mirror of
https://git.FreeBSD.org/src.git
synced 2025-01-14 14:55:41 +00:00
1348 lines
43 KiB
C
1348 lines
43 KiB
C
/* Control flow optimization code for GNU compiler.
|
||
Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
|
||
1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify it under
|
||
the terms of the GNU General Public License as published by the Free
|
||
Software Foundation; either version 2, or (at your option) any later
|
||
version.
|
||
|
||
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
||
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING. If not, write to the Free
|
||
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
|
||
02110-1301, USA. */
|
||
|
||
/* Try to match two basic blocks - or their ends - for structural equivalence.
|
||
We scan the blocks from their ends backwards, and expect that insns are
|
||
identical, except for certain cases involving registers. A mismatch
|
||
We scan the blocks from their ends backwards, hoping to find a match, I.e.
|
||
insns are identical, except for certain cases involving registers. A
|
||
mismatch between register number RX (used in block X) and RY (used in the
|
||
same way in block Y) can be handled in one of the following cases:
|
||
1. RX and RY are local to their respective blocks; they are set there and
|
||
die there. If so, they can effectively be ignored.
|
||
2. RX and RY die in their blocks, but live at the start. If any path
|
||
gets redirected through X instead of Y, the caller must emit
|
||
compensation code to move RY to RX. If there are overlapping inputs,
|
||
the function resolve_input_conflict ensures that this can be done.
|
||
Information about these registers are tracked in the X_LOCAL, Y_LOCAL,
|
||
LOCAL_COUNT and LOCAL_RVALUE fields.
|
||
3. RX and RY live throughout their blocks, including the start and the end.
|
||
Either RX and RY must be identical, or we have to replace all uses in
|
||
block X with a new pseudo, which is stored in the INPUT_REG field. The
|
||
caller can then use block X instead of block Y by copying RY to the new
|
||
pseudo.
|
||
|
||
The main entry point to this file is struct_equiv_block_eq. This function
|
||
uses a struct equiv_info to accept some of its inputs, to keep track of its
|
||
internal state, to pass down to its helper functions, and to communicate
|
||
some of the results back to the caller.
|
||
|
||
Most scans will result in a failure to match a sufficient number of insns
|
||
to make any optimization worth while, therefore the process is geared more
|
||
to quick scanning rather than the ability to exactly backtrack when we
|
||
find a mismatch. The information gathered is still meaningful to make a
|
||
preliminary decision if we want to do an optimization, we might only
|
||
slightly overestimate the number of matchable insns, and underestimate
|
||
the number of inputs an miss an input conflict. Sufficient information
|
||
is gathered so that when we make another pass, we won't have to backtrack
|
||
at the same point.
|
||
Another issue is that information in memory attributes and/or REG_NOTES
|
||
might have to be merged or discarded to make a valid match. We don't want
|
||
to discard such information when we are not certain that we want to merge
|
||
the two (partial) blocks.
|
||
For these reasons, struct_equiv_block_eq has to be called first with the
|
||
STRUCT_EQUIV_START bit set in the mode parameter. This will calculate the
|
||
number of matched insns and the number and types of inputs. If the
|
||
need_rerun field is set, the results are only tentative, and the caller
|
||
has to call again with STRUCT_EQUIV_RERUN till need_rerun is false in
|
||
order to get a reliable match.
|
||
To install the changes necessary for the match, the function has to be
|
||
called again with STRUCT_EQUIV_FINAL.
|
||
|
||
While scanning an insn, we process first all the SET_DESTs, then the
|
||
SET_SRCes, then the REG_NOTES, in order to keep the register liveness
|
||
information consistent.
|
||
If we were to mix up the order for sources / destinations in an insn where
|
||
a source is also a destination, we'd end up being mistaken to think that
|
||
the register is not live in the preceding insn. */
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "coretypes.h"
|
||
#include "tm.h"
|
||
#include "rtl.h"
|
||
#include "regs.h"
|
||
#include "output.h"
|
||
#include "insn-config.h"
|
||
#include "flags.h"
|
||
#include "recog.h"
|
||
#include "tm_p.h"
|
||
#include "target.h"
|
||
#include "emit-rtl.h"
|
||
#include "reload.h"
|
||
|
||
static void merge_memattrs (rtx, rtx);
|
||
static bool set_dest_equiv_p (rtx x, rtx y, struct equiv_info *info);
|
||
static bool set_dest_addr_equiv_p (rtx x, rtx y, struct equiv_info *info);
|
||
static void find_dying_inputs (struct equiv_info *info);
|
||
static bool resolve_input_conflict (struct equiv_info *info);
|
||
|
||
/* After reload, some moves, as indicated by SECONDARY_RELOAD_CLASS and
|
||
SECONDARY_MEMORY_NEEDED, cannot be done directly. For our purposes, we
|
||
consider them impossible to generate after reload (even though some
|
||
might be synthesized when you throw enough code at them).
|
||
Since we don't know while processing a cross-jump if a local register
|
||
that is currently live will eventually be live and thus be an input,
|
||
we keep track of potential inputs that would require an impossible move
|
||
by using a prohibitively high cost for them.
|
||
This number, multiplied with the larger of STRUCT_EQUIV_MAX_LOCAL and
|
||
FIRST_PSEUDO_REGISTER, must fit in the input_cost field of
|
||
struct equiv_info. */
|
||
#define IMPOSSIBLE_MOVE_FACTOR 20000
|
||
|
||
|
||
|
||
/* Removes the memory attributes of MEM expression
|
||
if they are not equal. */
|
||
|
||
void
|
||
merge_memattrs (rtx x, rtx y)
|
||
{
|
||
int i;
|
||
int j;
|
||
enum rtx_code code;
|
||
const char *fmt;
|
||
|
||
if (x == y)
|
||
return;
|
||
if (x == 0 || y == 0)
|
||
return;
|
||
|
||
code = GET_CODE (x);
|
||
|
||
if (code != GET_CODE (y))
|
||
return;
|
||
|
||
if (GET_MODE (x) != GET_MODE (y))
|
||
return;
|
||
|
||
if (code == MEM && MEM_ATTRS (x) != MEM_ATTRS (y))
|
||
{
|
||
if (! MEM_ATTRS (x))
|
||
MEM_ATTRS (y) = 0;
|
||
else if (! MEM_ATTRS (y))
|
||
MEM_ATTRS (x) = 0;
|
||
else
|
||
{
|
||
rtx mem_size;
|
||
|
||
if (MEM_ALIAS_SET (x) != MEM_ALIAS_SET (y))
|
||
{
|
||
set_mem_alias_set (x, 0);
|
||
set_mem_alias_set (y, 0);
|
||
}
|
||
|
||
if (! mem_expr_equal_p (MEM_EXPR (x), MEM_EXPR (y)))
|
||
{
|
||
set_mem_expr (x, 0);
|
||
set_mem_expr (y, 0);
|
||
set_mem_offset (x, 0);
|
||
set_mem_offset (y, 0);
|
||
}
|
||
else if (MEM_OFFSET (x) != MEM_OFFSET (y))
|
||
{
|
||
set_mem_offset (x, 0);
|
||
set_mem_offset (y, 0);
|
||
}
|
||
|
||
if (!MEM_SIZE (x))
|
||
mem_size = NULL_RTX;
|
||
else if (!MEM_SIZE (y))
|
||
mem_size = NULL_RTX;
|
||
else
|
||
mem_size = GEN_INT (MAX (INTVAL (MEM_SIZE (x)),
|
||
INTVAL (MEM_SIZE (y))));
|
||
set_mem_size (x, mem_size);
|
||
set_mem_size (y, mem_size);
|
||
|
||
set_mem_align (x, MIN (MEM_ALIGN (x), MEM_ALIGN (y)));
|
||
set_mem_align (y, MEM_ALIGN (x));
|
||
}
|
||
}
|
||
|
||
fmt = GET_RTX_FORMAT (code);
|
||
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
||
{
|
||
switch (fmt[i])
|
||
{
|
||
case 'E':
|
||
/* Two vectors must have the same length. */
|
||
if (XVECLEN (x, i) != XVECLEN (y, i))
|
||
return;
|
||
|
||
for (j = 0; j < XVECLEN (x, i); j++)
|
||
merge_memattrs (XVECEXP (x, i, j), XVECEXP (y, i, j));
|
||
|
||
break;
|
||
|
||
case 'e':
|
||
merge_memattrs (XEXP (x, i), XEXP (y, i));
|
||
}
|
||
}
|
||
return;
|
||
}
|
||
|
||
/* In SET, assign the bit for the register number of REG the value VALUE.
