1
0
mirror of https://git.FreeBSD.org/src.git synced 2024-12-24 11:29:10 +00:00
freebsd/sys/i386/isa/aha2742.c
1994-11-18 08:14:16 +00:00

1711 lines
50 KiB
C

/*
* Driver for the 27/284X series adaptec SCSI controllers written by
* Justin T. Gibbs. Much of this driver was taken from Julian Elischer's
* 1742 driver, so it bears his copyright.
*
* Written by Julian Elischer (julian@tfs.com)
* for TRW Financial Systems for use under the MACH(2.5) operating system.
*
* TRW Financial Systems, in accordance with their agreement with Carnegie
* Mellon University, makes this software available to CMU to distribute
* or use in any manner that they see fit as long as this message is kept with
* the software. For this reason TFS also grants any other persons or
* organisations permission to use or modify this software.
*
* TFS supplies this software to be publicly redistributed
* on the understanding that TFS is not responsible for the correct
* functioning of this software in any circumstances.
*
* commenced: Sun Sep 27 18:14:01 PDT 1992
*
* $Id: aha2742.c,v 1.3 1994/11/18 07:25:02 jkh Exp $
*/
/*
* TODO:
* Add support for dual and wide busses
* Implement Target Mode
* Implement Tagged Queuing
* Add target reset capabilities
* Test the check SCSI sense code
* Write a message abort procedure for use in ahc_timeout
* Add support for the 294X series cards
*
* This driver is very stable, and seems to offer performance
* comprable to the 1742 FreeBSD driver. The only timeouts
* I have ever experienced were due to critical driver bugs
* where an abort wouldn't have helped me anyway. So I haven't
* written code to actually search the QINFIFO and/or kill an
* active command. Same goes for target reset.
*/
#define AHC_SCB_MAX 16 /*
* Up to 16 SCBs on some types of aic7xxx based
* boards. The aic7770 family only have 4
*/
#include "ahc.h" /* for NAHC from config */
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/buf.h>
#include <sys/proc.h>
#include <sys/user.h>
#include <i386/isa/isa.h>
#include <i386/isa/isa_device.h>
#include <machine/cpufunc.h>
#include <scsi/scsi_all.h>
#include <scsi/scsiconf.h>
#define AHC_NSEG 256 /* number of dma segments supported */
#define PAGESIZ 4096
#if 0
#define AHCDEBUG
#endif
/*
* I don't know if this is correct, but Justin screwed the pooch here too
* so I have to guess. ARGH! -jkh
*/
#ifndef IO_EISASIZE
#define IO_EISASIZE 0x1000
#endif
typedef unsigned long int physaddr;
#include <sys/kernel.h>
#define KVTOPHYS(x) vtophys(x)
typedef enum {
AHC_274, /* Single Channel */
AHC_274T, /* Twin Channel */
AHC_274W, /* Wide Channel */
AHC_284, /* VL Single Channel */
AHC_284T, /* VL Twin Channel */
AHC_284W, /* VL Wide Channel - Do these exist?? */
}ahc_type;
int ahcprobe();
int ahcprobe1 __P((struct isa_device *dev, ahc_type type));
int ahc_attach();
int ahc_init __P((int unit));
void ahc_loadseq __P((int port));
int ahcintr();
int32 ahc_scsi_cmd();
timeout_t ahc_timeout;
void ahc_done();
struct scb *ahc_get_scb __P((int unit, int flags));
void ahc_free_scb();
void ahcminphys();
struct scb *ahc_scb_phys_kv();
u_int32 ahc_adapter_info();
#define MAX_SLOTS 8 /* XXX should this be 16?? Need EISA spec */
static ahc_slot = 0; /* slot last board was found in */
static ahc_unit = 0;
/* Different debugging levels - only one so-far */
#define AHC_SHOWMISC 0x0001
int ahc_debug = AHC_SHOWMISC;
/*
* Standard EISA Host ID regs (Offset from slot base)
*/
#define HID0 0xC80 /* 0,1: msb of ID2, 2-7: ID1 */
#define HID1 0xC81 /* 0-4: ID3, 5-7: LSB ID2 */
#define HID2 0xC82 /* product, 0=174[20] 1 = 1744 */
#define HID3 0xC83 /* firmware revision */
/**** bit definitions for SCSIDEF ****/
#define HSCSIID 0x07 /* our SCSI ID */
typedef struct
{
ahc_type type;
unsigned char id; /* The Last EISA Host ID reg */
} ahc_sig;
#define CHAR1(B1,B2) (((B1>>2) & 0x1F) | '@')
#define CHAR2(B1,B2) (((B1<<3) & 0x18) | ((B2>>5) & 0x7)|'@')
#define CHAR3(B1,B2) ((B2 & 0x1F) | '@')
struct isa_driver ahcdriver = {ahcprobe, ahc_attach, "ahc"};
struct scsi_adapter ahc_switch =
{
ahc_scsi_cmd,
ahcminphys,
0,
0,
ahc_adapter_info,
"ahc",
{ 0, 0 }
};
/* the below structure is so we have a default dev struct for our link struct */
struct scsi_device ahc_dev =
{
NULL, /* Use default error handler */
NULL, /* have a queue, served by this */
NULL, /* have no async handler */
NULL, /* Use default 'done' routine */
"ahc",
0,
{ 0, 0 }
};
/*
* All of these should be in a separate header file shared by the sequencer
* code and the kernel level driver. The only catch is that we would need to
* add an additional 0xc00 offset when using them in the kernel driver. The
* aic7770 assembler must be modified to allow include files as well. All
* page numbers refer to the Adaptec AIC-7770 Data Book availible from
* Adaptec's Technical Documents Department 1-800-634-2766
*/
/* -------------------- AIC-7770 offset definitions ----------------------- */
/*
* SCSI Sequence Control (p. 3-11).
* Each bit, when set starts a specific SCSI sequence on the bus
*/
#define SCSISEQ 0xc00
#define TEMODEO 0x80
#define ENSELO 0x40
#define ENSELI 0x20
#define ENRSELI 0x10
#define ENAUTOATNO 0x08
#define ENAUTOATNI 0x04
#define ENAUTOATNP 0x02
#define SCSIRSTO 0x01
/*
* SCSI Control Signal Read Register (p. 3-15).
