1
0
mirror of https://git.FreeBSD.org/src.git synced 2025-01-22 15:47:37 +00:00
freebsd/sys/kern/kern_switch.c
Attilio Rao e68ccbe85e Add a comment on why inlining critical_enter() may not be a good idea
for the general case.

Reviewed by:	bde
MFC after:	1 week
2012-12-09 04:54:22 +00:00

514 lines
13 KiB
C

/*-
* Copyright (c) 2001 Jake Burkholder <jake@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_sched.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kdb.h>
#include <sys/kernel.h>
#include <sys/ktr.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/queue.h>
#include <sys/sched.h>
#include <sys/smp.h>
#include <sys/sysctl.h>
#include <machine/cpu.h>
/* Uncomment this to enable logging of critical_enter/exit. */
#if 0
#define KTR_CRITICAL KTR_SCHED
#else
#define KTR_CRITICAL 0
#endif
#ifdef FULL_PREEMPTION
#ifndef PREEMPTION
#error "The FULL_PREEMPTION option requires the PREEMPTION option"
#endif
#endif
CTASSERT((RQB_BPW * RQB_LEN) == RQ_NQS);
/*
* kern.sched.preemption allows user space to determine if preemption support
* is compiled in or not. It is not currently a boot or runtime flag that
* can be changed.
*/
#ifdef PREEMPTION
static int kern_sched_preemption = 1;
#else
static int kern_sched_preemption = 0;
#endif
SYSCTL_INT(_kern_sched, OID_AUTO, preemption, CTLFLAG_RD,
&kern_sched_preemption, 0, "Kernel preemption enabled");
/*
* Support for scheduler stats exported via kern.sched.stats. All stats may
* be reset with kern.sched.stats.reset = 1. Stats may be defined elsewhere
* with SCHED_STAT_DEFINE().
*/
#ifdef SCHED_STATS
SYSCTL_NODE(_kern_sched, OID_AUTO, stats, CTLFLAG_RW, 0, "switch stats");
/* Switch reasons from mi_switch(). */
DPCPU_DEFINE(long, sched_switch_stats[SWT_COUNT]);
SCHED_STAT_DEFINE_VAR(uncategorized,
&DPCPU_NAME(sched_switch_stats[SWT_NONE]), "");
SCHED_STAT_DEFINE_VAR(preempt,
&DPCPU_NAME(sched_switch_stats[SWT_PREEMPT]), "");
SCHED_STAT_DEFINE_VAR(owepreempt,
&DPCPU_NAME(sched_switch_stats[SWT_OWEPREEMPT]), "");
SCHED_STAT_DEFINE_VAR(turnstile,
&DPCPU_NAME(sched_switch_stats[SWT_TURNSTILE]), "");
SCHED_STAT_DEFINE_VAR(sleepq,
&DPCPU_NAME(sched_switch_stats[SWT_SLEEPQ]), "");
SCHED_STAT_DEFINE_VAR(sleepqtimo,
&DPCPU_NAME(sched_switch_stats[SWT_SLEEPQTIMO]), "");
SCHED_STAT_DEFINE_VAR(relinquish,
&DPCPU_NAME(sched_switch_stats[SWT_RELINQUISH]), "");
SCHED_STAT_DEFINE_VAR(needresched,
&DPCPU_NAME(sched_switch_stats[SWT_NEEDRESCHED]), "");
SCHED_STAT_DEFINE_VAR(idle,
&DPCPU_NAME(sched_switch_stats[SWT_IDLE]), "");
SCHED_STAT_DEFINE_VAR(iwait,
&DPCPU_NAME(sched_switch_stats[SWT_IWAIT]), "");
SCHED_STAT_DEFINE_VAR(suspend,
&DPCPU_NAME(sched_switch_stats[SWT_SUSPEND]), "");
SCHED_STAT_DEFINE_VAR(remotepreempt,
&DPCPU_NAME(sched_switch_stats[SWT_REMOTEPREEMPT]), "");
SCHED_STAT_DEFINE_VAR(remotewakeidle,
&DPCPU_NAME(sched_switch_stats[SWT_REMOTEWAKEIDLE]), "");
static int
sysctl_stats_reset(SYSCTL_HANDLER_ARGS)
{
struct sysctl_oid *p;
uintptr_t counter;
int error;
int val;
int i;
val = 0;
error = sysctl_handle_int(oidp, &val, 0, req);
if (error != 0 || req->newptr == NULL)
return (error);
if (val == 0)
return (0);
/*
* Traverse the list of children of _kern_sched_stats and reset each
* to 0. Skip the reset entry.
