mirror of
https://git.FreeBSD.org/src.git
synced 2025-01-22 15:47:37 +00:00
643ee87175
Reported, reviewed and tested by: Petr Salinger <Petr.Salinger@seznam.cz> Sponsored by: The FreeBSD Foundation MFC after: 1 week
1649 lines
38 KiB
C
1649 lines
38 KiB
C
/*-
|
|
* Copyright (c) 1982, 1986, 1989, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)kern_time.c 8.1 (Berkeley) 6/10/93
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/limits.h>
|
|
#include <sys/clock.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/sysproto.h>
|
|
#include <sys/eventhandler.h>
|
|
#include <sys/resourcevar.h>
|
|
#include <sys/signalvar.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/sleepqueue.h>
|
|
#include <sys/syscallsubr.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/sysent.h>
|
|
#include <sys/priv.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/posix4.h>
|
|
#include <sys/time.h>
|
|
#include <sys/timers.h>
|
|
#include <sys/timetc.h>
|
|
#include <sys/vnode.h>
|
|
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_extern.h>
|
|
|
|
#define MAX_CLOCKS (CLOCK_MONOTONIC+1)
|
|
#define CPUCLOCK_BIT 0x80000000
|
|
#define CPUCLOCK_PROCESS_BIT 0x40000000
|
|
#define CPUCLOCK_ID_MASK (~(CPUCLOCK_BIT|CPUCLOCK_PROCESS_BIT))
|
|
#define MAKE_THREAD_CPUCLOCK(tid) (CPUCLOCK_BIT|(tid))
|
|
#define MAKE_PROCESS_CPUCLOCK(pid) \
|
|
(CPUCLOCK_BIT|CPUCLOCK_PROCESS_BIT|(pid))
|
|
|
|
static struct kclock posix_clocks[MAX_CLOCKS];
|
|
static uma_zone_t itimer_zone = NULL;
|
|
|
|
/*
|
|
* Time of day and interval timer support.
|
|
*
|
|
* These routines provide the kernel entry points to get and set
|
|
* the time-of-day and per-process interval timers. Subroutines
|
|
* here provide support for adding and subtracting timeval structures
|
|
* and decrementing interval timers, optionally reloading the interval
|
|
* timers when they expire.
|
|
*/
|
|
|
|
static int settime(struct thread *, struct timeval *);
|
|
static void timevalfix(struct timeval *);
|
|
|
|
static void itimer_start(void);
|
|
static int itimer_init(void *, int, int);
|
|
static void itimer_fini(void *, int);
|
|
static void itimer_enter(struct itimer *);
|
|
static void itimer_leave(struct itimer *);
|
|
static struct itimer *itimer_find(struct proc *, int);
|
|
static void itimers_alloc(struct proc *);
|
|
static void itimers_event_hook_exec(void *arg, struct proc *p, struct image_params *imgp);
|
|
static void itimers_event_hook_exit(void *arg, struct proc *p);
|
|
static int realtimer_create(struct itimer *);
|
|
static int realtimer_gettime(struct itimer *, struct itimerspec *);
|
|
static int realtimer_settime(struct itimer *, int,
|
|
struct itimerspec *, struct itimerspec *);
|
|
static int realtimer_delete(struct itimer *);
|
|
static void realtimer_clocktime(clockid_t, struct timespec *);
|
|
static void realtimer_expire(void *);
|
|
|
|
int register_posix_clock(int, struct kclock *);
|
|
void itimer_fire(struct itimer *it);
|
|
int itimespecfix(struct timespec *ts);
|
|
|
|
#define CLOCK_CALL(clock, call, arglist) \
|
|
((*posix_clocks[clock].call) arglist)
|
|
|
|
SYSINIT(posix_timer, SI_SUB_P1003_1B, SI_ORDER_FIRST+4, itimer_start, NULL);
|
|
|
|
|
|
static int
|
|
settime(struct thread *td, struct timeval *tv)
|
|
{
|
|
struct timeval delta, tv1, tv2;
|
|
static struct timeval maxtime, laststep;
|
|
struct timespec ts;
|
|
int s;
|
|
|
|
s = splclock();
|
|
microtime(&tv1);
|
|
delta = *tv;
|
|
timevalsub(&delta, &tv1);
|
|
|
|
/*
|
|
* If the system is secure, we do not allow the time to be
|
|
* set to a value earlier than 1 second less than the highest
|
|
* time we have yet seen. The worst a miscreant can do in
|
|
* this circumstance is "freeze" time. He couldn't go
|
|
* back to the past.
|
|
*
|
|
* We similarly do not allow the clock to be stepped more
|
|
* than one second, nor more than once per second. This allows
|
|
* a miscreant to make the clock march double-time, but no worse.
|
|
*/
|
|
if (securelevel_gt(td->td_ucred, 1) != 0) {
|
|
if (delta.tv_sec < 0 || delta.tv_usec < 0) {
|
|
/*
|
|
* Update maxtime to latest time we've seen.
|
|
*/
|
|
if (tv1.tv_sec > maxtime.tv_sec)
|
|
maxtime = tv1;
|
|
tv2 = *tv;
|
|
timevalsub(&tv2, &maxtime);
|
|
if (tv2.tv_sec < -1) {
|
|
tv->tv_sec = maxtime.tv_sec - 1;
|
|
printf("Time adjustment clamped to -1 second\n");
|
|
}
|
|
} else {
|
|
if (tv1.tv_sec == laststep.tv_sec) {
|
|
splx(s);
|
|
return (EPERM);
|
|
}
|
|
if (delta.tv_sec > 1) {
|
|
tv->tv_sec = tv1.tv_sec + 1;
|
|
printf("Time adjustment clamped to +1 second\n");
|
|
}
|
|
laststep = *tv;
|
|
}
|
|
}
|
|
|
|
ts.tv_sec = tv->tv_sec;
|
|
ts.tv_nsec = tv->tv_usec * 1000;
|
|
mtx_lock(&Giant);
|
|
tc_setclock(&ts);
|
|
resettodr();
|
|
mtx_unlock(&Giant);
|
|
return (0);
|
|
}
|
|
|
|
#ifndef _SYS_SYSPROTO_H_
|
|
struct clock_getcpuclockid2_args {
|
|
id_t id;
|
|
int which,
|
|
clockid_t *clock_id;
|
|
};
|
|
#endif
|
|
/* ARGSUSED */
|
|
int
|
|
sys_clock_getcpuclockid2(struct thread *td, struct clock_getcpuclockid2_args *uap)
|
|
{
|
|
clockid_t clk_id;
|
|
int error;
|
|
|
|
error = kern_clock_getcpuclockid2(td, uap->id, uap->which, &clk_id);
|
|
if (error == 0)
|
|
error = copyout(&clk_id, uap->clock_id, sizeof(clockid_t));
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
kern_clock_getcpuclockid2(struct thread *td, id_t id, int which,
|
|
clockid_t *clk_id)
|
|
{
|
|
struct proc *p;
|
|
pid_t pid;
|
|
lwpid_t tid;
|
|
int error;
|
|
|
|
switch (which) {
|
|
case CPUCLOCK_WHICH_PID:
|
|
if (id != 0) {
|
|
p = pfind(id);
|
|
if (p == NULL)
|
|
return (ESRCH);
|
|
error = p_cansee(td, p);
|
|
PROC_UNLOCK(p);
|
|
if (error != 0)
|
|
return (error);
|
|
pid = id;
|
|
} else {
|
|
pid = td->td_proc->p_pid;
|
|
}
|
