mirror of
https://git.FreeBSD.org/src.git
synced 2025-01-17 15:27:36 +00:00
885868cd8f
the removal of NQNFS, but was left in in case it was required for NFSv4. Since our new NFSv4 client and server can't use it for their requirements, GC the old mechanism, as well as other unused lease- related code and interfaces. Due to its impact on kernel programming and binary interfaces, this change should not be MFC'd. Proposed by: jeff Reviewed by: jeff Discussed with: rmacklem, zach loafman @ isilon
1503 lines
35 KiB
C
1503 lines
35 KiB
C
/*-
|
|
* Copyright (c) 1982, 1986, 1989, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)kern_time.c 8.1 (Berkeley) 6/10/93
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/limits.h>
|
|
#include <sys/clock.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/sysproto.h>
|
|
#include <sys/eventhandler.h>
|
|
#include <sys/resourcevar.h>
|
|
#include <sys/signalvar.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/syscallsubr.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/sysent.h>
|
|
#include <sys/priv.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/posix4.h>
|
|
#include <sys/time.h>
|
|
#include <sys/timers.h>
|
|
#include <sys/timetc.h>
|
|
#include <sys/vnode.h>
|
|
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_extern.h>
|
|
|
|
#define MAX_CLOCKS (CLOCK_MONOTONIC+1)
|
|
|
|
static struct kclock posix_clocks[MAX_CLOCKS];
|
|
static uma_zone_t itimer_zone = NULL;
|
|
|
|
/*
|
|
* Time of day and interval timer support.
|
|
*
|
|
* These routines provide the kernel entry points to get and set
|
|
* the time-of-day and per-process interval timers. Subroutines
|
|
* here provide support for adding and subtracting timeval structures
|
|
* and decrementing interval timers, optionally reloading the interval
|
|
* timers when they expire.
|
|
*/
|
|
|
|
static int settime(struct thread *, struct timeval *);
|
|
static void timevalfix(struct timeval *);
|
|
|
|
static void itimer_start(void);
|
|
static int itimer_init(void *, int, int);
|
|
static void itimer_fini(void *, int);
|
|
static void itimer_enter(struct itimer *);
|
|
static void itimer_leave(struct itimer *);
|
|
static struct itimer *itimer_find(struct proc *, int);
|
|
static void itimers_alloc(struct proc *);
|
|
static void itimers_event_hook_exec(void *arg, struct proc *p, struct image_params *imgp);
|
|
static void itimers_event_hook_exit(void *arg, struct proc *p);
|
|
static int realtimer_create(struct itimer *);
|
|
static int realtimer_gettime(struct itimer *, struct itimerspec *);
|
|
static int realtimer_settime(struct itimer *, int,
|
|
struct itimerspec *, struct itimerspec *);
|
|
static int realtimer_delete(struct itimer *);
|
|
static void realtimer_clocktime(clockid_t, struct timespec *);
|
|
static void realtimer_expire(void *);
|
|
static int kern_timer_create(struct thread *, clockid_t,
|
|
struct sigevent *, int *, int);
|
|
static int kern_timer_delete(struct thread *, int);
|
|
|
|
int register_posix_clock(int, struct kclock *);
|
|
void itimer_fire(struct itimer *it);
|
|
int itimespecfix(struct timespec *ts);
|
|
|
|
#define CLOCK_CALL(clock, call, arglist) \
|
|
((*posix_clocks[clock].call) arglist)
|
|
|
|
SYSINIT(posix_timer, SI_SUB_P1003_1B, SI_ORDER_FIRST+4, itimer_start, NULL);
|
|
|
|
|
|
static int
|
|
settime(struct thread *td, struct timeval *tv)
|
|
{
|
|
struct timeval delta, tv1, tv2;
|
|
static struct timeval maxtime, laststep;
|
|
struct timespec ts;
|
|
int s;
|
|
|
|
s = splclock();
|
|
microtime(&tv1);
|
|
delta = *tv;
|
|
timevalsub(&delta, &tv1);
|
|
|
|
/*
|
|
* If the system is secure, we do not allow the time to be
|
|
* set to a value earlier than 1 second less than the highest
|
|
* time we have yet seen. The worst a miscreant can do in
|
|
* this circumstance is "freeze" time. He couldn't go
|
|
* back to the past.
|
|
*
|
|
* We similarly do not allow the clock to be stepped more
|
|
* than one second, nor more than once per second. This allows
|
|
* a miscreant to make the clock march double-time, but no worse.
|
|
*/
|
|
if (securelevel_gt(td->td_ucred, 1) != 0) {
|
|
if (delta.tv_sec < 0 || delta.tv_usec < 0) {
|
|
/*
|
|
* Update maxtime to latest time we've seen.
|
|
*/
|
|
if (tv1.tv_sec > maxtime.tv_sec)
|
|
maxtime = tv1;
|
|
tv2 = *tv;
|
|
timevalsub(&tv2, &maxtime);
|
|
if (tv2.tv_sec < -1) {
|
|
tv->tv_sec = maxtime.tv_sec - 1;
|
|
printf("Time adjustment clamped to -1 second\n");
