must use multiple TDs, fill as much as possible. */
curlen = 2 * OHCI_PAGE_SIZE -
OHCI_PAGE_MASK(dataphys);
#elif defined(__FreeBSD__)
/* See comment above (XXX) */
curlen = OHCI_PAGE_SIZE -
OHCI_PAGE_MASK(dataphys);
#endif
}
DPRINTFN(4,("ohci_alloc_std_chain: dataphys=0x%08x "
"dataphysend=0x%08x len=%d curlen=%d\n",
dataphys, dataphysend,
len, curlen));
len -= curlen;
intr = len == 0 ? OHCI_TD_SET_DI(1) : OHCI_TD_NOINTR;
cur->td.td_flags = htole32(tdflags | intr);
cur->td.td_cbp = htole32(dataphys);
cur->nexttd = next;
cur->td.td_nexttd = htole32(next->physaddr);
cur->td.td_be = htole32(dataphys + curlen - 1);
cur->len = curlen;
cur->flags = OHCI_ADD_LEN;
DPRINTFN(10,("ohci_alloc_std_chain: cbp=0x%08x be=0x%08x\n",
dataphys, dataphys + curlen - 1));
if (len == 0)
break;
DPRINTFN(10,("ohci_alloc_std_chain: extend chain\n"));
offset += curlen;
cur = next;
}
if ((flags & USBD_FORCE_SHORT_XFER) &&
len % UGETW(opipe->pipe.endpoint->edesc->wMaxPacketSize) == 0) {
/* Force a 0 length transfer at the end. */
next = ohci_alloc_std(sc);
if (next == 0)
goto nomem;
cur->td.td_flags = htole32(tdflags | OHCI_TD_SET_DI(1));
cur->td.td_cbp = 0; /* indicate 0 length packet */
cur->nexttd = next;
cur->td.td_nexttd = htole32(next->physaddr);
cur->td.td_be = htole32(dataphys - 1);
cur->len = 0;
cur->flags = 0;
cur = next;
DPRINTFN(2,("ohci_alloc_std_chain: add 0 xfer\n"));
}
cur->flags = OHCI_CALL_DONE | OHCI_ADD_LEN;
*rstd = next;
return (USBD_NORMAL_COMPLETION);
nomem:
/* XXX free chain */
return (USBD_NOMEM);
}
#if 0
Static void
ohci_free_std_chain(sc, std, stdend)
ohci_softc_t *sc;
ohci_soft_td_t *std;
ohci_soft_td_t *stdend;
{
ohci_soft_td_t *p;
for (; std != stdend; std = p) {
p = std->nexttd;
ohci_free_std(sc, std);
}
}
#endif
ohci_soft_itd_t *
ohci_alloc_sitd(sc)
ohci_softc_t *sc;
{
ohci_soft_itd_t *sitd;
usbd_status err;
int i, offs;
usb_dma_t dma;
if (sc->sc_freeitds == NULL) {
DPRINTFN(2, ("ohci_alloc_sitd: allocating chunk\n"));
err = usb_allocmem(&sc->sc_bus, OHCI_STD_SIZE * OHCI_STD_CHUNK,
OHCI_TD_ALIGN, &dma);
if (err)
return (0);
for(i = 0; i < OHCI_STD_CHUNK; i++) {
offs = i * OHCI_STD_SIZE;
sitd = (ohci_soft_itd_t *)((char*)KERNADDR(&dma, offs));
sitd->physaddr = DMAADDR(&dma, offs);
sitd->nextitd = sc->sc_freeitds;
sc->sc_freeitds = sitd;
}
}
sitd = sc->sc_freeitds;
sc->sc_freeitds = sitd->nextitd;
memset(&sitd->itd, 0, sizeof(ohci_itd_t));
sitd->nextitd = 0;
return (sitd);
}
void
ohci_free_sitd(sc, sitd)
ohci_softc_t *sc;
ohci_soft_itd_t *sitd;
{
sitd->nextitd = sc->sc_freeitds;
sc->sc_freeitds = sitd;
}
usbd_status
ohci_init(sc)
ohci_softc_t *sc;
{
ohci_soft_ed_t *sed, *psed;
usbd_status err;
int i;
u_int32_t s, ctl, ival, hcr, fm, per, rev, desca;
DPRINTF(("ohci_init: start\n"));
#if defined(__OpenBSD__)
printf(",");
#else
printf("%s:", USBDEVNAME(sc->sc_bus.bdev));
#endif
rev = OREAD4(sc, OHCI_REVISION);
printf(" OHCI version %d.%d%s\n", OHCI_REV_HI(rev), OHCI_REV_LO(rev),
OHCI_REV_LEGACY(rev) ? ", legacy support" : "");
if (OHCI_REV_HI(rev) != 1 || OHCI_REV_LO(rev) != 0) {
printf("%s: unsupported OHCI revision\n",
USBDEVNAME(sc->sc_bus.bdev));
sc->sc_bus.usbrev = USBREV_UNKNOWN;
return (USBD_INVAL);
}
sc->sc_bus.usbrev = USBREV_1_0;
for (i = 0; i < OHCI_HASH_SIZE; i++)
LIST_INIT(&sc->sc_hash_tds[i]);
SIMPLEQ_INIT(&sc->sc_free_xfers);
/* XXX determine alignment by R/W */
/* Allocate the HCCA area. */
err = usb_allocmem(&sc->sc_bus, OHCI_HCCA_SIZE,
OHCI_HCCA_ALIGN, &sc->sc_hccadma);
if (err)
return (err);
sc->sc_hcca = (struct ohci_hcca *)KERNADDR(&sc->sc_hccadma, 0);
memset(sc->sc_hcca, 0, OHCI_HCCA_SIZE);
sc->sc_eintrs = OHCI_NORMAL_INTRS;
/* Allocate dummy ED that starts the control list. */
sc->sc_ctrl_head = ohci_alloc_sed(sc);
if (sc->sc_ctrl_head == NULL) {
err = USBD_NOMEM;
goto bad1;
}
sc->sc_ctrl_head->ed.ed_flags |= htole32(OHCI_ED_SKIP);
/* Allocate dummy ED that starts the bulk list. */
sc->sc_bulk_head = ohci_alloc_sed(sc);
if (sc->sc_bulk_head == NULL) {
err = USBD_NOMEM;
goto bad2;
}
sc->sc_bulk_head->ed.ed_flags |= htole32(OHCI_ED_SKIP);
/* Allocate dummy ED that starts the isochronous list. */
sc->sc_isoc_head = ohci_alloc_sed(sc);
if (sc->sc_isoc_head == NULL) {
err = USBD_NOMEM;
goto bad3;
}
sc->sc_isoc_head->ed.ed_flags |= htole32(OHCI_ED_SKIP);
/* Allocate all the dummy EDs that make up the interrupt tree. */
for (i = 0; i < OHCI_NO_EDS; i++) {
sed = ohci_alloc_sed(sc);
if (sed == NULL) {
while (--i >= 0)
ohci_free_sed(sc, sc->sc_eds[i]);
err = USBD_NOMEM;
goto bad4;
}
/* All ED fields are set to 0. */
sc->sc_eds[i] = sed;
sed->ed.ed_flags |= htole32(OHCI_ED_SKIP);
if (i != 0)
psed = sc->sc_eds[(i-1) / 2];
else
psed= sc->sc_isoc_head;
sed->next = psed;
sed->ed.ed_nexted = htole32(psed->physaddr);
}
/*
* Fill HCCA interrupt table. The bit reversal is to get
* the tree set up properly to spread the interrupts.
*/
for (i = 0; i < OHCI_NO_INTRS; i++)
sc->sc_hcca->hcca_interrupt_table[revbits[i]] =
htole32(sc->sc_eds[OHCI_NO_EDS-OHCI_NO_INTRS+i]->physaddr);
#ifdef OHCI_DEBUG
if (ohcidebug > 15) {
for (i = 0; i < OHCI_NO_EDS; i++) {
printf("ed#%d ", i);
ohci_dump_ed(sc->sc_eds[i]);
}
printf("iso ");
ohci_dump_ed(sc->sc_isoc_head);
}
#endif
/* Determine in what context we are running. */
ctl = OREAD4(sc, OHCI_CONTROL);
if (ctl & OHCI_IR) {
/* SMM active, request change */
DPRINTF(("ohci_init: SMM active, request owner change\n"));
s = OREAD4(sc, OHCI_COMMAND_STATUS);
OWRITE4(sc, OHCI_COMMAND_STATUS, s | OHCI_OCR);
for (i = 0; i < 100 && (ctl & OHCI_IR); i++) {
usb_delay_ms(&sc->sc_bus, 1);
ctl = OREAD4(sc, OHCI_CONTROL);
}
if ((ctl & OHCI_IR) == 0) {
printf("%s: SMM does not respond, resetting\n",
USBDEVNAME(sc->sc_bus.bdev));
OWRITE4(sc, OHCI_CONTROL, OHCI_HCFS_RESET);
goto reset;
}
} else if ((ctl & OHCI_HCFS_MASK) != OHCI_HCFS_RESET) {
/* BIOS started controller. */
DPRINTF(("ohci_init: BIOS active\n"));
if ((ctl & OHCI_HCFS_MASK) != OHCI_HCFS_OPERATIONAL) {
OWRITE4(sc, OHCI_CONTROL, OHCI_HCFS_OPERATIONAL);
usb_delay_ms(&sc->sc_bus, USB_RESUME_DELAY);
}
} else {
DPRINTF(("ohci_init: cold started\n"));
reset:
/* Controller was cold started. */
usb_delay_ms(&sc->sc_bus, USB_BUS_RESET_DELAY);
}
/*
* This reset should not be necessary according to the OHCI spec, but
* without it some controllers do not start.