|
*clk_id = MAKE_PROCESS_CPUCLOCK(pid);
|
|
return (0);
|
|
case CPUCLOCK_WHICH_TID:
|
|
tid = id == 0 ? td->td_tid : id;
|
|
*clk_id = MAKE_THREAD_CPUCLOCK(tid);
|
|
return (0);
|
|
default:
|
|
return (EINVAL);
|
|
}
|
|
}
|
|
|
|
#ifndef _SYS_SYSPROTO_H_
|
|
struct clock_gettime_args {
|
|
clockid_t clock_id;
|
|
struct timespec *tp;
|
|
};
|
|
#endif
|
|
/* ARGSUSED */
|
|
int
|
|
sys_clock_gettime(struct thread *td, struct clock_gettime_args *uap)
|
|
{
|
|
struct timespec ats;
|
|
int error;
|
|
|
|
error = kern_clock_gettime(td, uap->clock_id, &ats);
|
|
if (error == 0)
|
|
error = copyout(&ats, uap->tp, sizeof(ats));
|
|
|
|
return (error);
|
|
}
|
|
|
|
static inline void
|
|
cputick2timespec(uint64_t runtime, struct timespec *ats)
|
|
{
|
|
runtime = cputick2usec(runtime);
|
|
ats->tv_sec = runtime / 1000000;
|
|
ats->tv_nsec = runtime % 1000000 * 1000;
|
|
}
|
|
|
|
static void
|
|
get_thread_cputime(struct thread *targettd, struct timespec *ats)
|
|
{
|
|
uint64_t runtime, curtime, switchtime;
|
|
|
|
if (targettd == NULL) { /* current thread */
|
|
critical_enter();
|
|
switchtime = PCPU_GET(switchtime);
|
|
curtime = cpu_ticks();
|
|
runtime = curthread->td_runtime;
|
|
critical_exit();
|
|
runtime += curtime - switchtime;
|
|
} else {
|
|
thread_lock(targettd);
|
|
runtime = targettd->td_runtime;
|
|
thread_unlock(targettd);
|
|
}
|
|
cputick2timespec(runtime, ats);
|
|
}
|
|
|
|
static void
|
|
get_process_cputime(struct proc *targetp, struct timespec *ats)
|
|
{
|
|
uint64_t runtime;
|
|
struct rusage ru;
|
|
|
|
PROC_SLOCK(targetp);
|
|
rufetch(targetp, &ru);
|
|
runtime = targetp->p_rux.rux_runtime;
|
|
PROC_SUNLOCK(targetp);
|
|
cputick2timespec(runtime, ats);
|
|
}
|
|
|
|
static int
|
|
get_cputime(struct thread *td, clockid_t clock_id, struct timespec *ats)
|
|
{
|
|
struct proc *p, *p2;
|
|
struct thread *td2;
|
|
lwpid_t tid;
|
|
pid_t pid;
|
|
int error;
|
|
|
|
p = td->td_proc;
|
|
if ((clock_id & CPUCLOCK_PROCESS_BIT) == 0) {
|
|
tid = clock_id & CPUCLOCK_ID_MASK;
|
|
td2 = tdfind(tid, p->p_pid);
|
|
if (td2 == NULL)
|
|
return (EINVAL);
|
|
get_thread_cputime(td2, ats);
|
|
PROC_UNLOCK(td2->td_proc);
|
|
} else {
|
|
pid = clock_id & CPUCLOCK_ID_MASK;
|
|
error = pget(pid, PGET_CANSEE, &p2);
|
|
if (error != 0)
|
|
return (EINVAL);
|
|
get_process_cputime(p2, ats);
|
|
PROC_UNLOCK(p2);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
kern_clock_gettime(struct thread *td, clockid_t clock_id, struct timespec *ats)
|
|
{
|
|
struct timeval sys, user;
|
|
struct proc *p;
|
|
|
|
p = td->td_proc;
|
|
switch (clock_id) {
|
|
case CLOCK_REALTIME: /* Default to precise. */
|
|
case CLOCK_REALTIME_PRECISE:
|
|
nanotime(ats);
|
|
break;
|
|
case CLOCK_REALTIME_FAST:
|
|
getnanotime(ats);
|
|
break;
|
|
case CLOCK_VIRTUAL:
|
|
PROC_LOCK(p);
|
|
PROC_SLOCK(p);
|
|
calcru(p, &user, &sys);
|
|
PROC_SUNLOCK(p);
|
|
PROC_UNLOCK(p);
|
|
TIMEVAL_TO_TIMESPEC(&user, ats);
|
|
break;
|
|
case CLOCK_PROF:
|
|
PROC_LOCK(p);
|
|
PROC_SLOCK(p);
|
|
calcru(p, &user, &sys);
|
|
PROC_SUNLOCK(p);
|
|
PROC_UNLOCK(p);
|
|
timevaladd(&user, &sys);
|
|
TIMEVAL_TO_TIMESPEC(&user, ats);
|
|
break;
|
|
case CLOCK_MONOTONIC: /* Default to precise. */
|
|
case CLOCK_MONOTONIC_PRECISE:
|
|
case CLOCK_UPTIME:
|
|
case CLOCK_UPTIME_PRECISE:
|
|
nanouptime(ats);
|
|
break;
|
|
case CLOCK_UPTIME_FAST:
|
|
case CLOCK_MONOTONIC_FAST:
|
|
getnanouptime(ats);
|
|
break;
|
|
case CLOCK_SECOND:
|
|
ats->tv_sec = time_second;
|
|
ats->tv_nsec = 0;
|
|
break;
|
|
case CLOCK_THREAD_CPUTIME_ID:
|
|
get_thread_cputime(NULL, ats);
|
|
break;
|
|
case CLOCK_PROCESS_CPUTIME_ID:
|
|
PROC_LOCK(p);
|
|
get_process_cputime(p, ats);
|
|
PROC_UNLOCK(p);
|
|
break;
|
|
default:
|
|
if ((int)clock_id >= 0)
|
|
return (EINVAL);
|
|
return (get_cputime(td, clock_id, ats));
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
#ifndef _SYS_SYSPROTO_H_
|
|
struct clock_settime_args {
|
|
clockid_t clock_id;
|
|
const struct timespec *tp;
|
|
};
|
|
#endif
|
|
/* ARGSUSED */
|
|
int
|
|
sys_clock_settime(struct thread *td, struct clock_settime_args *uap)
|
|
{
|
|
struct timespec ats;
|
|
int error;
|
|
|
|
if ((error = copyin(uap->tp, &ats, sizeof(ats))) != 0)
|
|
return (error);
|
|
return (kern_clock_settime(td, uap->clock_id, &ats));
|
|
}
|
|
|
|
int
|
|
kern_clock_settime(struct thread *td, clockid_t clock_id, struct timespec *ats)
|
|
{
|
|
struct timeval atv;
|
|
int error;
|
|
|
|
if ((error = priv_check(td, PRIV_CLOCK_SETTIME)) != 0)
|
|
return (error);
|
|
if (clock_id != CLOCK_REALTIME)
|
|
return (EINVAL);
|
|
if (ats->tv_nsec < 0 || ats->tv_nsec >= 1000000000)
|
|
return (EINVAL);
|
|
/* XXX Don't convert nsec->usec and back */
|
|
TIMESPEC_TO_TIMEVAL(&atv, ats);
|
|
error = settime(td, &atv);
|
|
return (error);
|
|
}
|
|
|
|
#ifndef _SYS_SYSPROTO_H_
|
|
struct clock_getres_args {
|
|
clockid_t clock_id;
|
|
struct timespec *tp;
|
|
};
|
|
#endif
|
|
int
|
|
sys_clock_getres(struct thread *td, struct clock_getres_args *uap)
|
|
{
|
|
struct timespec ts;
|
|
int error;
|
|
|
|
if (uap->tp == NULL)
|
|
return (0);
|
|
|
|
error = kern_clock_getres(td, uap->clock_id, &ts);
|
|
if (error == 0)
|
|
error = copyout(&ts, uap->tp, sizeof(ts));
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
kern_clock_getres(struct thread *td, clockid_t clock_id, struct timespec *ts)
|
|
{
|
|
|
|
ts->tv_sec = 0;
|
|
switch (clock_id) {
|
|
case CLOCK_REALTIME:
|
|
case CLOCK_REALTIME_FAST:
|
|
case CLOCK_REALTIME_PRECISE:
|
|
case CLOCK_MONOTONIC:
|
|
case CLOCK_MONOTONIC_FAST:
|
|
case CLOCK_MONOTONIC_PRECISE:
|
|
case CLOCK_UPTIME:
|
|
case CLOCK_UPTIME_FAST:
|
|
case CLOCK_UPTIME_PRECISE:
|
|
/*
|
|
* Round up the result of the division cheaply by adding 1.