|
|
}
|
|
} else {
|
|
if (tv1.tv_sec == laststep.tv_sec) {
|
|
splx(s);
|
|
return (EPERM);
|
|
}
|
|
if (delta.tv_sec > 1) {
|
|
tv->tv_sec = tv1.tv_sec + 1;
|
|
printf("Time adjustment clamped to +1 second\n");
|
|
}
|
|
laststep = *tv;
|
|
}
|
|
}
|
|
|
|
ts.tv_sec = tv->tv_sec;
|
|
ts.tv_nsec = tv->tv_usec * 1000;
|
|
mtx_lock(&Giant);
|
|
tc_setclock(&ts);
|
|
resettodr();
|
|
mtx_unlock(&Giant);
|
|
return (0);
|
|
}
|
|
|
|
#ifndef _SYS_SYSPROTO_H_
|
|
struct clock_gettime_args {
|
|
clockid_t clock_id;
|
|
struct timespec *tp;
|
|
};
|
|
#endif
|
|
/* ARGSUSED */
|
|
int
|
|
clock_gettime(struct thread *td, struct clock_gettime_args *uap)
|
|
{
|
|
struct timespec ats;
|
|
int error;
|
|
|
|
error = kern_clock_gettime(td, uap->clock_id, &ats);
|
|
if (error == 0)
|
|
error = copyout(&ats, uap->tp, sizeof(ats));
|
|
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
kern_clock_gettime(struct thread *td, clockid_t clock_id, struct timespec *ats)
|
|
{
|
|
struct timeval sys, user;
|
|
struct proc *p;
|
|
uint64_t runtime, curtime, switchtime;
|
|
|
|
p = td->td_proc;
|
|
switch (clock_id) {
|
|
case CLOCK_REALTIME: /* Default to precise. */
|
|
case CLOCK_REALTIME_PRECISE:
|
|
nanotime(ats);
|
|
break;
|
|
case CLOCK_REALTIME_FAST:
|
|
getnanotime(ats);
|
|
break;
|
|
case CLOCK_VIRTUAL:
|
|
PROC_LOCK(p);
|
|
PROC_SLOCK(p);
|
|
calcru(p, &user, &sys);
|
|
PROC_SUNLOCK(p);
|
|
PROC_UNLOCK(p);
|
|
TIMEVAL_TO_TIMESPEC(&user, ats);
|
|
break;
|
|
case CLOCK_PROF:
|
|
PROC_LOCK(p);
|
|
PROC_SLOCK(p);
|
|
calcru(p, &user, &sys);
|
|
PROC_SUNLOCK(p);
|
|
PROC_UNLOCK(p);
|
|
timevaladd(&user, &sys);
|
|
TIMEVAL_TO_TIMESPEC(&user, ats);
|
|
break;
|
|
case CLOCK_MONOTONIC: /* Default to precise. */
|
|
case CLOCK_MONOTONIC_PRECISE:
|
|
case CLOCK_UPTIME:
|
|
case CLOCK_UPTIME_PRECISE:
|
|
nanouptime(ats);
|
|
break;
|
|
case CLOCK_UPTIME_FAST:
|
|
case CLOCK_MONOTONIC_FAST:
|
|
getnanouptime(ats);
|
|
break;
|
|
case CLOCK_SECOND:
|
|
ats->tv_sec = time_second;
|
|
ats->tv_nsec = 0;
|
|
break;
|
|
case CLOCK_THREAD_CPUTIME_ID:
|
|
critical_enter();
|
|
switchtime = PCPU_GET(switchtime);
|
|
curtime = cpu_ticks();
|
|
runtime = td->td_runtime;
|
|
critical_exit();
|
|
runtime = cputick2usec(runtime + curtime - switchtime);
|
|
ats->tv_sec = runtime / 1000000;
|
|
ats->tv_nsec = runtime % 1000000 * 1000;
|
|
break;
|
|
default:
|
|
return (EINVAL);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
#ifndef _SYS_SYSPROTO_H_
|
|
struct clock_settime_args {
|
|
clockid_t clock_id;
|
|
const struct timespec *tp;
|
|
};
|
|
#endif
|
|
/* ARGSUSED */
|
|
int
|
|
clock_settime(struct thread *td, struct clock_settime_args *uap)
|
|
{
|
|
struct timespec ats;
|
|
int error;
|
|
|
|
if ((error = copyin(uap->tp, &ats, sizeof(ats))) != 0)
|
|
return (error);
|
|
return (kern_clock_settime(td, uap->clock_id, &ats));
|
|
}
|
|
|
|
int
|
|
kern_clock_settime(struct thread *td, clockid_t clock_id, struct timespec *ats)
|
|
{
|
|
struct timeval atv;
|
|
int error;
|
|
|
|
if ((error = priv_check(td, PRIV_CLOCK_SETTIME)) != 0)
|
|
return (error);
|
|
if (clock_id != CLOCK_REALTIME)
|
|
return (EINVAL);
|
|
if (ats->tv_nsec < 0 || ats->tv_nsec >= 1000000000)
|
|
return (EINVAL);
|
|
/* XXX Don't convert nsec->usec and back */
|
|
TIMESPEC_TO_TIMEVAL(&atv, ats);
|
|
error = settime(td, &atv);
|
|
return (error);
|
|
}
|
|
|
|
#ifndef _SYS_SYSPROTO_H_
|
|
struct clock_getres_args {
|
|
clockid_t clock_id;
|
|
struct timespec *tp;
|
|
};
|
|
#endif
|
|
int
|
|
clock_getres(struct thread *td, struct clock_getres_args *uap)
|
|
{
|
|
struct timespec ts;
|
|
int error;
|
|
|
|
if (uap->tp == NULL)
|
|
return (0);
|
|
|
|
error = kern_clock_getres(td, uap->clock_id, &ts);
|
|
if (error == 0)
|
|
error = copyout(&ts, uap->tp, sizeof(ts));
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
kern_clock_getres(struct thread *td, clockid_t clock_id, struct timespec *ts)
|
|
{
|
|
|
|
ts->tv_sec = 0;
|
|
switch (clock_id) {
|
|
case CLOCK_REALTIME:
|
|
case CLOCK_REALTIME_FAST:
|
|
case CLOCK_REALTIME_PRECISE:
|
|
case CLOCK_MONOTONIC:
|
|
case CLOCK_MONOTONIC_FAST:
|
|
case CLOCK_MONOTONIC_PRECISE:
|
|
case CLOCK_UPTIME:
|
|
case CLOCK_UPTIME_FAST:
|
|
case CLOCK_UPTIME_PRECISE:
|
|
/*
|
|
* Round up the result of the division cheaply by adding 1.
|
|
* Rounding up is especially important if rounding down
|
|
* would give 0. Perfect rounding is unimportant.