*/
DPRINTF(("%s: resetting\n", USBDEVNAME(sc->sc_bus.bdev)));
OWRITE4(sc, OHCI_CONTROL, OHCI_HCFS_RESET);
usb_delay_ms(&sc->sc_bus, USB_BUS_RESET_DELAY);
/* We now own the host controller and the bus has been reset. */
ival = OHCI_GET_IVAL(OREAD4(sc, OHCI_FM_INTERVAL));
OWRITE4(sc, OHCI_COMMAND_STATUS, OHCI_HCR); /* Reset HC */
/* Nominal time for a reset is 10 us. */
for (i = 0; i < 10; i++) {
delay(10);
hcr = OREAD4(sc, OHCI_COMMAND_STATUS) & OHCI_HCR;
if (!hcr)
break;
}
if (hcr) {
printf("%s: reset timeout\n", USBDEVNAME(sc->sc_bus.bdev));
err = USBD_IOERROR;
goto bad5;
}
#ifdef OHCI_DEBUG
if (ohcidebug > 15)
ohci_dumpregs(sc);
#endif
/* The controller is now in SUSPEND state, we have 2ms to finish. */
/* Set up HC registers. */
OWRITE4(sc, OHCI_HCCA, DMAADDR(&sc->sc_hccadma, 0));
OWRITE4(sc, OHCI_CONTROL_HEAD_ED, sc->sc_ctrl_head->physaddr);
OWRITE4(sc, OHCI_BULK_HEAD_ED, sc->sc_bulk_head->physaddr);
/* disable all interrupts and then switch on all desired interrupts */
OWRITE4(sc, OHCI_INTERRUPT_DISABLE, OHCI_ALL_INTRS);
OWRITE4(sc, OHCI_INTERRUPT_ENABLE, sc->sc_eintrs | OHCI_MIE);
/* switch on desired functional features */
ctl = OREAD4(sc, OHCI_CONTROL);
ctl &= ~(OHCI_CBSR_MASK | OHCI_LES | OHCI_HCFS_MASK | OHCI_IR);
ctl |= OHCI_PLE | OHCI_IE | OHCI_CLE | OHCI_BLE |
OHCI_RATIO_1_4 | OHCI_HCFS_OPERATIONAL;
/* And finally start it! */
OWRITE4(sc, OHCI_CONTROL, ctl);
/*
* The controller is now OPERATIONAL. Set a some final
* registers that should be set earlier, but that the
* controller ignores when in the SUSPEND state.
*/
fm = (OREAD4(sc, OHCI_FM_INTERVAL) & OHCI_FIT) ^ OHCI_FIT;
fm |= OHCI_FSMPS(ival) | ival;
OWRITE4(sc, OHCI_FM_INTERVAL, fm);
per = OHCI_PERIODIC(ival); /* 90% periodic */
OWRITE4(sc, OHCI_PERIODIC_START, per);
/* Fiddle the No OverCurrent Protection bit to avoid chip bug. */
desca = OREAD4(sc, OHCI_RH_DESCRIPTOR_A);
OWRITE4(sc, OHCI_RH_DESCRIPTOR_A, desca | OHCI_NOCP);
OWRITE4(sc, OHCI_RH_STATUS, OHCI_LPSC); /* Enable port power */
usb_delay_ms(&sc->sc_bus, 5);
OWRITE4(sc, OHCI_RH_DESCRIPTOR_A, desca);
sc->sc_noport = OHCI_GET_NDP(OREAD4(sc, OHCI_RH_DESCRIPTOR_A));
#ifdef OHCI_DEBUG
if (ohcidebug > 5)
ohci_dumpregs(sc);
#endif
/* Set up the bus struct. */
sc->sc_bus.methods = &ohci_bus_methods;
sc->sc_bus.pipe_size = sizeof(struct ohci_pipe);
#if defined(__NetBSD__) || defined(__OPENBSD__)
sc->sc_powerhook = powerhook_establish(ohci_power, sc);
sc->sc_shutdownhook = shutdownhook_establish(ohci_shutdown, sc);
#endif
return (USBD_NORMAL_COMPLETION);
bad5:
for (i = 0; i < OHCI_NO_EDS; i++)
ohci_free_sed(sc, sc->sc_eds[i]);
bad4:
ohci_free_sed(sc, sc->sc_isoc_head);
bad3:
ohci_free_sed(sc, sc->sc_ctrl_head);
bad2:
ohci_free_sed(sc, sc->sc_bulk_head);
bad1:
usb_freemem(&sc->sc_bus, &sc->sc_hccadma);
return (err);
}
usbd_status
ohci_allocm(bus, dma, size)
struct usbd_bus *bus;
usb_dma_t *dma;
u_int32_t size;
{
#if defined(__NetBSD__) || defined(__OpenBSD__)
struct ohci_softc *sc = (struct ohci_softc *)bus;
#endif
return (usb_allocmem(&sc->sc_bus, size, 0, dma));
}
void
ohci_freem(bus, dma)
struct usbd_bus *bus;
usb_dma_t *dma;
{
#if defined(__NetBSD__) || defined(__OpenBSD__)
struct ohci_softc *sc = (struct ohci_softc *)bus;
#endif
usb_freemem(&sc->sc_bus, dma);
}
usbd_xfer_handle
ohci_allocx(bus)
struct usbd_bus *bus;
{
struct ohci_softc *sc = (struct ohci_softc *)bus;
usbd_xfer_handle xfer;
xfer = SIMPLEQ_FIRST(&sc->sc_free_xfers);
if (xfer != NULL)
SIMPLEQ_REMOVE_HEAD(&sc->sc_free_xfers, xfer, next);
else
xfer = malloc(sizeof(*xfer), M_USB, M_NOWAIT);
if (xfer != NULL)
memset(xfer, 0, sizeof *xfer);
return (xfer);
}
void
ohci_freex(bus, xfer)
struct usbd_bus *bus;
usbd_xfer_handle xfer;
{
struct ohci_softc *sc = (struct ohci_softc *)bus;
SIMPLEQ_INSERT_HEAD(&sc->sc_free_xfers, xfer, next);
}
/*
* Shut down the controller when the system is going down.
*/
#if defined(__NetBSD__) || defined(__OpenBSD__)
void
ohci_shutdown(v)
void *v;
{
ohci_softc_t *sc = v;
DPRINTF(("ohci_shutdown: stopping the HC\n"));
OWRITE4(sc, OHCI_CONTROL, OHCI_HCFS_RESET);
}
/*
* Handle suspend/resume.
*
* We need to switch to polling mode here, because this routine is
* called from an intterupt context. This is all right since we
* are almost suspended anyway.
*/
void
ohci_power(why, v)
int why;
void *v;
{
#ifdef OHCI_DEBUG
ohci_softc_t *sc = v;
DPRINTF(("ohci_power: sc=%p, why=%d\n", sc, why));
/* XXX should suspend/resume */
ohci_dumpregs(sc);
#endif
}
#endif
#ifdef OHCI_DEBUG
void
ohci_dumpregs(sc)
ohci_softc_t *sc;
{
DPRINTF(("ohci_dumpregs: rev=0x%08x control=0x%08x command=0x%08x\n",
OREAD4(sc, OHCI_REVISION),
OREAD4(sc, OHCI_CONTROL),
OREAD4(sc, OHCI_COMMAND_STATUS)));
DPRINTF((" intrstat=0x%08x intre=0x%08x intrd=0x%08x\n",
OREAD4(sc, OHCI_INTERRUPT_STATUS),
OREAD4(sc, OHCI_INTERRUPT_ENABLE),
OREAD4(sc, OHCI_INTERRUPT_DISABLE)));
DPRINTF((" hcca=0x%08x percur=0x%08x ctrlhd=0x%08x\n",
OREAD4(sc, OHCI_HCCA),
OREAD4(sc, OHCI_PERIOD_CURRENT_ED),
OREAD4(sc, OHCI_CONTROL_HEAD_ED)));
DPRINTF((" ctrlcur=0x%08x bulkhd=0x%08x bulkcur=0x%08x\n",
OREAD4(sc, OHCI_CONTROL_CURRENT_ED),
OREAD4(sc, OHCI_BULK_HEAD_ED),
OREAD4(sc, OHCI_BULK_CURRENT_ED)));
DPRINTF((" done=0x%08x fmival=0x%08x fmrem=0x%08x\n",
OREAD4(sc, OHCI_DONE_HEAD),
OREAD4(sc, OHCI_FM_INTERVAL),
OREAD4(sc, OHCI_FM_REMAINING)));
DPRINTF((" fmnum=0x%08x perst=0x%08x lsthrs=0x%08x\n",
OREAD4(sc, OHCI_FM_NUMBER),
OREAD4(sc, OHCI_PERIODIC_START),
OREAD4(sc, OHCI_LS_THRESHOLD)));
DPRINTF((" desca=0x%08x descb=0x%08x stat=0x%08x\n",
OREAD4(sc, OHCI_RH_DESCRIPTOR_A),
OREAD4(sc, OHCI_RH_DESCRIPTOR_B),
OREAD4(sc, OHCI_RH_STATUS)));
DPRINTF((" port1=0x%08x port2=0x%08x\n",
OREAD4(sc, OHCI_RH_PORT_STATUS(1)),
OREAD4(sc, OHCI_RH_PORT_STATUS(2))));
DPRINTF((" HCCA: frame_number=0x%04x done_head=0x%08x\n",
le32toh(sc->sc_hcca->hcca_frame_number),
le32toh(sc->sc_hcca->hcca_done_head)));
}
#endif
Static int ohci_intr1(ohci_softc_t *);
int
ohci_intr(p)
void *p;
{
ohci_softc_t *sc = p;
/* If we get an interrupt while polling, then just ignore it. */
if (sc->sc_bus.use_polling) {
#ifdef DIAGNOSTIC
printf("ohci_intr: ignored interrupt while polling\n");
#endif
return (0);
}
return (ohci_intr1(sc));
}
Static int
ohci_intr1(sc)
ohci_softc_t *sc;
{
u_int32_t intrs, eintrs;
ohci_physaddr_t done;
/* In case the interrupt occurs before initialization has completed. */
if (sc == NULL || sc->sc_hcca == NULL) {
#ifdef DIAGNOSTIC
printf("ohci_intr: sc->sc_hcca == NULL\n");
#endif
return (0);
}
intrs = 0;
done = le32toh(sc->sc_hcca->hcca_done_head);
/* The LSb of done is used to inform the HC Driver that an interrupt
* condition exists for both the Done list and for another event
* recorded in HcInterruptStatus. On an interrupt from the HC, the HC
* Driver checks the HccaDoneHead Value. If this value is 0, then the
* interrupt was caused by other than the HccaDoneHead update and the
* HcInterruptStatus register needs to be accessed to determine that
* exact interrupt cause. If HccaDoneHead is nonzero, then a Done list
* update interrupt is indicated and if the LSb of done is nonzero,
* then an additional interrupt event is indicated and
* HcInterruptStatus should be checked to determine its cause.