|
|
* Rounding up is especially important if rounding down
|
|
* would give 0. Perfect rounding is unimportant.
|
|
*/
|
|
ts->tv_nsec = 1000000000 / tc_getfrequency() + 1;
|
|
break;
|
|
case CLOCK_VIRTUAL:
|
|
case CLOCK_PROF:
|
|
/* Accurately round up here because we can do so cheaply. */
|
|
ts->tv_nsec = (1000000000 + hz - 1) / hz;
|
|
break;
|
|
case CLOCK_SECOND:
|
|
ts->tv_sec = 1;
|
|
ts->tv_nsec = 0;
|
|
break;
|
|
case CLOCK_THREAD_CPUTIME_ID:
|
|
case CLOCK_PROCESS_CPUTIME_ID:
|
|
cputime:
|
|
/* sync with cputick2usec */
|
|
ts->tv_nsec = 1000000 / cpu_tickrate();
|
|
if (ts->tv_nsec == 0)
|
|
ts->tv_nsec = 1000;
|
|
break;
|
|
default:
|
|
if ((int)clock_id < 0)
|
|
goto cputime;
|
|
return (EINVAL);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
static uint8_t nanowait[MAXCPU];
|
|
|
|
int
|
|
kern_nanosleep(struct thread *td, struct timespec *rqt, struct timespec *rmt)
|
|
{
|
|
struct timespec ts;
|
|
sbintime_t sbt, sbtt, prec, tmp;
|
|
time_t over;
|
|
int error;
|
|
|
|
if (rqt->tv_nsec < 0 || rqt->tv_nsec >= 1000000000)
|
|
return (EINVAL);
|
|
if (rqt->tv_sec < 0 || (rqt->tv_sec == 0 && rqt->tv_nsec == 0))
|
|
return (0);
|
|
ts = *rqt;
|
|
if (ts.tv_sec > INT32_MAX / 2) {
|
|
over = ts.tv_sec - INT32_MAX / 2;
|
|
ts.tv_sec -= over;
|
|
} else
|
|
over = 0;
|
|
tmp = tstosbt(ts);
|
|
prec = tmp;
|
|
prec >>= tc_precexp;
|
|
if (TIMESEL(&sbt, tmp))
|
|
sbt += tc_tick_sbt;
|
|
sbt += tmp;
|
|
error = tsleep_sbt(&nanowait[curcpu], PWAIT | PCATCH, "nanslp",
|
|
sbt, prec, C_ABSOLUTE);
|
|
if (error != EWOULDBLOCK) {
|
|
if (error == ERESTART)
|
|
error = EINTR;
|
|
TIMESEL(&sbtt, tmp);
|
|
if (rmt != NULL) {
|
|
ts = sbttots(sbt - sbtt);
|
|
ts.tv_sec += over;
|
|
if (ts.tv_sec < 0)
|
|
timespecclear(&ts);
|
|
*rmt = ts;
|
|
}
|
|
if (sbtt >= sbt)
|
|
return (0);
|
|
return (error);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
#ifndef _SYS_SYSPROTO_H_
|
|
struct nanosleep_args {
|
|
struct timespec *rqtp;
|
|
struct timespec *rmtp;
|
|
};
|
|
#endif
|
|
/* ARGSUSED */
|
|
int
|
|
sys_nanosleep(struct thread *td, struct nanosleep_args *uap)
|
|
{
|
|
struct timespec rmt, rqt;
|
|
int error;
|
|
|
|
error = copyin(uap->rqtp, &rqt, sizeof(rqt));
|
|
if (error)
|
|
return (error);
|
|
|
|
if (uap->rmtp &&
|
|
!useracc((caddr_t)uap->rmtp, sizeof(rmt), VM_PROT_WRITE))
|
|
return (EFAULT);
|
|
error = kern_nanosleep(td, &rqt, &rmt);
|
|
if (error && uap->rmtp) {
|
|
int error2;
|
|
|
|
error2 = copyout(&rmt, uap->rmtp, sizeof(rmt));
|
|
if (error2)
|
|
error = error2;
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
#ifndef _SYS_SYSPROTO_H_
|
|
struct gettimeofday_args {
|
|
struct timeval *tp;
|
|
struct timezone *tzp;
|
|
};
|
|
#endif
|
|
/* ARGSUSED */
|
|
int
|
|
sys_gettimeofday(struct thread *td, struct gettimeofday_args *uap)
|
|
{
|
|
struct timeval atv;
|
|
struct timezone rtz;
|
|
int error = 0;
|
|
|
|
if (uap->tp) {
|
|
microtime(&atv);
|
|
error = copyout(&atv, uap->tp, sizeof (atv));
|
|
}
|
|
if (error == 0 && uap->tzp != NULL) {
|
|
rtz.tz_minuteswest = tz_minuteswest;
|
|
rtz.tz_dsttime = tz_dsttime;
|
|
error = copyout(&rtz, uap->tzp, sizeof (rtz));
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
#ifndef _SYS_SYSPROTO_H_
|
|
struct settimeofday_args {
|
|
struct timeval *tv;
|
|
struct timezone *tzp;
|
|
};
|
|
#endif
|
|
/* ARGSUSED */
|
|
int
|
|
sys_settimeofday(struct thread *td, struct settimeofday_args *uap)
|
|
{
|
|
struct timeval atv, *tvp;
|
|
struct timezone atz, *tzp;
|
|
int error;
|
|
|
|
if (uap->tv) {
|
|
error = copyin(uap->tv, &atv, sizeof(atv));
|
|
if (error)
|
|
return (error);
|
|
tvp = &atv;
|
|
} else
|
|
tvp = NULL;
|
|
if (uap->tzp) {
|
|
error = copyin(uap->tzp, &atz, sizeof(atz));
|
|
if (error)
|
|
return (error);
|
|
tzp = &atz;
|
|
} else
|
|
tzp = NULL;
|
|
return (kern_settimeofday(td, tvp, tzp));
|
|
}
|
|
|
|
int
|
|
kern_settimeofday(struct thread *td, struct timeval *tv, struct timezone *tzp)
|
|
{
|
|
int error;
|
|
|
|
error = priv_check(td, PRIV_SETTIMEOFDAY);
|
|
if (error)
|
|
return (error);
|
|
/* Verify all parameters before changing time. */
|
|
if (tv) {
|
|
if (tv->tv_usec < 0 || tv->tv_usec >= 1000000)
|
|
return (EINVAL);
|
|
error = settime(td, tv);
|
|
}
|
|
if (tzp && error == 0) {
|
|
tz_minuteswest = tzp->tz_minuteswest;
|
|
tz_dsttime = tzp->tz_dsttime;
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Get value of an interval timer. The process virtual and profiling virtual
|
|
* time timers are kept in the p_stats area, since they can be swapped out.
