1
0
mirror of https://git.FreeBSD.org/src.git synced 2025-01-05 12:56:08 +00:00
freebsd/sys/pci/if_vr.c
1999-07-06 19:23:32 +00:00

1963 lines
45 KiB
C

/*
* Copyright (c) 1997, 1998
* Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*
* $Id: if_vr.c,v 1.12 1999/07/02 04:17:15 peter Exp $
*/
/*
* VIA Rhine fast ethernet PCI NIC driver
*
* Supports various network adapters based on the VIA Rhine
* and Rhine II PCI controllers, including the D-Link DFE530TX.
* Datasheets are available at http://www.via.com.tw.
*
* Written by Bill Paul <wpaul@ctr.columbia.edu>
* Electrical Engineering Department
* Columbia University, New York City
*/
/*
* The VIA Rhine controllers are similar in some respects to the
* the DEC tulip chips, except less complicated. The controller
* uses an MII bus and an external physical layer interface. The
* receiver has a one entry perfect filter and a 64-bit hash table
* multicast filter. Transmit and receive descriptors are similar
* to the tulip.
*
* The Rhine has a serious flaw in its transmit DMA mechanism:
* transmit buffers must be longword aligned. Unfortunately,
* FreeBSD doesn't guarantee that mbufs will be filled in starting
* at longword boundaries, so we have to do a buffer copy before
* transmission.
*/
#include "bpf.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#if NBPF > 0
#include <net/bpf.h>
#endif
#include <vm/vm.h> /* for vtophys */
#include <vm/pmap.h> /* for vtophys */
#include <machine/clock.h> /* for DELAY */
#include <machine/bus_pio.h>
#include <machine/bus_memio.h>
#include <machine/bus.h>
#include <pci/pcireg.h>
#include <pci/pcivar.h>
#define VR_USEIOSPACE
/* #define VR_BACKGROUND_AUTONEG */
#include <pci/if_vrreg.h>
#ifndef lint
static const char rcsid[] =
"$Id: if_vr.c,v 1.12 1999/07/02 04:17:15 peter Exp $";
#endif
/*
* Various supported device vendors/types and their names.
*/
static struct vr_type vr_devs[] = {
{ VIA_VENDORID, VIA_DEVICEID_RHINE,
"VIA VT3043 Rhine I 10/100BaseTX" },
{ VIA_VENDORID, VIA_DEVICEID_RHINE_II,
"VIA VT86C100A Rhine II 10/100BaseTX" },
{ DELTA_VENDORID, DELTA_DEVICEID_RHINE_II,
"Delta Electronics Rhine II 10/100BaseTX" },
{ ADDTRON_VENDORID, ADDTRON_DEVICEID_RHINE_II,
"Addtron Technology Rhine II 10/100BaseTX" },
{ 0, 0, NULL }
};
/*
* Various supported PHY vendors/types and their names. Note that
* this driver will work with pretty much any MII-compliant PHY,
* so failure to positively identify the chip is not a fatal error.
*/
static struct vr_type vr_phys[] = {
{ TI_PHY_VENDORID, TI_PHY_10BT, "<TI ThunderLAN 10BT (internal)>" },
{ TI_PHY_VENDORID, TI_PHY_100VGPMI, "<TI TNETE211 100VG Any-LAN>" },
{ NS_PHY_VENDORID, NS_PHY_83840A, "<National Semiconductor DP83840A>"},
{ LEVEL1_PHY_VENDORID, LEVEL1_PHY_LXT970, "<Level 1 LXT970>" },
{ INTEL_PHY_VENDORID, INTEL_PHY_82555, "<Intel 82555>" },
{ SEEQ_PHY_VENDORID, SEEQ_PHY_80220, "<SEEQ 80220>" },
{ 0, 0, "<MII-compliant physical interface>" }
};
static unsigned long vr_count = 0;
static const char *vr_probe __P((pcici_t, pcidi_t));
static void vr_attach __P((pcici_t, int));
static int vr_newbuf __P((struct vr_softc *,
struct vr_chain_onefrag *));
static int vr_encap __P((struct vr_softc *, struct vr_chain *,
struct mbuf * ));
static void vr_rxeof __P((struct vr_softc *));