*/
if (done != 0) {
if (done & ~OHCI_DONE_INTRS)
intrs = OHCI_WDH;
if (done & OHCI_DONE_INTRS) {
intrs |= OREAD4(sc, OHCI_INTERRUPT_STATUS);
done &= ~OHCI_DONE_INTRS;
}
} else {
intrs = OREAD4(sc, OHCI_INTERRUPT_STATUS);
}
if (intrs == 0) /* nothing to be done (PCI shared interrupt) */
return (0);
intrs &= ~OHCI_MIE; /* mask out Master Interrupt Enable */
/* Acknowledge any interrupts that have happened */
OWRITE4(sc, OHCI_INTERRUPT_STATUS, intrs);
/* Any interrupts we had enabled? */
eintrs = intrs & sc->sc_eintrs;
if (!eintrs)
return (0);
sc->sc_bus.intr_context++;
sc->sc_bus.no_intrs++;
DPRINTFN(7, ("ohci_intr: sc=%p intrs=0x%x(0x%x) eintrs=0x%x\n",
sc, (u_int)intrs, OREAD4(sc, OHCI_INTERRUPT_STATUS),
(u_int)eintrs));
if (eintrs & OHCI_SO) {
printf("%s: scheduling overrun\n",USBDEVNAME(sc->sc_bus.bdev));
/* XXX do what */
intrs &= ~OHCI_SO;
}
if (eintrs & OHCI_WDH) {
done &= ~OHCI_DONE_INTRS;
if (sc->sc_done == 0)
sc->sc_done = done;
else {
/* Tack on at the end of sc_done. */
ohci_physaddr_t ldone;
ohci_soft_td_t *std;
for (ldone = sc->sc_done; ldone != 0;
ldone = le32toh(std->td.td_nexttd))
std = ohci_hash_find_td(sc, ldone);
std->td.td_nexttd = le32toh(done);
}
sc->sc_hcca->hcca_done_head = 0;
usb_schedsoftintr(&sc->sc_bus);
intrs &= ~OHCI_WDH;
}
if (eintrs & OHCI_RD) {
printf("%s: resume detect\n", USBDEVNAME(sc->sc_bus.bdev));
/* XXX process resume detect */
}
if (eintrs & OHCI_UE) {
printf("%s: unrecoverable error, controller halted\n",
USBDEVNAME(sc->sc_bus.bdev));
OWRITE4(sc, OHCI_CONTROL, OHCI_HCFS_RESET);
/* XXX what else */
}
if (eintrs & OHCI_RHSC) {
ohci_rhsc(sc, sc->sc_intrxfer);
intrs &= ~OHCI_RHSC;
/*
* Disable RHSC interrupt for now, because it will be
* on until the port has been reset.
*/
ohci_rhsc_able(sc, 0);
}
sc->sc_bus.intr_context--;
/* Block unprocessed interrupts. XXX */
OWRITE4(sc, OHCI_INTERRUPT_DISABLE, intrs);
sc->sc_eintrs &= ~intrs;
return (1);
}
void
ohci_rhsc_able(sc, on)
ohci_softc_t *sc;
int on;
{
DPRINTFN(4, ("ohci_rhsc_able: on=%d\n", on));
if (on) {
sc->sc_eintrs |= OHCI_RHSC;
OWRITE4(sc, OHCI_INTERRUPT_ENABLE, OHCI_RHSC);
} else {
sc->sc_eintrs &= ~OHCI_RHSC;
OWRITE4(sc, OHCI_INTERRUPT_DISABLE, OHCI_RHSC);
}
}
#ifdef OHCI_DEBUG
char *ohci_cc_strs[] = {
"NO_ERROR",
"CRC",
"BIT_STUFFING",
"DATA_TOGGLE_MISMATCH",
"STALL",
"DEVICE_NOT_RESPONDING",
"PID_CHECK_FAILURE",
"UNEXPECTED_PID",
"DATA_OVERRUN",
"DATA_UNDERRUN",
"BUFFER_OVERRUN",
"BUFFER_UNDERRUN",
"reserved",
"reserved",
"NOT_ACCESSED",
"NOT_ACCESSED"
};
#endif
void
ohci_softintr(bus)
struct usbd_bus *bus;
{
ohci_softc_t *sc = (ohci_softc_t *)bus;
ohci_physaddr_t done;
ohci_soft_td_t *std, *sdone, *stdnext;
usbd_xfer_handle xfer;
int len, cc, s;
sc->sc_bus.intr_context++;
s = splhardusb();
done = sc->sc_done;
sc->sc_done = 0;
splx(s);
DPRINTFN(10,("ohci_process_done: done=0x%08lx\n", (u_long)done));
/* Reverse the done list and store the reversed list in sdone */
sdone = NULL;
for (; done; done = le32toh(std->td.td_nexttd)) {
std = ohci_hash_find_td(sc, done & htole32(OHCI_HEADMASK));
if (std == NULL) {
#ifdef OHCI_DEBUG
DPRINTF(("%s: Invalid done queue 0x%08x",
USBDEVNAME(sc->sc_bus.bdev), done));
ohci_dumpregs(sc);
#endif
/* XXX Should we compare the list of active TDs with
* the list of TDs queued at EDs to handle the ones that
* are not listed on any of the ED queues and therefore
* must be finished?
*/
return;
}
std->dnext = sdone;
sdone = std;
}
#ifdef OHCI_DEBUG
if (ohcidebug > 10) {
DPRINTF(("ohci_process_done: TD done:\n"));
for (std = sdone; std; std = std->dnext)
ohci_dump_td(sdone);
}
#endif
for (std = sdone; std; std = stdnext) {
xfer = std->xfer;
stdnext = std->dnext;
DPRINTFN(5, ("ohci_process_done: std=%p xfer=%p hcpriv=%p\n",
std, xfer, (xfer ? xfer->hcpriv : NULL)));
if (xfer == NULL || (std->flags & OHCI_TD_HANDLED)) {
/* xfer == NULL: There seems to be no xfer associated
* with this TD. It is tailp that happened to end up on
* the done queue.
* flags & OHCI_TD_HANDLED: The TD has already been
* handled by process_done and should not be done again.
*/
continue;
}
cc = OHCI_TD_GET_CC(le32toh(std->td.td_flags));
usb_untimeout(ohci_timeout, xfer, xfer->timo_handle);
if (xfer->status == USBD_CANCELLED ||
xfer->status == USBD_TIMEOUT) {
DPRINTF(("ohci_process_done: cancel/timeout, xfer=%p\n",
xfer));
/* Handled by abort routine. */
} else if (cc == OHCI_CC_NO_ERROR) {
DPRINTFN(15, ("ohci_process_done: no error, xfer=%p\n",
xfer));
len = std->len;
if (std->td.td_cbp != 0)
len -= le32toh(std->td.td_be) -
le32toh(std->td.td_cbp) + 1;
if (std->flags & OHCI_ADD_LEN)
xfer->actlen += len;
if (std->flags & OHCI_CALL_DONE) {
xfer->status = USBD_NORMAL_COMPLETION;
usb_transfer_complete(xfer);
}
ohci_free_std(sc, std);
} else {
/*
* Endpoint is halted. First unlink all the TDs
* belonging to the failed transfer, and then restart
* the endpoint.
*/
ohci_soft_td_t *p, *n;
struct ohci_pipe *opipe =
(struct ohci_pipe *)xfer->pipe;
DPRINTF(("ohci_process_done: err cc=%d (%s), xfer=%p\n",
OHCI_TD_GET_CC(le32toh(std->td.td_flags)),
ohci_cc_strs[OHCI_TD_GET_CC(le32toh(std->td.td_flags))],
xfer));
/* Mark all the TDs in the done queue for the current
* xfer as handled
*/
for (p = stdnext; p; p = p->dnext) {
if (p->xfer == xfer)
p->flags |= OHCI_TD_HANDLED;
}
/* remove TDs for the current xfer from the ED */
for (p = std; p->xfer == xfer; p = n) {
n = p->nexttd;
ohci_free_std(sc, p);
}
opipe->sed->ed.ed_headp = htole32(p->physaddr);
/* XXX why is this being done? Why not OHCI_BLF too */
OWRITE4(sc, OHCI_COMMAND_STATUS, OHCI_CLF);
if (cc == OHCI_CC_STALL)
xfer->status = USBD_STALLED;
else
xfer->status = USBD_IOERROR;
usb_transfer_complete(xfer);
}
}
sc->sc_bus.intr_context--;
}
void
ohci_device_ctrl_done(xfer)
usbd_xfer_handle xfer;
{
DPRINTFN(10,("ohci_ctrl_done: xfer=%p\n", xfer));
#ifdef DIAGNOSTIC
if (!(xfer->rqflags & URQ_REQUEST)) {
panic("ohci_ctrl_done: not a request\n");
}
#endif
xfer->hcpriv = NULL;
}
void
ohci_device_intr_done(xfer)
usbd_xfer_handle xfer;
{
struct ohci_pipe *opipe = (struct ohci_pipe *)xfer->pipe;
ohci_softc_t *sc = (ohci_softc_t *)opipe->pipe.device->bus;
ohci_soft_ed_t *sed = opipe->sed;
ohci_soft_td_t *data, *tail;
DPRINTFN(10,("ohci_intr_done: xfer=%p, actlen=%d\n",
xfer, xfer->actlen));
xfer->hcpriv = NULL;
if (xfer->pipe->repeat) {
data = opipe->tail.td;
tail = ohci_alloc_std(sc); /* XXX should reuse TD */
if (tail == NULL) {
xfer->status = USBD_NOMEM;
return;
}
tail->xfer = NULL;
data->td.td_flags = htole32(
OHCI_TD_IN | OHCI_TD_NOCC |
OHCI_TD_SET_DI(1) | OHCI_TD_TOGGLE_CARRY);
if (xfer->flags & USBD_SHORT_XFER_OK)
data->td.td_flags |= htole32(OHCI_TD_R);
data->td.td_cbp = htole32(DMAADDR(&xfer->dmabuf, 0));
data->nexttd = tail;
data->td.td_nexttd = htole32(tail->physaddr);
data->td.td_be = htole32(htole32(data->td.td_cbp) + xfer->length - 1);
data->len = xfer->length;
data->xfer = xfer;
data->flags = OHCI_CALL_DONE | OHCI_ADD_LEN;
xfer->hcpriv = data;
xfer->actlen = 0;
sed->ed.ed_tailp = htole32(tail->physaddr);
opipe->tail.td = tail;
}
}
void
ohci_device_bulk_done(xfer)
usbd_xfer_handle xfer;
{
DPRINTFN(10,("ohci_bulk_done: xfer=%p, actlen=%d\n",
xfer, xfer->actlen));
xfer->hcpriv = NULL;
}
void
ohci_rhsc(sc, xfer)
ohci_softc_t *sc;
usbd_xfer_handle xfer;
{
usbd_pipe_handle pipe;
struct ohci_pipe *opipe;
u_char *p;
int i, m;
int hstatus;
hstatus = OREAD4(sc, OHCI_RH_STATUS);
DPRINTF(("ohci_rhsc: sc=%p xfer=%p hstatus=0x%08x\n",
sc, xfer, hstatus));
if (xfer == NULL) {
/* Just ignore the change. */
return;
}
pipe = xfer->pipe;
opipe = (struct ohci_pipe *)pipe;
p = KERNADDR(&xfer->dmabuf, 0);
m = min(sc->sc_noport, xfer->length * 8 - 1);
memset(p, 0, xfer->length);
for (i = 1; i <= m; i++) {
if (OREAD4(sc, OHCI_RH_PORT_STATUS(i)) >> 16)
p[i/8] |= 1 << (i%8);
}
DPRINTF(("ohci_rhsc: change=0x%02x\n", *p));
xfer->actlen = xfer->length;
xfer->status = USBD_NORMAL_COMPLETION;
usb_transfer_complete(xfer);
}
void
ohci_root_intr_done(xfer)
usbd_xfer_handle xfer;
{
xfer->hcpriv = NULL;
}
void
ohci_root_ctrl_done(xfer)
usbd_xfer_handle xfer;
{
xfer->hcpriv = NULL;
}
/*
* Wait here until controller claims to have an interrupt.
