mirror of
https://git.FreeBSD.org/src.git
synced 2024-12-22 11:17:19 +00:00
756a541279
o In vm_pager_bufferinit() create pbuf_zone and start accounting on how many pbufs are we going to have set. In various subsystems that are going to utilize pbufs create private zones via call to pbuf_zsecond_create(). The latter calls uma_zsecond_create(), and sets a limit on created zone. After startup preallocate pbufs according to requirements of all pbuf zones. Subsystems that used to have a private limit with old allocator now have private pbuf zones: md(4), fusefs, NFS client, smbfs, VFS cluster, FFS, swap, vnode pager. The following subsystems use shared pbuf zone: cam(4), nvme(4), physio(9), aio(4). They should have their private limits, but changing that is out of scope of this commit. o Fetch tunable value of kern.nswbuf from init_param2() and while here move NSWBUF_MIN to opt_param.h and eliminate opt_swap.h, that was holding only this option. Default values aren't touched by this commit, but they probably should be reviewed wrt to modern hardware. This change removes a tight bottleneck from sendfile(2) operation, that uses pbufs in vnode pager. Other pagers also would benefit from faster allocation. Together with: gallatin Tested by: pho
1079 lines
29 KiB
C
1079 lines
29 KiB
C
/*-
|
|
* SPDX-License-Identifier: BSD-3-Clause
|
|
*
|
|
* Copyright (c) 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
* Modifications/enhancements:
|
|
* Copyright (c) 1995 John S. Dyson. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)vfs_cluster.c 8.7 (Berkeley) 2/13/94
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include "opt_debug_cluster.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/bio.h>
|
|
#include <sys/buf.h>
|
|
#include <sys/vnode.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mount.h>
|
|
#include <sys/racct.h>
|
|
#include <sys/resourcevar.h>
|
|
#include <sys/rwlock.h>
|
|
#include <sys/vmmeter.h>
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_object.h>
|
|
#include <vm/vm_page.h>
|
|
#include <sys/sysctl.h>
|
|
|
|
#if defined(CLUSTERDEBUG)
|
|
static int rcluster= 0;
|
|
SYSCTL_INT(_debug, OID_AUTO, rcluster, CTLFLAG_RW, &rcluster, 0,
|
|
"Debug VFS clustering code");
|
|
#endif
|
|
|
|
static MALLOC_DEFINE(M_SEGMENT, "cl_savebuf", "cluster_save buffer");
|
|
static uma_zone_t cluster_pbuf_zone;
|
|
|
|
static void cluster_init(void *);
|
|
static struct cluster_save *cluster_collectbufs(struct vnode *vp,
|
|
struct buf *last_bp, int gbflags);
|
|
static struct buf *cluster_rbuild(struct vnode *vp, u_quad_t filesize,
|
|
daddr_t lbn, daddr_t blkno, long size, int run, int gbflags,
|
|
struct buf *fbp);
|
|
static void cluster_callback(struct buf *);
|
|
|
|
static int write_behind = 1;
|
|
SYSCTL_INT(_vfs, OID_AUTO, write_behind, CTLFLAG_RW, &write_behind, 0,
|
|
"Cluster write-behind; 0: disable, 1: enable, 2: backed off");
|
|
|
|
static int read_max = 64;
|
|
SYSCTL_INT(_vfs, OID_AUTO, read_max, CTLFLAG_RW, &read_max, 0,
|
|
"Cluster read-ahead max block count");
|
|
|
|
static int read_min = 1;
|
|
SYSCTL_INT(_vfs, OID_AUTO, read_min, CTLFLAG_RW, &read_min, 0,
|
|
"Cluster read min block count");
|
|
|
|
SYSINIT(cluster, SI_SUB_CPU, SI_ORDER_ANY, cluster_init, NULL);
|
|
|
|
static void
|
|
cluster_init(void *dummy)
|
|
{
|
|
|
|
cluster_pbuf_zone = pbuf_zsecond_create("clpbuf", nswbuf / 2);
|
|
}
|
|
|
|
/*
|
|
* Read data to a buf, including read-ahead if we find this to be beneficial.
|
|
* cluster_read replaces bread.
|
|
*/
|
|
int
|
|
cluster_read(struct vnode *vp, u_quad_t filesize, daddr_t lblkno, long size,
|
|
struct ucred *cred, long totread, int seqcount, int gbflags,
|
|
struct buf **bpp)
|
|
{
|
|
struct buf *bp, *rbp, *reqbp;
|
|
struct bufobj *bo;
|
|
struct thread *td;
|
|
daddr_t blkno, origblkno;
|
|
int maxra, racluster;
|
|
int error, ncontig;
|
|
int i;
|
|
|
|
error = 0;
|
|
td = curthread;
|
|
bo = &vp->v_bufobj;
|
|
if (!unmapped_buf_allowed)
|
|
gbflags &= ~GB_UNMAPPED;
|
|
|
|
/*
|
|
* Try to limit the amount of read-ahead by a few
|
|
* ad-hoc parameters. This needs work!!!
|
|
*/
|
|
racluster = vp->v_mount->mnt_iosize_max / size;
|
|
maxra = seqcount;
|
|
maxra = min(read_max, maxra);
|
|
maxra = min(nbuf/8, maxra);
|
|
if (((u_quad_t)(lblkno + maxra + 1) * size) > filesize)
|
|
maxra = (filesize / size) - lblkno;
|
|
|
|
/*
|
|
* get the requested block
|
|
*/
|
|
error = getblkx(vp, lblkno, size, 0, 0, gbflags, &bp);
|
|
if (error != 0) {
|
|
*bpp = NULL;
|
|
return (error);
|
|
}
|
|
gbflags &= ~GB_NOSPARSE;
|
|
origblkno = lblkno;
|
|
*bpp = reqbp = bp;
|
|
|
|
/*
|
|
* if it is in the cache, then check to see if the reads have been
|
|
* sequential. If they have, then try some read-ahead, otherwise
|
|
* back-off on prospective read-aheads.