|
||
If REG is a hard register, do so for all its constituent registers.
|
||
Return the number of registers that have become included (as a positive
|
||
number) or excluded (as a negative number). */
|
||
static int
|
||
assign_reg_reg_set (regset set, rtx reg, int value)
|
||
{
|
||
unsigned regno = REGNO (reg);
|
||
int nregs, i, old;
|
||
|
||
if (regno >= FIRST_PSEUDO_REGISTER)
|
||
{
|
||
gcc_assert (!reload_completed);
|
||
nregs = 1;
|
||
}
|
||
else
|
||
nregs = hard_regno_nregs[regno][GET_MODE (reg)];
|
||
for (old = 0, i = nregs; --i >= 0; regno++)
|
||
{
|
||
if ((value != 0) == REGNO_REG_SET_P (set, regno))
|
||
continue;
|
||
if (value)
|
||
old++, SET_REGNO_REG_SET (set, regno);
|
||
else
|
||
old--, CLEAR_REGNO_REG_SET (set, regno);
|
||
}
|
||
return old;
|
||
}
|
||
|
||
/* Record state about current inputs / local registers / liveness
|
||
in *P. */
|
||
static inline void
|
||
struct_equiv_make_checkpoint (struct struct_equiv_checkpoint *p,
|
||
struct equiv_info *info)
|
||
{
|
||
*p = info->cur;
|
||
}
|
||
|
||
/* Call struct_equiv_make_checkpoint (P, INFO) if the current partial block
|
||
is suitable to split off - i.e. there is no dangling cc0 user - and
|
||
if the current cost of the common instructions, minus the cost for
|
||
setting up the inputs, is higher than what has been recorded before
|
||
in CHECKPOINT[N]. Also, if we do so, confirm or cancel any pending
|
||
changes. */
|
||
static void
|
||
struct_equiv_improve_checkpoint (struct struct_equiv_checkpoint *p,
|
||
struct equiv_info *info)
|
||
{
|
||
#ifdef HAVE_cc0
|
||
if (reg_mentioned_p (cc0_rtx, info->cur.x_start)
|
||
&& !sets_cc0_p (info->cur.x_start))
|
||
return;
|
||
#endif
|
||
if (info->cur.input_count >= IMPOSSIBLE_MOVE_FACTOR)
|
||
return;
|
||
if (info->input_cost >= 0
|
||
? (COSTS_N_INSNS(info->cur.ninsns - p->ninsns)
|
||
> info->input_cost * (info->cur.input_count - p->input_count))
|
||
: info->cur.ninsns > p->ninsns && !info->cur.input_count)
|
||
{
|
||
if (info->check_input_conflict && ! resolve_input_conflict (info))
|
||
return;
|
||
/* We have a profitable set of changes. If this is the final pass,
|
||
commit them now. Otherwise, we don't know yet if we can make any
|
||
change, so put the old code back for now. */
|
||
if (info->mode & STRUCT_EQUIV_FINAL)
|
||
confirm_change_group ();
|
||
else
|
||
cancel_changes (0);
|
||
struct_equiv_make_checkpoint (p, info);
|
||
}
|
||
}
|
||
|
||
/* Restore state about current inputs / local registers / liveness
|
||
from P. */
|
||
static void
|
||
struct_equiv_restore_checkpoint (struct struct_equiv_checkpoint *p,
|
||
struct equiv_info *info)
|
||
{
|
||
info->cur.ninsns = p->ninsns;
|
||
info->cur.x_start = p->x_start;
|
||
info->cur.y_start = p->y_start;
|
||
info->cur.input_count = p->input_count;
|
||
info->cur.input_valid = p->input_valid;
|
||
while (info->cur.local_count > p->local_count)
|
||
{
|
||
info->cur.local_count--;
|
||
info->cur.version--;
|
||
if (REGNO_REG_SET_P (info->x_local_live,
|
||
REGNO (info->x_local[info->cur.local_count])))
|
||
{
|
||
assign_reg_reg_set (info->x_local_live,
|
||
info->x_local[info->cur.local_count], 0);
|
||
assign_reg_reg_set (info->y_local_live,
|
||
info->y_local[info->cur.local_count], 0);
|
||
info->cur.version--;
|
||
}
|
||
}
|
||
if (info->cur.version != p->version)
|
||
info->need_rerun = true;
|
||
}
|
||
|
||
|
||
/* Update register liveness to reflect that X is now life (if rvalue is
|
||
nonzero) or dead (if rvalue is zero) in INFO->x_block, and likewise Y
|
||
in INFO->y_block. Return the number of registers the liveness of which
|
||
changed in each block (as a negative number if registers became dead). */
|
||
static int
|
||
note_local_live (struct equiv_info *info, rtx x, rtx y, int rvalue)
|
||
{
|
||
unsigned x_regno = REGNO (x);
|
||
unsigned y_regno = REGNO (y);
|
||
int x_nominal_nregs = (x_regno >= FIRST_PSEUDO_REGISTER
|
||
? 1 : hard_regno_nregs[x_regno][GET_MODE (x)]);
|
||
int y_nominal_nregs = (y_regno >= FIRST_PSEUDO_REGISTER
|
||
? 1 : hard_regno_nregs[y_regno][GET_MODE (y)]);
|
||
int x_change = assign_reg_reg_set (info->x_local_live, x, rvalue);
|
||
int y_change = assign_reg_reg_set (info->y_local_live, y, rvalue);
|
||
|
||
gcc_assert (x_nominal_nregs && y_nominal_nregs);
|
||
gcc_assert (x_change * y_nominal_nregs == y_change * x_nominal_nregs);
|
||
if (y_change)
|
||
{
|
||
if (reload_completed)
|
||
{
|
||
unsigned x_regno ATTRIBUTE_UNUSED = REGNO (x);
|
||
unsigned y_regno = REGNO (y);
|
||
enum machine_mode x_mode = GET_MODE (x);
|
||
|
||
if (secondary_reload_class (0, REGNO_REG_CLASS (y_regno), x_mode, x)
|
||
!= NO_REGS
|
||
#ifdef SECONDARY_MEMORY_NEEDED
|
||
|| SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (y_regno),
|
||
REGNO_REG_CLASS (x_regno), x_mode)
|
||
#endif
|
||
)
|
||
y_change *= IMPOSSIBLE_MOVE_FACTOR;
|
||
}
|
||
info->cur.input_count += y_change;
|
||
info->cur.version++;
|
||
}
|
||
return x_change;
|
||
}
|
||
|
||
/* Check if *XP is equivalent to Y. Until an an unreconcilable difference is
|
||
found, use in-group changes with validate_change on *XP to make register
|
||
assignments agree. It is the (not necessarily direct) callers
|
||
responsibility to verify / confirm / cancel these changes, as appropriate.