* Reads the actual state of the SCSI bus pins
*/
#define SCSISIGI 0xc03
#define CDI 0x80
#define IOI 0x40
#define MSGI 0x20
#define ATNI 0x10
#define SELI 0x08
#define BSYI 0x04
#define REQI 0x02
#define ACKI 0x01
/*
* SCSI Contol Signal Write Register (p. 3-16).
* Writing to this register modifies the control signals on the bus. Only
* those signals that are allowed in the current mode (Initiator/Target) are
* asserted.
*/
#define SCSISIGO 0xc03
#define CDO 0x80
#define IOO 0x40
#define MSGO 0x20
#define ATNO 0x10
#define SELO 0x08
#define BSYO 0x04
#define REQO 0x02
#define ACKO 0x01
/*
* SCSI ID (p. 3-18).
* Contains the ID of the board and the current target on the
* selected channel
*/
#define SCSIID 0xc05
#define TID 0xf0 /* Target ID mask */
#define OID 0x0f /* Our ID mask */
/*
* SCSI Status 0 (p. 3-21)
* Contains one set of SCSI Interrupt codes
* These are most likely of interest to the sequencer
*/
#define SSTAT0 0xc0b
#define TARGET 0x80 /* Board is a target */
#define SELDO 0x40 /* Selection Done */
#define SELDI 0x20 /* Board has been selected */
#define SELINGO 0x10 /* Selection In Progress */
#define SWRAP 0x08 /* 24bit counter wrap */
#define SDONE 0x04 /* STCNT = 0x000000 */
#define SPIORDY 0x02 /* SCSI PIO Ready */
#define DMADONE 0x01 /* DMA transfer completed */
/*
* Clear SCSI Interrupt 1 (p. 3-23)
* Writing a 1 to a bit clears the associated SCSI Interrupt in SSTAT1.
*/
#define CLRSINT1 0xc0c
#define CLRSELTIMEO 0x80
#define CLRATNO 0x40
#define CLRSCSIRSTI 0x20
/* UNUSED 0x10 */
#define CLRBUSFREE 0x08
#define CLRSCSIPERR 0x04
#define CLRPHASECHG 0x02
#define CLRREQINIT 0x01
/*
* SCSI Status 1 (p. 3-24)
* These interrupt bits are of interest to the kernel driver
*/
#define SSTAT1 0xc0c
#define SELTO 0x80
#define ATNTARG 0x40
#define SCSIRSTI 0x20
#define PHASEMIS 0x10
#define BUSFREE 0x08
#define SCSIPERR 0x04
#define PHASECHG 0x02
#define REQINIT 0x01
/*
* Selection/Reselection ID (p. 3-31)
* Upper four bits are the device id. The ONEBIT is set when the re/selecting
* device did not set its own ID.
*/
#define SELID 0xc19
#define SELID_MASK 0xf0
#define ONEBIT 0x08
/* UNUSED 0x07 */
/*
* SCSI Block Control (p. 3-32)
* Controls Bus type and channel selection. In a twin channel configuration
* addresses 0x00-0x1e are gated to the appropriate channel based on this
* register. SELWIDE allows for the coexistence of 8bit and 16bit devices
* on a wide bus.
*/
#define SBLKCTL 0xc1f
/* UNUSED 0xc0 */
#define AUTOFLUSHDIS 0x20
/* UNUSED 0x10 */
#define SELBUSB 0x08
/* UNUSED 0x04 */
#define SELWIDE 0x02
/* UNUSED 0x01 */
/*
* Sequencer Control (p. 3-33)
* Error detection mode and speed configuration
*/
#define SEQCTL 0xc60
#define PERRORDIS 0x80
#define PAUSEDIS 0x40
#define FAILDIS 0x20
#define FASTMODE 0x10
#define BRKADRINTEN 0x08
#define STEP 0x04
#define SEQRESET 0x02
#define LOADRAM 0x01
/*
* Sequencer RAM Data (p. 3-34)
* Single byte window into the Scratch Ram area starting at the address
* specified by SEQADDR0 and SEQADDR1. To write a full word, simply write
* four bytes in sucessesion. The SEQADDRs will increment after the most
* significant byte is written
*/
#define SEQRAM 0xc61
/*
* Sequencer Address Registers (p. 3-35)
* Only the first bit of SEQADDR1 holds addressing information
*/
#define SEQADDR0 0xc62
#define SEQADDR1 0xc63
#define SEQADDR1_MASK 0x01
/*
* Accumulator
* We cheat by passing arguments in the Accumulator up to the kernel driver
*/
#define ACCUM 0xc64
/*
* Board Control (p. 3-43)
*/
#define BCTL 0xc84
/* RSVD 0xf0 */
#define ACE 0x08 /* Support for external processors */
/* RSVD 0x06 */
#define ENABLE 0x01
/*
* Host Control (p. 3-47) R/W
* Overal host control of the device.
*/
#define HCNTRL 0xc87
/* UNUSED 0x80 */
#define POWRDN 0x40
/* UNUSED 0x20 */
#define SWINT 0x10
#define IRQMS 0x08
#define PAUSE 0x04
#define INTEN 0x02
#define CHIPRST 0x01
#define REQ_PAUSE IRQMS | PAUSE | INTEN
#define UNPAUSE_274X IRQMS | INTEN
#define UNPAUSE_284X INTEN
/*
* SCB Pointer (p. 3-49)
* Gate one of the four SCBs into the SCBARRAY window.
*/
#define SCBPTR 0xc90
/*
* Interrupt Status (p. 3-50)
* Status for system interrupts
*/
#define INTSTAT 0xc91
#define SEQINT_MASK 0xf0 /* SEQINT Status Codes */
#define BAD_PHASE 0x00
#define MSG_REJECT 0x10
#define NO_IDENT 0x20
#define NO_MATCH 0x30
#define TRANS_RATE 0x40
#define BAD_STATUS 0x50
#define BRKADRINT 0x08
#define SCSIINT 0x04
#define CMDCMPLT 0x02
#define SEQINT 0x01
#define INT_PEND SEQINT | SCSIINT | CMDCMPLT /* For polling */
/*
* Hard Error (p. 3-53)
* Reporting of catastrophic errors. You usually cannot recover from
* these without a full board reset.