|
|
*/
|
|
if (bp->b_flags & B_CACHE) {
|
|
if (!seqcount) {
|
|
return 0;
|
|
} else if ((bp->b_flags & B_RAM) == 0) {
|
|
return 0;
|
|
} else {
|
|
bp->b_flags &= ~B_RAM;
|
|
BO_RLOCK(bo);
|
|
for (i = 1; i < maxra; i++) {
|
|
/*
|
|
* Stop if the buffer does not exist or it
|
|
* is invalid (about to go away?)
|
|
*/
|
|
rbp = gbincore(&vp->v_bufobj, lblkno+i);
|
|
if (rbp == NULL || (rbp->b_flags & B_INVAL))
|
|
break;
|
|
|
|
/*
|
|
* Set another read-ahead mark so we know
|
|
* to check again. (If we can lock the
|
|
* buffer without waiting)
|
|
*/
|
|
if ((((i % racluster) == (racluster - 1)) ||
|
|
(i == (maxra - 1)))
|
|
&& (0 == BUF_LOCK(rbp,
|
|
LK_EXCLUSIVE | LK_NOWAIT, NULL))) {
|
|
rbp->b_flags |= B_RAM;
|
|
BUF_UNLOCK(rbp);
|
|
}
|
|
}
|
|
BO_RUNLOCK(bo);
|
|
if (i >= maxra) {
|
|
return 0;
|
|
}
|
|
lblkno += i;
|
|
}
|
|
reqbp = bp = NULL;
|
|
/*
|
|
* If it isn't in the cache, then get a chunk from
|
|
* disk if sequential, otherwise just get the block.
|
|
*/
|
|
} else {
|
|
off_t firstread = bp->b_offset;
|
|
int nblks;
|
|
long minread;
|
|
|
|
KASSERT(bp->b_offset != NOOFFSET,
|
|
("cluster_read: no buffer offset"));
|
|
|
|
ncontig = 0;
|
|
|
|
/*
|
|
* Adjust totread if needed
|
|
*/
|
|
minread = read_min * size;
|
|
if (minread > totread)
|
|
totread = minread;
|
|
|
|
/*
|
|
* Compute the total number of blocks that we should read
|
|
* synchronously.
|
|
*/
|
|
if (firstread + totread > filesize)
|
|
totread = filesize - firstread;
|
|
nblks = howmany(totread, size);
|
|
if (nblks > racluster)
|
|
nblks = racluster;
|
|
|
|
/*
|
|
* Now compute the number of contiguous blocks.
|
|
*/
|
|
if (nblks > 1) {
|
|
error = VOP_BMAP(vp, lblkno, NULL,
|
|
&blkno, &ncontig, NULL);
|
|
/*
|
|
* If this failed to map just do the original block.
|
|
*/
|
|
if (error || blkno == -1)
|
|
ncontig = 0;
|
|
}
|
|
|
|
/*
|
|
* If we have contiguous data available do a cluster
|
|
* otherwise just read the requested block.
|
|
*/
|
|
if (ncontig) {
|
|
/* Account for our first block. */
|
|
ncontig = min(ncontig + 1, nblks);
|
|
if (ncontig < nblks)
|
|
nblks = ncontig;
|
|
bp = cluster_rbuild(vp, filesize, lblkno,
|
|
blkno, size, nblks, gbflags, bp);
|
|
lblkno += (bp->b_bufsize / size);
|
|
} else {
|
|
bp->b_flags |= B_RAM;
|
|
bp->b_iocmd = BIO_READ;
|
|
lblkno += 1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* handle the synchronous read so that it is available ASAP.
|
|
*/
|
|
if (bp) {
|
|
if ((bp->b_flags & B_CLUSTER) == 0) {
|
|
vfs_busy_pages(bp, 0);
|
|
}
|
|
bp->b_flags &= ~B_INVAL;
|
|
bp->b_ioflags &= ~BIO_ERROR;
|
|
if ((bp->b_flags & B_ASYNC) || bp->b_iodone != NULL)
|
|
BUF_KERNPROC(bp);
|
|
bp->b_iooffset = dbtob(bp->b_blkno);
|
|
bstrategy(bp);
|
|
#ifdef RACCT
|
|
if (racct_enable) {
|
|
PROC_LOCK(td->td_proc);
|
|
racct_add_buf(td->td_proc, bp, 0);
|
|
PROC_UNLOCK(td->td_proc);
|
|
}
|
|
#endif /* RACCT */
|
|
td->td_ru.ru_inblock++;
|
|
}
|
|
|
|
/*
|
|
* If we have been doing sequential I/O, then do some read-ahead.
|
|
*/
|
|
while (lblkno < (origblkno + maxra)) {
|
|
error = VOP_BMAP(vp, lblkno, NULL, &blkno, &ncontig, NULL);
|
|
if (error)
|
|
break;
|
|
|
|
if (blkno == -1)
|
|
break;
|
|
|
|
/*
|
|
* We could throttle ncontig here by maxra but we might as
|
|
* well read the data if it is contiguous. We're throttled
|
|
* by racluster anyway.