|
|
* These are kept internally in the way they are specified externally: in
|
|
* time until they expire.
|
|
*
|
|
* The real time interval timer is kept in the process table slot for the
|
|
* process, and its value (it_value) is kept as an absolute time rather than
|
|
* as a delta, so that it is easy to keep periodic real-time signals from
|
|
* drifting.
|
|
*
|
|
* Virtual time timers are processed in the hardclock() routine of
|
|
* kern_clock.c. The real time timer is processed by a timeout routine,
|
|
* called from the softclock() routine. Since a callout may be delayed in
|
|
* real time due to interrupt processing in the system, it is possible for
|
|
* the real time timeout routine (realitexpire, given below), to be delayed
|
|
* in real time past when it is supposed to occur. It does not suffice,
|
|
* therefore, to reload the real timer .it_value from the real time timers
|
|
* .it_interval. Rather, we compute the next time in absolute time the timer
|
|
* should go off.
|
|
*/
|
|
#ifndef _SYS_SYSPROTO_H_
|
|
struct getitimer_args {
|
|
u_int which;
|
|
struct itimerval *itv;
|
|
};
|
|
#endif
|
|
int
|
|
sys_getitimer(struct thread *td, struct getitimer_args *uap)
|
|
{
|
|
struct itimerval aitv;
|
|
int error;
|
|
|
|
error = kern_getitimer(td, uap->which, &aitv);
|
|
if (error != 0)
|
|
return (error);
|
|
return (copyout(&aitv, uap->itv, sizeof (struct itimerval)));
|
|
}
|
|
|
|
int
|
|
kern_getitimer(struct thread *td, u_int which, struct itimerval *aitv)
|
|
{
|
|
struct proc *p = td->td_proc;
|
|
struct timeval ctv;
|
|
|
|
if (which > ITIMER_PROF)
|
|
return (EINVAL);
|
|
|
|
if (which == ITIMER_REAL) {
|
|
/*
|
|
* Convert from absolute to relative time in .it_value
|
|
* part of real time timer. If time for real time timer
|
|
* has passed return 0, else return difference between
|
|
* current time and time for the timer to go off.
|
|
*/
|
|
PROC_LOCK(p);
|
|
*aitv = p->p_realtimer;
|
|
PROC_UNLOCK(p);
|
|
if (timevalisset(&aitv->it_value)) {
|
|
microuptime(&ctv);
|
|
if (timevalcmp(&aitv->it_value, &ctv, <))
|
|
timevalclear(&aitv->it_value);
|
|
else
|
|
timevalsub(&aitv->it_value, &ctv);
|
|
}
|
|
} else {
|
|
PROC_SLOCK(p);
|
|
*aitv = p->p_stats->p_timer[which];
|
|
PROC_SUNLOCK(p);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
#ifndef _SYS_SYSPROTO_H_
|
|
struct setitimer_args {
|
|
u_int which;
|
|
struct itimerval *itv, *oitv;
|
|
};
|
|
#endif
|
|
int
|
|
sys_setitimer(struct thread *td, struct setitimer_args *uap)
|
|
{
|
|
struct itimerval aitv, oitv;
|
|
int error;
|
|
|
|
if (uap->itv == NULL) {
|
|
uap->itv = uap->oitv;
|
|
return (sys_getitimer(td, (struct getitimer_args *)uap));
|
|
}
|
|
|
|
if ((error = copyin(uap->itv, &aitv, sizeof(struct itimerval))))
|
|
return (error);
|
|
error = kern_setitimer(td, uap->which, &aitv, &oitv);
|
|
if (error != 0 || uap->oitv == NULL)
|
|
return (error);
|
|
return (copyout(&oitv, uap->oitv, sizeof(struct itimerval)));
|
|
}
|
|
|
|
int
|
|
kern_setitimer(struct thread *td, u_int which, struct itimerval *aitv,
|
|
struct itimerval *oitv)
|
|
{
|
|
struct proc *p = td->td_proc;
|
|
struct timeval ctv;
|
|
sbintime_t sbt, pr;
|
|
|
|
if (aitv == NULL)
|
|
return (kern_getitimer(td, which, oitv));
|
|
|
|
if (which > ITIMER_PROF)
|
|
return (EINVAL);
|
|
if (itimerfix(&aitv->it_value) ||
|
|
aitv->it_value.tv_sec > INT32_MAX / 2)
|
|
return (EINVAL);
|
|
if (!timevalisset(&aitv->it_value))
|
|
timevalclear(&aitv->it_interval);
|
|
else if (itimerfix(&aitv->it_interval) ||
|
|
aitv->it_interval.tv_sec > INT32_MAX / 2)
|
|
return (EINVAL);
|
|
|
|
if (which == ITIMER_REAL) {
|
|
PROC_LOCK(p);
|
|
if (timevalisset(&p->p_realtimer.it_value))
|
|
callout_stop(&p->p_itcallout);
|
|
microuptime(&ctv);
|
|
if (timevalisset(&aitv->it_value)) {
|
|
pr = tvtosbt(aitv->it_value) >> tc_precexp;
|
|
timevaladd(&aitv->it_value, &ctv);
|
|
sbt = tvtosbt(aitv->it_value);
|
|
callout_reset_sbt(&p->p_itcallout, sbt, pr,
|
|
realitexpire, p, C_ABSOLUTE);
|
|
}
|
|
*oitv = p->p_realtimer;
|
|
p->p_realtimer = *aitv;
|
|
PROC_UNLOCK(p);
|
|
if (timevalisset(&oitv->it_value)) {
|
|
if (timevalcmp(&oitv->it_value, &ctv, <))
|
|
timevalclear(&oitv->it_value);
|
|
else
|
|
timevalsub(&oitv->it_value, &ctv);
|
|
}
|
|
} else {
|
|
PROC_SLOCK(p);
|
|
*oitv = p->p_stats->p_timer[which];
|
|
p->p_stats->p_timer[which] = *aitv;
|
|
PROC_SUNLOCK(p);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Real interval timer expired:
|
|
* send process whose timer expired an alarm signal.
|
|
* If time is not set up to reload, then just return.
|
|
* Else compute next time timer should go off which is > current time.
|
|
* This is where delay in processing this timeout causes multiple
|
|
* SIGALRM calls to be compressed into one.
|
|
* tvtohz() always adds 1 to allow for the time until the next clock
|
|
* interrupt being strictly less than 1 clock tick, but we don't want
|
|
* that here since we want to appear to be in sync with the clock
|
|
* interrupt even when we're delayed.
|
|
*/
|
|
void
|
|
realitexpire(void *arg)
|
|
{
|
|
struct proc *p;
|
|
struct timeval ctv;
|
|
sbintime_t isbt;
|
|
|
|
p = (struct proc *)arg;
|
|
kern_psignal(p, SIGALRM);
|
|
if (!timevalisset(&p->p_realtimer.it_interval)) {
|
|
timevalclear(&p->p_realtimer.it_value);
|
|
if (p->p_flag & P_WEXIT)
|
|
wakeup(&p->p_itcallout);
|
|
return;
|
|
}
|
|
isbt = tvtosbt(p->p_realtimer.it_interval);
|
|
if (isbt >= sbt_timethreshold)
|
|
getmicrouptime(&ctv);
|
|
else
|
|
microuptime(&ctv);
|
|
do {
|
|
timevaladd(&p->p_realtimer.it_value,
|
|
&p->p_realtimer.it_interval);
|
|
} while (timevalcmp(&p->p_realtimer.it_value, &ctv, <=));
|
|
callout_reset_sbt(&p->p_itcallout, tvtosbt(p->p_realtimer.it_value),
|
|
isbt >> tc_precexp, realitexpire, p, C_ABSOLUTE);
|
|
}
|
|
|
|
/*
|
|
* Check that a proposed value to load into the .it_value or
|
|
* .it_interval part of an interval timer is acceptable, and
|
|
* fix it to have at least minimal value (i.e. if it is less
|
|
* than the resolution of the clock, round it up.)