*/
#define ERROR 0xc92
/* UNUSED 0xf0 */
#define PARERR 0x08
#define ILLOPCODE 0x04
#define ILLSADDR 0x02
#define ILLHADDR 0x01
/*
* Clear Interrupt Status (p. 3-52)
*/
#define CLRINT 0xc92
#define CLRBRKADRINT 0x08
#define CLRINTSTAT 0x04 /* UNDOCUMENTED - must be unpaused */
#define CLRCMDINT 0x02
#define CLRSEQINT 0x01
/*
* SCB Auto Increment (p. 3-59)
* Byte offset into the SCB Array and an optional bit to allow auto
* incrementing of the address during download and upload operations
*/
#define SCBCNT 0xc9a
#define SCBAUTO 0x80
#define SCBCNT_MASK 0x1f
/*
* Queue In FIFO (p. 3-60)
* Input queue for queued SCBs (commands that the seqencer has yet to start)
*/
#define QINFIFO 0xc9b
/*
* Queue In Count (p. 3-60)
* Number of queued SCBs
*/
#define QINCNT 0xc9c
/*
* Queue Out FIFO (p. 3-61)
* Queue of SCBs that have completed and await the host
*/
#define QOUTFIFO 0xc9d
/*
* Queue Out Count (p. 3-61)
* Number of queued SCBs in the Out FIFO
*/
#define QOUTCNT 0xc9e
#define SCBARRAY 0xca0
/* ---------------- END AIC-7770 Register Definitions ----------------- */
/* ---------------------- Scratch RAM Offsets ------------------------- */
/* These offsets are either to values that are initialized by the board's
* BIOS or are specified by the Linux sequencer code. If I can figure out
* how to read the EISA configuration info at probe time, the cards could
* be run without BIOS support installed
*/
/*
* The sequencer will stick the frist byte of any rejected message here so
* we can see what is getting thrown away.
*/
#define HA_REJBYTE 0xc31
/*
* Pending message flag
*/
#define HA_MSG_FLAGS 0xc35
/*
* Length of pending message
*/
#define HA_MSG_LEN 0xc36
/*
* message body
*/
#define HA_MSG_START 0xc37 /* outgoing message body */
/*
* These are offsets into the card's scratch ram. Some of the values are
* specified in the AHA2742 technical reference manual and are initialized
* by the BIOS at boot time.
*/
#define HA_ARG_1 0xc4c
#define HA_ARG_2 0xc4d
#define HA_RETURN_1 0xc4c
#define HA_SIGSTATE 0xc4e
#define HA_NEEDSDTR 0xc4f
#define HA_SCSICONF 0xc5a
#define INTDEF 0xc5c
#define HA_HOSTCONF 0xc5d
#define HA_SCBCOUNT 0xc56
#define ACTIVE_A 0xc57
#define MSG_ABORT 0x06
/*
* Since the sequencer can disable pausing in a critical section, we
* must loop until it actually stops.
* XXX Should add a timeout in here!!
*/
#define PAUSE_SEQUENCER(ahc) \
outb(HCNTRL + ahc->baseport, REQ_PAUSE); \
\
while ((inb(HCNTRL + ahc->baseport) & PAUSE) == 0) \
;
#define UNPAUSE_SEQUENCER(ahc) \
outb( HCNTRL + ahc->baseport, ahc->unpause )
/*
* Restart the sequencer program from address zero
*/
#define RESTART_SEQUENCER(ahc) \
do { \
outb( SEQCTL + ahc->baseport, SEQRESET ); \
} while (inw(SEQADDR0 + ahc->baseport) != 0); \
\
UNPAUSE_SEQUENCER(ahc);
struct ahc_dma_seg {
physaddr addr;
long len;
};
/*
* The driver keeps up to four scb structures per card in memory. Only the
* first 26 bytes of the structure are valid for the hardware, the rest used
* for driver level bookeeping. The "__attribute ((packed))" tags ensure that
* gcc does not attempt to pad the long ints in the structure to word
* boundaries since the first 26 bytes of this structure must have the correct
* offsets for the hardware to find them. The driver should be further
* optimized so that we only have to download the first 14 bytes since as long
* as we always use S/G, the last fields should be zero anyway. Its mostly a
* matter of looking through the sequencer code and ensuring that those fields
* are cleared or loaded with a valid value before being read.
*/
struct scb {
/* ------------ Begin hardware supported fields ---------------- */
/*1*/ u_char control;
#define SCB_REJ_MDP 0x80 /* Reject MDP message */
#define SCB_DCE 0x40 /* Disconnect enable */
#define SCB_TE 0x20 /* Tag enable */
#define SCB_WAITING 0x06
#define SCB_DIS 0x04
#define SCB_TAG_TYPE 0x3
#define SIMPLE_QUEUE 0x0
#define HEAD_QUEUE 0x1
#define OR_QUEUE 0x2
/*2*/ u_char target_channel_lun; /* 4/1/3 bits */
/*3*/ u_char SG_segment_count;
/*7*/ physaddr SG_list_pointer __attribute__ ((packed));
/*11*/ physaddr cmdpointer __attribute__ ((packed));
/*12*/ u_char cmdlen;
/*14*/ u_char RESERVED[2]; /* must be zero */
/*15*/ u_char target_status;
/*18*/ u_char residual_data_count[3];
/*19*/ u_char residual_SG_segment_count;
/*23*/ physaddr data __attribute__ ((packed));
/*26*/ u_char datalen[3];
#define SCB_SIZE 26 /* amount to actually download */
#if 0
/*
* No real point in transferring this to the
* SCB registers.