* Then call ohci_intr and return. Use timeout to avoid waiting
* too long.
*/
void
ohci_waitintr(sc, xfer)
ohci_softc_t *sc;
usbd_xfer_handle xfer;
{
int timo = xfer->timeout;
int usecs;
u_int32_t intrs;
xfer->status = USBD_IN_PROGRESS;
for (usecs = timo * 1000000 / hz; usecs > 0; usecs -= 1000) {
usb_delay_ms(&sc->sc_bus, 1);
intrs = OREAD4(sc, OHCI_INTERRUPT_STATUS) & sc->sc_eintrs;
DPRINTFN(15,("ohci_waitintr: 0x%04x\n", intrs));
#ifdef OHCI_DEBUG
if (ohcidebug > 15)
ohci_dumpregs(sc);
#endif
if (intrs) {
ohci_intr1(sc);
if (xfer->status != USBD_IN_PROGRESS)
return;
}
}
/* Timeout */
DPRINTF(("ohci_waitintr: timeout\n"));
#ifdef OHCI_DEBUG
ohci_dumpregs(sc);
#endif
xfer->status = USBD_TIMEOUT;
usb_transfer_complete(xfer);
/* XXX should free TD */
}
void
ohci_poll(bus)
struct usbd_bus *bus;
{
ohci_softc_t *sc = (ohci_softc_t *)bus;
if (OREAD4(sc, OHCI_INTERRUPT_STATUS) & sc->sc_eintrs)
ohci_intr1(sc);
}
usbd_status
ohci_device_request(xfer)
usbd_xfer_handle xfer;
{
struct ohci_pipe *opipe = (struct ohci_pipe *)xfer->pipe;
usb_device_request_t *req = &xfer->request;
usbd_device_handle dev = opipe->pipe.device;
ohci_softc_t *sc = (ohci_softc_t *)dev->bus;
int addr = dev->address;
ohci_soft_td_t *setup, *data = 0, *stat, *next, *tail;
ohci_soft_ed_t *sed;
int isread;
int len;
usbd_status err;
int s;
isread = req->bmRequestType & UT_READ;
len = UGETW(req->wLength);
DPRINTFN(3,("ohci_device_control type=0x%02x, request=0x%02x, "
"wValue=0x%04x, wIndex=0x%04x len=%d, addr=%d, endpt=%d\n",
req->bmRequestType, req->bRequest, UGETW(req->wValue),
UGETW(req->wIndex), len, addr,
opipe->pipe.endpoint->edesc->bEndpointAddress));
setup = opipe->tail.td;
stat = ohci_alloc_std(sc);
if (stat == NULL) {
err = USBD_NOMEM;
goto bad1;
}
tail = ohci_alloc_std(sc);
if (tail == NULL) {
err = USBD_NOMEM;
goto bad2;
}
tail->xfer = NULL;
sed = opipe->sed;
opipe->u.ctl.length = len;
/* Update device address and length since they may have changed. */
/* XXX This only needs to be done once, but it's too early in open. */
sed->ed.ed_flags = htole32(
(le32toh(sed->ed.ed_flags) & ~(OHCI_ED_ADDRMASK | OHCI_ED_MAXPMASK)) |
OHCI_ED_SET_FA(addr) |
OHCI_ED_SET_MAXP(UGETW(opipe->pipe.endpoint->edesc->wMaxPacketSize)));
/* Set up data transaction */
if (len != 0) {
data = ohci_alloc_std(sc);
if (data == NULL) {
err = USBD_NOMEM;
goto bad3;
}
data->td.td_flags = htole32(
(isread ? OHCI_TD_IN : OHCI_TD_OUT) | OHCI_TD_NOCC |
OHCI_TD_TOGGLE_1 | OHCI_TD_NOINTR |
(xfer->flags & USBD_SHORT_XFER_OK ? OHCI_TD_R : 0));
data->td.td_cbp = htole32(DMAADDR(&xfer->dmabuf, 0));
data->nexttd = stat;
data->td.td_nexttd = htole32(stat->physaddr);
data->td.td_be = htole32(le32toh(data->td.td_cbp) + len - 1);
data->len = len;
data->xfer = xfer;
data->flags = OHCI_ADD_LEN;
next = data;
stat->flags = OHCI_CALL_DONE;
} else {
next = stat;
/* XXX ADD_LEN? */
stat->flags = OHCI_CALL_DONE | OHCI_ADD_LEN;
}
memcpy(KERNADDR(&opipe->u.ctl.reqdma, 0), req, sizeof *req);
setup->td.td_flags = htole32(OHCI_TD_SETUP | OHCI_TD_NOCC |
OHCI_TD_TOGGLE_0 | OHCI_TD_NOINTR);
setup->td.td_cbp = htole32(DMAADDR(&opipe->u.ctl.reqdma, 0));
setup->nexttd = next;
setup->td.td_nexttd = htole32(next->physaddr);
setup->td.td_be = htole32(le32toh(setup->td.td_cbp) + sizeof *req - 1);
setup->len = 0; /* XXX The number of byte we count */
setup->xfer = xfer;
setup->flags = 0;
xfer->hcpriv = setup;
stat->td.td_flags = htole32(
(isread ? OHCI_TD_OUT : OHCI_TD_IN) | OHCI_TD_NOCC |
OHCI_TD_TOGGLE_1 | OHCI_TD_SET_DI(1));
stat->td.td_cbp = 0;
stat->nexttd = tail;
stat->td.td_nexttd = htole32(tail->physaddr);
stat->td.td_be = 0;
stat->len = 0;
stat->xfer = xfer;
#ifdef OHCI_DEBUG
if (ohcidebug > 5) {
DPRINTF(("ohci_device_request:\n"));
ohci_dump_ed(sed);
ohci_dump_tds(setup);
}
#endif
/* Insert ED in schedule */
s = splusb();
sed->ed.ed_tailp = htole32(tail->physaddr);
opipe->tail.td = tail;
OWRITE4(sc, OHCI_COMMAND_STATUS, OHCI_CLF);
if (xfer->timeout && !sc->sc_bus.use_polling) {
usb_timeout(ohci_timeout, xfer,
MS_TO_TICKS(xfer->timeout), xfer->timo_handle);
}
splx(s);
#ifdef OHCI_DEBUG
if (ohcidebug > 25) {
usb_delay_ms(&sc->sc_bus, 5);
DPRINTF(("ohci_device_request: status=%x\n",
OREAD4(sc, OHCI_COMMAND_STATUS)));
ohci_dump_ed(sed);
ohci_dump_tds(setup);
}
#endif
return (USBD_NORMAL_COMPLETION);
bad3:
ohci_free_std(sc, tail);
bad2:
ohci_free_std(sc, stat);
bad1:
return (err);
}
/*
* Add an ED to the schedule. Called at splusb().
*/
void
ohci_add_ed(sed, head)
ohci_soft_ed_t *sed;
ohci_soft_ed_t *head;
{
SPLUSBCHECK;
sed->next = head->next;
sed->ed.ed_nexted = head->ed.ed_nexted;
head->next = sed;
head->ed.ed_nexted = htole32(sed->physaddr);
}
/*
* Remove an ED from the schedule. Called at splusb().
*/
void
ohci_rem_ed(sed, head)
ohci_soft_ed_t *sed;
ohci_soft_ed_t *head;
{
ohci_soft_ed_t *p;
SPLUSBCHECK;
/* XXX */
for (p = head; p == NULL && p->next != sed; p = p->next)
;
if (p == NULL)
panic("ohci_rem_ed: ED not found\n");
p->next = sed->next;
p->ed.ed_nexted = sed->ed.ed_nexted;
}
/*
* When a transfer is completed the TD is added to the done queue by
* the host controller. This queue is the processed by software.
* Unfortunately the queue contains the physical address of the TD
* and we have no simple way to translate this back to a kernel address.
* To make the translation possible (and fast) we use a hash table of
* TDs currently in the schedule. The physical address is used as the
* hash value.
*/
#define HASH(a) (((a) >> 4) % OHCI_HASH_SIZE)
/* Called at splusb() */
void
ohci_hash_add_td(sc, std)
ohci_softc_t *sc;
ohci_soft_td_t *std;
{
int h = HASH(std->physaddr);
SPLUSBCHECK;
LIST_INSERT_HEAD(&sc->sc_hash_tds[h], std, hnext);
}
/* Called at splusb() */
void
ohci_hash_rem_td(sc, std)
ohci_softc_t *sc;
ohci_soft_td_t *std;
{
SPLUSBCHECK;
LIST_REMOVE(std, hnext);
}
ohci_soft_td_t *
ohci_hash_find_td(sc, a)
ohci_softc_t *sc;
ohci_physaddr_t a;
{
int h = HASH(a);
ohci_soft_td_t *std;
/* if these are present they should be masked out at an earlier
* stage.