|
|
*/
|
|
ts->tv_nsec = 1000000000 / tc_getfrequency() + 1;
|
|
break;
|
|
case CLOCK_VIRTUAL:
|
|
case CLOCK_PROF:
|
|
/* Accurately round up here because we can do so cheaply. */
|
|
ts->tv_nsec = (1000000000 + hz - 1) / hz;
|
|
break;
|
|
case CLOCK_SECOND:
|
|
ts->tv_sec = 1;
|
|
ts->tv_nsec = 0;
|
|
break;
|
|
case CLOCK_THREAD_CPUTIME_ID:
|
|
/* sync with cputick2usec */
|
|
ts->tv_nsec = 1000000 / cpu_tickrate();
|
|
if (ts->tv_nsec == 0)
|
|
ts->tv_nsec = 1000;
|
|
break;
|
|
default:
|
|
return (EINVAL);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
static int nanowait;
|
|
|
|
int
|
|
kern_nanosleep(struct thread *td, struct timespec *rqt, struct timespec *rmt)
|
|
{
|
|
struct timespec ts, ts2, ts3;
|
|
struct timeval tv;
|
|
int error;
|
|
|
|
if (rqt->tv_nsec < 0 || rqt->tv_nsec >= 1000000000)
|
|
return (EINVAL);
|
|
if (rqt->tv_sec < 0 || (rqt->tv_sec == 0 && rqt->tv_nsec == 0))
|
|
return (0);
|
|
getnanouptime(&ts);
|
|
timespecadd(&ts, rqt);
|
|
TIMESPEC_TO_TIMEVAL(&tv, rqt);
|
|
for (;;) {
|
|
error = tsleep(&nanowait, PWAIT | PCATCH, "nanslp",
|
|
tvtohz(&tv));
|
|
getnanouptime(&ts2);
|
|
if (error != EWOULDBLOCK) {
|
|
if (error == ERESTART)
|
|
error = EINTR;
|
|
if (rmt != NULL) {
|
|
timespecsub(&ts, &ts2);
|
|
if (ts.tv_sec < 0)
|
|
timespecclear(&ts);
|
|
*rmt = ts;
|
|
}
|
|
return (error);
|
|
}
|
|
if (timespeccmp(&ts2, &ts, >=))
|
|
return (0);
|
|
ts3 = ts;
|
|
timespecsub(&ts3, &ts2);
|
|
TIMESPEC_TO_TIMEVAL(&tv, &ts3);
|
|
}
|
|
}
|
|
|
|
#ifndef _SYS_SYSPROTO_H_
|
|
struct nanosleep_args {
|
|
struct timespec *rqtp;
|
|
struct timespec *rmtp;
|
|
};
|
|
#endif
|
|
/* ARGSUSED */
|
|
int
|
|
nanosleep(struct thread *td, struct nanosleep_args *uap)
|
|
{
|
|
struct timespec rmt, rqt;
|
|
int error;
|
|
|
|
error = copyin(uap->rqtp, &rqt, sizeof(rqt));
|
|
if (error)
|
|
return (error);
|
|
|
|
if (uap->rmtp &&
|
|
!useracc((caddr_t)uap->rmtp, sizeof(rmt), VM_PROT_WRITE))
|
|
return (EFAULT);
|
|
error = kern_nanosleep(td, &rqt, &rmt);
|
|
if (error && uap->rmtp) {
|
|
int error2;
|
|
|
|
error2 = copyout(&rmt, uap->rmtp, sizeof(rmt));
|
|
if (error2)
|
|
error = error2;
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
#ifndef _SYS_SYSPROTO_H_
|
|
struct gettimeofday_args {
|
|
struct timeval *tp;
|
|
struct timezone *tzp;
|
|
};
|
|
#endif
|
|
/* ARGSUSED */
|
|
int
|
|
gettimeofday(struct thread *td, struct gettimeofday_args *uap)
|
|
{
|
|
struct timeval atv;
|
|
struct timezone rtz;
|
|
int error = 0;
|
|
|
|
if (uap->tp) {
|
|
microtime(&atv);
|
|
error = copyout(&atv, uap->tp, sizeof (atv));
|
|
}
|
|
if (error == 0 && uap->tzp != NULL) {
|
|
rtz.tz_minuteswest = tz_minuteswest;
|
|
rtz.tz_dsttime = tz_dsttime;
|
|
error = copyout(&rtz, uap->tzp, sizeof (rtz));
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
#ifndef _SYS_SYSPROTO_H_
|
|
struct settimeofday_args {
|
|
struct timeval *tv;
|
|
struct timezone *tzp;
|
|
};
|
|
#endif
|
|
/* ARGSUSED */
|
|
int
|
|
settimeofday(struct thread *td, struct settimeofday_args *uap)
|
|
{
|
|
struct timeval atv, *tvp;
|
|
struct timezone atz, *tzp;
|
|
int error;
|
|
|
|
if (uap->tv) {
|
|
error = copyin(uap->tv, &atv, sizeof(atv));
|
|
if (error)
|
|
return (error);
|
|
tvp = &atv;
|
|
} else
|
|
tvp = NULL;
|
|
if (uap->tzp) {
|
|
error = copyin(uap->tzp, &atz, sizeof(atz));
|
|
if (error)
|
|
return (error);
|
|
tzp = &atz;
|
|
} else
|
|
tzp = NULL;
|
|
return (kern_settimeofday(td, tvp, tzp));
|
|
}
|
|
|
|
int
|
|
kern_settimeofday(struct thread *td, struct timeval *tv, struct timezone *tzp)
|
|
{
|
|
int error;
|
|
|
|
error = priv_check(td, PRIV_SETTIMEOFDAY);
|
|
if (error)
|
|
return (error);
|
|
/* Verify all parameters before changing time. */
|
|
if (tv) {
|
|
if (tv->tv_usec < 0 || tv->tv_usec >= 1000000)
|
|
return (EINVAL);
|
|
error = settime(td, tv);
|
|
}
|
|
if (tzp && error == 0) {
|
|
tz_minuteswest = tzp->tz_minuteswest;
|
|
tz_dsttime = tzp->tz_dsttime;
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Get value of an interval timer. The process virtual and profiling virtual
|
|
* time timers are kept in the p_stats area, since they can be swapped out.
|
|
* These are kept internally in the way they are specified externally: in
|
|
* time until they expire.
|
|
*
|
|
* The real time interval timer is kept in the process table slot for the
|
|
* process, and its value (it_value) is kept as an absolute time rather than
|
|
* as a delta, so that it is easy to keep periodic real-time signals from
|
|
* drifting.
|
|
*
|
|
* Virtual time timers are processed in the hardclock() routine of
|
|
* kern_clock.c. The real time timer is processed by a timeout routine,
|
|
* called from the softclock() routine. Since a callout may be delayed in
|
|
* real time due to interrupt processing in the system, it is possible for
|
|
* the real time timeout routine (realitexpire, given below), to be delayed
|
|
* in real time past when it is supposed to occur. It does not suffice,
|
|
* therefore, to reload the real timer .it_value from the real time timers
|
|
* .it_interval. Rather, we compute the next time in absolute time the timer
|
|
* should go off.
|
|
*/
|
|
#ifndef _SYS_SYSPROTO_H_
|
|
struct getitimer_args {
|
|
u_int which;
|
|
struct itimerval *itv;
|
|
};
|
|
#endif
|
|
int
|
|
getitimer(struct thread *td, struct getitimer_args *uap)
|
|
{
|
|
struct itimerval aitv;
|
|
int error;
|
|
|
|
error = kern_getitimer(td, uap->which, &aitv);
|
|
if (error != 0)
|
|
return (error);
|
|
return (copyout(&aitv, uap->itv, sizeof (struct itimerval)));
|
|
}
|
|
|
|
int
|
|
kern_getitimer(struct thread *td, u_int which, struct itimerval *aitv)
|
|
{
|
|
struct proc *p = td->td_proc;
|
|
struct timeval ctv;
|
|
|
|
if (which > ITIMER_PROF)
|
|
return (EINVAL);
|
|
|
|
if (which == ITIMER_REAL) {
|
|
/*
|
|
* Convert from absolute to relative time in .it_value
|
|
* part of real time timer. If time for real time timer
|
|
* has passed return 0, else return difference between
|
|
* current time and time for the timer to go off.