*/
unsigned char RESERVED[6];
#endif
/*-----------------end of hardware supported fields----------------*/
struct scb *next; /* in free list */
struct scsi_xfer *xs; /* the scsi_xfer for this cmd */
int flags;
int position; /* Position in scbarray */
#define SCB_FREE 0
#define SCB_ACTIVE 1
#define SCB_ABORTED 2
#define SCB_IMMED 4
#define SCB_IMMED_FAIL 8
#define SCB_SENSE 16
struct ahc_dma_seg ahc_dma[AHC_NSEG] __attribute__ ((packed));
struct scsi_sense sense_cmd; /* SCSI command block */
};
struct ahc_data {
ahc_type type;
int flags;
#define AHC_INIT 0x01;
int baseport;
struct scb *scbarray[AHC_SCB_MAX]; /* Mirror boards scbarray */
struct scb *free_scb;
int our_id; /* our scsi id */
int vect;
struct scb *immed_ecb; /* an outstanding immediete command */
struct scsi_link sc_link;
int numscbs;
u_char maxscbs;
int unpause;
} *ahcdata[NAHC];
#ifdef AHCDEBUG
void
ahc_print_scb(scb)
struct scb *scb;
{
printf("scb:%x control:%x tcl:%x cmdlen:%d cmdpointer:%x\n"
,scb
,scb->control
,scb->target_channel_lun
,scb->cmdlen
,scb->cmdpointer );
printf(" datlen:%d data:%x res:%x segs:%x segp:%x\n"
,scb->datalen[2] << 16 | scb->datalen[1] << 8 | scb->datalen[0]
,scb->data
,scb->RESERVED[1] << 8 | scb->RESERVED[0]
,scb->SG_segment_count
,scb->SG_list_pointer);
printf(" sg_addr:%x sg_len:%d\n"
,scb->ahc_dma[0].addr
,scb->ahc_dma[0].len);
printf(" size:%d\n"
,(int)&(scb->next) - (int)scb);
}
void
ahc_print_active_scb(ahc)
struct ahc_data *ahc;
{
int cur_scb_offset;
int port = ahc->baseport;
PAUSE_SEQUENCER(ahc);
cur_scb_offset = inb(SCBPTR + port);
UNPAUSE_SEQUENCER(ahc);
ahc_print_scb(ahc->scbarray[cur_scb_offset]);
}
#define PARERR 0x08
#define ILLOPCODE 0x04
#define ILLSADDR 0x02
#define ILLHADDR 0x01
#endif
static struct {
u_char errno;
char *errmesg;
} hard_error[] = {
ILLHADDR, "Illegal Host Access",
ILLSADDR, "Illegal Sequencer Address referrenced",
ILLOPCODE, "Illegal Opcode in sequencer program",
PARERR, "Sequencer Ram Parity Error",
};
/*
* Valid SCSIRATE values. (p. 3-17)
* Provides a mapping of tranfer periods in ns to the proper value to
* stick in the scsiscfr reg to use that transfer rate.
*/
static struct {
short sxfr;
short period; /* in ns */
char *rate;
} ahc_syncrates[] = {
0x00, 100, "10.0",
0x10, 125, "8.0",
0x20, 150, "6.67",
0x30, 175, "5.7",
0x40, 200, "5.0",
0x50, 225, "4.4",
0x60, 250, "4.0",
0x70, 275, "3.6"
};
static int ahc_num_syncrates =
sizeof(ahc_syncrates) / sizeof(ahc_syncrates[0]);
int
ahcprobe(struct isa_device *dev)
{
int port;
int i;
u_char sig_id[4];
ahc_sig valid_ids[] = {
/* Entries of other tested adaptors should be added here */
AHC_274, 0x71, /*274x, Card*/
AHC_274, 0x70, /*274x, Motherboard*/
AHC_284, 0x56, /*284x, BIOS enabled*/
AHC_284, 0x57, /*284x, BIOS disabled*/
};
ahc_slot++;
while (ahc_slot <= MAX_SLOTS) {
port = 0x1000 * ahc_slot;
for( i = 0; i < sizeof(sig_id); i++ )
{
/*
* An outb is required to prime these registers on
* VL cards
*/
outb( port + HID0, HID0 + i );
sig_id[i] = inb(port + HID0 + i);
}
if (sig_id[0] == 0xff) {
ahc_slot++;
continue;
}
/* Check manufacturer's ID. */
if ((CHAR1(sig_id[0], sig_id[1]) == 'A')
&& (CHAR2(sig_id[0], sig_id[1]) == 'D')
&& (CHAR3(sig_id[0], sig_id[1]) == 'P')
&& (sig_id[2] == 0x77)) {
for( i = 0; i < sizeof(valid_ids)/sizeof(ahc_sig); i++)
if ( sig_id[3] == valid_ids[i].id ) {
dev->id_iobase = port;
return ahcprobe1(dev, valid_ids[i].type);
}
}
ahc_slot++;
}
return 0;
}
/*
* Check if the device can be found at the port given
* and if so, determine configuration and set it up for further work.
* As an argument, takes the isa_device structure from
* autoconf.c.
*/
int
ahcprobe1(dev, type)
struct isa_device *dev;
ahc_type type;
{
/*
* find unit and check we have that many defined
*/
int unit = dev->id_unit;
struct ahc_data *ahc;
if (unit >= NAHC) {
printf("ahc: unit number (%d) too high\n", unit);
return 0;
}
/*
* Allocate a storage area for us
*/
if (ahcdata[unit]) {
printf("ahc%d: memory already allocated\n", unit);
return 0;
}
ahc = malloc(sizeof(struct ahc_data), M_TEMP, M_NOWAIT);
if (!ahc) {
printf("ahc%d: cannot malloc!\n", unit);
return 0;
}
bzero(ahc, sizeof(struct ahc_data));
ahcdata[unit] = ahc;
ahc->baseport = dev->id_iobase;
ahc->type = type;
/*
* Try to initialize a unit at this location
* reset the AIC-7770, read its registers,
* and fill in the dev structure accordingly
*/
if (ahc_init(unit) != 0) {
ahcdata[unit] = NULL;
free(ahc, M_TEMP);
return (0);
}
/*
* If it's there, put in it's interrupt vectors
*/
dev->id_irq = (1 << ahc->vect);
dev->id_drq = -1; /* use EISA dma */
ahc_unit++;
return IO_EISASIZE;
}
/*
* Look up the valid period to SCSIRATE conversion in our table.
*/
static
void ahc_scsirate(scsirate, period, offset, unit, target )
u_char *scsirate;
u_char period, offset;
int unit, target;
{
int i;
for (i = 0; i < ahc_num_syncrates; i++) {
if ((ahc_syncrates[i].period - period) >= 0) {
*scsirate = (ahc_syncrates[i].sxfr) | (offset & 0x0f);
#ifdef AHCDEBUG
printf("ahc%d: target %d synchronous at %sMb/s\n",
unit, target, ahc_syncrates[i].rate );
#endif /* AHCDEBUG */
return;
}
}
/* Default to asyncronous transfer */
*scsirate = 0;
#ifdef AHCDEBUG
printf("ahc%d: target %d using asyncronous transfers\n",
unit, target );
#endif /* AHCDEBUG */
}
/*
* Attach all the sub-devices we can find
*/
int
ahc_attach(dev)
struct isa_device *dev;
{
int unit = dev->id_unit;
struct ahc_data *ahc = ahcdata[unit];
/*
* fill in the prototype scsi_link.
