1
0
mirror of https://git.FreeBSD.org/src.git synced 2024-12-16 10:20:30 +00:00
freebsd/lib/libm/common_source/expm1.c
1994-05-27 05:00:24 +00:00

168 lines
5.5 KiB
C

/*
* Copyright (c) 1985, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#ifndef lint
static char sccsid[] = "@(#)expm1.c 8.1 (Berkeley) 6/4/93";
#endif /* not lint */
/* EXPM1(X)
* RETURN THE EXPONENTIAL OF X MINUS ONE
* DOUBLE PRECISION (IEEE 53 BITS, VAX D FORMAT 56 BITS)
* CODED IN C BY K.C. NG, 1/19/85;
* REVISED BY K.C. NG on 2/6/85, 3/7/85, 3/21/85, 4/16/85.
*
* Required system supported functions:
* scalb(x,n)
* copysign(x,y)
* finite(x)
*
* Kernel function:
* exp__E(x,c)
*
* Method:
* 1. Argument Reduction: given the input x, find r and integer k such
* that
* x = k*ln2 + r, |r| <= 0.5*ln2 .
* r will be represented as r := z+c for better accuracy.
*
* 2. Compute EXPM1(r)=exp(r)-1 by
*
* EXPM1(r=z+c) := z + exp__E(z,c)
*
* 3. EXPM1(x) = 2^k * ( EXPM1(r) + 1-2^-k ).
*
* Remarks:
* 1. When k=1 and z < -0.25, we use the following formula for
* better accuracy:
* EXPM1(x) = 2 * ( (z+0.5) + exp__E(z,c) )
* 2. To avoid rounding error in 1-2^-k where k is large, we use
* EXPM1(x) = 2^k * { [z+(exp__E(z,c)-2^-k )] + 1 }
* when k>56.
*
* Special cases:
* EXPM1(INF) is INF, EXPM1(NaN) is NaN;
* EXPM1(-INF)= -1;
* for finite argument, only EXPM1(0)=0 is exact.
*
* Accuracy:
* EXPM1(x) returns the exact (exp(x)-1) nearly rounded. In a test run with
* 1,166,000 random arguments on a VAX, the maximum observed error was
* .872 ulps (units of the last place).
*
* Constants:
* The hexadecimal values are the intended ones for the following constants.
* The decimal values may be used, provided that the compiler will convert
* from decimal to binary accurately enough to produce the hexadecimal values
* shown.
*/
#include "mathimpl.h"
vc(ln2hi, 6.9314718055829871446E-1 ,7217,4031,0000,f7d0, 0, .B17217F7D00000)
vc(ln2lo, 1.6465949582897081279E-12 ,bcd5,2ce7,d9cc,e4f1, -39, .E7BCD5E4F1D9CC)
vc(lnhuge, 9.4961163736712506989E1 ,ec1d,43bd,9010,a73e, 7, .BDEC1DA73E9010)
vc(invln2, 1.4426950408889634148E0 ,aa3b,40b8,17f1,295c, 1, .B8AA3B295C17F1)
ic(ln2hi, 6.9314718036912381649E-1, -1, 1.62E42FEE00000)
ic(ln2lo, 1.9082149292705877000E-10, -33, 1.A39EF35793C76)
ic(lnhuge, 7.1602103751842355450E2, 9, 1.6602B15B7ECF2)
ic(invln2, 1.4426950408889633870E0, 0, 1.71547652B82FE)
#ifdef vccast
#define ln2hi vccast(ln2hi)
#define ln2lo vccast(ln2lo)
#define lnhuge vccast(lnhuge)
#define invln2 vccast(invln2)
#endif
double expm1(x)
double x;
{
const static double one=1.0, half=1.0/2.0;
double z,hi,lo,c;
int k;
#if defined(vax)||defined(tahoe)
static prec=56;
#else /* defined(vax)||defined(tahoe) */
static prec=53;
#endif /* defined(vax)||defined(tahoe) */
#if !defined(vax)&&!defined(tahoe)
if(x!=x) return(x); /* x is NaN */
#endif /* !defined(vax)&&!defined(tahoe) */
if( x <= lnhuge ) {
if( x >= -40.0 ) {
/* argument reduction : x - k*ln2 */
k= invln2 *x+copysign(0.5,x); /* k=NINT(x/ln2) */
hi=x-k*ln2hi ;
z=hi-(lo=k*ln2lo);
c=(hi-z)-lo;
if(k==0) return(z+__exp__E(z,c));
if(k==1)
if(z< -0.25)
{x=z+half;x +=__exp__E(z,c); return(x+x);}
else
{z+=__exp__E(z,c); x=half+z; return(x+x);}
/* end of k=1 */
else {
if(k<=prec)
{ x=one-scalb(one,-k); z += __exp__E(z,c);}
else if(k<100)
{ x = __exp__E(z,c)-scalb(one,-k); x+=z; z=one;}
else
{ x = __exp__E(z,c)+z; z=one;}
return (scalb(x+z,k));
}
}
/* end of x > lnunfl */
else
/* expm1(-big#) rounded to -1 (inexact) */
if(finite(x))
{ ln2hi+ln2lo; return(-one);}
/* expm1(-INF) is -1 */
else return(-one);
}
/* end of x < lnhuge */
else
/* expm1(INF) is INF, expm1(+big#) overflows to INF */
return( finite(x) ? scalb(one,5000) : x);
}