static void vr_rxeoc __P((struct vr_softc *));
static void vr_txeof __P((struct vr_softc *));
static void vr_txeoc __P((struct vr_softc *));
static void vr_intr __P((void *));
static void vr_start __P((struct ifnet *));
static int vr_ioctl __P((struct ifnet *, u_long, caddr_t));
static void vr_init __P((void *));
static void vr_stop __P((struct vr_softc *));
static void vr_watchdog __P((struct ifnet *));
static void vr_shutdown __P((int, void *));
static int vr_ifmedia_upd __P((struct ifnet *));
static void vr_ifmedia_sts __P((struct ifnet *, struct ifmediareq *));
static void vr_mii_sync __P((struct vr_softc *));
static void vr_mii_send __P((struct vr_softc *, u_int32_t, int));
static int vr_mii_readreg __P((struct vr_softc *, struct vr_mii_frame *));
static int vr_mii_writereg __P((struct vr_softc *, struct vr_mii_frame *));
static u_int16_t vr_phy_readreg __P((struct vr_softc *, int));
static void vr_phy_writereg __P((struct vr_softc *, u_int16_t, u_int16_t));
static void vr_autoneg_xmit __P((struct vr_softc *));
static void vr_autoneg_mii __P((struct vr_softc *, int, int));
static void vr_setmode_mii __P((struct vr_softc *, int));
static void vr_getmode_mii __P((struct vr_softc *));
static void vr_setcfg __P((struct vr_softc *, u_int16_t));
static u_int8_t vr_calchash __P((u_int8_t *));
static void vr_setmulti __P((struct vr_softc *));
static void vr_reset __P((struct vr_softc *));
static int vr_list_rx_init __P((struct vr_softc *));
static int vr_list_tx_init __P((struct vr_softc *));
#define VR_SETBIT(sc, reg, x) \
CSR_WRITE_1(sc, reg, \
CSR_READ_1(sc, reg) | x)
#define VR_CLRBIT(sc, reg, x) \
CSR_WRITE_1(sc, reg, \
CSR_READ_1(sc, reg) & ~x)
#define VR_SETBIT16(sc, reg, x) \
CSR_WRITE_2(sc, reg, \
CSR_READ_2(sc, reg) | x)
#define VR_CLRBIT16(sc, reg, x) \
CSR_WRITE_2(sc, reg, \
CSR_READ_2(sc, reg) & ~x)
#define VR_SETBIT32(sc, reg, x) \
CSR_WRITE_4(sc, reg, \
CSR_READ_4(sc, reg) | x)
#define VR_CLRBIT32(sc, reg, x) \
CSR_WRITE_4(sc, reg, \
CSR_READ_4(sc, reg) & ~x)
#define SIO_SET(x) \
CSR_WRITE_1(sc, VR_MIICMD, \
CSR_READ_1(sc, VR_MIICMD) | x)
#define SIO_CLR(x) \
CSR_WRITE_1(sc, VR_MIICMD, \
CSR_READ_1(sc, VR_MIICMD) & ~x)
/*
* Sync the PHYs by setting data bit and strobing the clock 32 times.
*/
static void vr_mii_sync(sc)
struct vr_softc *sc;
{
register int i;
SIO_SET(VR_MIICMD_DIR|VR_MIICMD_DATAIN);
for (i = 0; i < 32; i++) {
SIO_SET(VR_MIICMD_CLK);
DELAY(1);
SIO_CLR(VR_MIICMD_CLK);
DELAY(1);
}
return;
}
/*
* Clock a series of bits through the MII.
*/
static void vr_mii_send(sc, bits, cnt)
struct vr_softc *sc;
u_int32_t bits;
int cnt;
{
int i;
SIO_CLR(VR_MIICMD_CLK);
for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
if (bits & i) {
SIO_SET(VR_MIICMD_DATAIN);
} else {
SIO_CLR(VR_MIICMD_DATAIN);
}
DELAY(1);
SIO_CLR(VR_MIICMD_CLK);
DELAY(1);
SIO_SET(VR_MIICMD_CLK);
}
}
/*
* Read an PHY register through the MII.
*/
static int vr_mii_readreg(sc, frame)
struct vr_softc *sc;
struct vr_mii_frame *frame;
{
int i, ack, s;
s = splimp();
/*
* Set up frame for RX.
*/
frame->mii_stdelim = VR_MII_STARTDELIM;
frame->mii_opcode = VR_MII_READOP;
frame->mii_turnaround = 0;
frame->mii_data = 0;
CSR_WRITE_1(sc, VR_MIICMD, 0);
VR_SETBIT(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
/*
* Turn on data xmit.