*/
ahc->sc_link.adapter_unit = unit;
ahc->sc_link.adapter_targ = ahc->our_id;
ahc->sc_link.adapter = &ahc_switch;
ahc->sc_link.device = &ahc_dev;
ahc->sc_link.flags = DEBUGLEVEL;
/*
* Here, we should really fill in up to two different sc_links,
* making use of the extra fields in the sc_link structure so
* we can know which channel any requests are for. Then its just
* a matter of doing a scsi_attachdevs to both instead of the one.
* This should be done when we get or write sequencer code that
* supports more than one channel. XXX
*/
/*
* ask the adapter what subunits are present
*/
scsi_attachdevs(&(ahc->sc_link));
return 1;
}
void
ahc_send_scb( ahc, scb )
struct ahc_data *ahc;
struct scb *scb;
{
int old_scbptr;
int base = ahc->baseport;
PAUSE_SEQUENCER(ahc);
old_scbptr = inb(SCBPTR + base);
outb(SCBPTR + base, scb->position);
outb(SCBCNT + base, SCBAUTO);
outsb(SCBARRAY + base, scb, SCB_SIZE);
outb(SCBCNT + base, 0);
outb(QINFIFO + base, scb->position);
outb(SCBPTR + base, old_scbptr);
UNPAUSE_SEQUENCER(ahc);
}
static
void ahc_getscb(base, scb)
int base;
struct scb *scb;
{
outb(SCBCNT + base, 0x80); /* SCBAUTO */
insb(SCBARRAY + base, scb, SCB_SIZE);
outb(SCBCNT + base, 0);
}
/*
* Catch an interrupt from the adaptor
*/
int
ahcintr(unit)
int unit;
{
int intstat;
u_char status;
struct ahc_data *ahc = ahcdata[unit];
int port = ahc->baseport;
struct scb *scb = NULL;
struct scsi_xfer *xs = NULL;
intstat = inb(INTSTAT + port);
if (intstat & BRKADRINT) {
/* We upset the sequencer :-( */
/* Lookup the error message */
int i, error = inb(ERROR + port);
int num_errors = sizeof(hard_error)/sizeof(hard_error[0]);
for(i = 0; error != 1 && i < num_errors; i++)
error >>= 1;
panic("ahc%d: brkadrint, %s at seqaddr = 0x%x\n",
unit, hard_error[i].errmesg, inw(SEQADDR0 + port));
}
if (intstat & SEQINT) {
unsigned char transfer, offset, rate;
switch (intstat & SEQINT_MASK) {
case BAD_PHASE:
panic("ahc%d: unknown scsi bus phase. "
"Attempting to continue\n", unit);
break;
case MSG_REJECT:
printf("ahc%d: Warning - "
"message reject, message type: 0x%x\n", unit,
inb(HA_REJBYTE + port));
break;
case NO_IDENT:
panic("ahc%d: No IDENTIFY message from reconnecting "
"target %d\n",
unit, (inb(SELID + port) >> 4) & 0xf);
break;
case NO_MATCH:
{
u_char active;
int target = (inb(SELID + port) >> 4) & 0x4;
printf("ahc%d: no active SCB for reconnecting "
"target %d - issuing ABORT\n",
unit, target);
active = inb(HA_SCBCOUNT + port);
printf("SCBCOUNT is %d\n", active);
DELAY(10000);
active = inb(ACTIVE_A + port);
active &= ~(0x01 << target);
outb(ACTIVE_A + port, active);
outb(CLRSINT1 + port, CLRSELTIMEO);
RESTART_SEQUENCER(ahc);
break;
}
case TRANS_RATE:
/*
* Help the sequencer to translate the negotiated
* transfer rate. Transfer is 1/4 the period
* in ns as is returned by the sync negotiation
* message. So, we must multiply by four
*/
transfer = inb(HA_ARG_1 + port) << 2;
/* The bottom half of SCSIXFER*/
offset = inb(HA_ARG_2 + port);
ahc_scsirate(&rate, transfer, offset, unit,
inb(SCSIID + port) >> 0x4);
outb(HA_RETURN_1 + port, rate);
break;
case BAD_STATUS:
{
int scb_index, saved_scb_index;
/* The sequencer will notify us when a command
* has an error that would be of interest to
* the kernel. This allows us to leave the sequencer
* running in the common case of command completes
* without error.
*/
scb_index = inb(SCBPTR + port);
scb = ahc->scbarray[scb_index];
if (!scb || !(scb->flags & SCB_ACTIVE)) {
printf("ahc%d: ahcintr - referenced scb not "
"valid during seqint 0x%x scb(%d)\n",
unit, intstat, scb_index);
goto clear;
}
xs = scb->xs;
ahc_getscb(port, scb);
#ifdef AHCDEBUG
if(xs->sc_link->target == DEBUGTARG)
ahc_print_scb(scb);
#endif
xs->status = scb->target_status;
xs->resid = ((scb->residual_data_count[2] << 16) |
(scb->residual_data_count[1] << 8) |
scb->residual_data_count[0]);
switch(scb->target_status){
case SCSI_OK:
printf("ahc%d: Interrupted for staus of "
"0???\n", unit);
break;
case SCSI_CHECK:
#ifdef AHCDEBUG
printf("ahc%d: SCSI Check requested\n", unit);
#endif
/*Priliminary code for requesting Sense */
/* Enable at your own risk */
#if STILL_NEEDS_TESTING
if((xs->error == XS_NOERROR) &&
!(scb->flags & SCB_SENSE))
{
struct ahc_dma_seg *sg = scb->ahc_dma;
struct scsi_sense *sc = &(scb->sense_cmd);
int scbsave[AHC_SCB_MAX], i;
int queued = inb(QINCNT + port);
#ifdef AHCDEBUG
printf("SENDING SENSE.\n");
#endif
bzero(scb, SCB_SIZE);
scb->flags |= SCB_SENSE;
xs->error = XS_SENSE;
sc->op_code = REQUEST_SENSE;
sc->byte2 = xs->sc_link->lun << 5;
sc->length = sizeof(struct scsi_sense_data);
scb->cmdlen = sizeof(*sc);
scb->cmdpointer = KVTOPHYS(sc);
scb->SG_segment_count = 1;
scb->SG_list_pointer = KVTOPHYS(sg);
sg->addr = KVTOPHYS(&xs->sense);
sg->len = sizeof(struct scsi_sense_data);
/*
* Reinsert us at head of
* queue
*/
outb(SCBCNT + port, 0x80);
outsb(SCBARRAY + port, scb, SCB_SIZE);
outb(SCBCNT + port, 0);
for (i = 0; i < queued; i++)
scbsave[i] = inb(QINFIFO + port);
outb(QINFIFO + port, scb->position);
for (i = 0; i < queued; i++)
outb(QINFIFO + port, scbsave[i]);
/* New lease on life */
untimeout(ahc_timeout, (caddr_t)scb);
timeout(ahc_timeout, (caddr_t)scb,
(xs->timeout * hz) / 1000);
goto clear;
}
#endif
xs->error = XS_DRIVER_STUFFUP;
break;
case SCSI_BUSY:
xs->error = XS_BUSY;
printf("ahc%d: Target Busy\n", unit);
break;
default:
#ifdef AHCDEBUG
if (ahc_debug & AHC_SHOWMISC)
{
printf("unexpected targ_status: %x\n",
scb->target_status);
}
#endif /*AHCDEBUG */
xs->error = XS_DRIVER_STUFFUP;
break;
}
untimeout(ahc_timeout, (caddr_t)scb);
ahc_done(unit, scb);
break;
}
default:
printf("ahc: seqint, "
"intstat = 0x%x, scsisigi = 0x%x\n",
intstat, inb(SCSISIGI + port));
break;
}
/*
* Clear the upper byte that holds SEQINT status
* codes and clear the SEQINT bit.