|
|
*/
|
|
int
|
|
itimerfix(struct timeval *tv)
|
|
{
|
|
|
|
if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
|
|
return (EINVAL);
|
|
if (tv->tv_sec == 0 && tv->tv_usec != 0 &&
|
|
tv->tv_usec < (u_int)tick / 16)
|
|
tv->tv_usec = (u_int)tick / 16;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Decrement an interval timer by a specified number
|
|
* of microseconds, which must be less than a second,
|
|
* i.e. < 1000000. If the timer expires, then reload
|
|
* it. In this case, carry over (usec - old value) to
|
|
* reduce the value reloaded into the timer so that
|
|
* the timer does not drift. This routine assumes
|
|
* that it is called in a context where the timers
|
|
* on which it is operating cannot change in value.
|
|
*/
|
|
int
|
|
itimerdecr(struct itimerval *itp, int usec)
|
|
{
|
|
|
|
if (itp->it_value.tv_usec < usec) {
|
|
if (itp->it_value.tv_sec == 0) {
|
|
/* expired, and already in next interval */
|
|
usec -= itp->it_value.tv_usec;
|
|
goto expire;
|
|
}
|
|
itp->it_value.tv_usec += 1000000;
|
|
itp->it_value.tv_sec--;
|
|
}
|
|
itp->it_value.tv_usec -= usec;
|
|
usec = 0;
|
|
if (timevalisset(&itp->it_value))
|
|
return (1);
|
|
/* expired, exactly at end of interval */
|
|
expire:
|
|
if (timevalisset(&itp->it_interval)) {
|
|
itp->it_value = itp->it_interval;
|
|
itp->it_value.tv_usec -= usec;
|
|
if (itp->it_value.tv_usec < 0) {
|
|
itp->it_value.tv_usec += 1000000;
|
|
itp->it_value.tv_sec--;
|
|
}
|
|
} else
|
|
itp->it_value.tv_usec = 0; /* sec is already 0 */
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Add and subtract routines for timevals.
|
|
* N.B.: subtract routine doesn't deal with
|
|
* results which are before the beginning,
|
|
* it just gets very confused in this case.
|
|
* Caveat emptor.
|
|
*/
|
|
void
|
|
timevaladd(struct timeval *t1, const struct timeval *t2)
|
|
{
|
|
|
|
t1->tv_sec += t2->tv_sec;
|
|
t1->tv_usec += t2->tv_usec;
|
|
timevalfix(t1);
|
|
}
|
|
|
|
void
|
|
timevalsub(struct timeval *t1, const struct timeval *t2)
|
|
{
|
|
|
|
t1->tv_sec -= t2->tv_sec;
|
|
t1->tv_usec -= t2->tv_usec;
|
|
timevalfix(t1);
|
|
}
|
|
|
|
static void
|
|
timevalfix(struct timeval *t1)
|
|
{
|
|
|
|
if (t1->tv_usec < 0) {
|
|
t1->tv_sec--;
|
|
t1->tv_usec += 1000000;
|
|
}
|
|
if (t1->tv_usec >= 1000000) {
|
|
t1->tv_sec++;
|
|
t1->tv_usec -= 1000000;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* ratecheck(): simple time-based rate-limit checking.
|
|
*/
|
|
int
|
|
ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
|
|
{
|
|
struct timeval tv, delta;
|
|
int rv = 0;
|
|
|
|
getmicrouptime(&tv); /* NB: 10ms precision */
|
|
delta = tv;
|
|
timevalsub(&delta, lasttime);
|
|
|
|
/*
|
|
* check for 0,0 is so that the message will be seen at least once,
|
|
* even if interval is huge.
|
|
*/
|
|
if (timevalcmp(&delta, mininterval, >=) ||
|
|
(lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
|
|
*lasttime = tv;
|
|
rv = 1;
|
|
}
|
|
|
|
return (rv);
|
|
}
|
|
|
|
/*
|
|
* ppsratecheck(): packets (or events) per second limitation.
|
|
*
|
|
* Return 0 if the limit is to be enforced (e.g. the caller
|
|
* should drop a packet because of the rate limitation).
|
|
*
|
|
* maxpps of 0 always causes zero to be returned. maxpps of -1
|
|
* always causes 1 to be returned; this effectively defeats rate
|
|
* limiting.
|
|
*
|
|
* Note that we maintain the struct timeval for compatibility
|
|
* with other bsd systems. We reuse the storage and just monitor
|
|
* clock ticks for minimal overhead.
|
|
*/
|
|
int
|
|
ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
|
|
{
|
|
int now;
|
|
|
|
/*
|
|
* Reset the last time and counter if this is the first call
|
|
* or more than a second has passed since the last update of
|
|
* lasttime.
|
|
*/
|
|
now = ticks;
|
|
if (lasttime->tv_sec == 0 || (u_int)(now - lasttime->tv_sec) >= hz) {
|
|
lasttime->tv_sec = now;
|
|
*curpps = 1;
|
|
return (maxpps != 0);
|
|
} else {
|
|
(*curpps)++; /* NB: ignore potential overflow */
|
|
return (maxpps < 0 || *curpps < maxpps);
|
|
}
|
|
}
|
|
|
|
static void
|
|
itimer_start(void)
|
|
{
|
|
struct kclock rt_clock = {
|
|
.timer_create = realtimer_create,
|
|
.timer_delete = realtimer_delete,
|
|
.timer_settime = realtimer_settime,
|
|
.timer_gettime = realtimer_gettime,
|
|
.event_hook = NULL
|
|
};
|
|
|
|
itimer_zone = uma_zcreate("itimer", sizeof(struct itimer),
|
|
NULL, NULL, itimer_init, itimer_fini, UMA_ALIGN_PTR, 0);
|
|
register_posix_clock(CLOCK_REALTIME, &rt_clock);
|
|
register_posix_clock(CLOCK_MONOTONIC, &rt_clock);
|
|
p31b_setcfg(CTL_P1003_1B_TIMERS, 200112L);
|
|
p31b_setcfg(CTL_P1003_1B_DELAYTIMER_MAX, INT_MAX);
|
|
p31b_setcfg(CTL_P1003_1B_TIMER_MAX, TIMER_MAX);
|
|
EVENTHANDLER_REGISTER(process_exit, itimers_event_hook_exit,
|
|
(void *)ITIMER_EV_EXIT, EVENTHANDLER_PRI_ANY);
|
|
EVENTHANDLER_REGISTER(process_exec, itimers_event_hook_exec,
|
|
(void *)ITIMER_EV_EXEC, EVENTHANDLER_PRI_ANY);
|
|
}
|
|
|
|
int
|
|
register_posix_clock(int clockid, struct kclock *clk)
|
|
{
|
|
if ((unsigned)clockid >= MAX_CLOCKS) {
|
|
printf("%s: invalid clockid\n", __func__);
|
|
return (0);
|
|
}
|
|
posix_clocks[clockid] = *clk;
|
|
return (1);
|
|
}
|
|
|
|
static int
|
|
itimer_init(void *mem, int size, int flags)