|
|
*/
|
|
if (ncontig) {
|
|
ncontig = min(ncontig + 1, racluster);
|
|
rbp = cluster_rbuild(vp, filesize, lblkno, blkno,
|
|
size, ncontig, gbflags, NULL);
|
|
lblkno += (rbp->b_bufsize / size);
|
|
if (rbp->b_flags & B_DELWRI) {
|
|
bqrelse(rbp);
|
|
continue;
|
|
}
|
|
} else {
|
|
rbp = getblk(vp, lblkno, size, 0, 0, gbflags);
|
|
lblkno += 1;
|
|
if (rbp->b_flags & B_DELWRI) {
|
|
bqrelse(rbp);
|
|
continue;
|
|
}
|
|
rbp->b_flags |= B_ASYNC | B_RAM;
|
|
rbp->b_iocmd = BIO_READ;
|
|
rbp->b_blkno = blkno;
|
|
}
|
|
if (rbp->b_flags & B_CACHE) {
|
|
rbp->b_flags &= ~B_ASYNC;
|
|
bqrelse(rbp);
|
|
continue;
|
|
}
|
|
if ((rbp->b_flags & B_CLUSTER) == 0) {
|
|
vfs_busy_pages(rbp, 0);
|
|
}
|
|
rbp->b_flags &= ~B_INVAL;
|
|
rbp->b_ioflags &= ~BIO_ERROR;
|
|
if ((rbp->b_flags & B_ASYNC) || rbp->b_iodone != NULL)
|
|
BUF_KERNPROC(rbp);
|
|
rbp->b_iooffset = dbtob(rbp->b_blkno);
|
|
bstrategy(rbp);
|
|
#ifdef RACCT
|
|
if (racct_enable) {
|
|
PROC_LOCK(td->td_proc);
|
|
racct_add_buf(td->td_proc, rbp, 0);
|
|
PROC_UNLOCK(td->td_proc);
|
|
}
|
|
#endif /* RACCT */
|
|
td->td_ru.ru_inblock++;
|
|
}
|
|
|
|
if (reqbp) {
|
|
/*
|
|
* Like bread, always brelse() the buffer when
|
|
* returning an error.
|
|
*/
|
|
error = bufwait(reqbp);
|
|
if (error != 0) {
|
|
brelse(reqbp);
|
|
*bpp = NULL;
|
|
}
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* If blocks are contiguous on disk, use this to provide clustered
|
|
* read ahead. We will read as many blocks as possible sequentially
|
|
* and then parcel them up into logical blocks in the buffer hash table.
|
|
*/
|
|
static struct buf *
|
|
cluster_rbuild(struct vnode *vp, u_quad_t filesize, daddr_t lbn,
|
|
daddr_t blkno, long size, int run, int gbflags, struct buf *fbp)
|
|
{
|
|
struct buf *bp, *tbp;
|
|
daddr_t bn;
|
|
off_t off;
|
|
long tinc, tsize;
|
|
int i, inc, j, k, toff;
|
|
|
|
KASSERT(size == vp->v_mount->mnt_stat.f_iosize,
|
|
("cluster_rbuild: size %ld != f_iosize %jd\n",
|
|
size, (intmax_t)vp->v_mount->mnt_stat.f_iosize));
|
|
|
|
/*
|
|
* avoid a division
|
|
*/
|
|
while ((u_quad_t) size * (lbn + run) > filesize) {
|
|
--run;
|
|
}
|
|
|
|
if (fbp) {
|
|
tbp = fbp;
|
|
tbp->b_iocmd = BIO_READ;
|
|
} else {
|
|
tbp = getblk(vp, lbn, size, 0, 0, gbflags);
|
|
if (tbp->b_flags & B_CACHE)
|
|
return tbp;
|
|
tbp->b_flags |= B_ASYNC | B_RAM;
|
|
tbp->b_iocmd = BIO_READ;
|
|
}
|
|
tbp->b_blkno = blkno;
|
|
if( (tbp->b_flags & B_MALLOC) ||
|
|
((tbp->b_flags & B_VMIO) == 0) || (run <= 1) )
|
|
return tbp;
|
|
|
|
bp = uma_zalloc(cluster_pbuf_zone, M_NOWAIT);
|
|
if (bp == NULL)
|
|
return tbp;
|
|
|
|
/*
|
|
* We are synthesizing a buffer out of vm_page_t's, but
|
|
* if the block size is not page aligned then the starting
|
|
* address may not be either. Inherit the b_data offset
|
|
* from the original buffer.
|
|
*/
|
|
bp->b_flags = B_ASYNC | B_CLUSTER | B_VMIO;
|
|
if ((gbflags & GB_UNMAPPED) != 0) {
|
|
bp->b_data = unmapped_buf;
|
|
} else {
|
|
bp->b_data = (char *)((vm_offset_t)bp->b_data |
|
|
((vm_offset_t)tbp->b_data & PAGE_MASK));
|
|
}
|
|
bp->b_iocmd = BIO_READ;
|
|
bp->b_iodone = cluster_callback;
|
|
bp->b_blkno = blkno;
|
|
bp->b_lblkno = lbn;
|
|
bp->b_offset = tbp->b_offset;
|
|
KASSERT(bp->b_offset != NOOFFSET, ("cluster_rbuild: no buffer offset"));
|
|
pbgetvp(vp, bp);
|
|
|
|
TAILQ_INIT(&bp->b_cluster.cluster_head);
|
|
|
|
bp->b_bcount = 0;
|
|
bp->b_bufsize = 0;
|
|
bp->b_npages = 0;
|
|
|
|
inc = btodb(size);
|
|
for (bn = blkno, i = 0; i < run; ++i, bn += inc) {
|
|
if (i == 0) {
|
|
VM_OBJECT_WLOCK(tbp->b_bufobj->bo_object);
|
|
vfs_drain_busy_pages(tbp);
|
|
vm_object_pip_add(tbp->b_bufobj->bo_object,
|
|
tbp->b_npages);
|
|
for (k = 0; k < tbp->b_npages; k++)
|
|
vm_page_sbusy(tbp->b_pages[k]);
|
|
VM_OBJECT_WUNLOCK(tbp->b_bufobj->bo_object);
|
|
} else {
|
|
if ((bp->b_npages * PAGE_SIZE) +
|
|
round_page(size) > vp->v_mount->mnt_iosize_max) {
|
|
break;
|
|
}
|
|
|
|
tbp = getblk(vp, lbn + i, size, 0, 0, GB_LOCK_NOWAIT |
|
|
(gbflags & GB_UNMAPPED));
|
|
|
|
/* Don't wait around for locked bufs. */
|
|
if (tbp == NULL)
|
|
break;
|
|
|
|
/*
|
|
* Stop scanning if the buffer is fully valid
|
|
* (marked B_CACHE), or locked (may be doing a
|
|
* background write), or if the buffer is not
|
|
* VMIO backed. The clustering code can only deal
|
|
* with VMIO-backed buffers. The bo lock is not
|
|
* required for the BKGRDINPROG check since it
|
|
* can not be set without the buf lock.