|
||
RVALUE indicates if the processed piece of rtl is used as a destination, in
|
||
which case we can't have different registers being an input. Returns
|
||
nonzero if the two blocks have been identified as equivalent, zero otherwise.
|
||
RVALUE == 0: destination
|
||
RVALUE == 1: source
|
||
RVALUE == -1: source, ignore SET_DEST of SET / clobber. */
|
||
bool
|
||
rtx_equiv_p (rtx *xp, rtx y, int rvalue, struct equiv_info *info)
|
||
{
|
||
rtx x = *xp;
|
||
enum rtx_code code;
|
||
int length;
|
||
const char *format;
|
||
int i;
|
||
|
||
if (!y || !x)
|
||
return x == y;
|
||
code = GET_CODE (y);
|
||
if (code != REG && x == y)
|
||
return true;
|
||
if (GET_CODE (x) != code
|
||
|| GET_MODE (x) != GET_MODE (y))
|
||
return false;
|
||
|
||
/* ??? could extend to allow CONST_INT inputs. */
|
||
switch (code)
|
||
{
|
||
case REG:
|
||
{
|
||
unsigned x_regno = REGNO (x);
|
||
unsigned y_regno = REGNO (y);
|
||
int x_common_live, y_common_live;
|
||
|
||
if (reload_completed
|
||
&& (x_regno >= FIRST_PSEUDO_REGISTER
|
||
|| y_regno >= FIRST_PSEUDO_REGISTER))
|
||
{
|
||
/* We should only see this in REG_NOTEs. */
|
||
gcc_assert (!info->live_update);
|
||
/* Returning false will cause us to remove the notes. */
|
||
return false;
|
||
}
|
||
#ifdef STACK_REGS
|
||
/* After reg-stack, can only accept literal matches of stack regs. */
|
||
if (info->mode & CLEANUP_POST_REGSTACK
|
||
&& (IN_RANGE (x_regno, FIRST_STACK_REG, LAST_STACK_REG)
|
||
|| IN_RANGE (y_regno, FIRST_STACK_REG, LAST_STACK_REG)))
|
||
return x_regno == y_regno;
|
||
#endif
|
||
|
||
/* If the register is a locally live one in one block, the
|
||
corresponding one must be locally live in the other, too, and
|
||
match of identical regnos doesn't apply. */
|
||
if (REGNO_REG_SET_P (info->x_local_live, x_regno))
|
||
{
|
||
if (!REGNO_REG_SET_P (info->y_local_live, y_regno))
|
||
return false;
|
||
}
|
||
else if (REGNO_REG_SET_P (info->y_local_live, y_regno))
|
||
return false;
|
||
else if (x_regno == y_regno)
|
||
{
|
||
if (!rvalue && info->cur.input_valid
|
||
&& (reg_overlap_mentioned_p (x, info->x_input)
|
||
|| reg_overlap_mentioned_p (x, info->y_input)))
|
||
return false;
|
||
|
||
/* Update liveness information. */
|
||
if (info->live_update
|
||
&& assign_reg_reg_set (info->common_live, x, rvalue))
|
||
info->cur.version++;
|
||
|
||
return true;
|
||
}
|
||
|
||
x_common_live = REGNO_REG_SET_P (info->common_live, x_regno);
|
||
y_common_live = REGNO_REG_SET_P (info->common_live, y_regno);
|
||
if (x_common_live != y_common_live)
|
||
return false;
|
||
else if (x_common_live)
|
||
{
|
||
if (! rvalue || info->input_cost < 0 || no_new_pseudos)
|
||
return false;
|
||
/* If info->live_update is not set, we are processing notes.
|
||
We then allow a match with x_input / y_input found in a
|
||
previous pass. */
|
||
if (info->live_update && !info->cur.input_valid)
|
||
{
|
||
info->cur.input_valid = true;
|
||
info->x_input = x;
|
||
info->y_input = y;
|
||
info->cur.input_count += optimize_size ? 2 : 1;
|
||
if (info->input_reg
|
||
&& GET_MODE (info->input_reg) != GET_MODE (info->x_input))
|
||
info->input_reg = NULL_RTX;
|
||
if (!info->input_reg)
|
||
info->input_reg = gen_reg_rtx (GET_MODE (info->x_input));
|
||
}
|
||
else if ((info->live_update
|
||
? ! info->cur.input_valid : ! info->x_input)
|
||
|| ! rtx_equal_p (x, info->x_input)
|
||
|| ! rtx_equal_p (y, info->y_input))
|
||
return false;
|
||
validate_change (info->cur.x_start, xp, info->input_reg, 1);
|
||
}
|
||
else
|
||
{
|
||
int x_nregs = (x_regno >= FIRST_PSEUDO_REGISTER
|
||
? 1 : hard_regno_nregs[x_regno][GET_MODE (x)]);
|
||
int y_nregs = (y_regno >= FIRST_PSEUDO_REGISTER
|
||
? 1 : hard_regno_nregs[y_regno][GET_MODE (y)]);
|
||
int size = GET_MODE_SIZE (GET_MODE (x));
|
||
enum machine_mode x_mode = GET_MODE (x);
|
||
unsigned x_regno_i, y_regno_i;
|
||
int x_nregs_i, y_nregs_i, size_i;
|
||
int local_count = info->cur.local_count;
|
||
|
||
/* This might be a register local to each block. See if we have
|
||
it already registered. */
|
||
for (i = local_count - 1; i >= 0; i--)
|
||
{
|
||
x_regno_i = REGNO (info->x_local[i]);
|
||
x_nregs_i = (x_regno_i >= FIRST_PSEUDO_REGISTER
|
||
? 1 : hard_regno_nregs[x_regno_i][GET_MODE (x)]);
|
||
y_regno_i = REGNO (info->y_local[i]);
|
||
y_nregs_i = (y_regno_i >= FIRST_PSEUDO_REGISTER
|
||
? 1 : hard_regno_nregs[y_regno_i][GET_MODE (y)]);
|
||
size_i = GET_MODE_SIZE (GET_MODE (info->x_local[i]));
|
||
|
||
/* If we have a new pair of registers that is wider than an
|
||
old pair and enclosing it with matching offsets,
|
||
remove the old pair. If we find a matching, wider, old
|
||
pair, use the old one. If the width is the same, use the
|
||
old one if the modes match, but the new if they don't.