|
|
*/
|
|
PROC_LOCK(p);
|
|
*aitv = p->p_realtimer;
|
|
PROC_UNLOCK(p);
|
|
if (timevalisset(&aitv->it_value)) {
|
|
getmicrouptime(&ctv);
|
|
if (timevalcmp(&aitv->it_value, &ctv, <))
|
|
timevalclear(&aitv->it_value);
|
|
else
|
|
timevalsub(&aitv->it_value, &ctv);
|
|
}
|
|
} else {
|
|
PROC_SLOCK(p);
|
|
*aitv = p->p_stats->p_timer[which];
|
|
PROC_SUNLOCK(p);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
#ifndef _SYS_SYSPROTO_H_
|
|
struct setitimer_args {
|
|
u_int which;
|
|
struct itimerval *itv, *oitv;
|
|
};
|
|
#endif
|
|
int
|
|
setitimer(struct thread *td, struct setitimer_args *uap)
|
|
{
|
|
struct itimerval aitv, oitv;
|
|
int error;
|
|
|
|
if (uap->itv == NULL) {
|
|
uap->itv = uap->oitv;
|
|
return (getitimer(td, (struct getitimer_args *)uap));
|
|
}
|
|
|
|
if ((error = copyin(uap->itv, &aitv, sizeof(struct itimerval))))
|
|
return (error);
|
|
error = kern_setitimer(td, uap->which, &aitv, &oitv);
|
|
if (error != 0 || uap->oitv == NULL)
|
|
return (error);
|
|
return (copyout(&oitv, uap->oitv, sizeof(struct itimerval)));
|
|
}
|
|
|
|
int
|
|
kern_setitimer(struct thread *td, u_int which, struct itimerval *aitv,
|
|
struct itimerval *oitv)
|
|
{
|
|
struct proc *p = td->td_proc;
|
|
struct timeval ctv;
|
|
|
|
if (aitv == NULL)
|
|
return (kern_getitimer(td, which, oitv));
|
|
|
|
if (which > ITIMER_PROF)
|
|
return (EINVAL);
|
|
if (itimerfix(&aitv->it_value))
|
|
return (EINVAL);
|
|
if (!timevalisset(&aitv->it_value))
|
|
timevalclear(&aitv->it_interval);
|
|
else if (itimerfix(&aitv->it_interval))
|
|
return (EINVAL);
|
|
|
|
if (which == ITIMER_REAL) {
|
|
PROC_LOCK(p);
|
|
if (timevalisset(&p->p_realtimer.it_value))
|
|
callout_stop(&p->p_itcallout);
|
|
getmicrouptime(&ctv);
|
|
if (timevalisset(&aitv->it_value)) {
|
|
callout_reset(&p->p_itcallout, tvtohz(&aitv->it_value),
|
|
realitexpire, p);
|
|
timevaladd(&aitv->it_value, &ctv);
|
|
}
|
|
*oitv = p->p_realtimer;
|
|
p->p_realtimer = *aitv;
|
|
PROC_UNLOCK(p);
|
|
if (timevalisset(&oitv->it_value)) {
|
|
if (timevalcmp(&oitv->it_value, &ctv, <))
|
|
timevalclear(&oitv->it_value);
|
|
else
|
|
timevalsub(&oitv->it_value, &ctv);
|
|
}
|
|
} else {
|
|
PROC_SLOCK(p);
|
|
*oitv = p->p_stats->p_timer[which];
|
|
p->p_stats->p_timer[which] = *aitv;
|
|
PROC_SUNLOCK(p);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Real interval timer expired:
|
|
* send process whose timer expired an alarm signal.
|
|
* If time is not set up to reload, then just return.
|
|
* Else compute next time timer should go off which is > current time.
|
|
* This is where delay in processing this timeout causes multiple
|
|
* SIGALRM calls to be compressed into one.
|
|
* tvtohz() always adds 1 to allow for the time until the next clock
|
|
* interrupt being strictly less than 1 clock tick, but we don't want
|
|
* that here since we want to appear to be in sync with the clock
|
|
* interrupt even when we're delayed.
|
|
*/
|
|
void
|
|
realitexpire(void *arg)
|
|
{
|
|
struct proc *p;
|
|
struct timeval ctv, ntv;
|
|
|
|
p = (struct proc *)arg;
|
|
PROC_LOCK(p);
|
|
psignal(p, SIGALRM);
|
|
if (!timevalisset(&p->p_realtimer.it_interval)) {
|
|
timevalclear(&p->p_realtimer.it_value);
|
|
if (p->p_flag & P_WEXIT)
|
|
wakeup(&p->p_itcallout);
|
|
PROC_UNLOCK(p);
|
|
return;
|
|
}
|
|
for (;;) {
|
|
timevaladd(&p->p_realtimer.it_value,
|
|
&p->p_realtimer.it_interval);
|
|
getmicrouptime(&ctv);
|
|
if (timevalcmp(&p->p_realtimer.it_value, &ctv, >)) {
|
|
ntv = p->p_realtimer.it_value;
|
|
timevalsub(&ntv, &ctv);
|
|
callout_reset(&p->p_itcallout, tvtohz(&ntv) - 1,
|
|
realitexpire, p);
|
|
PROC_UNLOCK(p);
|
|
return;
|
|
}
|
|
}
|
|
/*NOTREACHED*/
|
|
}
|
|
|
|
/*
|
|
* Check that a proposed value to load into the .it_value or
|
|
* .it_interval part of an interval timer is acceptable, and
|
|
* fix it to have at least minimal value (i.e. if it is less
|
|
* than the resolution of the clock, round it up.)
|
|
*/
|
|
int
|
|
itimerfix(struct timeval *tv)
|
|
{
|
|
|
|
if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
|
|
return (EINVAL);
|
|
if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
|
|
tv->tv_usec = tick;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Decrement an interval timer by a specified number
|
|
* of microseconds, which must be less than a second,
|
|
* i.e. < 1000000. If the timer expires, then reload
|
|
* it. In this case, carry over (usec - old value) to
|
|
* reduce the value reloaded into the timer so that
|
|
* the timer does not drift. This routine assumes
|
|
* that it is called in a context where the timers
|
|
* on which it is operating cannot change in value.
|
|
*/
|
|
int
|
|
itimerdecr(struct itimerval *itp, int usec)
|
|
{
|
|
|
|
if (itp->it_value.tv_usec < usec) {
|
|
if (itp->it_value.tv_sec == 0) {
|
|
/* expired, and already in next interval */
|
|
usec -= itp->it_value.tv_usec;
|
|
goto expire;
|
|
}
|
|
itp->it_value.tv_usec += 1000000;
|
|
itp->it_value.tv_sec--;
|
|
}
|
|
itp->it_value.tv_usec -= usec;
|
|
usec = 0;
|
|
if (timevalisset(&itp->it_value))
|
|
return (1);
|
|
/* expired, exactly at end of interval */
|
|
expire:
|
|
if (timevalisset(&itp->it_interval)) {
|
|
itp->it_value = itp->it_interval;
|
|
itp->it_value.tv_usec -= usec;
|
|
if (itp->it_value.tv_usec < 0) {
|
|
itp->it_value.tv_usec += 1000000;
|
|
itp->it_value.tv_sec--;
|
|
}
|
|
} else
|
|
itp->it_value.tv_usec = 0; /* sec is already 0 */
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Add and subtract routines for timevals.
|
|
* N.B.: subtract routine doesn't deal with
|
|
* results which are before the beginning,
|
|
* it just gets very confused in this case.
|
|
* Caveat emptor.