|
|
*/
|
|
if ((tbp->b_vflags & BV_BKGRDINPROG) ||
|
|
(tbp->b_flags & B_CACHE) ||
|
|
(tbp->b_flags & B_VMIO) == 0) {
|
|
bqrelse(tbp);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* The buffer must be completely invalid in order to
|
|
* take part in the cluster. If it is partially valid
|
|
* then we stop.
|
|
*/
|
|
off = tbp->b_offset;
|
|
tsize = size;
|
|
VM_OBJECT_WLOCK(tbp->b_bufobj->bo_object);
|
|
for (j = 0; tsize > 0; j++) {
|
|
toff = off & PAGE_MASK;
|
|
tinc = tsize;
|
|
if (toff + tinc > PAGE_SIZE)
|
|
tinc = PAGE_SIZE - toff;
|
|
VM_OBJECT_ASSERT_WLOCKED(tbp->b_pages[j]->object);
|
|
if ((tbp->b_pages[j]->valid &
|
|
vm_page_bits(toff, tinc)) != 0)
|
|
break;
|
|
if (vm_page_xbusied(tbp->b_pages[j]))
|
|
break;
|
|
vm_object_pip_add(tbp->b_bufobj->bo_object, 1);
|
|
vm_page_sbusy(tbp->b_pages[j]);
|
|
off += tinc;
|
|
tsize -= tinc;
|
|
}
|
|
if (tsize > 0) {
|
|
clean_sbusy:
|
|
vm_object_pip_add(tbp->b_bufobj->bo_object, -j);
|
|
for (k = 0; k < j; k++)
|
|
vm_page_sunbusy(tbp->b_pages[k]);
|
|
VM_OBJECT_WUNLOCK(tbp->b_bufobj->bo_object);
|
|
bqrelse(tbp);
|
|
break;
|
|
}
|
|
VM_OBJECT_WUNLOCK(tbp->b_bufobj->bo_object);
|
|
|
|
/*
|
|
* Set a read-ahead mark as appropriate
|
|
*/
|
|
if ((fbp && (i == 1)) || (i == (run - 1)))
|
|
tbp->b_flags |= B_RAM;
|
|
|
|
/*
|
|
* Set the buffer up for an async read (XXX should
|
|
* we do this only if we do not wind up brelse()ing?).
|
|
* Set the block number if it isn't set, otherwise
|
|
* if it is make sure it matches the block number we
|
|
* expect.
|
|
*/
|
|
tbp->b_flags |= B_ASYNC;
|
|
tbp->b_iocmd = BIO_READ;
|
|
if (tbp->b_blkno == tbp->b_lblkno) {
|
|
tbp->b_blkno = bn;
|
|
} else if (tbp->b_blkno != bn) {
|
|
VM_OBJECT_WLOCK(tbp->b_bufobj->bo_object);
|
|
goto clean_sbusy;
|
|
}
|
|
}
|
|
/*
|
|
* XXX fbp from caller may not be B_ASYNC, but we are going
|
|
* to biodone() it in cluster_callback() anyway
|
|
*/
|
|
BUF_KERNPROC(tbp);
|
|
TAILQ_INSERT_TAIL(&bp->b_cluster.cluster_head,
|
|
tbp, b_cluster.cluster_entry);
|
|
VM_OBJECT_WLOCK(tbp->b_bufobj->bo_object);
|
|
for (j = 0; j < tbp->b_npages; j += 1) {
|
|
vm_page_t m;
|
|
m = tbp->b_pages[j];
|
|
if ((bp->b_npages == 0) ||
|
|
(bp->b_pages[bp->b_npages-1] != m)) {
|
|
bp->b_pages[bp->b_npages] = m;
|
|
bp->b_npages++;
|
|
}
|
|
if (m->valid == VM_PAGE_BITS_ALL)
|
|
tbp->b_pages[j] = bogus_page;
|
|
}
|
|
VM_OBJECT_WUNLOCK(tbp->b_bufobj->bo_object);
|
|
/*
|
|
* Don't inherit tbp->b_bufsize as it may be larger due to
|
|
* a non-page-aligned size. Instead just aggregate using
|
|
* 'size'.