*/
SLIST_FOREACH(p, oidp->oid_parent, oid_link) {
if (p == oidp || p->oid_arg1 == NULL)
continue;
counter = (uintptr_t)p->oid_arg1;
CPU_FOREACH(i) {
*(long *)(dpcpu_off[i] + counter) = 0;
}
}
return (0);
}
SYSCTL_PROC(_kern_sched_stats, OID_AUTO, reset, CTLTYPE_INT | CTLFLAG_WR, NULL,
0, sysctl_stats_reset, "I", "Reset scheduler statistics");
#endif
/************************************************************************
* Functions that manipulate runnability from a thread perspective. *
************************************************************************/
/*
* Select the thread that will be run next.
*/
struct thread *
choosethread(void)
{
struct thread *td;
retry:
td = sched_choose();
/*
* If we are in panic, only allow system threads,
* plus the one we are running in, to be run.
*/
if (panicstr && ((td->td_proc->p_flag & P_SYSTEM) == 0 &&
(td->td_flags & TDF_INPANIC) == 0)) {
/* note that it is no longer on the run queue */
TD_SET_CAN_RUN(td);
goto retry;
}
TD_SET_RUNNING(td);
return (td);
}
/*
* Kernel thread preemption implementation. Critical sections mark
* regions of code in which preemptions are not allowed.
*
* It might seem a good idea to inline critical_enter() but, in order
* to prevent instructions reordering by the compiler, a __compiler_membar()
* would have to be used here (the same as sched_pin()). The performance
* penalty imposed by the membar could, then, produce slower code than
* the function call itself, for most cases.
*/
void
critical_enter(void)
{
struct thread *td;
td = curthread;
td->td_critnest++;
CTR4(KTR_CRITICAL, "critical_enter by thread %p (%ld, %s) to %d", td,
(long)td->td_proc->p_pid, td->td_name, td->td_critnest);
}
void
critical_exit(void)
{
struct thread *td;
int flags;
td = curthread;
KASSERT(td->td_critnest != 0,
("critical_exit: td_critnest == 0"));
if (td->td_critnest == 1) {
td->td_critnest = 0;
if (td->td_owepreempt && !kdb_active) {
td->td_critnest = 1;
thread_lock(td);
td->td_critnest--;
flags = SW_INVOL | SW_PREEMPT;
if (TD_IS_IDLETHREAD(td))
flags |= SWT_IDLE;
else
flags |= SWT_OWEPREEMPT;
mi_switch(flags, NULL);
thread_unlock(td);
}
} else
td->td_critnest--;
CTR4(KTR_CRITICAL, "critical_exit by thread %p (%ld, %s) to %d", td,
(long)td->td_proc->p_pid, td->td_name, td->td_critnest);
}
/************************************************************************
* SYSTEM RUN QUEUE manipulations and tests *
************************************************************************/
/*
* Initialize a run structure.
*/
void
runq_init(struct runq *rq)
{
int i;
bzero(rq, sizeof *rq);
for (i = 0; i < RQ_NQS; i++)
TAILQ_INIT(&rq->rq_queues[i]);
}
/*
* Clear the status bit of the queue corresponding to priority level pri,
* indicating that it is empty.
*/
static __inline void
runq_clrbit(struct runq *rq, int pri)
{
struct rqbits *rqb;
rqb = &rq->rq_status;
CTR4(KTR_RUNQ, "runq_clrbit: bits=%#x %#x bit=%#x word=%d",
rqb->rqb_bits[RQB_WORD(pri)],
rqb->rqb_bits[RQB_WORD(pri)] & ~RQB_BIT(pri),
RQB_BIT(pri), RQB_WORD(pri));
rqb->rqb_bits[RQB_WORD(pri)] &= ~RQB_BIT(pri);
}
/*
* Find the index of the first non-empty run queue. This is done by
* scanning the status bits, a set bit indicates a non-empty queue.