|
|
{
|
|
struct itimer *it;
|
|
|
|
it = (struct itimer *)mem;
|
|
mtx_init(&it->it_mtx, "itimer lock", NULL, MTX_DEF);
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
itimer_fini(void *mem, int size)
|
|
{
|
|
struct itimer *it;
|
|
|
|
it = (struct itimer *)mem;
|
|
mtx_destroy(&it->it_mtx);
|
|
}
|
|
|
|
static void
|
|
itimer_enter(struct itimer *it)
|
|
{
|
|
|
|
mtx_assert(&it->it_mtx, MA_OWNED);
|
|
it->it_usecount++;
|
|
}
|
|
|
|
static void
|
|
itimer_leave(struct itimer *it)
|
|
{
|
|
|
|
mtx_assert(&it->it_mtx, MA_OWNED);
|
|
KASSERT(it->it_usecount > 0, ("invalid it_usecount"));
|
|
|
|
if (--it->it_usecount == 0 && (it->it_flags & ITF_WANTED) != 0)
|
|
wakeup(it);
|
|
}
|
|
|
|
#ifndef _SYS_SYSPROTO_H_
|
|
struct ktimer_create_args {
|
|
clockid_t clock_id;
|
|
struct sigevent * evp;
|
|
int * timerid;
|
|
};
|
|
#endif
|
|
int
|
|
sys_ktimer_create(struct thread *td, struct ktimer_create_args *uap)
|
|
{
|
|
struct sigevent *evp, ev;
|
|
int id;
|
|
int error;
|
|
|
|
if (uap->evp == NULL) {
|
|
evp = NULL;
|
|
} else {
|
|
error = copyin(uap->evp, &ev, sizeof(ev));
|
|
if (error != 0)
|
|
return (error);
|
|
evp = &ev;
|
|
}
|
|
error = kern_ktimer_create(td, uap->clock_id, evp, &id, -1);
|
|
if (error == 0) {
|
|
error = copyout(&id, uap->timerid, sizeof(int));
|
|
if (error != 0)
|
|
kern_ktimer_delete(td, id);
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
kern_ktimer_create(struct thread *td, clockid_t clock_id, struct sigevent *evp,
|
|
int *timerid, int preset_id)
|
|
{
|
|
struct proc *p = td->td_proc;
|
|
struct itimer *it;
|
|
int id;
|
|
int error;
|
|
|
|
if (clock_id < 0 || clock_id >= MAX_CLOCKS)
|
|
return (EINVAL);
|
|
|
|
if (posix_clocks[clock_id].timer_create == NULL)
|
|
return (EINVAL);
|
|
|
|
if (evp != NULL) {
|
|
if (evp->sigev_notify != SIGEV_NONE &&
|
|
evp->sigev_notify != SIGEV_SIGNAL &&
|
|
evp->sigev_notify != SIGEV_THREAD_ID)
|
|
return (EINVAL);
|
|
if ((evp->sigev_notify == SIGEV_SIGNAL ||
|
|
evp->sigev_notify == SIGEV_THREAD_ID) &&
|
|
!_SIG_VALID(evp->sigev_signo))
|
|
return (EINVAL);
|
|
}
|
|
|
|
if (p->p_itimers == NULL)
|
|
itimers_alloc(p);
|
|
|
|
it = uma_zalloc(itimer_zone, M_WAITOK);
|
|
it->it_flags = 0;
|
|
it->it_usecount = 0;
|
|
it->it_active = 0;
|
|
timespecclear(&it->it_time.it_value);
|
|
timespecclear(&it->it_time.it_interval);
|
|
it->it_overrun = 0;
|
|
it->it_overrun_last = 0;
|
|
it->it_clockid = clock_id;
|
|
it->it_timerid = -1;
|
|
it->it_proc = p;
|
|
ksiginfo_init(&it->it_ksi);
|
|
it->it_ksi.ksi_flags |= KSI_INS | KSI_EXT;
|
|
error = CLOCK_CALL(clock_id, timer_create, (it));
|
|
if (error != 0)
|
|
goto out;
|
|
|
|
PROC_LOCK(p);
|
|
if (preset_id != -1) {
|
|
KASSERT(preset_id >= 0 && preset_id < 3, ("invalid preset_id"));
|
|
id = preset_id;
|
|
if (p->p_itimers->its_timers[id] != NULL) {
|
|
PROC_UNLOCK(p);
|
|
error = 0;
|
|
goto out;
|
|
}
|
|
} else {
|
|
/*
|
|
* Find a free timer slot, skipping those reserved
|
|
* for setitimer().
|
|
*/
|
|
for (id = 3; id < TIMER_MAX; id++)
|
|
if (p->p_itimers->its_timers[id] == NULL)
|
|
break;
|
|
if (id == TIMER_MAX) {
|
|
PROC_UNLOCK(p);
|
|
error = EAGAIN;
|
|
goto out;
|
|
}
|
|
}
|
|
it->it_timerid = id;
|
|
p->p_itimers->its_timers[id] = it;
|
|
if (evp != NULL)
|
|
it->it_sigev = *evp;
|
|
else {
|
|
it->it_sigev.sigev_notify = SIGEV_SIGNAL;
|
|
switch (clock_id) {
|
|
default:
|
|
case CLOCK_REALTIME:
|
|
it->it_sigev.sigev_signo = SIGALRM;
|
|
break;
|
|
case CLOCK_VIRTUAL:
|
|
it->it_sigev.sigev_signo = SIGVTALRM;
|
|
break;
|
|
case CLOCK_PROF:
|
|
it->it_sigev.sigev_signo = SIGPROF;
|
|
break;
|
|
}
|
|
it->it_sigev.sigev_value.sival_int = id;
|
|
}
|
|
|
|
if (it->it_sigev.sigev_notify == SIGEV_SIGNAL ||
|
|
it->it_sigev.sigev_notify == SIGEV_THREAD_ID) {
|
|
it->it_ksi.ksi_signo = it->it_sigev.sigev_signo;
|
|
it->it_ksi.ksi_code = SI_TIMER;
|
|
it->it_ksi.ksi_value = it->it_sigev.sigev_value;
|
|
it->it_ksi.ksi_timerid = id;
|
|
}
|
|
PROC_UNLOCK(p);
|
|
*timerid = id;
|
|
return (0);
|
|
|
|
out:
|
|
ITIMER_LOCK(it);
|
|
CLOCK_CALL(it->it_clockid, timer_delete, (it));
|
|
ITIMER_UNLOCK(it);
|
|
uma_zfree(itimer_zone, it);
|
|
return (error);
|
|
}
|
|
|
|
#ifndef _SYS_SYSPROTO_H_
|
|
struct ktimer_delete_args {
|
|
int timerid;
|
|
};
|
|
#endif
|
|
int
|
|
sys_ktimer_delete(struct thread *td, struct ktimer_delete_args *uap)
|
|
{
|
|
|
|
return (kern_ktimer_delete(td, uap->timerid));
|
|
}
|
|
|
|
static struct itimer *
|
|
itimer_find(struct proc *p, int timerid)
|
|
{
|
|
struct itimer *it;
|
|
|
|
PROC_LOCK_ASSERT(p, MA_OWNED);
|
|
if ((p->p_itimers == NULL) ||
|
|
(timerid < 0) || (timerid >= TIMER_MAX) ||
|
|
(it = p->p_itimers->its_timers[timerid]) == NULL) {
|
|
return (NULL);
|
|
}
|
|
ITIMER_LOCK(it);
|
|
if ((it->it_flags & ITF_DELETING) != 0) {
|
|
ITIMER_UNLOCK(it);
|
|
it = NULL;
|
|
}
|
|
return (it);
|
|
}
|
|
|
|
int
|
|
kern_ktimer_delete(struct thread *td, int timerid)
|
|
{
|
|
struct proc *p = td->td_proc;
|
|
struct itimer *it;
|
|
|
|
PROC_LOCK(p);
|
|
it = itimer_find(p, timerid);
|
|
if (it == NULL) {
|
|
PROC_UNLOCK(p);
|
|
return (EINVAL);
|
|
}
|
|
PROC_UNLOCK(p);
|
|
|
|
it->it_flags |= ITF_DELETING;
|
|
while (it->it_usecount > 0) {
|