|
||
We don't want to get too fancy with subreg_regno_offset
|
||
here, so we just test two straightforward cases each. */
|
||
if (info->live_update
|
||
&& (x_mode != GET_MODE (info->x_local[i])
|
||
? size >= size_i : size > size_i))
|
||
{
|
||
/* If the new pair is fully enclosing a matching
|
||
existing pair, remove the old one. N.B. because
|
||
we are removing one entry here, the check below
|
||
if we have space for a new entry will succeed. */
|
||
if ((x_regno <= x_regno_i
|
||
&& x_regno + x_nregs >= x_regno_i + x_nregs_i
|
||
&& x_nregs == y_nregs && x_nregs_i == y_nregs_i
|
||
&& x_regno - x_regno_i == y_regno - y_regno_i)
|
||
|| (x_regno == x_regno_i && y_regno == y_regno_i
|
||
&& x_nregs >= x_nregs_i && y_nregs >= y_nregs_i))
|
||
{
|
||
info->cur.local_count = --local_count;
|
||
info->x_local[i] = info->x_local[local_count];
|
||
info->y_local[i] = info->y_local[local_count];
|
||
continue;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
|
||
/* If the new pair is fully enclosed within a matching
|
||
existing pair, succeed. */
|
||
if (x_regno >= x_regno_i
|
||
&& x_regno + x_nregs <= x_regno_i + x_nregs_i
|
||
&& x_nregs == y_nregs && x_nregs_i == y_nregs_i
|
||
&& x_regno - x_regno_i == y_regno - y_regno_i)
|
||
break;
|
||
if (x_regno == x_regno_i && y_regno == y_regno_i
|
||
&& x_nregs <= x_nregs_i && y_nregs <= y_nregs_i)
|
||
break;
|
||
}
|
||
|
||
/* Any other overlap causes a match failure. */
|
||
if (x_regno + x_nregs > x_regno_i
|
||
&& x_regno_i + x_nregs_i > x_regno)
|
||
return false;
|
||
if (y_regno + y_nregs > y_regno_i
|
||
&& y_regno_i + y_nregs_i > y_regno)
|
||
return false;
|
||
}
|
||
if (i < 0)
|
||
{
|
||
/* Not found. Create a new entry if possible. */
|
||
if (!info->live_update
|
||
|| info->cur.local_count >= STRUCT_EQUIV_MAX_LOCAL)
|
||
return false;
|
||
info->x_local[info->cur.local_count] = x;
|
||
info->y_local[info->cur.local_count] = y;
|
||
info->cur.local_count++;
|
||
info->cur.version++;
|
||
}
|
||
note_local_live (info, x, y, rvalue);
|
||
}
|
||
return true;
|
||
}
|
||
case SET:
|
||
gcc_assert (rvalue < 0);
|
||
/* Ignore the destinations role as a destination. Still, we have
|
||
to consider input registers embedded in the addresses of a MEM.
|
||
N.B., we process the rvalue aspect of STRICT_LOW_PART /
|
||
ZERO_EXTEND / SIGN_EXTEND along with their lvalue aspect. */
|
||
if(!set_dest_addr_equiv_p (SET_DEST (x), SET_DEST (y), info))
|
||
return false;
|
||
/* Process source. */
|
||
return rtx_equiv_p (&SET_SRC (x), SET_SRC (y), 1, info);
|
||
case PRE_MODIFY:
|
||
/* Process destination. */
|
||
if (!rtx_equiv_p (&XEXP (x, 0), XEXP (y, 0), 0, info))
|
||
return false;
|
||
/* Process source. */
|
||
return rtx_equiv_p (&XEXP (x, 1), XEXP (y, 1), 1, info);
|
||
case POST_MODIFY:
|
||
{
|
||
rtx x_dest0, x_dest1;
|
||
|
||
/* Process destination. */
|
||
x_dest0 = XEXP (x, 0);
|
||
gcc_assert (REG_P (x_dest0));
|
||
if (!rtx_equiv_p (&XEXP (x, 0), XEXP (y, 0), 0, info))
|
||
return false;
|
||
x_dest1 = XEXP (x, 0);
|
||
/* validate_change might have changed the destination. Put it back
|
||
so that we can do a proper match for its role a an input. */
|
||
XEXP (x, 0) = x_dest0;
|
||
if (!rtx_equiv_p (&XEXP (x, 0), XEXP (y, 0), 1, info))
|
||
return false;
|
||
gcc_assert (x_dest1 == XEXP (x, 0));
|
||
/* Process source. */
|
||
return rtx_equiv_p (&XEXP (x, 1), XEXP (y, 1), 1, info);
|
||
}
|
||
case CLOBBER:
|
||
gcc_assert (rvalue < 0);
|
||
return true;
|
||
/* Some special forms are also rvalues when they appear in lvalue
|
||
positions. However, we must ont try to match a register after we
|
||
have already altered it with validate_change, consider the rvalue
|
||
aspect while we process the lvalue. */
|
||
case STRICT_LOW_PART:
|
||
case ZERO_EXTEND:
|
||
case SIGN_EXTEND:
|
||
{
|
||
rtx x_inner, y_inner;
|
||
enum rtx_code code;
|
||
int change;
|
||
|
||
if (rvalue)
|
||
break;
|
||
x_inner = XEXP (x, 0);
|
||
y_inner = XEXP (y, 0);
|
||
if (GET_MODE (x_inner) != GET_MODE (y_inner))
|
||
return false;
|
||
code = GET_CODE (x_inner);
|
||
if (code != GET_CODE (y_inner))
|
||
return false;
|
||
/* The address of a MEM is an input that will be processed during
|
||
rvalue == -1 processing. */
|
||
if (code == SUBREG)
|
||
{
|
||
if (SUBREG_BYTE (x_inner) != SUBREG_BYTE (y_inner))
|
||
return false;
|
||
x = x_inner;
|
||
x_inner = SUBREG_REG (x_inner);
|
||
y_inner = SUBREG_REG (y_inner);
|
||
if (GET_MODE (x_inner) != GET_MODE (y_inner))
|
||
return false;
|
||
code = GET_CODE (x_inner);
|
||
if (code != GET_CODE (y_inner))
|
||
return false;
|
||
}
|
||
if (code == MEM)
|
||
return true;
|
||
gcc_assert (code == REG);
|
||
if (! rtx_equiv_p (&XEXP (x, 0), y_inner, rvalue, info))
|
||
return false;
|
||
if (REGNO (x_inner) == REGNO (y_inner))
|
||
{
|
||
change = assign_reg_reg_set (info->common_live, x_inner, 1);
|
||
info->cur.version++;
|
||
}
|
||
else
|
||
change = note_local_live (info, x_inner, y_inner, 1);
|
||
gcc_assert (change);
|
||
return true;
|
||
}
|
||
/* The AUTO_INC / POST_MODIFY / PRE_MODIFY sets are modelled to take
|
||
place during input processing, however, that is benign, since they
|
||
are paired with reads. */
|
||
case MEM:
|
||
return !rvalue || rtx_equiv_p (&XEXP (x, 0), XEXP (y, 0), rvalue, info);
|
||
case POST_INC: case POST_DEC: case PRE_INC: case PRE_DEC:
|
||
return (rtx_equiv_p (&XEXP (x, 0), XEXP (y, 0), 0, info)