|
|
*/
|
|
void
|
|
timevaladd(struct timeval *t1, const struct timeval *t2)
|
|
{
|
|
|
|
t1->tv_sec += t2->tv_sec;
|
|
t1->tv_usec += t2->tv_usec;
|
|
timevalfix(t1);
|
|
}
|
|
|
|
void
|
|
timevalsub(struct timeval *t1, const struct timeval *t2)
|
|
{
|
|
|
|
t1->tv_sec -= t2->tv_sec;
|
|
t1->tv_usec -= t2->tv_usec;
|
|
timevalfix(t1);
|
|
}
|
|
|
|
static void
|
|
timevalfix(struct timeval *t1)
|
|
{
|
|
|
|
if (t1->tv_usec < 0) {
|
|
t1->tv_sec--;
|
|
t1->tv_usec += 1000000;
|
|
}
|
|
if (t1->tv_usec >= 1000000) {
|
|
t1->tv_sec++;
|
|
t1->tv_usec -= 1000000;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* ratecheck(): simple time-based rate-limit checking.
|
|
*/
|
|
int
|
|
ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
|
|
{
|
|
struct timeval tv, delta;
|
|
int rv = 0;
|
|
|
|
getmicrouptime(&tv); /* NB: 10ms precision */
|
|
delta = tv;
|
|
timevalsub(&delta, lasttime);
|
|
|
|
/*
|
|
* check for 0,0 is so that the message will be seen at least once,
|
|
* even if interval is huge.
|
|
*/
|
|
if (timevalcmp(&delta, mininterval, >=) ||
|
|
(lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
|
|
*lasttime = tv;
|
|
rv = 1;
|
|
}
|
|
|
|
return (rv);
|
|
}
|
|
|
|
/*
|
|
* ppsratecheck(): packets (or events) per second limitation.
|
|
*
|
|
* Return 0 if the limit is to be enforced (e.g. the caller
|
|
* should drop a packet because of the rate limitation).
|
|
*
|
|
* maxpps of 0 always causes zero to be returned. maxpps of -1
|
|
* always causes 1 to be returned; this effectively defeats rate
|
|
* limiting.
|
|
*
|
|
* Note that we maintain the struct timeval for compatibility
|
|
* with other bsd systems. We reuse the storage and just monitor
|
|
* clock ticks for minimal overhead.
|
|
*/
|
|
int
|
|
ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
|
|
{
|
|
int now;
|
|
|
|
/*
|
|
* Reset the last time and counter if this is the first call
|
|
* or more than a second has passed since the last update of
|
|
* lasttime.
|
|
*/
|
|
now = ticks;
|
|
if (lasttime->tv_sec == 0 || (u_int)(now - lasttime->tv_sec) >= hz) {
|
|
lasttime->tv_sec = now;
|
|
*curpps = 1;
|
|
return (maxpps != 0);
|
|
} else {
|
|
(*curpps)++; /* NB: ignore potential overflow */
|
|
return (maxpps < 0 || *curpps < maxpps);
|
|
}
|
|
}
|
|
|
|
static void
|
|
itimer_start(void)
|
|
{
|
|
struct kclock rt_clock = {
|
|
.timer_create = realtimer_create,
|
|
.timer_delete = realtimer_delete,
|
|
.timer_settime = realtimer_settime,
|
|
.timer_gettime = realtimer_gettime,
|
|
.event_hook = NULL
|
|
};
|
|
|
|
itimer_zone = uma_zcreate("itimer", sizeof(struct itimer),
|
|
NULL, NULL, itimer_init, itimer_fini, UMA_ALIGN_PTR, 0);
|
|
register_posix_clock(CLOCK_REALTIME, &rt_clock);
|
|
register_posix_clock(CLOCK_MONOTONIC, &rt_clock);
|
|
p31b_setcfg(CTL_P1003_1B_TIMERS, 200112L);
|
|
p31b_setcfg(CTL_P1003_1B_DELAYTIMER_MAX, INT_MAX);
|
|
p31b_setcfg(CTL_P1003_1B_TIMER_MAX, TIMER_MAX);
|
|
EVENTHANDLER_REGISTER(process_exit, itimers_event_hook_exit,
|
|
(void *)ITIMER_EV_EXIT, EVENTHANDLER_PRI_ANY);
|
|
EVENTHANDLER_REGISTER(process_exec, itimers_event_hook_exec,
|
|
(void *)ITIMER_EV_EXEC, EVENTHANDLER_PRI_ANY);
|
|
}
|
|
|
|
int
|
|
register_posix_clock(int clockid, struct kclock *clk)
|
|
{
|
|
if ((unsigned)clockid >= MAX_CLOCKS) {
|
|
printf("%s: invalid clockid\n", __func__);
|
|
return (0);
|
|
}
|
|
posix_clocks[clockid] = *clk;
|
|
return (1);
|
|
}
|
|
|
|
static int
|
|
itimer_init(void *mem, int size, int flags)
|
|
{
|
|
struct itimer *it;
|
|
|
|
it = (struct itimer *)mem;
|
|
mtx_init(&it->it_mtx, "itimer lock", NULL, MTX_DEF);
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
itimer_fini(void *mem, int size)
|
|
{
|
|
struct itimer *it;
|
|
|
|
it = (struct itimer *)mem;
|
|
mtx_destroy(&it->it_mtx);
|
|
}
|
|
|
|
static void
|
|
itimer_enter(struct itimer *it)
|
|
{
|
|
|
|
mtx_assert(&it->it_mtx, MA_OWNED);
|
|
it->it_usecount++;
|
|
}
|
|
|
|
static void
|
|
itimer_leave(struct itimer *it)
|
|
{
|
|
|
|
mtx_assert(&it->it_mtx, MA_OWNED);
|
|
KASSERT(it->it_usecount > 0, ("invalid it_usecount"));
|
|
|
|
if (--it->it_usecount == 0 && (it->it_flags & ITF_WANTED) != 0)
|
|
wakeup(it);
|
|
}
|
|
|
|
#ifndef _SYS_SYSPROTO_H_
|
|
struct ktimer_create_args {
|
|
clockid_t clock_id;
|
|
struct sigevent * evp;
|
|
int * timerid;
|
|
};
|
|
#endif
|
|
int
|
|
ktimer_create(struct thread *td, struct ktimer_create_args *uap)
|
|
{
|
|
struct sigevent *evp1, ev;
|
|
int id;
|
|
int error;
|
|
|
|