|
it->it_flags |= ITF_WANTED;
|
|
msleep(it, &it->it_mtx, PPAUSE, "itimer", 0);
|
|
}
|
|
it->it_flags &= ~ITF_WANTED;
|
|
CLOCK_CALL(it->it_clockid, timer_delete, (it));
|
|
ITIMER_UNLOCK(it);
|
|
|
|
PROC_LOCK(p);
|
|
if (KSI_ONQ(&it->it_ksi))
|
|
sigqueue_take(&it->it_ksi);
|
|
p->p_itimers->its_timers[timerid] = NULL;
|
|
PROC_UNLOCK(p);
|
|
uma_zfree(itimer_zone, it);
|
|
return (0);
|
|
}
|
|
|
|
#ifndef _SYS_SYSPROTO_H_
|
|
struct ktimer_settime_args {
|
|
int timerid;
|
|
int flags;
|
|
const struct itimerspec * value;
|
|
struct itimerspec * ovalue;
|
|
};
|
|
#endif
|
|
int
|
|
sys_ktimer_settime(struct thread *td, struct ktimer_settime_args *uap)
|
|
{
|
|
struct itimerspec val, oval, *ovalp;
|
|
int error;
|
|
|
|
error = copyin(uap->value, &val, sizeof(val));
|
|
if (error != 0)
|
|
return (error);
|
|
ovalp = uap->ovalue != NULL ? &oval : NULL;
|
|
error = kern_ktimer_settime(td, uap->timerid, uap->flags, &val, ovalp);
|
|
if (error == 0 && uap->ovalue != NULL)
|
|
error = copyout(ovalp, uap->ovalue, sizeof(*ovalp));
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
kern_ktimer_settime(struct thread *td, int timer_id, int flags,
|
|
struct itimerspec *val, struct itimerspec *oval)
|
|
{
|
|
struct proc *p;
|
|
struct itimer *it;
|
|
int error;
|
|
|
|
p = td->td_proc;
|
|
PROC_LOCK(p);
|
|
if (timer_id < 3 || (it = itimer_find(p, timer_id)) == NULL) {
|
|
PROC_UNLOCK(p);
|
|
error = EINVAL;
|
|
} else {
|
|
PROC_UNLOCK(p);
|
|
itimer_enter(it);
|
|
error = CLOCK_CALL(it->it_clockid, timer_settime, (it,
|
|
flags, val, oval));
|
|
itimer_leave(it);
|
|
ITIMER_UNLOCK(it);
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
#ifndef _SYS_SYSPROTO_H_
|
|
struct ktimer_gettime_args {
|
|
int timerid;
|
|
struct itimerspec * value;
|
|
};
|
|
#endif
|
|
int
|
|
sys_ktimer_gettime(struct thread *td, struct ktimer_gettime_args *uap)
|
|
{
|
|
struct itimerspec val;
|
|
int error;
|
|
|
|
error = kern_ktimer_gettime(td, uap->timerid, &val);
|
|
if (error == 0)
|
|
error = copyout(&val, uap->value, sizeof(val));
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
kern_ktimer_gettime(struct thread *td, int timer_id, struct itimerspec *val)
|
|
{
|
|
struct proc *p;
|
|
struct itimer *it;
|
|
int error;
|
|
|
|
p = td->td_proc;
|
|
PROC_LOCK(p);
|
|
if (timer_id < 3 || (it = itimer_find(p, timer_id)) == NULL) {
|
|
PROC_UNLOCK(p);
|
|
error = EINVAL;
|
|
} else {
|
|
PROC_UNLOCK(p);
|
|
itimer_enter(it);
|
|
error = CLOCK_CALL(it->it_clockid, timer_gettime, (it, val));
|
|
itimer_leave(it);
|
|
ITIMER_UNLOCK(it);
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
#ifndef _SYS_SYSPROTO_H_
|
|
struct timer_getoverrun_args {
|
|
int timerid;
|
|
};
|
|
#endif
|
|
int
|
|
sys_ktimer_getoverrun(struct thread *td, struct ktimer_getoverrun_args *uap)
|
|
{
|
|
struct proc *p = td->td_proc;
|
|
struct itimer *it;
|
|
int error ;
|
|
|
|
PROC_LOCK(p);
|
|
if (uap->timerid < 3 ||
|
|
(it = itimer_find(p, uap->timerid)) == NULL) {
|
|
PROC_UNLOCK(p);
|
|
error = EINVAL;
|
|
} else {
|
|
td->td_retval[0] = it->it_overrun_last;
|
|
ITIMER_UNLOCK(it);
|
|
PROC_UNLOCK(p);
|
|
error = 0;
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
realtimer_create(struct itimer *it)
|
|
{
|
|
callout_init_mtx(&it->it_callout, &it->it_mtx, 0);
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
realtimer_delete(struct itimer *it)
|
|
{
|
|
mtx_assert(&it->it_mtx, MA_OWNED);
|
|
|
|
/*
|
|
* clear timer's value and interval to tell realtimer_expire
|
|
* to not rearm the timer.
|
|
*/
|
|
timespecclear(&it->it_time.it_value);
|
|
timespecclear(&it->it_time.it_interval);
|
|
ITIMER_UNLOCK(it);
|
|
callout_drain(&it->it_callout);
|
|
ITIMER_LOCK(it);
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
realtimer_gettime(struct itimer *it, struct itimerspec *ovalue)
|
|
{
|
|
struct timespec cts;
|
|
|
|
mtx_assert(&it->it_mtx, MA_OWNED);
|
|
|
|
realtimer_clocktime(it->it_clockid, &cts);
|
|
*ovalue = it->it_time;
|
|
if (ovalue->it_value.tv_sec != 0 || ovalue->it_value.tv_nsec != 0) {
|
|
timespecsub(&ovalue->it_value, &cts);
|
|
if (ovalue->it_value.tv_sec < 0 ||
|
|
(ovalue->it_value.tv_sec == 0 &&
|
|
ovalue->it_value.tv_nsec == 0)) {
|
|
ovalue->it_value.tv_sec = 0;
|
|
ovalue->it_value.tv_nsec = 1;
|
|
}
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
realtimer_settime(struct itimer *it, int flags,
|
|
struct itimerspec *value, struct itimerspec *ovalue)
|
|
{
|
|
struct timespec cts, ts;
|
|
struct timeval tv;
|
|
struct itimerspec val;
|
|
|
|
mtx_assert(&it->it_mtx, MA_OWNED);
|
|
|
|
val = *value;
|
|
if (itimespecfix(&val.it_value))
|
|
return (EINVAL);
|
|
|
|
if (timespecisset(&val.it_value)) {
|
|
if (itimespecfix(&val.it_interval))
|
|
return (EINVAL);
|
|
} else {
|
|
timespecclear(&val.it_interval);
|
|
}
|
|
|
|
if (ovalue != NULL)
|
|
realtimer_gettime(it, ovalue);
|
|
|
|
it->it_time = val;
|
|
if (timespecisset(&val.it_value)) {
|
|
realtimer_clocktime(it->it_clockid, &cts);
|
|
ts = val.it_value;
|
|
if ((flags & TIMER_ABSTIME) == 0) {
|
|
/* Convert to absolute time. */
|
|
timespecadd(&it->it_time.it_value, &cts);
|
|
} else {
|
|
timespecsub(&ts, &cts);
|
|
/*
|
|
* We don't care if ts is negative, tztohz will
|
|
* fix it.