*/
clear:
outb(CLRINT + port, CLRSEQINT);
/*
* The sequencer is paused immediately on
* a SEQINT, so we should restart it when
* we leave this section.
*/
UNPAUSE_SEQUENCER(ahc);
}
if (intstat & SCSIINT) {
int scb_index = inb(SCBPTR + port);
status = inb(SSTAT1 + port);
scb = ahc->scbarray[scb_index];
if (!scb || scb->flags != SCB_ACTIVE) {
printf("ahc%d: ahcintr - referenced scb not "
"valid during scsiint 0x%x scb(%d)\n",
unit, status, scb_index);
outb(CLRSINT1 + port, status);
UNPAUSE_SEQUENCER(ahc);
outb(CLRINT + port, CLRINTSTAT);
scb = NULL;
goto cmdcomplete;
}
xs = scb->xs;
if (status & SELTO) {
u_char active;
outb(SCSISEQ + port, 0);
xs->error = XS_TIMEOUT;
/*
* Clear any pending messages for the timed out
* target, and mark the target as free
*/
outb(HA_MSG_FLAGS + port, 0);
active = inb(ACTIVE_A + port);
active &= ~(0x01 << xs->sc_link->target);
outb(ACTIVE_A + port, active);
outb(CLRSINT1 + port, CLRSELTIMEO);
RESTART_SEQUENCER(ahc);
outb(CLRINT + port, CLRINTSTAT);
}
if (status & SCSIPERR) {
printf("ahc%d: parity error on channel A "
"target %d, lun %d\n",
unit,
xs->sc_link->target,
xs->sc_link->lun);
xs->error = XS_DRIVER_STUFFUP;
outb(CLRSINT1 + port, CLRSCSIPERR);
UNPAUSE_SEQUENCER(ahc);
outb(CLRINT + port, CLRINTSTAT);
scb = NULL;
}
if (status & BUSFREE) {
#if 0
/*
* Has seen busfree since selection, i.e.
* a "spurious" selection. Shouldn't happen.
*/
printf("ahc: unexpected busfree\n");
xs->error = XS_DRIVER_STUFFUP;
outb(CLRSINT1 + port, BUSFREE); /* CLRBUSFREE */
#endif
}
else {
printf("ahc%d: Unknown SCSIINT. Status = 0x%x\n",
unit, status);
outb(CLRSINT1 + port, status);
UNPAUSE_SEQUENCER(ahc);
outb(CLRINT + port, CLRINTSTAT);
scb = NULL;
}
if(scb != NULL) {
/* We want to process the command */
untimeout(ahc_timeout, (caddr_t)scb);
ahc_done(unit, scb);
}
}
cmdcomplete:
if (intstat & CMDCMPLT) {
int scb_index, saved_scb_index;
do {
scb_index = inb(QOUTFIFO + port);
scb = ahc->scbarray[scb_index];
if (!scb || !(scb->flags & SCB_ACTIVE)) {
printf("ahc%d: WARNING "
"no command for scb %d (cmdcmplt)\n",
unit, scb_index);
outb(CLRINT + port, CLRCMDINT);
continue;
}
outb(CLRINT+ port, CLRCMDINT);
untimeout(ahc_timeout, (caddr_t)scb);
ahc_done(unit, scb);
} while (inb(QOUTCNT + port));
}
return 1;
}
/*
* We have a scb which has been processed by the
* adaptor, now we look to see how the operation
* went.
*/
void
ahc_done(unit, scb)
int unit;
struct scb *scb;
{
struct scsi_xfer *xs = scb->xs;
SC_DEBUG(xs->sc_link, SDEV_DB2, ("ahc_done\n"));
/*
* Put the results of the operation
* into the xfer and call whoever started it
*/
if ((xs->flags & SCSI_ERR_OK) && !(xs->error == XS_SENSE)) {
/* All went correctly OR errors expected */
xs->error = 0;
}
xs->flags |= ITSDONE;
ahc_free_scb(unit, scb, xs->flags);
scsi_done(xs);
}
/*
* Start the board, ready for normal operation
*/
int
ahc_init(unit)
int unit;
{
struct ahc_data *ahc = ahcdata[unit];
int port = ahc->baseport;
int intdef;
/*
* Assume we have a board at this stage
* Find out the configured interupt and the card type.