|
||
&& rtx_equiv_p (&XEXP (x, 0), XEXP (y, 0), 1, info));
|
||
case PARALLEL:
|
||
/* If this is a top-level PATTERN PARALLEL, we expect the caller to
|
||
have handled the SET_DESTs. A complex or vector PARALLEL can be
|
||
identified by having a mode. */
|
||
gcc_assert (rvalue < 0 || GET_MODE (x) != VOIDmode);
|
||
break;
|
||
case LABEL_REF:
|
||
/* Check special tablejump match case. */
|
||
if (XEXP (y, 0) == info->y_label)
|
||
return (XEXP (x, 0) == info->x_label);
|
||
/* We can't assume nonlocal labels have their following insns yet. */
|
||
if (LABEL_REF_NONLOCAL_P (x) || LABEL_REF_NONLOCAL_P (y))
|
||
return XEXP (x, 0) == XEXP (y, 0);
|
||
|
||
/* Two label-refs are equivalent if they point at labels
|
||
in the same position in the instruction stream. */
|
||
return (next_real_insn (XEXP (x, 0))
|
||
== next_real_insn (XEXP (y, 0)));
|
||
case SYMBOL_REF:
|
||
return XSTR (x, 0) == XSTR (y, 0);
|
||
/* Some rtl is guaranteed to be shared, or unique; If we didn't match
|
||
EQ equality above, they aren't the same. */
|
||
case CONST_INT:
|
||
case CODE_LABEL:
|
||
return false;
|
||
default:
|
||
break;
|
||
}
|
||
|
||
/* For commutative operations, the RTX match if the operands match in any
|
||
order. */
|
||
if (targetm.commutative_p (x, UNKNOWN))
|
||
return ((rtx_equiv_p (&XEXP (x, 0), XEXP (y, 0), rvalue, info)
|
||
&& rtx_equiv_p (&XEXP (x, 1), XEXP (y, 1), rvalue, info))
|
||
|| (rtx_equiv_p (&XEXP (x, 0), XEXP (y, 1), rvalue, info)
|
||
&& rtx_equiv_p (&XEXP (x, 1), XEXP (y, 0), rvalue, info)));
|
||
|
||
/* Process subexpressions - this is similar to rtx_equal_p. */
|
||
length = GET_RTX_LENGTH (code);
|
||
format = GET_RTX_FORMAT (code);
|
||
|
||
for (i = 0; i < length; ++i)
|
||
{
|
||
switch (format[i])
|
||
{
|
||
case 'w':
|
||
if (XWINT (x, i) != XWINT (y, i))
|
||
return false;
|
||
break;
|
||
case 'n':
|
||
case 'i':
|
||
if (XINT (x, i) != XINT (y, i))
|
||
return false;
|
||
break;
|
||
case 'V':
|
||
case 'E':
|
||
if (XVECLEN (x, i) != XVECLEN (y, i))
|
||
return false;
|
||
if (XVEC (x, i) != 0)
|
||
{
|
||
int j;
|
||
for (j = 0; j < XVECLEN (x, i); ++j)
|
||
{
|
||
if (! rtx_equiv_p (&XVECEXP (x, i, j), XVECEXP (y, i, j),
|
||
rvalue, info))
|
||
return false;
|
||
}
|
||
}
|
||
break;
|
||
case 'e':
|
||
if (! rtx_equiv_p (&XEXP (x, i), XEXP (y, i), rvalue, info))
|
||
return false;
|
||
break;
|
||
case 'S':
|
||
case 's':
|
||
if ((XSTR (x, i) || XSTR (y, i))
|
||
&& (! XSTR (x, i) || ! XSTR (y, i)
|
||
|| strcmp (XSTR (x, i), XSTR (y, i))))
|
||
return false;
|
||
break;
|
||
case 'u':
|
||
/* These are just backpointers, so they don't matter. */
|
||
break;
|
||
case '0':
|
||
case 't':
|
||
break;
|
||
/* It is believed that rtx's at this level will never
|
||
contain anything but integers and other rtx's,
|
||
except for within LABEL_REFs and SYMBOL_REFs. */
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
return true;
|
||
}
|
||
|
||
/* Do only the rtx_equiv_p SET_DEST processing for SETs and CLOBBERs.
|
||
Since we are scanning backwards, this the first step in processing each
|
||
insn. Return true for success. */
|
||
static bool
|
||
set_dest_equiv_p (rtx x, rtx y, struct equiv_info *info)
|
||
{
|
||
if (!x || !y)
|
||
return x == y;
|
||
if (GET_CODE (x) != GET_CODE (y))
|
||
return false;
|
||
else if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
|
||
return rtx_equiv_p (&XEXP (x, 0), XEXP (y, 0), 0, info);
|
||
else if (GET_CODE (x) == PARALLEL)
|
||
{
|
||
int j;
|
||
|
||
if (XVECLEN (x, 0) != XVECLEN (y, 0))
|
||
return false;
|
||
for (j = 0; j < XVECLEN (x, 0); ++j)
|
||
{
|
||
rtx xe = XVECEXP (x, 0, j);
|
||
rtx ye = XVECEXP (y, 0, j);
|
||
|
||
if (GET_CODE (xe) != GET_CODE (ye))
|
||
return false;
|
||
if ((GET_CODE (xe) == SET || GET_CODE (xe) == CLOBBER)
|
||
&& ! rtx_equiv_p (&XEXP (xe, 0), XEXP (ye, 0), 0, info))
|
||
return false;
|
||
}
|
||
}
|
||
return true;
|
||
}
|
||
|
||
/* Process MEMs in SET_DEST destinations. We must not process this together
|
||
with REG SET_DESTs, but must do it separately, lest when we see
|
||
[(set (reg:SI foo) (bar))
|
||
(set (mem:SI (reg:SI foo) (baz)))]
|
||
struct_equiv_block_eq could get confused to assume that (reg:SI foo)
|
||
is not live before this instruction. */
|
||
static bool
|
||
set_dest_addr_equiv_p (rtx x, rtx y, struct equiv_info *info)
|
||
{
|
||
enum rtx_code code = GET_CODE (x);
|
||
int length;
|
||
const char *format;
|
||
int i;
|
||
|
||
if (code != GET_CODE (y))
|
||
return false;
|
||
if (code == MEM)
|
||
return rtx_equiv_p (&XEXP (x, 0), XEXP (y, 0), 1, info);
|
||
|
||
/* Process subexpressions. */
|
||
length = GET_RTX_LENGTH (code);
|
||
format = GET_RTX_FORMAT (code);
|
||
|
||
for (i = 0; i < length; ++i)
|
||
{
|
||
switch (format[i])
|
||
{
|
||
case 'V':
|
||
case 'E':
|
||
if (XVECLEN (x, i) != XVECLEN (y, i))
|
||
return false;
|
||
if (XVEC (x, i) != 0)
|
||
{
|
||
int j;
|
||
for (j = 0; j < XVECLEN (x, i); ++j)
|
||
{
|
||
if (! set_dest_addr_equiv_p (XVECEXP (x, i, j),
|
||
XVECEXP (y, i, j), info))
|
||
return false;
|
||
}
|
||
}
|
||
break;
|
||
case 'e':
|
||
if (! set_dest_addr_equiv_p (XEXP (x, i), XEXP (y, i), info))
|
||
return false;
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
return true;
|
||
}
|
||
|
||
/* Check if the set of REG_DEAD notes attached to I1 and I2 allows us to
|
||
go ahead with merging I1 and I2, which otherwise look fine.