*/
KASSERT((a&~OHCI_HEADMASK) == 0, ("%s: 0x%b has lower bits set\n",
USBDEVNAME(sc->sc_bus.bdev),
(int) a, "\20\1HALT\2TOGGLE"));
for (std = LIST_FIRST(&sc->sc_hash_tds[h]);
std != NULL;
std = LIST_NEXT(std, hnext))
if (std->physaddr == a)
return (std);
DPRINTF(("%s: ohci_hash_find_td: addr 0x%08lx not found\n",
USBDEVNAME(sc->sc_bus.bdev), (u_long) a));
return NULL;
}
void
ohci_timeout(addr)
void *addr;
{
usbd_xfer_handle xfer = addr;
int s;
DPRINTF(("ohci_timeout: xfer=%p\n", xfer));
s = splusb();
xfer->device->bus->intr_context++;
ohci_abort_xfer(xfer, USBD_TIMEOUT);
xfer->device->bus->intr_context--;
splx(s);
}
#ifdef OHCI_DEBUG
void
ohci_dump_tds(std)
ohci_soft_td_t *std;
{
for (; std; std = std->nexttd)
ohci_dump_td(std);
}
void
ohci_dump_td(std)
ohci_soft_td_t *std;
{
DPRINTF(("TD(%p) at %08lx: %b delay=%d ec=%d cc=%d\ncbp=0x%08lx "
"nexttd=0x%08lx be=0x%08lx\n",
std, (u_long)std->physaddr,
(int)le32toh(std->td.td_flags),
"\20\23R\24OUT\25IN\31TOG1\32SETTOGGLE",
OHCI_TD_GET_DI(le32toh(std->td.td_flags)),
OHCI_TD_GET_EC(le32toh(std->td.td_flags)),
OHCI_TD_GET_CC(le32toh(std->td.td_flags)),
(u_long)le32toh(std->td.td_cbp),
(u_long)le32toh(std->td.td_nexttd),
(u_long)le32toh(std->td.td_be)));
}
void
ohci_dump_ed(sed)
ohci_soft_ed_t *sed;
{
DPRINTF(("ED(%p) at 0x%08lx: addr=%d endpt=%d maxp=%d %b\ntailp=0x%08lx "
"headflags=%b headp=0x%08lx nexted=0x%08lx\n",
sed, (u_long)sed->physaddr,
OHCI_ED_GET_FA(le32toh(sed->ed.ed_flags)),
OHCI_ED_GET_EN(le32toh(sed->ed.ed_flags)),
OHCI_ED_GET_MAXP(le32toh(sed->ed.ed_flags)),
(int)le32toh(sed->ed.ed_flags),
"\20\14OUT\15IN\16LOWSPEED\17SKIP\20ISO",
(int)(uintptr_t)le32toh(sed->ed.ed_tailp),
"\20\1BIT1\2BIT2",
(int)(uintptr_t)le32toh(sed->ed.ed_headp),
"\20\1HALT\2CARRY",
(u_long)le32toh(sed->ed.ed_headp),
(u_long)le32toh(sed->ed.ed_nexted)));
}
#endif
usbd_status
ohci_open(pipe)
usbd_pipe_handle pipe;
{
usbd_device_handle dev = pipe->device;
ohci_softc_t *sc = (ohci_softc_t *)dev->bus;
usb_endpoint_descriptor_t *ed = pipe->endpoint->edesc;
struct ohci_pipe *opipe = (struct ohci_pipe *)pipe;
u_int8_t addr = dev->address;
u_int8_t xfertype = ed->bmAttributes & UE_XFERTYPE;
ohci_soft_ed_t *sed;
ohci_soft_td_t *std = NULL;
ohci_soft_itd_t *sitd;
ohci_physaddr_t tdphys;
u_int32_t fmt;
usbd_status err;
int s;
int ival;
DPRINTFN(1, ("ohci_open: pipe=%p, addr=%d, endpt=%d (%d)\n",
pipe, addr, ed->bEndpointAddress, sc->sc_addr));
if (addr == sc->sc_addr) {
switch (ed->bEndpointAddress) {
case USB_CONTROL_ENDPOINT:
pipe->methods = &ohci_root_ctrl_methods;
break;
case UE_DIR_IN | OHCI_INTR_ENDPT:
pipe->methods = &ohci_root_intr_methods;
break;
default:
return (USBD_INVAL);
}
} else {
sed = ohci_alloc_sed(sc);
if (sed == NULL)
goto bad0;
opipe->sed = sed;
if (xfertype == UE_ISOCHRONOUS) {
sitd = ohci_alloc_sitd(sc);
if (sitd == NULL) {
ohci_free_sitd(sc, sitd);
goto bad1;
}
opipe->tail.itd = sitd;
tdphys = sitd->physaddr;
fmt = OHCI_ED_FORMAT_ISO;
} else {
std = ohci_alloc_std(sc);
if (std == NULL) {
ohci_free_std(sc, std);
goto bad1;
}
opipe->tail.td = std;
tdphys = std->physaddr;
fmt = OHCI_ED_FORMAT_GEN;
}
sed->ed.ed_flags = htole32(
OHCI_ED_SET_FA(addr) |
OHCI_ED_SET_EN(ed->bEndpointAddress) |
OHCI_ED_DIR_TD |
(dev->lowspeed ? OHCI_ED_SPEED : 0) | fmt |
OHCI_ED_SET_MAXP(UGETW(ed->wMaxPacketSize)));
sed->ed.ed_headp = sed->ed.ed_tailp = htole32(tdphys);
switch (xfertype) {
case UE_CONTROL:
pipe->methods = &ohci_device_ctrl_methods;
err = usb_allocmem(&sc->sc_bus,
sizeof(usb_device_request_t),
0, &opipe->u.ctl.reqdma);
if (err)
goto bad;
s = splusb();
ohci_add_ed(sed, sc->sc_ctrl_head);
splx(s);
break;
case UE_INTERRUPT:
pipe->methods = &ohci_device_intr_methods;
ival = pipe->interval;
if (ival == USBD_DEFAULT_INTERVAL)
ival = ed->bInterval;
return (ohci_device_setintr(sc, opipe, ival));
case UE_ISOCHRONOUS:
pipe->methods = &ohci_device_isoc_methods;
return (ohci_setup_isoc(pipe));
case UE_BULK:
pipe->methods = &ohci_device_bulk_methods;
s = splusb();
ohci_add_ed(sed, sc->sc_bulk_head);
splx(s);
break;
}
}
return (USBD_NORMAL_COMPLETION);
bad:
ohci_free_std(sc, std);
bad1:
ohci_free_sed(sc, sed);
bad0:
return (USBD_NOMEM);
}
/*
* Close a reqular pipe.
* Assumes that there are no pending transactions.
*/
void
ohci_close_pipe(pipe, head)
usbd_pipe_handle pipe;
ohci_soft_ed_t *head;
{
struct ohci_pipe *opipe = (struct ohci_pipe *)pipe;
ohci_softc_t *sc = (ohci_softc_t *)pipe->device->bus;
ohci_soft_ed_t *sed = opipe->sed;
int s;
s = splusb();
#ifdef DIAGNOSTIC
sed->ed.ed_flags |= htole32(OHCI_ED_SKIP);
if ((le32toh(sed->ed.ed_tailp) & OHCI_HEADMASK) !=
(le32toh(sed->ed.ed_headp) & OHCI_HEADMASK)) {
ohci_physaddr_t td = sed->ed.ed_headp;
ohci_soft_td_t *std;
for (std = LIST_FIRST(&sc->sc_hash_tds[HASH(td)]);
std != NULL;
std = LIST_NEXT(std, hnext))
if (std->physaddr == td)
break;
printf("ohci_close_pipe: pipe not empty sed=%p hd=0x%x "
"tl=0x%x pipe=%p, std=%p\n", sed,
(int)le32toh(sed->ed.ed_headp),
(int)le32toh(sed->ed.ed_tailp),
pipe, std);
usb_delay_ms(&sc->sc_bus, 2);
if ((le32toh(sed->ed.ed_tailp) & OHCI_HEADMASK) !=
(le32toh(sed->ed.ed_headp) & OHCI_HEADMASK))
printf("ohci_close_pipe: pipe still not empty\n");
}
#endif
ohci_rem_ed(sed, head);
splx(s);
ohci_free_sed(sc, opipe->sed);
}
/*
* Abort a device request.
* If this routine is called at splusb() it guarantees that the request
* will be removed from the hardware scheduling and that the callback
* for it will be called with USBD_CANCELLED status.
* It's impossible to guarantee that the requested transfer will not
* have happened since the hardware runs concurrently.
* If the transaction has already happened we rely on the ordinary
* interrupt processing to process it.
*/
void
ohci_abort_xfer(xfer, status)
usbd_xfer_handle xfer;
usbd_status status;
{
struct ohci_pipe *opipe = (struct ohci_pipe *)xfer->pipe;
ohci_soft_ed_t *sed;
DPRINTF(("ohci_abort_xfer: xfer=%p pipe=%p\n", xfer, opipe));
xfer->status = status;
usb_untimeout(ohci_timeout, xfer, xfer->timo_handle);
sed = opipe->sed;
sed->ed.ed_flags |= htole32(OHCI_ED_SKIP); /* force hardware skip */
#ifdef OHCI_DEBUG
DPRINTFN(1,("ohci_abort_xfer: stop ed=%p\n", sed));
ohci_dump_ed(sed);
#endif
#if 1
if (xfer->device->bus->intr_context) {
/* We have no process context, so we can't use tsleep(). */
timeout(ohci_abort_xfer_end, xfer, hz / USB_FRAMES_PER_SECOND);
} else {
#if defined(DIAGNOSTIC) && defined(__i386__) && defined(__FreeBSD__)
KASSERT(curthread->td_intr_nesting_level == 0,
("ohci_abort_req in interrupt context"));
#endif
usb_delay_ms(opipe->pipe.device->bus, 1);
ohci_abort_xfer_end(xfer);
}
#else
delay(1000);
ohci_abort_xfer_end(xfer);
#endif
}
void
ohci_abort_xfer_end(v)
void *v;
{
usbd_xfer_handle xfer = v;
struct ohci_pipe *opipe = (struct ohci_pipe *)xfer->pipe;
ohci_softc_t *sc = (ohci_softc_t *)opipe->pipe.device->bus;
ohci_soft_ed_t *sed;
ohci_soft_td_t *p, *n;
int s;
s = splusb();
p = xfer->hcpriv;
#ifdef DIAGNOSTIC
if (p == NULL) {
printf("ohci_abort_xfer: hcpriv==0\n");
splx(s);
return;
}
#endif
for (; p->xfer == xfer; p = n) {
n = p->nexttd;
ohci_free_std(sc, p);
}
sed = opipe->sed;
DPRINTFN(2,("ohci_abort_xfer: set hd=%x, tl=%x\n",
(int)p->physaddr, (int)le32toh(sed->ed.ed_tailp)));
sed->ed.ed_headp = htole32(p->physaddr); /* unlink TDs */
sed->ed.ed_flags &= htole32(~OHCI_ED_SKIP); /* remove hardware skip */
usb_transfer_complete(xfer);
splx(s);
}
/*
* Data structures and routines to emulate the root hub.
*/
Static usb_device_descriptor_t ohci_devd = {
USB_DEVICE_DESCRIPTOR_SIZE,
UDESC_DEVICE, /* type */
{0x00, 0x01}, /* USB version */
UDCLASS_HUB, /* class */
UDSUBCLASS_HUB, /* subclass */
0, /* protocol */
64, /* max packet */
{0},{0},{0x00,0x01}, /* device id */
1,2,0, /* string indicies */
1 /* # of configurations */
};
Static usb_config_descriptor_t ohci_confd = {
USB_CONFIG_DESCRIPTOR_SIZE,
UDESC_CONFIG,
{USB_CONFIG_DESCRIPTOR_SIZE +
USB_INTERFACE_DESCRIPTOR_SIZE +
USB_ENDPOINT_DESCRIPTOR_SIZE},
1,
1,
0,
UC_SELF_POWERED,
0 /* max power */
};
Static usb_interface_descriptor_t ohci_ifcd = {
USB_INTERFACE_DESCRIPTOR_SIZE,
UDESC_INTERFACE,
0,
0,
1,
UICLASS_HUB,
UISUBCLASS_HUB,
0,
0
};
Static usb_endpoint_descriptor_t ohci_endpd = {
USB_ENDPOINT_DESCRIPTOR_SIZE,
UDESC_ENDPOINT,
UE_DIR_IN | OHCI_INTR_ENDPT,
UE_INTERRUPT,
{8, 0}, /* max packet */
255
};
Static usb_hub_descriptor_t ohci_hubd = {
USB_HUB_DESCRIPTOR_SIZE,
UDESC_HUB,
0,
{0,0},
0,
0,
{0},
};
Static int
ohci_str(p, l, s)
usb_string_descriptor_t *p;
int l;
const char *s;
{
int i;
if (l == 0)
return (0);
p->bLength = 2 * strlen(s) + 2;
if (l == 1)
return (1);
p->bDescriptorType = UDESC_STRING;
l -= 2;
for (i = 0; s[i] && l > 1; i++, l -= 2)
USETW2(p->bString[i], 0, s[i]);
return (2*i+2);
}
/*
* Simulate a hardware hub by handling all the necessary requests.