*/
static __inline int
runq_findbit(struct runq *rq)
{
struct rqbits *rqb;
int pri;
int i;
rqb = &rq->rq_status;
for (i = 0; i < RQB_LEN; i++)
if (rqb->rqb_bits[i]) {
pri = RQB_FFS(rqb->rqb_bits[i]) + (i << RQB_L2BPW);
CTR3(KTR_RUNQ, "runq_findbit: bits=%#x i=%d pri=%d",
rqb->rqb_bits[i], i, pri);
return (pri);
}
return (-1);
}
static __inline int
runq_findbit_from(struct runq *rq, u_char pri)
{
struct rqbits *rqb;
rqb_word_t mask;
int i;
/*
* Set the mask for the first word so we ignore priorities before 'pri'.
*/
mask = (rqb_word_t)-1 << (pri & (RQB_BPW - 1));
rqb = &rq->rq_status;
again:
for (i = RQB_WORD(pri); i < RQB_LEN; mask = -1, i++) {
mask = rqb->rqb_bits[i] & mask;
if (mask == 0)
continue;
pri = RQB_FFS(mask) + (i << RQB_L2BPW);
CTR3(KTR_RUNQ, "runq_findbit_from: bits=%#x i=%d pri=%d",
mask, i, pri);
return (pri);
}
if (pri == 0)
return (-1);
/*
* Wrap back around to the beginning of the list just once so we
* scan the whole thing.
*/
pri = 0;
goto again;
}
/*
* Set the status bit of the queue corresponding to priority level pri,
* indicating that it is non-empty.
*/
static __inline void
runq_setbit(struct runq *rq, int pri)
{
struct rqbits *rqb;
rqb = &rq->rq_status;
CTR4(KTR_RUNQ, "runq_setbit: bits=%#x %#x bit=%#x word=%d",
rqb->rqb_bits[RQB_WORD(pri)],
rqb->rqb_bits[RQB_WORD(pri)] | RQB_BIT(pri),
RQB_BIT(pri), RQB_WORD(pri));
rqb->rqb_bits[RQB_WORD(pri)] |= RQB_BIT(pri);
}
/*
* Add the thread to the queue specified by its priority, and set the
* corresponding status bit.
*/
void
runq_add(struct runq *rq, struct thread *td, int flags)
{
struct rqhead *rqh;
int pri;
pri = td->td_priority / RQ_PPQ;
td->td_rqindex = pri;
runq_setbit(rq, pri);
rqh = &rq->rq_queues[pri];
CTR4(KTR_RUNQ, "runq_add: td=%p pri=%d %d rqh=%p",
td, td->td_priority, pri, rqh);
if (flags & SRQ_PREEMPTED) {
TAILQ_INSERT_HEAD(rqh, td, td_runq);
} else {
TAILQ_INSERT_TAIL(rqh, td, td_runq);
}
}
void
runq_add_pri(struct runq *rq, struct thread *td, u_char pri, int flags)
{
struct rqhead *rqh;
KASSERT(pri < RQ_NQS, ("runq_add_pri: %d out of range", pri));
td->td_rqindex = pri;
runq_setbit(rq, pri);
rqh = &rq->rq_queues[pri];
CTR4(KTR_RUNQ, "runq_add_pri: td=%p pri=%d idx=%d rqh=%p",
td, td->td_priority, pri, rqh);
if (flags & SRQ_PREEMPTED) {
TAILQ_INSERT_HEAD(rqh, td, td_runq);
} else {
TAILQ_INSERT_TAIL(rqh, td, td_runq);
}
}
/*
* Return true if there are runnable processes of any priority on the run
* queue, false otherwise. Has no side effects, does not modify the run
* queue structure.