|
||
Inputs / local registers for the inputs of I1 and I2 have already been
|
||
set up. */
|
||
static bool
|
||
death_notes_match_p (rtx i1 ATTRIBUTE_UNUSED, rtx i2 ATTRIBUTE_UNUSED,
|
||
struct equiv_info *info ATTRIBUTE_UNUSED)
|
||
{
|
||
#ifdef STACK_REGS
|
||
/* If cross_jump_death_matters is not 0, the insn's mode
|
||
indicates whether or not the insn contains any stack-like regs. */
|
||
|
||
if ((info->mode & CLEANUP_POST_REGSTACK) && stack_regs_mentioned (i1))
|
||
{
|
||
/* If register stack conversion has already been done, then
|
||
death notes must also be compared before it is certain that
|
||
the two instruction streams match. */
|
||
|
||
rtx note;
|
||
HARD_REG_SET i1_regset, i2_regset;
|
||
|
||
CLEAR_HARD_REG_SET (i1_regset);
|
||
CLEAR_HARD_REG_SET (i2_regset);
|
||
|
||
for (note = REG_NOTES (i1); note; note = XEXP (note, 1))
|
||
if (REG_NOTE_KIND (note) == REG_DEAD && STACK_REG_P (XEXP (note, 0)))
|
||
SET_HARD_REG_BIT (i1_regset, REGNO (XEXP (note, 0)));
|
||
|
||
for (note = REG_NOTES (i2); note; note = XEXP (note, 1))
|
||
if (REG_NOTE_KIND (note) == REG_DEAD && STACK_REG_P (XEXP (note, 0)))
|
||
{
|
||
unsigned regno = REGNO (XEXP (note, 0));
|
||
int i;
|
||
|
||
for (i = info->cur.local_count - 1; i >= 0; i--)
|
||
if (regno == REGNO (info->y_local[i]))
|
||
{
|
||
regno = REGNO (info->x_local[i]);
|
||
break;
|
||
}
|
||
SET_HARD_REG_BIT (i2_regset, regno);
|
||
}
|
||
|
||
GO_IF_HARD_REG_EQUAL (i1_regset, i2_regset, done);
|
||
|
||
return false;
|
||
|
||
done:
|
||
;
|
||
}
|
||
#endif
|
||
return true;
|
||
}
|
||
|
||
/* Return true if I1 and I2 are equivalent and thus can be crossjumped. */
|
||
|
||
bool
|
||
insns_match_p (rtx i1, rtx i2, struct equiv_info *info)
|
||
{
|
||
int rvalue_change_start;
|
||
struct struct_equiv_checkpoint before_rvalue_change;
|
||
|
||
/* Verify that I1 and I2 are equivalent. */
|
||
if (GET_CODE (i1) != GET_CODE (i2))
|
||
return false;
|
||
|
||
info->cur.x_start = i1;
|
||
info->cur.y_start = i2;
|
||
|
||
/* If this is a CALL_INSN, compare register usage information.
|
||
If we don't check this on stack register machines, the two
|
||
CALL_INSNs might be merged leaving reg-stack.c with mismatching
|
||
numbers of stack registers in the same basic block.
|
||
If we don't check this on machines with delay slots, a delay slot may
|
||
be filled that clobbers a parameter expected by the subroutine.
|
||
|
||
??? We take the simple route for now and assume that if they're
|
||
equal, they were constructed identically. */
|
||
|
||
if (CALL_P (i1))
|
||
{
|
||
if (SIBLING_CALL_P (i1) != SIBLING_CALL_P (i2)
|
||
|| ! set_dest_equiv_p (PATTERN (i1), PATTERN (i2), info)
|
||
|| ! set_dest_equiv_p (CALL_INSN_FUNCTION_USAGE (i1),
|
||
CALL_INSN_FUNCTION_USAGE (i2), info)
|
||
|| ! rtx_equiv_p (&CALL_INSN_FUNCTION_USAGE (i1),
|
||
CALL_INSN_FUNCTION_USAGE (i2), -1, info))
|
||
{
|
||
cancel_changes (0);
|
||
return false;
|
||
}
|
||
}
|
||
else if (INSN_P (i1))
|
||
{
|
||
if (! set_dest_equiv_p (PATTERN (i1), PATTERN (i2), info))
|
||
{
|
||
cancel_changes (0);
|
||
return false;
|
||
}
|
||
}
|
||
rvalue_change_start = num_validated_changes ();
|
||
struct_equiv_make_checkpoint (&before_rvalue_change, info);
|
||
/* Check death_notes_match_p *after* the inputs have been processed,
|
||
so that local inputs will already have been set up. */
|
||
if (! INSN_P (i1)
|
||
|| (!bitmap_bit_p (info->equiv_used, info->cur.ninsns)
|
||
&& rtx_equiv_p (&PATTERN (i1), PATTERN (i2), -1, info)
|
||
&& death_notes_match_p (i1, i2, info)
|
||
&& verify_changes (0)))
|
||
return true;
|
||
|
||
/* Do not do EQUIV substitution after reload. First, we're undoing the
|
||
work of reload_cse. Second, we may be undoing the work of the post-
|
||
reload splitting pass. */
|
||
/* ??? Possibly add a new phase switch variable that can be used by
|
||
targets to disallow the troublesome insns after splitting. */
|
||
if (!reload_completed)
|
||
{
|
||
rtx equiv1, equiv2;
|
||
|
||
cancel_changes (rvalue_change_start);
|
||
struct_equiv_restore_checkpoint (&before_rvalue_change, info);
|
||
|
||
/* The following code helps take care of G++ cleanups. */
|
||
equiv1 = find_reg_equal_equiv_note (i1);
|
||
equiv2 = find_reg_equal_equiv_note (i2);
|
||
if (equiv1 && equiv2
|
||
/* If the equivalences are not to a constant, they may
|
||
reference pseudos that no longer exist, so we can't
|
||
use them. */
|
||
&& (! reload_completed
|
||
|| (CONSTANT_P (XEXP (equiv1, 0))
|
||
&& rtx_equal_p (XEXP (equiv1, 0), XEXP (equiv2, 0)))))
|
||
{
|
||
rtx s1 = single_set (i1);
|
||
rtx s2 = single_set (i2);
|
||
|
||
if (s1 != 0 && s2 != 0)
|
||
{
|
||
validate_change (i1, &SET_SRC (s1), XEXP (equiv1, 0), 1);
|
||
validate_change (i2, &SET_SRC (s2), XEXP (equiv2, 0), 1);
|
||
/* Only inspecting the new SET_SRC is not good enough,
|
||
because there may also be bare USEs in a single_set
|
||
PARALLEL. */
|
||
if (rtx_equiv_p (&PATTERN (i1), PATTERN (i2), -1, info)
|
||
&& death_notes_match_p (i1, i2, info)
|
||
&& verify_changes (0))
|
||
{
|
||
/* Mark this insn so that we'll use the equivalence in
|
||
all subsequent passes. */
|
||
bitmap_set_bit (info->equiv_used, info->cur.ninsns);
|
||
return true;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
cancel_changes (0);
|
||
return false;
|
||
}
|
||
|
||
/* Set up mode and register information in INFO. Return true for success. */
|
||
bool
|
||
struct_equiv_init (int mode, struct equiv_info *info)
|
||
{
|
||
if ((info->x_block->flags | info->y_block->flags) & BB_DIRTY)
|
||
update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES,
|
||
(PROP_DEATH_NOTES
|
||
| ((mode & CLEANUP_POST_REGSTACK)
|
||
? PROP_POST_REGSTACK : 0)));
|
||
if (!REG_SET_EQUAL_P (info->x_block->il.rtl->global_live_at_end,
|
||
info->y_block->il.rtl->global_live_at_end))
|
||
{
|
||
#ifdef STACK_REGS
|
||
unsigned rn;
|
||
|
||
if (!(mode & CLEANUP_POST_REGSTACK))
|
||
return false;
|
||
/* After reg-stack. Remove bogus live info about stack regs. N.B.