*/
Static usbd_status
ohci_root_ctrl_transfer(xfer)
usbd_xfer_handle xfer;
{
usbd_status err;
/* Insert last in queue. */
err = usb_insert_transfer(xfer);
if (err)
return (err);
/* Pipe isn't running, start first */
return (ohci_root_ctrl_start(SIMPLEQ_FIRST(&xfer->pipe->queue)));
}
Static usbd_status
ohci_root_ctrl_start(xfer)
usbd_xfer_handle xfer;
{
ohci_softc_t *sc = (ohci_softc_t *)xfer->pipe->device->bus;
usb_device_request_t *req;
void *buf = NULL;
int port, i;
int s, len, value, index, l, totlen = 0;
usb_port_status_t ps;
usb_hub_descriptor_t hubd;
usbd_status err;
u_int32_t v;
#ifdef DIAGNOSTIC
if (!(xfer->rqflags & URQ_REQUEST))
/* XXX panic */
return (USBD_INVAL);
#endif
req = &xfer->request;
DPRINTFN(4,("ohci_root_ctrl_control type=0x%02x request=%02x\n",
req->bmRequestType, req->bRequest));
len = UGETW(req->wLength);
value = UGETW(req->wValue);
index = UGETW(req->wIndex);
if (len != 0)
buf = KERNADDR(&xfer->dmabuf, 0);
#define C(x,y) ((x) | ((y) << 8))
switch(C(req->bRequest, req->bmRequestType)) {
case C(UR_CLEAR_FEATURE, UT_WRITE_DEVICE):
case C(UR_CLEAR_FEATURE, UT_WRITE_INTERFACE):
case C(UR_CLEAR_FEATURE, UT_WRITE_ENDPOINT):
/*
* DEVICE_REMOTE_WAKEUP and ENDPOINT_HALT are no-ops
* for the integrated root hub.
*/
break;
case C(UR_GET_CONFIG, UT_READ_DEVICE):
if (len > 0) {
*(u_int8_t *)buf = sc->sc_conf;
totlen = 1;
}
break;
case C(UR_GET_DESCRIPTOR, UT_READ_DEVICE):
DPRINTFN(8,("ohci_root_ctrl_control wValue=0x%04x\n", value));
switch(value >> 8) {
case UDESC_DEVICE:
if ((value & 0xff) != 0) {
err = USBD_IOERROR;
goto ret;
}
totlen = l = min(len, USB_DEVICE_DESCRIPTOR_SIZE);
USETW(ohci_devd.idVendor, sc->sc_id_vendor);
memcpy(buf, &ohci_devd, l);
break;
case UDESC_CONFIG:
if ((value & 0xff) != 0) {
err = USBD_IOERROR;
goto ret;
}
totlen = l = min(len, USB_CONFIG_DESCRIPTOR_SIZE);
memcpy(buf, &ohci_confd, l);
buf = (char *)buf + l;
len -= l;
l = min(len, USB_INTERFACE_DESCRIPTOR_SIZE);
totlen += l;
memcpy(buf, &ohci_ifcd, l);
buf = (char *)buf + l;
len -= l;
l = min(len, USB_ENDPOINT_DESCRIPTOR_SIZE);
totlen += l;
memcpy(buf, &ohci_endpd, l);
break;
case UDESC_STRING:
if (len == 0)
break;
*(u_int8_t *)buf = 0;
totlen = 1;
switch (value & 0xff) {
case 1: /* Vendor */
totlen = ohci_str(buf, len, sc->sc_vendor);
break;
case 2: /* Product */
totlen = ohci_str(buf, len, "OHCI root hub");
break;
}
break;
default:
err = USBD_IOERROR;
goto ret;
}
break;
case C(UR_GET_INTERFACE, UT_READ_INTERFACE):
if (len > 0) {
*(u_int8_t *)buf = 0;
totlen = 1;
}
break;
case C(UR_GET_STATUS, UT_READ_DEVICE):
if (len > 1) {
USETW(((usb_status_t *)buf)->wStatus,UDS_SELF_POWERED);
totlen = 2;
}
break;
case C(UR_GET_STATUS, UT_READ_INTERFACE):
case C(UR_GET_STATUS, UT_READ_ENDPOINT):
if (len > 1) {
USETW(((usb_status_t *)buf)->wStatus, 0);
totlen = 2;
}
break;
case C(UR_SET_ADDRESS, UT_WRITE_DEVICE):
if (value >= USB_MAX_DEVICES) {
err = USBD_IOERROR;
goto ret;
}
sc->sc_addr = value;
break;
case C(UR_SET_CONFIG, UT_WRITE_DEVICE):
if (value != 0 && value != 1) {
err = USBD_IOERROR;
goto ret;
}
sc->sc_conf = value;
break;
case C(UR_SET_DESCRIPTOR, UT_WRITE_DEVICE):
break;
case C(UR_SET_FEATURE, UT_WRITE_DEVICE):
case C(UR_SET_FEATURE, UT_WRITE_INTERFACE):
case C(UR_SET_FEATURE, UT_WRITE_ENDPOINT):
err = USBD_IOERROR;
goto ret;
case C(UR_SET_INTERFACE, UT_WRITE_INTERFACE):
break;
case C(UR_SYNCH_FRAME, UT_WRITE_ENDPOINT):
break;
/* Hub requests */
case C(UR_CLEAR_FEATURE, UT_WRITE_CLASS_DEVICE):
break;
case C(UR_CLEAR_FEATURE, UT_WRITE_CLASS_OTHER):
DPRINTFN(8, ("ohci_root_ctrl_control: UR_CLEAR_PORT_FEATURE "
"port=%d feature=%d\n",
index, value));
if (index < 1 || index > sc->sc_noport) {
err = USBD_IOERROR;
goto ret;
}
port = OHCI_RH_PORT_STATUS(index);
switch(value) {
case UHF_PORT_ENABLE:
OWRITE4(sc, port, UPS_CURRENT_CONNECT_STATUS);
break;
case UHF_PORT_SUSPEND:
OWRITE4(sc, port, UPS_OVERCURRENT_INDICATOR);
break;
case UHF_PORT_POWER:
OWRITE4(sc, port, UPS_LOW_SPEED);
break;
case UHF_C_PORT_CONNECTION:
OWRITE4(sc, port, UPS_C_CONNECT_STATUS << 16);
break;
case UHF_C_PORT_ENABLE:
OWRITE4(sc, port, UPS_C_PORT_ENABLED << 16);
break;
case UHF_C_PORT_SUSPEND:
OWRITE4(sc, port, UPS_C_SUSPEND << 16);
break;
case UHF_C_PORT_OVER_CURRENT:
OWRITE4(sc, port, UPS_C_OVERCURRENT_INDICATOR << 16);
break;
case UHF_C_PORT_RESET:
OWRITE4(sc, port, UPS_C_PORT_RESET << 16);
break;
default:
err = USBD_IOERROR;
goto ret;
}
switch(value) {
case UHF_C_PORT_CONNECTION:
case UHF_C_PORT_ENABLE:
case UHF_C_PORT_SUSPEND:
case UHF_C_PORT_OVER_CURRENT:
case UHF_C_PORT_RESET:
/* Enable RHSC interrupt if condition is cleared. */
if ((OREAD4(sc, port) >> 16) == 0)
ohci_rhsc_able(sc, 1);
break;
default:
break;
}
break;
case C(UR_GET_DESCRIPTOR, UT_READ_CLASS_DEVICE):
if (value != 0) {
err = USBD_IOERROR;
goto ret;
}
v = OREAD4(sc, OHCI_RH_DESCRIPTOR_A);
hubd = ohci_hubd;
hubd.bNbrPorts = sc->sc_noport;
USETW(hubd.wHubCharacteristics,
(v & OHCI_NPS ? UHD_PWR_NO_SWITCH :
v & OHCI_PSM ? UHD_PWR_GANGED : UHD_PWR_INDIVIDUAL)
/* XXX overcurrent */
);
hubd.bPwrOn2PwrGood = OHCI_GET_POTPGT(v);
v = OREAD4(sc, OHCI_RH_DESCRIPTOR_B);
for (i = 0, l = sc->sc_noport; l > 0; i++, l -= 8, v >>= 8)
hubd.DeviceRemovable[i++] = (u_int8_t)v;
hubd.bDescLength = USB_HUB_DESCRIPTOR_SIZE + i;
l = min(len, hubd.bDescLength);
totlen = l;
memcpy(buf, &hubd, l);
break;
case C(UR_GET_STATUS, UT_READ_CLASS_DEVICE):
if (len != 4) {
err = USBD_IOERROR;
goto ret;
}
memset(buf, 0, len); /* ? XXX */
totlen = len;
break;
case C(UR_GET_STATUS, UT_READ_CLASS_OTHER):
DPRINTFN(8,("ohci_root_ctrl_transfer: get port status i=%d\n",
index));
if (index < 1 || index > sc->sc_noport) {
err = USBD_IOERROR;
goto ret;
}
if (len != 4) {
err = USBD_IOERROR;
goto ret;
}
v = OREAD4(sc, OHCI_RH_PORT_STATUS(index));
DPRINTFN(8,("ohci_root_ctrl_transfer: port status=0x%04x\n",
v));
USETW(ps.wPortStatus, v);
USETW(ps.wPortChange, v >> 16);
l = min(len, sizeof ps);
memcpy(buf, &ps, l);
totlen = l;
break;
case C(UR_SET_DESCRIPTOR, UT_WRITE_CLASS_DEVICE):
err = USBD_IOERROR;
goto ret;
case C(UR_SET_FEATURE, UT_WRITE_CLASS_DEVICE):
break;
case C(UR_SET_FEATURE, UT_WRITE_CLASS_OTHER):
if (index < 1 || index > sc->sc_noport) {
err = USBD_IOERROR;
goto ret;
}
port = OHCI_RH_PORT_STATUS(index);
switch(value) {
case UHF_PORT_ENABLE:
OWRITE4(sc, port, UPS_PORT_ENABLED);
break;
case UHF_PORT_SUSPEND:
OWRITE4(sc, port, UPS_SUSPEND);
break;
case UHF_PORT_RESET:
DPRINTFN(5,("ohci_root_ctrl_transfer: reset port %d\n",
index));
OWRITE4(sc, port, UPS_RESET);
for (i = 0; i < 10; i++) {
usb_delay_ms(&sc->sc_bus,
USB_PORT_ROOT_RESET_DELAY);
if ((OREAD4(sc, port) & UPS_RESET) == 0)
break;
}
DPRINTFN(8,("ohci port %d reset, status = 0x%04x\n",
index, OREAD4(sc, port)));
break;
case UHF_PORT_POWER:
DPRINTFN(2,("ohci_root_ctrl_transfer: set port power "
"%d\n", index));
OWRITE4(sc, port, UPS_PORT_POWER);
break;
default:
err = USBD_IOERROR;
goto ret;
}
break;
default:
err = USBD_IOERROR;
goto ret;
}
xfer->actlen = totlen;
err = USBD_NORMAL_COMPLETION;
ret:
xfer->status = err;
s = splusb();
usb_transfer_complete(xfer);
splx(s);
return (USBD_IN_PROGRESS);
}
/* Abort a root control request. */
Static void
ohci_root_ctrl_abort(xfer)
usbd_xfer_handle xfer;
{
/* Nothing to do, all transfers are synchronous. */
}
/* Close the root pipe. */
Static void
ohci_root_ctrl_close(pipe)
usbd_pipe_handle pipe;
{
DPRINTF(("ohci_root_ctrl_close\n"));
/* Nothing to do. */
}