|
|
*/
|
|
if (tbp->b_bcount != size)
|
|
printf("warning: tbp->b_bcount wrong %ld vs %ld\n", tbp->b_bcount, size);
|
|
if (tbp->b_bufsize != size)
|
|
printf("warning: tbp->b_bufsize wrong %ld vs %ld\n", tbp->b_bufsize, size);
|
|
bp->b_bcount += size;
|
|
bp->b_bufsize += size;
|
|
}
|
|
|
|
/*
|
|
* Fully valid pages in the cluster are already good and do not need
|
|
* to be re-read from disk. Replace the page with bogus_page
|
|
*/
|
|
VM_OBJECT_WLOCK(bp->b_bufobj->bo_object);
|
|
for (j = 0; j < bp->b_npages; j++) {
|
|
VM_OBJECT_ASSERT_WLOCKED(bp->b_pages[j]->object);
|
|
if (bp->b_pages[j]->valid == VM_PAGE_BITS_ALL)
|
|
bp->b_pages[j] = bogus_page;
|
|
}
|
|
VM_OBJECT_WUNLOCK(bp->b_bufobj->bo_object);
|
|
if (bp->b_bufsize > bp->b_kvasize)
|
|
panic("cluster_rbuild: b_bufsize(%ld) > b_kvasize(%d)\n",
|
|
bp->b_bufsize, bp->b_kvasize);
|
|
|
|
if (buf_mapped(bp)) {
|
|
pmap_qenter(trunc_page((vm_offset_t) bp->b_data),
|
|
(vm_page_t *)bp->b_pages, bp->b_npages);
|
|
}
|
|
return (bp);
|
|
}
|
|
|
|
/*
|
|
* Cleanup after a clustered read or write.
|
|
* This is complicated by the fact that any of the buffers might have
|
|
* extra memory (if there were no empty buffer headers at allocbuf time)
|
|
* that we will need to shift around.
|
|
*/
|
|
static void
|
|
cluster_callback(struct buf *bp)
|
|
{
|
|
struct buf *nbp, *tbp;
|
|
int error = 0;
|
|
|
|
/*
|
|
* Must propagate errors to all the components.
|
|
*/
|
|
if (bp->b_ioflags & BIO_ERROR)
|
|
error = bp->b_error;
|
|
|
|
if (buf_mapped(bp)) {
|
|
pmap_qremove(trunc_page((vm_offset_t) bp->b_data),
|
|
bp->b_npages);
|
|
}
|
|
/*
|
|
* Move memory from the large cluster buffer into the component
|
|
* buffers and mark IO as done on these.
|
|
*/
|
|
for (tbp = TAILQ_FIRST(&bp->b_cluster.cluster_head);
|
|
tbp; tbp = nbp) {
|
|
nbp = TAILQ_NEXT(&tbp->b_cluster, cluster_entry);
|
|
if (error) {
|
|
tbp->b_ioflags |= BIO_ERROR;
|
|
tbp->b_error = error;
|
|
} else {
|
|
tbp->b_dirtyoff = tbp->b_dirtyend = 0;
|
|
tbp->b_flags &= ~B_INVAL;
|
|
tbp->b_ioflags &= ~BIO_ERROR;
|
|
/*
|
|
* XXX the bdwrite()/bqrelse() issued during
|
|
* cluster building clears B_RELBUF (see bqrelse()
|
|
* comment). If direct I/O was specified, we have
|
|
* to restore it here to allow the buffer and VM
|
|
* to be freed.
|
|
*/
|
|
if (tbp->b_flags & B_DIRECT)
|
|
tbp->b_flags |= B_RELBUF;
|
|
}
|
|
bufdone(tbp);
|
|
}
|
|
pbrelvp(bp);
|
|
uma_zfree(cluster_pbuf_zone, bp);
|
|
}
|
|
|
|
/*
|
|
* cluster_wbuild_wb:
|
|
*
|
|
* Implement modified write build for cluster.
|
|
*
|
|
* write_behind = 0 write behind disabled
|
|
* write_behind = 1 write behind normal (default)
|
|
* write_behind = 2 write behind backed-off
|
|
*/
|
|
|
|
static __inline int
|
|
cluster_wbuild_wb(struct vnode *vp, long size, daddr_t start_lbn, int len,
|
|
int gbflags)
|
|
{
|
|
int r = 0;
|
|
|
|
switch (write_behind) {
|
|
case 2:
|
|
if (start_lbn < len)
|
|
break;
|
|
start_lbn -= len;
|
|
/* FALLTHROUGH */
|
|
case 1:
|
|
r = cluster_wbuild(vp, size, start_lbn, len, gbflags);
|
|
/* FALLTHROUGH */
|
|
default:
|
|
/* FALLTHROUGH */
|
|
break;
|
|
}
|
|
return(r);
|
|
}
|
|
|
|
/*
|
|
* Do clustered write for FFS.
|
|
*
|
|
* Three cases:
|
|
* 1. Write is not sequential (write asynchronously)
|
|
* Write is sequential:
|
|
* 2. beginning of cluster - begin cluster
|
|
* 3. middle of a cluster - add to cluster
|
|
* 4. end of a cluster - asynchronously write cluster
|
|
*/
|
|
void
|
|
cluster_write(struct vnode *vp, struct buf *bp, u_quad_t filesize, int seqcount,
|
|
int gbflags)
|
|
{
|
|
daddr_t lbn;
|
|
int maxclen, cursize;
|
|
int lblocksize;
|
|
int async;
|
|
|
|
if (!unmapped_buf_allowed)
|
|
gbflags &= ~GB_UNMAPPED;
|
|
|
|
if (vp->v_type == VREG) {
|
|
async = DOINGASYNC(vp);
|
|
lblocksize = vp->v_mount->mnt_stat.f_iosize;
|
|
} else {
|
|
async = 0;
|
|
lblocksize = bp->b_bufsize;
|
|
}
|
|
lbn = bp->b_lblkno;
|
|
KASSERT(bp->b_offset != NOOFFSET, ("cluster_write: no buffer offset"));
|
|
|
|
/* Initialize vnode to beginning of file. */
|
|
if (lbn == 0)
|
|
vp->v_lasta = vp->v_clen = vp->v_cstart = vp->v_lastw = 0;
|
|
|
|
if (vp->v_clen == 0 || lbn != vp->v_lastw + 1 ||
|
|
(bp->b_blkno != vp->v_lasta + btodb(lblocksize))) {
|
|
maxclen = vp->v_mount->mnt_iosize_max / lblocksize - 1;
|
|
if (vp->v_clen != 0) {
|
|
/*
|
|
* Next block is not sequential.