|
||
these regs are not necessarily all dead - we swap random bogosity
|
||
against constant bogosity. However, clearing these bits at
|
||
least makes the regsets comparable. */
|
||
for (rn = FIRST_STACK_REG; rn <= LAST_STACK_REG; rn++)
|
||
{
|
||
CLEAR_REGNO_REG_SET (info->x_block->il.rtl->global_live_at_end, rn);
|
||
CLEAR_REGNO_REG_SET (info->y_block->il.rtl->global_live_at_end, rn);
|
||
}
|
||
if (!REG_SET_EQUAL_P (info->x_block->il.rtl->global_live_at_end,
|
||
info->y_block->il.rtl->global_live_at_end))
|
||
#endif
|
||
return false;
|
||
}
|
||
info->mode = mode;
|
||
if (mode & STRUCT_EQUIV_START)
|
||
{
|
||
info->x_input = info->y_input = info->input_reg = NULL_RTX;
|
||
info->equiv_used = ALLOC_REG_SET (®_obstack);
|
||
info->check_input_conflict = false;
|
||
}
|
||
info->had_input_conflict = false;
|
||
info->cur.ninsns = info->cur.version = 0;
|
||
info->cur.local_count = info->cur.input_count = 0;
|
||
info->cur.x_start = info->cur.y_start = NULL_RTX;
|
||
info->x_label = info->y_label = NULL_RTX;
|
||
info->need_rerun = false;
|
||
info->live_update = true;
|
||
info->cur.input_valid = false;
|
||
info->common_live = ALLOC_REG_SET (®_obstack);
|
||
info->x_local_live = ALLOC_REG_SET (®_obstack);
|
||
info->y_local_live = ALLOC_REG_SET (®_obstack);
|
||
COPY_REG_SET (info->common_live, info->x_block->il.rtl->global_live_at_end);
|
||
struct_equiv_make_checkpoint (&info->best_match, info);
|
||
return true;
|
||
}
|
||
|
||
/* Insns XI and YI have been matched. Merge memory attributes and reg
|
||
notes. */
|
||
static void
|
||
struct_equiv_merge (rtx xi, rtx yi, struct equiv_info *info)
|
||
{
|
||
rtx equiv1, equiv2;
|
||
|
||
merge_memattrs (xi, yi);
|
||
|
||
/* If the merged insns have different REG_EQUAL notes, then
|
||
remove them. */
|
||
info->live_update = false;
|
||
equiv1 = find_reg_equal_equiv_note (xi);
|
||
equiv2 = find_reg_equal_equiv_note (yi);
|
||
if (equiv1 && !equiv2)
|
||
remove_note (xi, equiv1);
|
||
else if (!equiv1 && equiv2)
|
||
remove_note (yi, equiv2);
|
||
else if (equiv1 && equiv2
|
||
&& !rtx_equiv_p (&XEXP (equiv1, 0), XEXP (equiv2, 0),
|
||
1, info))
|
||
{
|
||
remove_note (xi, equiv1);
|
||
remove_note (yi, equiv2);
|
||
}
|
||
info->live_update = true;
|
||
}
|
||
|
||
/* Return number of matched insns.
|
||
This function must be called up to three times for a successful cross-jump
|
||
match:
|
||
first to find out which instructions do match. While trying to match
|
||
another instruction that doesn't match, we destroy information in info
|
||
about the actual inputs. So if there have been any before the last
|
||
match attempt, we need to call this function again to recompute the
|
||
actual inputs up to the actual start of the matching sequence.
|
||
When we are then satisfied that the cross-jump is worthwhile, we
|
||
call this function a third time to make any changes needed to make the
|
||
sequences match: apply equivalences, remove non-matching
|
||
notes and merge memory attributes. */
|
||
int
|
||
struct_equiv_block_eq (int mode, struct equiv_info *info)
|
||
{
|
||
rtx x_stop, y_stop;
|
||
rtx xi, yi;
|
||
int i;
|
||
|
||
if (mode & STRUCT_EQUIV_START)
|
||
{
|
||
x_stop = BB_HEAD (info->x_block);
|
||
y_stop = BB_HEAD (info->y_block);
|
||
if (!x_stop || !y_stop)
|
||
return 0;
|
||
}
|
||
else
|
||
{
|
||
x_stop = info->cur.x_start;
|
||
y_stop = info->cur.y_start;
|
||
}
|
||
if (!struct_equiv_init (mode, info))
|
||
gcc_unreachable ();
|
||
|
||
/* Skip simple jumps at the end of the blocks. Complex jumps still
|
||
need to be compared for equivalence, which we'll do below. */
|
||
|
||
xi = BB_END (info->x_block);
|
||
if (onlyjump_p (xi)
|
||
|| (returnjump_p (xi) && !side_effects_p (PATTERN (xi))))
|
||
{
|
||
info->cur.x_start = xi;
|
||
xi = PREV_INSN (xi);
|
||
}
|
||
|
||
yi = BB_END (info->y_block);
|
||
if (onlyjump_p (yi)
|
||
|| (returnjump_p (yi) && !side_effects_p (PATTERN (yi))))
|
||
{
|
||
info->cur.y_start = yi;
|
||
/* Count everything except for unconditional jump as insn. */
|
||
/* ??? Is it right to count unconditional jumps with a clobber?
|
||
Should we count conditional returns? */
|
||
if (!simplejump_p (yi) && !returnjump_p (yi) && info->cur.x_start)
|
||
info->cur.ninsns++;
|
||
yi = PREV_INSN (yi);
|
||
}
|
||
|
||
if (mode & STRUCT_EQUIV_MATCH_JUMPS)
|
||
{
|
||
/* The caller is expected to have compared the jumps already, but we
|
||
need to match them again to get any local registers and inputs. */
|
||
gcc_assert (!info->cur.x_start == !info->cur.y_start);
|
||
if (info->cur.x_start)
|
||
{
|
||
if (any_condjump_p (info->cur.x_start)
|
||
? !condjump_equiv_p (info, false)
|
||
: !insns_match_p (info->cur.x_start, info->cur.y_start, info))
|
||
gcc_unreachable ();
|
||
}
|
||
else if (any_condjump_p (xi) && any_condjump_p (yi))
|
||
{
|
||
info->cur.x_start = xi;
|
||
info->cur.y_start = yi;
|
||
xi = PREV_INSN (xi);
|
||
yi = PREV_INSN (yi);
|
||
info->cur.ninsns++;
|
||
if (!condjump_equiv_p (info, false))
|
||
gcc_unreachable ();
|
||
}
|
||
if (info->cur.x_start && info->mode & STRUCT_EQUIV_FINAL)
|
||
struct_equiv_merge (info->cur.x_start, info->cur.y_start, info);
|
||
}
|
||
|
||
struct_equiv_improve_checkpoint (&info->best_match, info);
|
||
info->x_end = xi;
|
||
info->y_end = yi;
|
||
if (info->cur.x_start != x_stop)
|
||
for (;;)
|
||
{
|
||
/* Ignore notes. */
|
||
while (!INSN_P (xi) && xi != x_stop)
|
||
xi = PREV_INSN (xi);
|
||
|
||
while (!INSN_P (yi) && yi != y_stop)
|
||
yi = PREV_INSN (yi);
|
||
|
||
if (!insns_match_p (xi, yi, info))
|
||
break;
|
||
if (INSN_P (xi))
|
||
{
|
||
if (info->mode & STRUCT_EQUIV_FINAL)
|
||
struct_equiv_merge (xi, yi, info);
|
||
info->cur.ninsns++;
|
||
struct_equiv_improve_checkpoint (&info->best_match, info);
|
||
}
|
||
if (xi == x_stop || yi == y_stop)
|
||
{
|
||
/* If we reached the start of at least one of the blocks, but
|
||
best_match hasn't been advanced back to the first valid insn
|
||
yet, represent the increased benefit of completing the block
|
||
as an increased instruction count. */
|
||
if (info->best_match.x_start != info->cur.x_start
|
||
&& (xi == BB_HEAD (info->x_block)
|
||
|| yi == BB_HEAD (info->y_block)))
|
||
{
|
||
info->cur.ninsns++;
|
||
struct_equiv_improve_checkpoint (&info->best_match, info);
|
||
info->cur.ninsns--;
|
||
if (info->best_match.ninsns > info->cur.ninsns)
|
||
info->best_match.ninsns = info->cur.ninsns;
|
||
}
|
||
break;
|
||
}
|
||
xi = PREV_INSN (xi);
|
||
yi = PREV_INSN (yi);
|
||
}
|
||
|
||
/* If we failed to match an insn, but had some changes registered from
|
||
trying to make the insns match, we need to cancel these changes now. */
|
||
cancel_changes (0);
|
||
/* Restore to best_match to get the sequence with the best known-so-far
|
||
cost-benefit difference. */
|
||
struct_equiv_restore_checkpoint (&info->best_match, info);
|
||
|
||
/* Include preceding notes and labels in the cross-jump / if-conversion.