Static usbd_status
ohci_root_intr_transfer(xfer)
usbd_xfer_handle xfer;
{
usbd_status err;
/* Insert last in queue. */
err = usb_insert_transfer(xfer);
if (err)
return (err);
/* Pipe isn't running, start first */
return (ohci_root_intr_start(SIMPLEQ_FIRST(&xfer->pipe->queue)));
}
Static usbd_status
ohci_root_intr_start(xfer)
usbd_xfer_handle xfer;
{
usbd_pipe_handle pipe = xfer->pipe;
ohci_softc_t *sc = (ohci_softc_t *)pipe->device->bus;
sc->sc_intrxfer = xfer;
return (USBD_IN_PROGRESS);
}
/* Abort a root interrupt request. */
Static void
ohci_root_intr_abort(xfer)
usbd_xfer_handle xfer;
{
int s;
if (xfer->pipe->intrxfer == xfer) {
DPRINTF(("ohci_root_intr_abort: remove\n"));
xfer->pipe->intrxfer = NULL;
}
xfer->status = USBD_CANCELLED;
s = splusb();
usb_transfer_complete(xfer);
splx(s);
}
/* Close the root pipe. */
Static void
ohci_root_intr_close(pipe)
usbd_pipe_handle pipe;
{
ohci_softc_t *sc = (ohci_softc_t *)pipe->device->bus;
DPRINTF(("ohci_root_intr_close\n"));
sc->sc_intrxfer = NULL;
}
/************************/
Static usbd_status
ohci_device_ctrl_transfer(xfer)
usbd_xfer_handle xfer;
{
usbd_status err;
/* Insert last in queue. */
err = usb_insert_transfer(xfer);
if (err)
return (err);
/* Pipe isn't running, start first */
return (ohci_device_ctrl_start(SIMPLEQ_FIRST(&xfer->pipe->queue)));
}
Static usbd_status
ohci_device_ctrl_start(xfer)
usbd_xfer_handle xfer;
{
ohci_softc_t *sc = (ohci_softc_t *)xfer->pipe->device->bus;
usbd_status err;
#ifdef DIAGNOSTIC
if (!(xfer->rqflags & URQ_REQUEST)) {
/* XXX panic */
printf("ohci_device_ctrl_transfer: not a request\n");
return (USBD_INVAL);
}
#endif
err = ohci_device_request(xfer);
if (err)
return (err);
if (sc->sc_bus.use_polling)
ohci_waitintr(sc, xfer);
return (USBD_IN_PROGRESS);
}
/* Abort a device control request. */
Static void
ohci_device_ctrl_abort(xfer)
usbd_xfer_handle xfer;
{
DPRINTF(("ohci_device_ctrl_abort: xfer=%p\n", xfer));
ohci_abort_xfer(xfer, USBD_CANCELLED);
}
/* Close a device control pipe. */
Static void
ohci_device_ctrl_close(pipe)
usbd_pipe_handle pipe;
{
struct ohci_pipe *opipe = (struct ohci_pipe *)pipe;
ohci_softc_t *sc = (ohci_softc_t *)pipe->device->bus;
DPRINTF(("ohci_device_ctrl_close: pipe=%p\n", pipe));
ohci_close_pipe(pipe, sc->sc_ctrl_head);
ohci_free_std(sc, opipe->tail.td);
}
/************************/
Static void
ohci_device_clear_toggle(pipe)
usbd_pipe_handle pipe;
{
struct ohci_pipe *opipe = (struct ohci_pipe *)pipe;
opipe->sed->ed.ed_headp &= htole32(~OHCI_TOGGLECARRY);
}
Static void
ohci_noop(pipe)
usbd_pipe_handle pipe;
{
}
Static usbd_status
ohci_device_bulk_transfer(xfer)
usbd_xfer_handle xfer;
{
usbd_status err;
/* Insert last in queue. */
err = usb_insert_transfer(xfer);
if (err)
return (err);
/* Pipe isn't running, start first */
return (ohci_device_bulk_start(SIMPLEQ_FIRST(&xfer->pipe->queue)));
}
Static usbd_status
ohci_device_bulk_start(xfer)
usbd_xfer_handle xfer;
{
struct ohci_pipe *opipe = (struct ohci_pipe *)xfer->pipe;
usbd_device_handle dev = opipe->pipe.device;
ohci_softc_t *sc = (ohci_softc_t *)dev->bus;
int addr = dev->address;
ohci_soft_td_t *data, *tail, *tdp;
ohci_soft_ed_t *sed;
int s, len, isread, endpt;
usbd_status err;
#ifdef DIAGNOSTIC
if (xfer->rqflags & URQ_REQUEST) {
/* XXX panic */
printf("ohci_device_bulk_start: a request\n");
return (USBD_INVAL);
}
#endif
len = xfer->length;
endpt = xfer->pipe->endpoint->edesc->bEndpointAddress;
isread = UE_GET_DIR(endpt) == UE_DIR_IN;
sed = opipe->sed;
DPRINTFN(4,("ohci_device_bulk_start: xfer=%p len=%d isread=%d "
"flags=%d endpt=%d\n", xfer, len, isread, xfer->flags,
endpt));
opipe->u.bulk.isread = isread;
opipe->u.bulk.length = len;
/* Update device address */
sed->ed.ed_flags = htole32(
(le32toh(sed->ed.ed_flags) & ~OHCI_ED_ADDRMASK) |
OHCI_ED_SET_FA(addr));
/* Allocate a chain of new TDs (including a new tail). */
data = opipe->tail.td;
err = ohci_alloc_std_chain(opipe, sc, len, isread, xfer->flags,
&xfer->dmabuf, data, &tail);
if (err)
return (err);
tail->xfer = NULL;
xfer->hcpriv = data;
DPRINTFN(4,("ohci_device_bulk_start: ed_flags=0x%08x td_flags=0x%08x "
"td_cbp=0x%08x td_be=0x%08x\n",
(int)le32toh(sed->ed.ed_flags),
(int)le32toh(data->td.td_flags),
(int)le32toh(data->td.td_cbp),
(int)le32toh(data->td.td_be)));
#ifdef OHCI_DEBUG
if (ohcidebug > 4) {
ohci_dump_ed(sed);
ohci_dump_tds(data);
}
#endif
/* Insert ED in schedule */
s = splusb();
for (tdp = data; tdp != tail; tdp = tdp->nexttd) {
tdp->xfer = xfer;
}
sed->ed.ed_tailp = htole32(tail->physaddr);
opipe->tail.td = tail;
sed->ed.ed_flags &= htole32(~OHCI_ED_SKIP);
OWRITE4(sc, OHCI_COMMAND_STATUS, OHCI_BLF);
if (xfer->timeout && !sc->sc_bus.use_polling) {
usb_timeout(ohci_timeout, xfer,
MS_TO_TICKS(xfer->timeout), xfer->timo_handle);
}
#if 0
/* This goes wrong if we are too slow. */
if (ohcidebug > 5) {
usb_delay_ms(&sc->sc_bus, 5);
DPRINTF(("ohci_device_intr_transfer: status=%x\n",
OREAD4(sc, OHCI_COMMAND_STATUS)));
ohci_dump_ed(sed);
ohci_dump_tds(data);
}
#endif
splx(s);
return (USBD_IN_PROGRESS);
}
Static void
ohci_device_bulk_abort(xfer)
usbd_xfer_handle xfer;
{
DPRINTF(("ohci_device_bulk_abort: xfer=%p\n", xfer));
ohci_abort_xfer(xfer, USBD_CANCELLED);
}
/*
* Close a device bulk pipe.
*/
Static void
ohci_device_bulk_close(pipe)
usbd_pipe_handle pipe;
{
struct ohci_pipe *opipe = (struct ohci_pipe *)pipe;
ohci_softc_t *sc = (ohci_softc_t *)pipe->device->bus;
DPRINTF(("ohci_device_bulk_close: pipe=%p\n", pipe));
ohci_close_pipe(pipe, sc->sc_bulk_head);
ohci_free_std(sc, opipe->tail.td);
}
/************************/
Static usbd_status
ohci_device_intr_transfer(xfer)
usbd_xfer_handle xfer;
{
usbd_status err;
/* Insert last in queue. */
err = usb_insert_transfer(xfer);
if (err)
return (err);
/* Pipe isn't running, start first */
return (ohci_device_intr_start(SIMPLEQ_FIRST(&xfer->pipe->queue)));
}
Static usbd_status
ohci_device_intr_start(xfer)
usbd_xfer_handle xfer;
{
struct ohci_pipe *opipe = (struct ohci_pipe *)xfer->pipe;
usbd_device_handle dev = opipe->pipe.device;
ohci_softc_t *sc = (ohci_softc_t *)dev->bus;
ohci_soft_ed_t *sed = opipe->sed;
ohci_soft_td_t *data, *tail;
int len;
int s;
DPRINTFN(3, ("ohci_device_intr_transfer: xfer=%p len=%d "
"flags=%d priv=%p\n",
xfer, xfer->length, xfer->flags, xfer->priv));
#ifdef DIAGNOSTIC
if (xfer->rqflags & URQ_REQUEST)
panic("ohci_device_intr_transfer: a request\n");
#endif
len = xfer->length;
data = opipe->tail.td;
tail = ohci_alloc_std(sc);
if (tail == NULL)
return (USBD_NOMEM);
tail->xfer = NULL;
data->td.td_flags = htole32(
OHCI_TD_IN | OHCI_TD_NOCC |
OHCI_TD_SET_DI(1) | OHCI_TD_TOGGLE_CARRY);
if (xfer->flags & USBD_SHORT_XFER_OK)
data->td.td_flags |= htole32(OHCI_TD_R);
data->td.td_cbp = htole32(DMAADDR(&xfer->dmabuf, 0));
data->nexttd = tail;
data->td.td_nexttd = htole32(tail->physaddr);
data->td.td_be = htole32(le32toh(data->td.td_cbp) + len - 1);
data->len = len;
data->xfer = xfer;
data->flags = OHCI_CALL_DONE | OHCI_ADD_LEN;
xfer->hcpriv = data;
#ifdef OHCI_DEBUG
if (ohcidebug > 5) {
DPRINTF(("ohci_device_intr_transfer:\n"));
ohci_dump_ed(sed);
ohci_dump_tds(data);
}
#endif
/* Insert ED in schedule */
s = splusb();
sed->ed.ed_tailp = htole32(tail->physaddr);
opipe->tail.td = tail;
sed->ed.ed_flags &= htole32(~OHCI_ED_SKIP);
#if 0
/*
* This goes horribly wrong, printing thousands of descriptors,
* because false references are followed due to the fact that the
* TD is gone.