*/
printf("ahc%d: scb %d; SCB_SIZE %d, ahc_dma %d\n", unit,
sizeof(struct scb), SCB_SIZE, sizeof(struct ahc_dma_seg));
printf("ahc%d: reading board settings\n", unit);
outb(HCNTRL + port, CHIPRST);
switch( ahc->type ) {
case AHC_274:
printf("ahc%d: 274x", unit);
ahc->unpause = UNPAUSE_274X;
ahc->maxscbs = 0x4;
break;
case AHC_284:
printf("ahc%d: 284x", unit);
ahc->unpause = UNPAUSE_284X;
ahc->maxscbs = 0x4;
break;
default:
};
/* Determine channel configuration. */
switch ( inb(SBLKCTL + port) ) {
case 0:
printf(" Single Channel, ");
break;
case 2:
printf(" Wide SCSI configuration - Unsupported\n");
ahc->type += 2;
return(-1);
break;
case 8:
printf(" Twin Channel - ignoring channel B, ");
ahc->type += 1;
break;
default:
printf(" Unsupported adapter type. Ignoring\n");
return(-1);
}
intdef = inb(INTDEF + port);
switch (intdef & 0xf) {
case 9:
ahc->vect = 9;
break;
case 10:
ahc->vect = 10;
break;
case 11:
ahc->vect = 11;
break;
case 12:
ahc->vect = 12;
break;
case 14:
ahc->vect = 14;
break;
case 15:
ahc->vect = 15;
break;
default:
printf("illegal irq setting\n");
return (EIO);
}
printf("int=%d, ", ahc->vect);
/* who are we on the scsi bus? */
ahc->our_id = (inb(HA_SCSICONF + port) & HSCSIID);
printf("SCSI Id=%d\n", ahc->our_id);
/*
* Load the Sequencer program and Enable the adapter
*/
printf("ahc%d: Downloading Sequencer Program\n", unit);
ahc_loadseq(port);
outb(BCTL + port, ENABLE);
/* Reset the SCSI bus. Is this necessary? */
outb(SCSISEQ + port, SCSIRSTO);
DELAY(500);
outb(SCSISEQ + port, 0);
/*
* Attempt syncronous negotiation for all targets.
* Clear the pending messages flag
*/
outb( HA_NEEDSDTR + port, 0xff );
outb( HA_MSG_FLAGS + port, 0);
printf("SCBCOUNT == %d\n", ahc->maxscbs);
outb(HA_SCBCOUNT + port, ahc->maxscbs);
outb( ACTIVE_A + port, 0 );
UNPAUSE_SEQUENCER(ahc);
/*
* Note that we are going and return (to probe)
*/
ahc->flags |= AHC_INIT;
return (0);
}
void
ahcminphys(bp)
struct buf *bp;
{
/* Even though the card can transfer up to 16megs per command
* we are limited by the number of segments in the dma segment
* list that we can hold. The worst case is that all pages are
* discontinuous physically, hense the "page per segment" limit
* enforced here.
*/
if (bp->b_bcount > ((AHC_NSEG - 1) * PAGESIZ)) {
bp->b_bcount = ((AHC_NSEG - 1) * PAGESIZ);
}
}
/*
* start a scsi operation given the command and
* the data address, target, and lun all of which
* are stored in the scsi_xfer struct
*/
int32
ahc_scsi_cmd(xs)
struct scsi_xfer *xs;
{
struct scb *scb = NULL;
struct ahc_dma_seg *sg;
int seg; /* scatter gather seg being worked on */
int thiskv;
physaddr thisphys, nextphys;
int unit = xs->sc_link->adapter_unit;
int bytes_this_seg, bytes_this_page, datalen, flags;
struct ahc_data *ahc = ahcdata[unit];
int s;
SC_DEBUG(xs->sc_link, SDEV_DB2, ("ahc_scsi_cmd\n"));
/*
* get an scb to use. If the transfer
* is from a buf (possibly from interrupt time)
* then we can't allow it to sleep
*/
flags = xs->flags;
if (xs->bp)
flags |= (SCSI_NOSLEEP); /* just to be sure */
if (flags & ITSDONE) {
printf("ahc%d: Already done?", unit);
xs->flags &= ~ITSDONE;
}
if (!(flags & INUSE)) {
printf("ahc%d: Not in use?", unit);
xs->flags |= INUSE;
}
if (!(scb = ahc_get_scb(unit, flags))) {
xs->error = XS_DRIVER_STUFFUP;
return (TRY_AGAIN_LATER);
}
SC_DEBUG(xs->sc_link, SDEV_DB3, ("start scb(%x)\n", scb));
scb->xs = xs;
if (flags & SCSI_RESET) {
/* AR: Needs Implementation */
printf("ahc0: SCSI_RESET called.\n");
}
/*
* Put all the arguments for the xfer in the scb
*/
/* Note, Linux sequencer code does not support extra channels */
scb->target_channel_lun = ((xs->sc_link->target << 4) & 0xF0) |
xs->sc_link->lun & 0x7;
scb->cmdlen = xs->cmdlen;
scb->cmdpointer = KVTOPHYS(xs->cmd);
if (xs->datalen) { /* should use S/G only if not zero length */
scb->SG_list_pointer = KVTOPHYS(scb->ahc_dma);
sg = scb->ahc_dma;
seg = 0;
{
/*
* Set up the scatter gather block
*/
SC_DEBUG(xs->sc_link, SDEV_DB4,
("%d @0x%x:- ", xs->datalen, xs->data));
datalen = xs->datalen;
thiskv = (int) xs->data;
thisphys = KVTOPHYS(thiskv);
while ((datalen) && (seg < AHC_NSEG)) {
bytes_this_seg = 0;
/* put in the base address */
sg->addr = thisphys;
SC_DEBUGN(xs->sc_link, SDEV_DB4, ("0x%x", thisphys));
/* do it at least once */
nextphys = thisphys;
while ((datalen) && (thisphys == nextphys)) {
/*
* This page is contiguous (physically)
* with the the last, just extend the
* length
*/
/* how far to the end of the page */
nextphys = (thisphys & (~(PAGESIZ - 1)))
+ PAGESIZ;
bytes_this_page = nextphys - thisphys;
/**** or the data ****/
bytes_this_page = min(bytes_this_page
,datalen);
bytes_this_seg += bytes_this_page;
datalen -= bytes_this_page;
/* get more ready for the next page */
thiskv = (thiskv & (~(PAGESIZ - 1)))
+ PAGESIZ;
if (datalen)
thisphys = KVTOPHYS(thiskv);
}
/*
* next page isn't contiguous, finish the seg
*/
SC_DEBUGN(xs->sc_link, SDEV_DB4,
("(0x%x)", bytes_this_seg));
sg->len = bytes_this_seg;
sg++;
seg++;
}
} /*end of iov/kv decision */
scb->SG_segment_count = seg;
SC_DEBUGN(xs->sc_link, SDEV_DB4, ("\n"));
if (datalen) { /* there's still data, must have run out of segs! */
printf("ahc_scsi_cmd%d: more than %d DMA segs\n",
unit, AHC_NSEG);
xs->error = XS_DRIVER_STUFFUP;
ahc_free_scb(unit, scb, flags);
return (HAD_ERROR);
}
}
/* else No data xfer, use non S/G values
* the SG_segment_count and SG_list_pointer are pre-zeroed, so
* we don't have to do anything
*/
/*
* Usually return SUCCESSFULLY QUEUED
*/
#ifdef AHCDEBUG
if(xs->sc_link->target == DEBUGTARG)
ahc_print_scb(scb);
#endif
if (!(flags & SCSI_NOMASK)) {
s = splbio();
ahc_send_scb(ahc, scb);
timeout(ahc_timeout, (caddr_t)scb, (xs->timeout * hz) / 1000);
splx(s);
SC_DEBUG(xs->sc_link, SDEV_DB3, ("cmd_sent\n"));
return (SUCCESSFULLY_QUEUED);
}
/*
* If we can't use interrupts, poll on completion
*/
ahc_send_scb(ahc, scb);
SC_DEBUG(xs->sc_link, SDEV_DB3, ("cmd_wait\n"));
do {
if (ahc_poll(unit, xs->timeout)) {
if (!(xs->flags & SCSI_SILENT))
printf("cmd fail\n");
printf("cmd fail\n");
printf("Abort called. Someone implement me please!\n");
xs->error = XS_DRIVER_STUFFUP;
return (HAD_ERROR);
}
} while (!(xs->flags & ITSDONE)); /* something (?) else finished */
if (xs->error) {
return (HAD_ERROR);
}
return (COMPLETE);
}
/*
* Return some information to the caller about
* the adapter and it's capabilities.