*/
int
runq_check(struct runq *rq)
{
struct rqbits *rqb;
int i;
rqb = &rq->rq_status;
for (i = 0; i < RQB_LEN; i++)
if (rqb->rqb_bits[i]) {
CTR2(KTR_RUNQ, "runq_check: bits=%#x i=%d",
rqb->rqb_bits[i], i);
return (1);
}
CTR0(KTR_RUNQ, "runq_check: empty");
return (0);
}
/*
* Find the highest priority process on the run queue.
*/
struct thread *
runq_choose_fuzz(struct runq *rq, int fuzz)
{
struct rqhead *rqh;
struct thread *td;
int pri;
while ((pri = runq_findbit(rq)) != -1) {
rqh = &rq->rq_queues[pri];
/* fuzz == 1 is normal.. 0 or less are ignored */
if (fuzz > 1) {
/*
* In the first couple of entries, check if
* there is one for our CPU as a preference.
*/
int count = fuzz;
int cpu = PCPU_GET(cpuid);
struct thread *td2;
td2 = td = TAILQ_FIRST(rqh);
while (count-- && td2) {
if (td2->td_lastcpu == cpu) {
td = td2;
break;
}
td2 = TAILQ_NEXT(td2, td_runq);
}
} else
td = TAILQ_FIRST(rqh);
KASSERT(td != NULL, ("runq_choose_fuzz: no proc on busy queue"));
CTR3(KTR_RUNQ,
"runq_choose_fuzz: pri=%d thread=%p rqh=%p", pri, td, rqh);
return (td);
}
CTR1(KTR_RUNQ, "runq_choose_fuzz: idleproc pri=%d", pri);
return (NULL);
}
/*
* Find the highest priority process on the run queue.
*/
struct thread *
runq_choose(struct runq *rq)
{
struct rqhead *rqh;
struct thread *td;
int pri;
while ((pri = runq_findbit(rq)) != -1) {
rqh = &rq->rq_queues[pri];
td = TAILQ_FIRST(rqh);
KASSERT(td != NULL, ("runq_choose: no thread on busy queue"));
CTR3(KTR_RUNQ,
"runq_choose: pri=%d thread=%p rqh=%p", pri, td, rqh);
return (td);
}
CTR1(KTR_RUNQ, "runq_choose: idlethread pri=%d", pri);
return (NULL);
}
struct thread *
runq_choose_from(struct runq *rq, u_char idx)
{
struct rqhead *rqh;
struct thread *td;
int pri;
if ((pri = runq_findbit_from(rq, idx)) != -1) {
rqh = &rq->rq_queues[pri];
td = TAILQ_FIRST(rqh);
KASSERT(td != NULL, ("runq_choose: no thread on busy queue"));
CTR4(KTR_RUNQ,
"runq_choose_from: pri=%d thread=%p idx=%d rqh=%p",
pri, td, td->td_rqindex, rqh);
return (td);
}
CTR1(KTR_RUNQ, "runq_choose_from: idlethread pri=%d", pri);
return (NULL);
}
/*
* Remove the thread from the queue specified by its priority, and clear the
* corresponding status bit if the queue becomes empty.
* Caller must set state afterwards.
*/
void
runq_remove(struct runq *rq, struct thread *td)
{
runq_remove_idx(rq, td, NULL);
}
void
runq_remove_idx(struct runq *rq, struct thread *td, u_char *idx)
{
struct rqhead *rqh;
u_char pri;
KASSERT(td->td_flags & TDF_INMEM,
("runq_remove_idx: thread swapped out"));
pri = td->td_rqindex;
KASSERT(pri < RQ_NQS, ("runq_remove_idx: Invalid index %d\n", pri));
rqh = &rq->rq_queues[pri];
CTR4(KTR_RUNQ, "runq_remove_idx: td=%p, pri=%d %d rqh=%p",
td, td->td_priority, pri, rqh);
TAILQ_REMOVE(rqh, td, td_runq);
if (TAILQ_EMPTY(rqh)) {
CTR0(KTR_RUNQ, "runq_remove_idx: empty");
runq_clrbit(rq, pri);
if (idx != NULL && *idx == pri)
*idx = (pri + 1) % RQ_NQS;
}
}