*/
if (ohcidebug > 5) {
usb_delay_ms(&sc->sc_bus, 5);
DPRINTF(("ohci_device_intr_transfer: status=%x\n",
OREAD4(sc, OHCI_COMMAND_STATUS)));
ohci_dump_ed(sed);
ohci_dump_tds(data);
}
#endif
splx(s);
return (USBD_IN_PROGRESS);
}
/* Abort a device control request. */
Static void
ohci_device_intr_abort(xfer)
usbd_xfer_handle xfer;
{
if (xfer->pipe->intrxfer == xfer) {
DPRINTF(("ohci_device_intr_abort: remove\n"));
xfer->pipe->intrxfer = NULL;
}
ohci_abort_xfer(xfer, USBD_CANCELLED);
}
/* Close a device interrupt pipe. */
Static void
ohci_device_intr_close(pipe)
usbd_pipe_handle pipe;
{
struct ohci_pipe *opipe = (struct ohci_pipe *)pipe;
ohci_softc_t *sc = (ohci_softc_t *)pipe->device->bus;
int nslots = opipe->u.intr.nslots;
int pos = opipe->u.intr.pos;
int j;
ohci_soft_ed_t *p, *sed = opipe->sed;
int s;
DPRINTFN(1,("ohci_device_intr_close: pipe=%p nslots=%d pos=%d\n",
pipe, nslots, pos));
s = splusb();
sed->ed.ed_flags |= htole32(OHCI_ED_SKIP);
if ((le32toh(sed->ed.ed_tailp) & OHCI_HEADMASK) !=
(le32toh(sed->ed.ed_headp) & OHCI_HEADMASK))
usb_delay_ms(&sc->sc_bus, 2);
#ifdef DIAGNOSTIC
if ((le32toh(sed->ed.ed_tailp) & OHCI_HEADMASK) !=
(le32toh(sed->ed.ed_headp) & OHCI_HEADMASK))
panic("%s: Intr pipe %p still has TDs queued\n",
USBDEVNAME(sc->sc_bus.bdev), pipe);
#endif
for (p = sc->sc_eds[pos]; p && p->next != sed; p = p->next)
;
#ifdef DIAGNOSTIC
if (p == NULL)
panic("ohci_device_intr_close: ED not found\n");
#endif
p->next = sed->next;
p->ed.ed_nexted = sed->ed.ed_nexted;
splx(s);
for (j = 0; j < nslots; j++)
--sc->sc_bws[(pos * nslots + j) % OHCI_NO_INTRS];
ohci_free_std(sc, opipe->tail.td);
ohci_free_sed(sc, opipe->sed);
}
Static usbd_status
ohci_device_setintr(sc, opipe, ival)
ohci_softc_t *sc;
struct ohci_pipe *opipe;
int ival;
{
int i, j, s, best;
u_int npoll, slow, shigh, nslots;
u_int bestbw, bw;
ohci_soft_ed_t *hsed, *sed = opipe->sed;
DPRINTFN(2, ("ohci_setintr: pipe=%p\n", opipe));
if (ival == 0) {
printf("ohci_setintr: 0 interval\n");
return (USBD_INVAL);
}
npoll = OHCI_NO_INTRS;
while (npoll > ival)
npoll /= 2;
DPRINTFN(2, ("ohci_setintr: ival=%d npoll=%d\n", ival, npoll));
/*
* We now know which level in the tree the ED must go into.
* Figure out which slot has most bandwidth left over.
* Slots to examine:
* npoll
* 1 0
* 2 1 2
* 4 3 4 5 6
* 8 7 8 9 10 11 12 13 14
* N (N-1) .. (N-1+N-1)
*/
slow = npoll-1;
shigh = slow + npoll;
nslots = OHCI_NO_INTRS / npoll;
for (best = i = slow, bestbw = ~0; i < shigh; i++) {
bw = 0;
for (j = 0; j < nslots; j++)
bw += sc->sc_bws[(i * nslots + j) % OHCI_NO_INTRS];
if (bw < bestbw) {
best = i;
bestbw = bw;
}
}
DPRINTFN(2, ("ohci_setintr: best=%d(%d..%d) bestbw=%d\n",
best, slow, shigh, bestbw));
s = splusb();
hsed = sc->sc_eds[best];
sed->next = hsed->next;
sed->ed.ed_nexted = hsed->ed.ed_nexted;
hsed->next = sed;
hsed->ed.ed_nexted = htole32(sed->physaddr);
splx(s);
for (j = 0; j < nslots; j++)
++sc->sc_bws[(best * nslots + j) % OHCI_NO_INTRS];
opipe->u.intr.nslots = nslots;
opipe->u.intr.pos = best;
DPRINTFN(5, ("ohci_setintr: returns %p\n", opipe));
return (USBD_NORMAL_COMPLETION);
}
/***********************/
usbd_status
ohci_device_isoc_transfer(xfer)
usbd_xfer_handle xfer;
{
usbd_status err;
DPRINTFN(5,("ohci_device_isoc_transfer: xfer=%p\n", xfer));
/* Put it on our queue, */
err = usb_insert_transfer(xfer);
/* bail out on error, */
if (err && err != USBD_IN_PROGRESS)
return (err);
/* XXX should check inuse here */
/* insert into schedule, */
ohci_device_isoc_enter(xfer);
/* and put on interrupt list if the pipe wasn't running */
if (!err)
ohci_device_isoc_start(SIMPLEQ_FIRST(&xfer->pipe->queue));
return (err);
}
void
ohci_device_isoc_enter(xfer)
usbd_xfer_handle xfer;
{
struct ohci_pipe *opipe = (struct ohci_pipe *)xfer->pipe;
usbd_device_handle dev = opipe->pipe.device;
ohci_softc_t *sc = (ohci_softc_t *)dev->bus;
ohci_soft_ed_t *sed = opipe->sed;
struct iso *iso = &opipe->u.iso;
ohci_soft_itd_t *sitd, *nsitd;
ohci_physaddr_t buf, offs;
int i, ncur, nframes;
int ncross = 0;
int s;
s = splusb();
sitd = opipe->tail.itd;
buf = DMAADDR(&xfer->dmabuf, 0);
sitd->itd.itd_bp0 = htole32(buf & OHCI_ITD_PAGE_MASK);
nframes = xfer->nframes;
offs = buf & OHCI_ITD_OFFSET_MASK;
for (i = ncur = 0; i < nframes; i++, ncur++) {
if (ncur == OHCI_ITD_NOFFSET || /* all offsets used */
ncross > 1) { /* too many page crossings */
nsitd = ohci_alloc_sitd(sc);
if (nsitd == NULL) {
/* XXX what now? */
splx(s);
return;
}
sitd->nextitd = nsitd;
sitd->itd.itd_nextitd = htole32(nsitd->physaddr);
sitd->itd.itd_flags = htole32(
OHCI_ITD_NOCC |
OHCI_ITD_SET_SF(iso->next) |
OHCI_ITD_NOINTR |
OHCI_ITD_SET_FC(OHCI_ITD_NOFFSET));
sitd->itd.itd_be = htole32(
le32toh(sitd->itd.itd_bp0) + offs - 1);
nsitd->itd.itd_bp0 = htole32(
(buf + offs) & OHCI_ITD_PAGE_MASK);
sitd = nsitd;
iso->next = iso->next + ncur;
ncur = 0;
ncross = 0;
}
/* XXX byte order */
sitd->itd.itd_offset[i] =
offs | (ncross == 1 ? OHCI_ITD_PAGE_SELECT : 0);
offs += xfer->frlengths[i];
/* XXX update ncross */
}
nsitd = ohci_alloc_sitd(sc);
if (nsitd == NULL) {
/* XXX what now? */
splx(s);
return;
}
sitd->nextitd = nsitd;
sitd->itd.itd_nextitd = htole32(nsitd->physaddr);
sitd->itd.itd_flags = le32toh(
OHCI_ITD_NOCC |
OHCI_ITD_SET_SF(iso->next) |
OHCI_ITD_SET_DI(0) |
OHCI_ITD_SET_FC(ncur));
sitd->itd.itd_be = htole32(le32toh(sitd->itd.itd_bp0) + offs - 1);
iso->next = iso->next + ncur;
opipe->tail.itd = nsitd;
sed->ed.ed_tailp = htole32(nsitd->physaddr);
/* XXX update ED */
splx(s);
}
usbd_status
ohci_device_isoc_start(xfer)
usbd_xfer_handle xfer;
{
printf("ohci_device_isoc_start: not implemented\n");
return (USBD_INVAL);
}
void
ohci_device_isoc_abort(xfer)
usbd_xfer_handle xfer;
{
}
void
ohci_device_isoc_done(xfer)
usbd_xfer_handle xfer;
{
printf("ohci_device_isoc_done: not implemented\n");
}
usbd_status
ohci_setup_isoc(pipe)
usbd_pipe_handle pipe;
{
struct ohci_pipe *opipe = (struct ohci_pipe *)pipe;
struct iso *iso = &opipe->u.iso;
iso->next = -1;
iso->inuse = 0;
return (USBD_NORMAL_COMPLETION);
}
void
ohci_device_isoc_close(pipe)
usbd_pipe_handle pipe;
{
struct ohci_pipe *opipe = (struct ohci_pipe *)pipe;
ohci_softc_t *sc = (ohci_softc_t *)pipe->device->bus;
DPRINTF(("ohci_device_isoc_close: pipe=%p\n", pipe));
ohci_close_pipe(pipe, sc->sc_isoc_head);
ohci_free_sitd(sc, opipe->tail.itd);
}