|
|
*/
|
|
}
|
|
TIMESPEC_TO_TIMEVAL(&tv, &ts);
|
|
callout_reset(&it->it_callout, tvtohz(&tv),
|
|
realtimer_expire, it);
|
|
} else {
|
|
callout_stop(&it->it_callout);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
realtimer_clocktime(clockid_t id, struct timespec *ts)
|
|
{
|
|
if (id == CLOCK_REALTIME)
|
|
getnanotime(ts);
|
|
else /* CLOCK_MONOTONIC */
|
|
getnanouptime(ts);
|
|
}
|
|
|
|
int
|
|
itimer_accept(struct proc *p, int timerid, ksiginfo_t *ksi)
|
|
{
|
|
struct itimer *it;
|
|
|
|
PROC_LOCK_ASSERT(p, MA_OWNED);
|
|
it = itimer_find(p, timerid);
|
|
if (it != NULL) {
|
|
ksi->ksi_overrun = it->it_overrun;
|
|
it->it_overrun_last = it->it_overrun;
|
|
it->it_overrun = 0;
|
|
ITIMER_UNLOCK(it);
|
|
return (0);
|
|
}
|
|
return (EINVAL);
|
|
}
|
|
|
|
int
|
|
itimespecfix(struct timespec *ts)
|
|
{
|
|
|
|
if (ts->tv_sec < 0 || ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000)
|
|
return (EINVAL);
|
|
if (ts->tv_sec == 0 && ts->tv_nsec != 0 && ts->tv_nsec < tick * 1000)
|
|
ts->tv_nsec = tick * 1000;
|
|
return (0);
|
|
}
|
|
|
|
/* Timeout callback for realtime timer */
|
|
static void
|
|
realtimer_expire(void *arg)
|
|
{
|
|
struct timespec cts, ts;
|
|
struct timeval tv;
|
|
struct itimer *it;
|
|
|
|
it = (struct itimer *)arg;
|
|
|
|
realtimer_clocktime(it->it_clockid, &cts);
|
|
/* Only fire if time is reached. */
|
|
if (timespeccmp(&cts, &it->it_time.it_value, >=)) {
|
|
if (timespecisset(&it->it_time.it_interval)) {
|
|
timespecadd(&it->it_time.it_value,
|
|
&it->it_time.it_interval);
|
|
while (timespeccmp(&cts, &it->it_time.it_value, >=)) {
|
|
if (it->it_overrun < INT_MAX)
|
|
it->it_overrun++;
|
|
else
|
|
it->it_ksi.ksi_errno = ERANGE;
|
|
timespecadd(&it->it_time.it_value,
|
|
&it->it_time.it_interval);
|
|
}
|
|
} else {
|
|
/* single shot timer ? */
|
|
timespecclear(&it->it_time.it_value);
|
|
}
|
|
if (timespecisset(&it->it_time.it_value)) {
|
|
ts = it->it_time.it_value;
|
|
timespecsub(&ts, &cts);
|
|
TIMESPEC_TO_TIMEVAL(&tv, &ts);
|
|
callout_reset(&it->it_callout, tvtohz(&tv),
|
|
realtimer_expire, it);
|
|
}
|
|
itimer_enter(it);
|
|
ITIMER_UNLOCK(it);
|
|
itimer_fire(it);
|
|
ITIMER_LOCK(it);
|
|
itimer_leave(it);
|
|
} else if (timespecisset(&it->it_time.it_value)) {
|
|
ts = it->it_time.it_value;
|
|
timespecsub(&ts, &cts);
|
|
TIMESPEC_TO_TIMEVAL(&tv, &ts);
|
|
callout_reset(&it->it_callout, tvtohz(&tv), realtimer_expire,
|
|
it);
|
|
}
|
|
}
|
|
|
|
void
|
|
itimer_fire(struct itimer *it)
|
|
{
|
|
struct proc *p = it->it_proc;
|
|
struct thread *td;
|
|
|
|
if (it->it_sigev.sigev_notify == SIGEV_SIGNAL ||
|
|
it->it_sigev.sigev_notify == SIGEV_THREAD_ID) {
|
|
if (sigev_findtd(p, &it->it_sigev, &td) != 0) {
|
|
ITIMER_LOCK(it);
|
|
timespecclear(&it->it_time.it_value);
|
|
timespecclear(&it->it_time.it_interval);
|
|
callout_stop(&it->it_callout);
|
|
ITIMER_UNLOCK(it);
|
|
return;
|
|
}
|
|
if (!KSI_ONQ(&it->it_ksi)) {
|
|
it->it_ksi.ksi_errno = 0;
|
|
ksiginfo_set_sigev(&it->it_ksi, &it->it_sigev);
|
|
tdsendsignal(p, td, it->it_ksi.ksi_signo, &it->it_ksi);
|
|
} else {
|
|
if (it->it_overrun < INT_MAX)
|
|
it->it_overrun++;
|
|
else
|
|
it->it_ksi.ksi_errno = ERANGE;
|
|
}
|
|
PROC_UNLOCK(p);
|
|
}
|
|
}
|
|
|
|
static void
|
|
itimers_alloc(struct proc *p)
|
|
{
|
|
struct itimers *its;
|
|
int i;
|
|
|
|
its = malloc(sizeof (struct itimers), M_SUBPROC, M_WAITOK | M_ZERO);
|
|
LIST_INIT(&its->its_virtual);
|
|
LIST_INIT(&its->its_prof);
|
|
TAILQ_INIT(&its->its_worklist);
|
|
for (i = 0; i < TIMER_MAX; i++)
|
|
its->its_timers[i] = NULL;
|
|
PROC_LOCK(p);
|
|
if (p->p_itimers == NULL) {
|
|
p->p_itimers = its;
|
|
PROC_UNLOCK(p);
|
|
}
|
|
else {
|
|
PROC_UNLOCK(p);
|
|
free(its, M_SUBPROC);
|
|
}
|
|
}
|
|
|
|
static void
|
|
itimers_event_hook_exec(void *arg, struct proc *p, struct image_params *imgp __unused)
|
|
{
|
|
itimers_event_hook_exit(arg, p);
|
|
}
|
|
|
|
/* Clean up timers when some process events are being triggered. */
|
|
static void
|
|
itimers_event_hook_exit(void *arg, struct proc *p)
|
|
{
|
|
struct itimers *its;
|
|
struct itimer *it;
|
|
int event = (int)(intptr_t)arg;
|
|
int i;
|
|
|
|
if (p->p_itimers != NULL) {
|
|
its = p->p_itimers;
|
|
for (i = 0; i < MAX_CLOCKS; ++i) {
|
|
if (posix_clocks[i].event_hook != NULL)
|
|
CLOCK_CALL(i, event_hook, (p, i, event));
|
|
}
|
|
/*
|
|
* According to susv3, XSI interval timers should be inherited
|
|
* by new image.
|
|
*/
|
|
if (event == ITIMER_EV_EXEC)
|
|
i = 3;
|
|
else if (event == ITIMER_EV_EXIT)
|
|
i = 0;
|
|
else
|
|
panic("unhandled event");
|
|
for (; i < TIMER_MAX; ++i) {
|
|
if ((it = its->its_timers[i]) != NULL)
|
|
kern_ktimer_delete(curthread, i);
|
|
}
|
|
if (its->its_timers[0] == NULL &&
|
|
its->its_timers[1] == NULL &&
|
|
its->its_timers[2] == NULL) {
|
|
free(its, M_SUBPROC);
|
|
p->p_itimers = NULL;
|
|
}
|
|
}
|
|
}
|