|
|
*
|
|
* If we are not writing at end of file, the process
|
|
* seeked to another point in the file since its last
|
|
* write, or we have reached our maximum cluster size,
|
|
* then push the previous cluster. Otherwise try
|
|
* reallocating to make it sequential.
|
|
*
|
|
* Change to algorithm: only push previous cluster if
|
|
* it was sequential from the point of view of the
|
|
* seqcount heuristic, otherwise leave the buffer
|
|
* intact so we can potentially optimize the I/O
|
|
* later on in the buf_daemon or update daemon
|
|
* flush.
|
|
*/
|
|
cursize = vp->v_lastw - vp->v_cstart + 1;
|
|
if (((u_quad_t) bp->b_offset + lblocksize) != filesize ||
|
|
lbn != vp->v_lastw + 1 || vp->v_clen <= cursize) {
|
|
if (!async && seqcount > 0) {
|
|
cluster_wbuild_wb(vp, lblocksize,
|
|
vp->v_cstart, cursize, gbflags);
|
|
}
|
|
} else {
|
|
struct buf **bpp, **endbp;
|
|
struct cluster_save *buflist;
|
|
|
|
buflist = cluster_collectbufs(vp, bp, gbflags);
|
|
endbp = &buflist->bs_children
|
|
[buflist->bs_nchildren - 1];
|
|
if (VOP_REALLOCBLKS(vp, buflist)) {
|
|
/*
|
|
* Failed, push the previous cluster
|
|
* if *really* writing sequentially
|
|
* in the logical file (seqcount > 1),
|
|
* otherwise delay it in the hopes that
|
|
* the low level disk driver can
|
|
* optimize the write ordering.
|
|
*/
|
|
for (bpp = buflist->bs_children;
|
|
bpp < endbp; bpp++)
|
|
brelse(*bpp);
|
|
free(buflist, M_SEGMENT);
|
|
if (seqcount > 1) {
|
|
cluster_wbuild_wb(vp,
|
|
lblocksize, vp->v_cstart,
|
|
cursize, gbflags);
|
|
}
|
|
} else {
|
|
/*
|
|
* Succeeded, keep building cluster.
|
|
*/
|
|
for (bpp = buflist->bs_children;
|
|
bpp <= endbp; bpp++)
|
|
bdwrite(*bpp);
|
|
free(buflist, M_SEGMENT);
|
|
vp->v_lastw = lbn;
|
|
vp->v_lasta = bp->b_blkno;
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
/*
|
|
* Consider beginning a cluster. If at end of file, make
|
|
* cluster as large as possible, otherwise find size of
|
|
* existing cluster.
|
|
*/
|
|
if ((vp->v_type == VREG) &&
|
|
((u_quad_t) bp->b_offset + lblocksize) != filesize &&
|
|
(bp->b_blkno == bp->b_lblkno) &&
|
|
(VOP_BMAP(vp, lbn, NULL, &bp->b_blkno, &maxclen, NULL) ||
|
|
bp->b_blkno == -1)) {
|
|
bawrite(bp);
|
|
vp->v_clen = 0;
|
|
vp->v_lasta = bp->b_blkno;
|
|
vp->v_cstart = lbn + 1;
|
|
vp->v_lastw = lbn;
|
|
return;
|
|
}
|
|
vp->v_clen = maxclen;
|
|
if (!async && maxclen == 0) { /* I/O not contiguous */
|
|
vp->v_cstart = lbn + 1;
|
|
bawrite(bp);
|
|
} else { /* Wait for rest of cluster */
|
|
vp->v_cstart = lbn;
|
|
bdwrite(bp);
|
|
}
|
|
} else if (lbn == vp->v_cstart + vp->v_clen) {
|
|
/*
|
|
* At end of cluster, write it out if seqcount tells us we
|
|
* are operating sequentially, otherwise let the buf or
|
|
* update daemon handle it.
|
|
*/
|
|
bdwrite(bp);
|
|
if (seqcount > 1) {
|
|
cluster_wbuild_wb(vp, lblocksize, vp->v_cstart,
|
|
vp->v_clen + 1, gbflags);
|
|
}
|
|
vp->v_clen = 0;
|
|
vp->v_cstart = lbn + 1;
|
|
} else if (vm_page_count_severe()) {
|
|
/*
|
|
* We are low on memory, get it going NOW
|
|
*/
|
|
bawrite(bp);
|
|
} else {
|
|
/*
|
|
* In the middle of a cluster, so just delay the I/O for now.
|
|
*/
|
|
bdwrite(bp);
|
|
}
|
|
vp->v_lastw = lbn;
|
|
vp->v_lasta = bp->b_blkno;
|
|
}
|
|
|
|
|
|
/*
|
|
* This is an awful lot like cluster_rbuild...wish they could be combined.
|
|
* The last lbn argument is the current block on which I/O is being
|
|
* performed. Check to see that it doesn't fall in the middle of
|
|
* the current block (if last_bp == NULL).