|
||
One, this may bring us to the head of the blocks.
|
||
Two, it keeps line number notes as matched as may be. */
|
||
if (info->cur.ninsns)
|
||
{
|
||
xi = info->cur.x_start;
|
||
yi = info->cur.y_start;
|
||
while (xi != x_stop && !INSN_P (PREV_INSN (xi)))
|
||
xi = PREV_INSN (xi);
|
||
|
||
while (yi != y_stop && !INSN_P (PREV_INSN (yi)))
|
||
yi = PREV_INSN (yi);
|
||
|
||
info->cur.x_start = xi;
|
||
info->cur.y_start = yi;
|
||
}
|
||
|
||
if (!info->cur.input_valid)
|
||
info->x_input = info->y_input = info->input_reg = NULL_RTX;
|
||
if (!info->need_rerun)
|
||
{
|
||
find_dying_inputs (info);
|
||
if (info->mode & STRUCT_EQUIV_FINAL)
|
||
{
|
||
if (info->check_input_conflict && ! resolve_input_conflict (info))
|
||
gcc_unreachable ();
|
||
}
|
||
else
|
||
{
|
||
bool input_conflict = info->had_input_conflict;
|
||
|
||
if (!input_conflict
|
||
&& info->dying_inputs > 1
|
||
&& bitmap_intersect_p (info->x_local_live, info->y_local_live))
|
||
{
|
||
regset_head clobbered_regs;
|
||
|
||
INIT_REG_SET (&clobbered_regs);
|
||
for (i = 0; i < info->cur.local_count; i++)
|
||
{
|
||
if (assign_reg_reg_set (&clobbered_regs, info->y_local[i], 0))
|
||
{
|
||
input_conflict = true;
|
||
break;
|
||
}
|
||
assign_reg_reg_set (&clobbered_regs, info->x_local[i], 1);
|
||
}
|
||
CLEAR_REG_SET (&clobbered_regs);
|
||
}
|
||
if (input_conflict && !info->check_input_conflict)
|
||
info->need_rerun = true;
|
||
info->check_input_conflict = input_conflict;
|
||
}
|
||
}
|
||
|
||
if (info->mode & STRUCT_EQUIV_NEED_FULL_BLOCK
|
||
&& (info->cur.x_start != x_stop || info->cur.y_start != y_stop))
|
||
return 0;
|
||
return info->cur.ninsns;
|
||
}
|
||
|
||
/* For each local register, set info->local_rvalue to true iff the register
|
||
is a dying input. Store the total number of these in info->dying_inputs. */
|
||
static void
|
||
find_dying_inputs (struct equiv_info *info)
|
||
{
|
||
int i;
|
||
|
||
info->dying_inputs = 0;
|
||
for (i = info->cur.local_count-1; i >=0; i--)
|
||
{
|
||
rtx x = info->x_local[i];
|
||
unsigned regno = REGNO (x);
|
||
int nregs = (regno >= FIRST_PSEUDO_REGISTER
|
||
? 1 : hard_regno_nregs[regno][GET_MODE (x)]);
|
||
|
||
for (info->local_rvalue[i] = false; nregs > 0; regno++, --nregs)
|
||
if (REGNO_REG_SET_P (info->x_local_live, regno))
|
||
{
|
||
info->dying_inputs++;
|
||
info->local_rvalue[i] = true;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* For each local register that is a dying input, y_local[i] will be
|
||
copied to x_local[i]. We'll do this in ascending order. Try to
|
||
re-order the locals to avoid conflicts like r3 = r2; r4 = r3; .
|
||
Return true iff the re-ordering is successful, or not necessary. */
|
||
static bool
|
||
resolve_input_conflict (struct equiv_info *info)
|
||
{
|
||
int i, j, end;
|
||
int nswaps = 0;
|
||
rtx save_x_local[STRUCT_EQUIV_MAX_LOCAL];
|
||
rtx save_y_local[STRUCT_EQUIV_MAX_LOCAL];
|
||
|
||
find_dying_inputs (info);
|
||
if (info->dying_inputs <= 1)
|
||
return true;
|
||
memcpy (save_x_local, info->x_local, sizeof save_x_local);
|
||
memcpy (save_y_local, info->y_local, sizeof save_y_local);
|
||
end = info->cur.local_count - 1;
|
||
for (i = 0; i <= end; i++)
|
||
{
|
||
/* Cycle detection with regsets is expensive, so we just check that
|
||
we don't exceed the maximum number of swaps needed in the acyclic
|
||
case. */
|
||
int max_swaps = end - i;
|
||
|
||
/* Check if x_local[i] will be clobbered. */
|
||
if (!info->local_rvalue[i])
|
||
continue;
|
||
/* Check if any later value needs to be copied earlier. */
|
||
for (j = i + 1; j <= end; j++)
|
||
{
|
||
rtx tmp;
|
||
|
||
if (!info->local_rvalue[j])
|
||
continue;
|
||
if (!reg_overlap_mentioned_p (info->x_local[i], info->y_local[j]))
|
||
continue;
|
||
if (--max_swaps < 0)
|
||
{
|
||
memcpy (info->x_local, save_x_local, sizeof save_x_local);
|
||
memcpy (info->y_local, save_y_local, sizeof save_y_local);
|
||
return false;
|
||
}
|
||
nswaps++;
|
||
tmp = info->x_local[i];
|
||
info->x_local[i] = info->x_local[j];
|
||
info->x_local[j] = tmp;
|
||
tmp = info->y_local[i];
|
||
info->y_local[i] = info->y_local[j];
|
||
info->y_local[j] = tmp;
|
||
j = i;
|
||
}
|
||
}
|
||
info->had_input_conflict = true;
|
||
if (dump_file && nswaps)
|
||
fprintf (dump_file, "Resolved input conflict, %d %s.\n",
|
||
nswaps, nswaps == 1 ? "swap" : "swaps");
|
||
return true;
|
||
}
|