*/
u_int32
ahc_adapter_info(unit)
int unit;
{
return (2); /* 2 outstanding requests at a time per device */
}
/*
* A scb (and hence an scb entry on the board is put onto the
* free list.
*/
void
ahc_free_scb(unit, scb, flags)
int unit, flags;
struct scb *scb;
{
unsigned int opri = 0;
struct ahc_data *ahc = ahcdata[unit];
if (!(flags & SCSI_NOMASK))
opri = splbio();
scb->next = ahc->free_scb;
ahc->free_scb = scb;
scb->flags = SCB_FREE;
/*
* If there were none, wake abybody waiting for
* one to come free, starting with queued entries
*/
if (!scb->next) {
wakeup((caddr_t)&ahc->free_scb);
}
if (!(flags & SCSI_NOMASK))
splx(opri);
}
/*
* Get a free scb
* If there are none, see if we can allocate a
* new one. Otherwise either return an error or sleep
*/
struct scb *
ahc_get_scb(unit, flags)
int unit, flags;
{
struct ahc_data *ahc = ahcdata[unit];
unsigned opri = 0;
struct scb *scbp;
int position;
if (!(flags & SCSI_NOMASK))
opri = splbio();
/*
* If we can and have to, sleep waiting for one to come free
* but only if we can't allocate a new one.
*/
while (!(scbp = ahc->free_scb)) {
if (ahc->numscbs < ahc->maxscbs) {
scbp = (struct scb *) malloc(sizeof(struct scb),
M_TEMP, M_NOWAIT);
if (scbp) {
bzero(scbp, sizeof(struct scb));
scbp->position = ahc->numscbs;
ahc->numscbs++;
scbp->flags = SCB_ACTIVE;
/*
* Place in the scbarray
* Never is removed. Position
* in ahc->scbarray is the scbarray
* position on the board we will
* load it into.
*/
ahc->scbarray[scbp->position] = scbp;
} else {
printf("ahc%d: Can't malloc SCB\n", unit);
} goto gottit;
} else {
if (!(flags & SCSI_NOSLEEP)) {
tsleep((caddr_t)&ahc->free_scb, PRIBIO,
"ahcscb", 0);
}
}
} if (scbp) {
/* Get SCB from from free list */
ahc->free_scb = scbp->next;
/* preserve the position */
position = scbp->position;
bzero(scbp, sizeof(struct scb));
scbp->flags = SCB_ACTIVE;
scbp->position = position;
}
gottit: if (!(flags & SCSI_NOMASK))
splx(opri);
return (scbp);
}
void ahc_loadseq(port)
int port;
{
extern unsigned char seqprog[];
outb(SEQCTL + port, PERRORDIS|SEQRESET|LOADRAM);
outsb(SEQRAM + port, seqprog, sizeof(seqprog));
outb(SEQCTL + port, 0);
do {
/* XXX Need a timer here? */
outb(SEQCTL + port, SEQRESET);
} while (inw(SEQADDR0 + port) != 0);
}
/*
* Function to poll for command completion when in poll mode
*/
int
ahc_poll(int unit, int wait)
{ /* in msec */
struct ahc_data *ahc = ahcdata[unit];
int port = ahc->baseport;
int stport = INTSTAT + port;
retry:
while (--wait) {
if (inb(stport) & INT_PEND)
break;
DELAY(1000);
} if (wait == 0) {
printf("ahc%d: board not responding\n", unit);
return (EIO);
}
ahcintr(unit);
return (0);
}
void
ahc_timeout(void *arg1)
{
struct scb *scb = (struct scb *)arg1;
int unit, cur_scb_offset, port;
struct ahc_data *ahc;
int s = splbio();
unit = scb->xs->sc_link->adapter_unit;
ahc = ahcdata[unit];
port = ahc->baseport;
printf("ahc%d: target %d, lun %d (%s%d) timed out ", unit
,scb->xs->sc_link->target
,scb->xs->sc_link->lun
,scb->xs->sc_link->device->name
,scb->xs->sc_link->dev_unit);
#if 0
#ifdef AHCDEBUG
if (ahc_debug & AHC_SHOWMISC)
ahc_print_active_scb(unit);
#endif /*AHCDEBUG */
#endif
/*
* If it's immediate, don't try abort it
*/
if (scb->flags & SCB_IMMED) {
scb->xs->retries = 0; /* I MEAN IT ! */
scb->flags |= SCB_IMMED_FAIL;
ahc_done(unit, scb);
splx(s);
return;
}
/*
* If it has been through before, then
* a previous abort has failed, don't
* try abort again
*/
if (scb->flags == SCB_ABORTED) {
/*
* abort timed out
*/
printf("AGAIN");
scb->xs->retries = 0; /* I MEAN IT ! */
ahc_done(unit, scb);
} else { /* abort the operation that has timed out */
printf("Abort unsupported!!!\n");
}
splx(s);
}