if (uap->evp != NULL) {
|
|
error = copyin(uap->evp, &ev, sizeof(ev));
|
|
if (error != 0)
|
|
return (error);
|
|
evp1 = &ev;
|
|
} else
|
|
evp1 = NULL;
|
|
|
|
error = kern_timer_create(td, uap->clock_id, evp1, &id, -1);
|
|
|
|
if (error == 0) {
|
|
error = copyout(&id, uap->timerid, sizeof(int));
|
|
if (error != 0)
|
|
kern_timer_delete(td, id);
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
kern_timer_create(struct thread *td, clockid_t clock_id,
|
|
struct sigevent *evp, int *timerid, int preset_id)
|
|
{
|
|
struct proc *p = td->td_proc;
|
|
struct itimer *it;
|
|
int id;
|
|
int error;
|
|
|
|
if (clock_id < 0 || clock_id >= MAX_CLOCKS)
|
|
return (EINVAL);
|
|
|
|
if (posix_clocks[clock_id].timer_create == NULL)
|
|
return (EINVAL);
|
|
|
|
if (evp != NULL) {
|
|
if (evp->sigev_notify != SIGEV_NONE &&
|
|
evp->sigev_notify != SIGEV_SIGNAL &&
|
|
evp->sigev_notify != SIGEV_THREAD_ID)
|
|
return (EINVAL);
|
|
if ((evp->sigev_notify == SIGEV_SIGNAL ||
|
|
evp->sigev_notify == SIGEV_THREAD_ID) &&
|
|
!_SIG_VALID(evp->sigev_signo))
|
|
return (EINVAL);
|
|
}
|
|
|
|
if (p->p_itimers == NULL)
|
|
itimers_alloc(p);
|
|
|
|
it = uma_zalloc(itimer_zone, M_WAITOK);
|
|
it->it_flags = 0;
|
|
it->it_usecount = 0;
|
|
it->it_active = 0;
|
|
timespecclear(&it->it_time.it_value);
|
|
timespecclear(&it->it_time.it_interval);
|
|
it->it_overrun = 0;
|
|
it->it_overrun_last = 0;
|
|
it->it_clockid = clock_id;
|
|
it->it_timerid = -1;
|
|
it->it_proc = p;
|
|
ksiginfo_init(&it->it_ksi);
|
|
it->it_ksi.ksi_flags |= KSI_INS | KSI_EXT;
|
|
error = CLOCK_CALL(clock_id, timer_create, (it));
|
|
if (error != 0)
|
|
goto out;
|
|
|
|
PROC_LOCK(p);
|
|
if (preset_id != -1) {
|
|
KASSERT(preset_id >= 0 && preset_id < 3, ("invalid preset_id"));
|
|
id = preset_id;
|
|
if (p->p_itimers->its_timers[id] != NULL) {
|
|
PROC_UNLOCK(p);
|
|
error = 0;
|
|
goto out;
|
|
}
|
|
} else {
|
|
/*
|
|
* Find a free timer slot, skipping those reserved
|
|
* for setitimer().
|
|
*/
|
|
for (id = 3; id < TIMER_MAX; id++)
|
|
if (p->p_itimers->its_timers[id] == NULL)
|
|
break;
|
|
if (id == TIMER_MAX) {
|
|
PROC_UNLOCK(p);
|
|
error = EAGAIN;
|
|
goto out;
|
|
}
|
|
}
|
|
it->it_timerid = id;
|
|
p->p_itimers->its_timers[id] = it;
|
|
if (evp != NULL)
|
|
it->it_sigev = *evp;
|
|
else {
|
|
it->it_sigev.sigev_notify = SIGEV_SIGNAL;
|
|
switch (clock_id) {
|
|
default:
|
|
case CLOCK_REALTIME:
|
|
it->it_sigev.sigev_signo = SIGALRM;
|
|
break;
|
|
case CLOCK_VIRTUAL:
|
|
it->it_sigev.sigev_signo = SIGVTALRM;
|
|
break;
|
|
case CLOCK_PROF:
|
|
it->it_sigev.sigev_signo = SIGPROF;
|
|
break;
|
|
}
|
|
it->it_sigev.sigev_value.sival_int = id;
|
|
}
|
|
|
|
if (it->it_sigev.sigev_notify == SIGEV_SIGNAL ||
|
|
it->it_sigev.sigev_notify == SIGEV_THREAD_ID) {
|
|
it->it_ksi.ksi_signo = it->it_sigev.sigev_signo;
|
|
it->it_ksi.ksi_code = SI_TIMER;
|
|
it->it_ksi.ksi_value = it->it_sigev.sigev_value;
|
|
it->it_ksi.ksi_timerid = id;
|
|
}
|
|
PROC_UNLOCK(p);
|
|
*timerid = id;
|
|
return (0);
|
|
|
|
out:
|
|
ITIMER_LOCK(it);
|
|
CLOCK_CALL(it->it_clockid, timer_delete, (it));
|
|
ITIMER_UNLOCK(it);
|
|
uma_zfree(itimer_zone, it);
|
|
return (error);
|
|
}
|
|
|
|
#ifndef _SYS_SYSPROTO_H_
|
|
struct ktimer_delete_args {
|
|
int timerid;
|
|
};
|
|
#endif
|
|
int
|
|
ktimer_delete(struct thread *td, struct ktimer_delete_args *uap)
|
|
{
|
|
return (kern_timer_delete(td, uap->timerid));
|
|
}
|
|
|
|
static struct itimer *
|
|
itimer_find(struct proc *p, int timerid)
|
|
{
|
|
struct itimer *it;
|
|
|
|
PROC_LOCK_ASSERT(p, MA_OWNED);
|
|
if ((p->p_itimers == NULL) ||
|
|
(timerid < 0) || (timerid >= TIMER_MAX) ||
|
|
(it = p->p_itimers->its_timers[timerid]) == NULL) {
|
|
return (NULL);
|
|
}
|
|
ITIMER_LOCK(it);
|
|
if ((it->it_flags & ITF_DELETING) != 0) {
|
|
ITIMER_UNLOCK(it);
|
|
it = NULL;
|
|
}
|
|
return (it);
|
|
}
|
|
|
|
static int
|
|
kern_timer_delete(struct thread *td, int timerid)
|
|
{
|
|
struct proc *p = td->td_proc;
|
|
struct itimer *it;
|
|
|
|
PROC_LOCK(p);
|
|
it = itimer_find(p, timerid);
|
|
if (it == NULL) {
|
|
PROC_UNLOCK(p);
|
|
return (EINVAL);
|
|
}
|
|
PROC_UNLOCK(p);
|
|
|
|
it->it_flags |= ITF_DELETING;
|
|
while (it->it_usecount > 0) {
|
|
it->it_flags |= ITF_WANTED;
|
|
msleep(it, &it->it_mtx, PPAUSE, "itimer", 0);
|
|
}
|
|
it->it_flags &= ~ITF_WANTED;
|
|
CLOCK_CALL(it->it_clockid, timer_delete, (it));
|
|
ITIMER_UNLOCK(it);
|
|
|
|
PROC_LOCK(p);
|
|
if (KSI_ONQ(&it->it_ksi))
|
|
sigqueue_take(&it->it_ksi);
|
|