|
|
*/
|
|
int
|
|
cluster_wbuild(struct vnode *vp, long size, daddr_t start_lbn, int len,
|
|
int gbflags)
|
|
{
|
|
struct buf *bp, *tbp;
|
|
struct bufobj *bo;
|
|
int i, j;
|
|
int totalwritten = 0;
|
|
int dbsize = btodb(size);
|
|
|
|
if (!unmapped_buf_allowed)
|
|
gbflags &= ~GB_UNMAPPED;
|
|
|
|
bo = &vp->v_bufobj;
|
|
while (len > 0) {
|
|
/*
|
|
* If the buffer is not delayed-write (i.e. dirty), or it
|
|
* is delayed-write but either locked or inval, it cannot
|
|
* partake in the clustered write.
|
|
*/
|
|
BO_LOCK(bo);
|
|
if ((tbp = gbincore(&vp->v_bufobj, start_lbn)) == NULL ||
|
|
(tbp->b_vflags & BV_BKGRDINPROG)) {
|
|
BO_UNLOCK(bo);
|
|
++start_lbn;
|
|
--len;
|
|
continue;
|
|
}
|
|
if (BUF_LOCK(tbp,
|
|
LK_EXCLUSIVE | LK_NOWAIT | LK_INTERLOCK, BO_LOCKPTR(bo))) {
|
|
++start_lbn;
|
|
--len;
|
|
continue;
|
|
}
|
|
if ((tbp->b_flags & (B_INVAL | B_DELWRI)) != B_DELWRI) {
|
|
BUF_UNLOCK(tbp);
|
|
++start_lbn;
|
|
--len;
|
|
continue;
|
|
}
|
|
bremfree(tbp);
|
|
tbp->b_flags &= ~B_DONE;
|
|
|
|
/*
|
|
* Extra memory in the buffer, punt on this buffer.
|
|
* XXX we could handle this in most cases, but we would
|
|
* have to push the extra memory down to after our max
|
|
* possible cluster size and then potentially pull it back
|
|
* up if the cluster was terminated prematurely--too much
|
|
* hassle.
|
|
*/
|
|
if (((tbp->b_flags & (B_CLUSTEROK | B_MALLOC | B_VMIO)) !=
|
|
(B_CLUSTEROK | B_VMIO)) ||
|
|
(tbp->b_bcount != tbp->b_bufsize) ||
|
|
(tbp->b_bcount != size) ||
|
|
(len == 1) ||
|
|
((bp = uma_zalloc(cluster_pbuf_zone,
|
|
(vp->v_vflag & VV_MD) != 0 ? M_NOWAIT : M_WAITOK)) == NULL)) {
|
|
totalwritten += tbp->b_bufsize;
|
|
bawrite(tbp);
|
|
++start_lbn;
|
|
--len;
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* We got a pbuf to make the cluster in.
|
|
* so initialise it.
|
|
*/
|
|
TAILQ_INIT(&bp->b_cluster.cluster_head);
|
|
bp->b_bcount = 0;
|
|
bp->b_bufsize = 0;
|
|
bp->b_npages = 0;
|
|
if (tbp->b_wcred != NOCRED)
|
|
bp->b_wcred = crhold(tbp->b_wcred);
|
|
|
|
bp->b_blkno = tbp->b_blkno;
|
|
bp->b_lblkno = tbp->b_lblkno;
|
|
bp->b_offset = tbp->b_offset;
|
|
|
|
/*
|
|
* We are synthesizing a buffer out of vm_page_t's, but
|
|
* if the block size is not page aligned then the starting
|
|
* address may not be either. Inherit the b_data offset
|
|
* from the original buffer.
|
|
*/
|
|
if ((gbflags & GB_UNMAPPED) == 0 ||
|
|
(tbp->b_flags & B_VMIO) == 0) {
|
|
bp->b_data = (char *)((vm_offset_t)bp->b_data |
|
|
((vm_offset_t)tbp->b_data & PAGE_MASK));
|
|
} else {
|
|
bp->b_data = unmapped_buf;
|
|
}
|
|
bp->b_flags |= B_CLUSTER | (tbp->b_flags & (B_VMIO |
|
|
B_NEEDCOMMIT));
|
|
bp->b_iodone = cluster_callback;
|
|
pbgetvp(vp, bp);
|
|
/*
|
|
* From this location in the file, scan forward to see
|
|
* if there are buffers with adjacent data that need to
|
|
* be written as well.
|
|
*/
|
|
for (i = 0; i < len; ++i, ++start_lbn) {
|
|
if (i != 0) { /* If not the first buffer */
|
|
/*
|
|
* If the adjacent data is not even in core it
|
|
* can't need to be written.
|
|
*/
|
|
BO_LOCK(bo);
|
|
if ((tbp = gbincore(bo, start_lbn)) == NULL ||
|
|
(tbp->b_vflags & BV_BKGRDINPROG)) {
|
|
BO_UNLOCK(bo);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* If it IS in core, but has different
|
|
* characteristics, or is locked (which
|
|
* means it could be undergoing a background
|
|
* I/O or be in a weird state), then don't
|
|
* cluster with it.