p->p_itimers->its_timers[timerid] = NULL;
|
|
PROC_UNLOCK(p);
|
|
uma_zfree(itimer_zone, it);
|
|
return (0);
|
|
}
|
|
|
|
#ifndef _SYS_SYSPROTO_H_
|
|
struct ktimer_settime_args {
|
|
int timerid;
|
|
int flags;
|
|
const struct itimerspec * value;
|
|
struct itimerspec * ovalue;
|
|
};
|
|
#endif
|
|
int
|
|
ktimer_settime(struct thread *td, struct ktimer_settime_args *uap)
|
|
{
|
|
struct proc *p = td->td_proc;
|
|
struct itimer *it;
|
|
struct itimerspec val, oval, *ovalp;
|
|
int error;
|
|
|
|
error = copyin(uap->value, &val, sizeof(val));
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
if (uap->ovalue != NULL)
|
|
ovalp = &oval;
|
|
else
|
|
ovalp = NULL;
|
|
|
|
PROC_LOCK(p);
|
|
if (uap->timerid < 3 ||
|
|
(it = itimer_find(p, uap->timerid)) == NULL) {
|
|
PROC_UNLOCK(p);
|
|
error = EINVAL;
|
|
} else {
|
|
PROC_UNLOCK(p);
|
|
itimer_enter(it);
|
|
error = CLOCK_CALL(it->it_clockid, timer_settime,
|
|
(it, uap->flags, &val, ovalp));
|
|
itimer_leave(it);
|
|
ITIMER_UNLOCK(it);
|
|
}
|
|
if (error == 0 && uap->ovalue != NULL)
|
|
error = copyout(ovalp, uap->ovalue, sizeof(*ovalp));
|
|
return (error);
|
|
}
|
|
|
|
#ifndef _SYS_SYSPROTO_H_
|
|
struct ktimer_gettime_args {
|
|
int timerid;
|
|
struct itimerspec * value;
|
|
};
|
|
#endif
|
|
int
|
|
ktimer_gettime(struct thread *td, struct ktimer_gettime_args *uap)
|
|
{
|
|
struct proc *p = td->td_proc;
|
|
struct itimer *it;
|
|
struct itimerspec val;
|
|
int error;
|
|
|
|
PROC_LOCK(p);
|
|
if (uap->timerid < 3 ||
|
|
(it = itimer_find(p, uap->timerid)) == NULL) {
|
|
PROC_UNLOCK(p);
|
|
error = EINVAL;
|
|
} else {
|
|
PROC_UNLOCK(p);
|
|
itimer_enter(it);
|
|
error = CLOCK_CALL(it->it_clockid, timer_gettime,
|
|
(it, &val));
|
|
itimer_leave(it);
|
|
ITIMER_UNLOCK(it);
|
|
}
|
|
if (error == 0)
|
|
error = copyout(&val, uap->value, sizeof(val));
|
|
return (error);
|
|
}
|
|
|
|
#ifndef _SYS_SYSPROTO_H_
|
|
struct timer_getoverrun_args {
|
|
int timerid;
|
|
};
|
|
#endif
|
|
int
|
|
ktimer_getoverrun(struct thread *td, struct ktimer_getoverrun_args *uap)
|
|
{
|
|
struct proc *p = td->td_proc;
|
|
struct itimer *it;
|
|
int error ;
|
|
|
|
PROC_LOCK(p);
|
|
if (uap->timerid < 3 ||
|
|
(it = itimer_find(p, uap->timerid)) == NULL) {
|
|
PROC_UNLOCK(p);
|
|
error = EINVAL;
|
|
} else {
|
|
td->td_retval[0] = it->it_overrun_last;
|
|
ITIMER_UNLOCK(it);
|
|
PROC_UNLOCK(p);
|
|
error = 0;
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
realtimer_create(struct itimer *it)
|
|
{
|
|
callout_init_mtx(&it->it_callout, &it->it_mtx, 0);
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
realtimer_delete(struct itimer *it)
|
|
{
|
|
mtx_assert(&it->it_mtx, MA_OWNED);
|
|
|
|
/*
|
|
* clear timer's value and interval to tell realtimer_expire
|
|
* to not rearm the timer.
|
|
*/
|
|
timespecclear(&it->it_time.it_value);
|
|
timespecclear(&it->it_time.it_interval);
|
|
ITIMER_UNLOCK(it);
|
|
callout_drain(&it->it_callout);
|
|
ITIMER_LOCK(it);
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
realtimer_gettime(struct itimer *it, struct itimerspec *ovalue)
|
|
{
|
|
struct timespec cts;
|
|
|
|
mtx_assert(&it->it_mtx, MA_OWNED);
|
|
|
|
realtimer_clocktime(it->it_clockid, &cts);
|
|
*ovalue = it->it_time;
|
|
if (ovalue->it_value.tv_sec != 0 || ovalue->it_value.tv_nsec != 0) {
|
|
timespecsub(&ovalue->it_value, &cts);
|
|
if (ovalue->it_value.tv_sec < 0 ||
|
|
(ovalue->it_value.tv_sec == 0 &&
|
|
ovalue->it_value.tv_nsec == 0)) {
|
|
ovalue->it_value.tv_sec = 0;
|
|
ovalue->it_value.tv_nsec = 1;
|
|
}
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
realtimer_settime(struct itimer *it, int flags,
|
|
struct itimerspec *value, struct itimerspec *ovalue)
|
|
{
|
|
struct timespec cts, ts;
|
|
struct timeval tv;
|
|
struct itimerspec val;
|
|
|
|
mtx_assert(&it->it_mtx, MA_OWNED);
|
|
|
|
val = *value;
|
|
if (itimespecfix(&val.it_value))
|
|
return (EINVAL);
|
|
|
|
if (timespecisset(&val.it_value)) {
|
|
if (itimespecfix(&val.it_interval))
|
|
return (EINVAL);
|
|
} else {
|
|
timespecclear(&val.it_interval);
|
|
}
|
|
|
|
if (ovalue != NULL)
|
|
realtimer_gettime(it, ovalue);
|
|
|
|
it->it_time = val;
|
|
if (timespecisset(&val.it_value)) {
|
|
realtimer_clocktime(it->it_clockid, &cts);
|
|
ts = val.it_value;
|
|
if ((flags & TIMER_ABSTIME) == 0) {
|
|
/* Convert to absolute time. */
|
|
timespecadd(&it->it_time.it_value, &cts);
|
|
} else {
|
|
timespecsub(&ts, &cts);
|
|
/*
|
|
* We don't care if ts is negative, tztohz will
|
|
* fix it.