|
|
*/
|
|
if (BUF_LOCK(tbp,
|
|
LK_EXCLUSIVE | LK_NOWAIT | LK_INTERLOCK,
|
|
BO_LOCKPTR(bo)))
|
|
break;
|
|
|
|
if ((tbp->b_flags & (B_VMIO | B_CLUSTEROK |
|
|
B_INVAL | B_DELWRI | B_NEEDCOMMIT))
|
|
!= (B_DELWRI | B_CLUSTEROK |
|
|
(bp->b_flags & (B_VMIO | B_NEEDCOMMIT))) ||
|
|
tbp->b_wcred != bp->b_wcred) {
|
|
BUF_UNLOCK(tbp);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Check that the combined cluster
|
|
* would make sense with regard to pages
|
|
* and would not be too large
|
|
*/
|
|
if ((tbp->b_bcount != size) ||
|
|
((bp->b_blkno + (dbsize * i)) !=
|
|
tbp->b_blkno) ||
|
|
((tbp->b_npages + bp->b_npages) >
|
|
(vp->v_mount->mnt_iosize_max / PAGE_SIZE))) {
|
|
BUF_UNLOCK(tbp);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Ok, it's passed all the tests,
|
|
* so remove it from the free list
|
|
* and mark it busy. We will use it.
|
|
*/
|
|
bremfree(tbp);
|
|
tbp->b_flags &= ~B_DONE;
|
|
} /* end of code for non-first buffers only */
|
|
/*
|
|
* If the IO is via the VM then we do some
|
|
* special VM hackery (yuck). Since the buffer's
|
|
* block size may not be page-aligned it is possible
|
|
* for a page to be shared between two buffers. We
|
|
* have to get rid of the duplication when building
|
|
* the cluster.
|
|
*/
|
|
if (tbp->b_flags & B_VMIO) {
|
|
vm_page_t m;
|
|
|
|
VM_OBJECT_WLOCK(tbp->b_bufobj->bo_object);
|
|
if (i == 0) {
|
|
vfs_drain_busy_pages(tbp);
|
|
} else { /* if not first buffer */
|
|
for (j = 0; j < tbp->b_npages; j += 1) {
|
|
m = tbp->b_pages[j];
|
|
if (vm_page_xbusied(m)) {
|
|
VM_OBJECT_WUNLOCK(
|
|
tbp->b_object);
|
|
bqrelse(tbp);
|
|
goto finishcluster;
|
|
}
|
|
}
|
|
}
|
|
for (j = 0; j < tbp->b_npages; j += 1) {
|
|
m = tbp->b_pages[j];
|
|
vm_page_sbusy(m);
|
|
vm_object_pip_add(m->object, 1);
|
|
if ((bp->b_npages == 0) ||
|
|
(bp->b_pages[bp->b_npages - 1] != m)) {
|
|
bp->b_pages[bp->b_npages] = m;
|
|
bp->b_npages++;
|
|
}
|
|
}
|
|
VM_OBJECT_WUNLOCK(tbp->b_bufobj->bo_object);
|
|
}
|
|
bp->b_bcount += size;
|
|
bp->b_bufsize += size;
|
|
/*
|
|
* If any of the clustered buffers have their
|
|
* B_BARRIER flag set, transfer that request to
|
|
* the cluster.
|
|
*/
|
|
bp->b_flags |= (tbp->b_flags & B_BARRIER);
|
|
tbp->b_flags &= ~(B_DONE | B_BARRIER);
|
|
tbp->b_flags |= B_ASYNC;
|
|
tbp->b_ioflags &= ~BIO_ERROR;
|
|
tbp->b_iocmd = BIO_WRITE;
|
|
bundirty(tbp);
|
|
reassignbuf(tbp); /* put on clean list */
|
|
bufobj_wref(tbp->b_bufobj);
|
|
BUF_KERNPROC(tbp);
|
|
buf_track(tbp, __func__);
|
|
TAILQ_INSERT_TAIL(&bp->b_cluster.cluster_head,
|
|
tbp, b_cluster.cluster_entry);
|
|
}
|
|
finishcluster:
|
|
if (buf_mapped(bp)) {
|
|
pmap_qenter(trunc_page((vm_offset_t) bp->b_data),
|
|
(vm_page_t *)bp->b_pages, bp->b_npages);
|
|
}
|
|
if (bp->b_bufsize > bp->b_kvasize)
|
|
panic(
|
|
"cluster_wbuild: b_bufsize(%ld) > b_kvasize(%d)\n",
|
|
bp->b_bufsize, bp->b_kvasize);
|
|
totalwritten += bp->b_bufsize;
|
|
bp->b_dirtyoff = 0;
|
|
bp->b_dirtyend = bp->b_bufsize;
|
|
bawrite(bp);
|
|
|
|
len -= i;
|
|
}
|
|
return totalwritten;
|
|
}
|
|
|
|
/*
|
|
* Collect together all the buffers in a cluster.
|
|
* Plus add one additional buffer.
|
|
*/
|
|
static struct cluster_save *
|
|
cluster_collectbufs(struct vnode *vp, struct buf *last_bp, int gbflags)
|
|
{
|
|
struct cluster_save *buflist;
|
|
struct buf *bp;
|
|
daddr_t lbn;
|
|
int i, len;
|
|
|
|
len = vp->v_lastw - vp->v_cstart + 1;
|
|
buflist = malloc(sizeof(struct buf *) * (len + 1) + sizeof(*buflist),
|
|
M_SEGMENT, M_WAITOK);
|
|
buflist->bs_nchildren = 0;
|
|
buflist->bs_children = (struct buf **) (buflist + 1);
|
|
for (lbn = vp->v_cstart, i = 0; i < len; lbn++, i++) {
|
|
(void)bread_gb(vp, lbn, last_bp->b_bcount, NOCRED,
|
|
gbflags, &bp);
|
|
buflist->bs_children[i] = bp;
|
|
if (bp->b_blkno == bp->b_lblkno)
|
|
VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno,
|
|
NULL, NULL);
|
|
}
|
|
buflist->bs_children[i] = bp = last_bp;
|
|
if (bp->b_blkno == bp->b_lblkno)
|
|
VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
|
|
buflist->bs_nchildren = i + 1;
|
|
return (buflist);
|
|
}
|