|
|
*/
|
|
}
|
|
TIMESPEC_TO_TIMEVAL(&tv, &ts);
|
|
callout_reset(&it->it_callout, tvtohz(&tv),
|
|
realtimer_expire, it);
|
|
} else {
|
|
callout_stop(&it->it_callout);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
realtimer_clocktime(clockid_t id, struct timespec *ts)
|
|
{
|
|
if (id == CLOCK_REALTIME)
|
|
getnanotime(ts);
|
|
else /* CLOCK_MONOTONIC */
|
|
getnanouptime(ts);
|
|
}
|
|
|
|
int
|
|
itimer_accept(struct proc *p, int timerid, ksiginfo_t *ksi)
|
|
{
|
|
struct itimer *it;
|
|
|
|
PROC_LOCK_ASSERT(p, MA_OWNED);
|
|
it = itimer_find(p, timerid);
|
|
if (it != NULL) {
|
|
ksi->ksi_overrun = it->it_overrun;
|
|
it->it_overrun_last = it->it_overrun;
|
|
it->it_overrun = 0;
|
|
ITIMER_UNLOCK(it);
|
|
return (0);
|
|
}
|
|
return (EINVAL);
|
|
}
|
|
|
|
int
|
|
itimespecfix(struct timespec *ts)
|
|
{
|
|
|
|
if (ts->tv_sec < 0 || ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000)
|
|
return (EINVAL);
|
|
if (ts->tv_sec == 0 && ts->tv_nsec != 0 && ts->tv_nsec < tick * 1000)
|
|
ts->tv_nsec = tick * 1000;
|
|
return (0);
|
|
}
|
|
|
|
/* Timeout callback for realtime timer */
|
|
static void
|
|
realtimer_expire(void *arg)
|
|
{
|
|
struct timespec cts, ts;
|
|
struct timeval tv;
|
|
struct itimer *it;
|
|
|
|
it = (struct itimer *)arg;
|
|
|
|
realtimer_clocktime(it->it_clockid, &cts);
|
|
/* Only fire if time is reached. */
|
|
if (timespeccmp(&cts, &it->it_time.it_value, >=)) {
|
|
if (timespecisset(&it->it_time.it_interval)) {
|
|
timespecadd(&it->it_time.it_value,
|
|
&it->it_time.it_interval);
|
|
while (timespeccmp(&cts, &it->it_time.it_value, >=)) {
|
|
if (it->it_overrun < INT_MAX)
|
|
it->it_overrun++;
|
|
else
|
|
it->it_ksi.ksi_errno = ERANGE;
|
|
timespecadd(&it->it_time.it_value,
|
|
&it->it_time.it_interval);
|
|
}
|
|
} else {
|
|
/* single shot timer ? */
|
|
timespecclear(&it->it_time.it_value);
|
|
}
|
|
if (timespecisset(&it->it_time.it_value)) {
|
|
ts = it->it_time.it_value;
|
|
timespecsub(&ts, &cts);
|
|
TIMESPEC_TO_TIMEVAL(&tv, &ts);
|
|
callout_reset(&it->it_callout, tvtohz(&tv),
|
|
realtimer_expire, it);
|
|
}
|
|
itimer_enter(it);
|
|
ITIMER_UNLOCK(it);
|
|
itimer_fire(it);
|
|
ITIMER_LOCK(it);
|
|
itimer_leave(it);
|
|
} else if (timespecisset(&it->it_time.it_value)) {
|
|
ts = it->it_time.it_value;
|
|
timespecsub(&ts, &cts);
|
|
TIMESPEC_TO_TIMEVAL(&tv, &ts);
|
|
callout_reset(&it->it_callout, tvtohz(&tv), realtimer_expire,
|
|
it);
|
|
}
|
|
}
|
|
|
|
void
|
|
itimer_fire(struct itimer *it)
|
|
{
|
|
struct proc *p = it->it_proc;
|
|
int ret;
|
|
|
|
if (it->it_sigev.sigev_notify == SIGEV_SIGNAL ||
|
|
it->it_sigev.sigev_notify == SIGEV_THREAD_ID) {
|
|
PROC_LOCK(p);
|
|
if (!KSI_ONQ(&it->it_ksi)) {
|
|
it->it_ksi.ksi_errno = 0;
|
|
ret = psignal_event(p, &it->it_sigev, &it->it_ksi);
|
|
if (__predict_false(ret != 0)) {
|
|
it->it_overrun++;
|
|
/*
|
|
* Broken userland code, thread went
|
|
* away, disarm the timer.
|
|
*/
|
|
if (ret == ESRCH) {
|
|
ITIMER_LOCK(it);
|
|
timespecclear(&it->it_time.it_value);
|
|
timespecclear(&it->it_time.it_interval);
|
|
callout_stop(&it->it_callout);
|
|
ITIMER_UNLOCK(it);
|
|
}
|
|
}
|
|
} else {
|
|
if (it->it_overrun < INT_MAX)
|
|
it->it_overrun++;
|
|
else
|
|
it->it_ksi.ksi_errno = ERANGE;
|
|
}
|
|
PROC_UNLOCK(p);
|
|
}
|
|
}
|
|
|
|
static void
|
|
itimers_alloc(struct proc *p)
|
|
{
|
|
struct itimers *its;
|
|
int i;
|
|
|
|
its = malloc(sizeof (struct itimers), M_SUBPROC, M_WAITOK | M_ZERO);
|
|
LIST_INIT(&its->its_virtual);
|
|
LIST_INIT(&its->its_prof);
|
|
TAILQ_INIT(&its->its_worklist);
|
|
for (i = 0; i < TIMER_MAX; i++)
|
|
its->its_timers[i] = NULL;
|
|
PROC_LOCK(p);
|
|
if (p->p_itimers == NULL) {
|
|
p->p_itimers = its;
|
|
PROC_UNLOCK(p);
|
|
}
|
|
else {
|
|
PROC_UNLOCK(p);
|
|
free(its, M_SUBPROC);
|
|
}
|
|
}
|
|
|
|
static void
|
|
itimers_event_hook_exec(void *arg, struct proc *p, struct image_params *imgp __unused)
|
|
{
|
|
itimers_event_hook_exit(arg, p);
|
|
}
|
|
|
|
/* Clean up timers when some process events are being triggered. */
|
|
static void
|
|
itimers_event_hook_exit(void *arg, struct proc *p)
|
|
{
|
|
struct itimers *its;
|
|
struct itimer *it;
|
|
int event = (int)(intptr_t)arg;
|
|
int i;
|
|
|
|
if (p->p_itimers != NULL) {
|
|
its = p->p_itimers;
|
|
for (i = 0; i < MAX_CLOCKS; ++i) {
|
|
if (posix_clocks[i].event_hook != NULL)
|
|
CLOCK_CALL(i, event_hook, (p, i, event));
|
|
}
|
|
/*
|
|
* According to susv3, XSI interval timers should be inherited
|
|
* by new image.
|
|
*/
|
|
if (event == ITIMER_EV_EXEC)
|
|
i = 3;
|
|
else if (event == ITIMER_EV_EXIT)
|
|
i = 0;
|
|
else
|
|
panic("unhandled event");
|
|
for (; i < TIMER_MAX; ++i) {
|
|
if ((it = its->its_timers[i]) != NULL)
|
|
kern_timer_delete(curthread, i);
|
|
}
|
|
if (its->its_timers[0] == NULL &&
|
|
its->its_timers[1] == NULL &&
|
|
its->its_timers[2] == NULL) {
|
|
free(its, M_SUBPROC);
|
|
p->p_itimers = NULL;
|
|
}
|
|
}
|
|
}
|