*/
SIO_SET(VR_MIICMD_DIR);
vr_mii_sync(sc);
/*
* Send command/address info.
*/
vr_mii_send(sc, frame->mii_stdelim, 2);
vr_mii_send(sc, frame->mii_opcode, 2);
vr_mii_send(sc, frame->mii_phyaddr, 5);
vr_mii_send(sc, frame->mii_regaddr, 5);
/* Idle bit */
SIO_CLR((VR_MIICMD_CLK|VR_MIICMD_DATAIN));
DELAY(1);
SIO_SET(VR_MIICMD_CLK);
DELAY(1);
/* Turn off xmit. */
SIO_CLR(VR_MIICMD_DIR);
/* Check for ack */
SIO_CLR(VR_MIICMD_CLK);
DELAY(1);
SIO_SET(VR_MIICMD_CLK);
DELAY(1);
ack = CSR_READ_4(sc, VR_MIICMD) & VR_MIICMD_DATAOUT;
/*
* Now try reading data bits. If the ack failed, we still
* need to clock through 16 cycles to keep the PHY(s) in sync.
*/
if (ack) {
for(i = 0; i < 16; i++) {
SIO_CLR(VR_MIICMD_CLK);
DELAY(1);
SIO_SET(VR_MIICMD_CLK);
DELAY(1);
}
goto fail;
}
for (i = 0x8000; i; i >>= 1) {
SIO_CLR(VR_MIICMD_CLK);
DELAY(1);
if (!ack) {
if (CSR_READ_4(sc, VR_MIICMD) & VR_MIICMD_DATAOUT)
frame->mii_data |= i;
DELAY(1);
}
SIO_SET(VR_MIICMD_CLK);
DELAY(1);
}
fail:
SIO_CLR(VR_MIICMD_CLK);
DELAY(1);
SIO_SET(VR_MIICMD_CLK);
DELAY(1);
splx(s);
if (ack)
return(1);
return(0);
}
/*
* Write to a PHY register through the MII.
*/
static int vr_mii_writereg(sc, frame)
struct vr_softc *sc;
struct vr_mii_frame *frame;
{
int s;
s = splimp();
CSR_WRITE_1(sc, VR_MIICMD, 0);
VR_SETBIT(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
/*
* Set up frame for TX.
*/
frame->mii_stdelim = VR_MII_STARTDELIM;
frame->mii_opcode = VR_MII_WRITEOP;
frame->mii_turnaround = VR_MII_TURNAROUND;
/*
* Turn on data output.
*/
SIO_SET(VR_MIICMD_DIR);
vr_mii_sync(sc);
vr_mii_send(sc, frame->mii_stdelim, 2);
vr_mii_send(sc, frame->mii_opcode, 2);
vr_mii_send(sc, frame->mii_phyaddr, 5);
vr_mii_send(sc, frame->mii_regaddr, 5);
vr_mii_send(sc, frame->mii_turnaround, 2);
vr_mii_send(sc, frame->mii_data, 16);
/* Idle bit. */
SIO_SET(VR_MIICMD_CLK);
DELAY(1);
SIO_CLR(VR_MIICMD_CLK);
DELAY(1);
/*
* Turn off xmit.
*/
SIO_CLR(VR_MIICMD_DIR);
splx(s);
return(0);
}
static u_int16_t vr_phy_readreg(sc, reg)
struct vr_softc *sc;
int reg;
{
struct vr_mii_frame frame;
bzero((char *)&frame, sizeof(frame));
frame.mii_phyaddr = sc->vr_phy_addr;
frame.mii_regaddr = reg;
vr_mii_readreg(sc, &frame);
return(frame.mii_data);
}
static void vr_phy_writereg(sc, reg, data)
struct vr_softc *sc;
u_int16_t reg;
u_int16_t data;
{
struct vr_mii_frame frame;
bzero((char *)&frame, sizeof(frame));
frame.mii_phyaddr = sc->vr_phy_addr;
frame.mii_regaddr = reg;
frame.mii_data = data;
vr_mii_writereg(sc, &frame);
return;
}
/*
* Calculate CRC of a multicast group address, return the lower 6 bits.
*/
static u_int8_t vr_calchash(addr)
u_int8_t *addr;
{
u_int32_t crc, carry;
int i, j;
u_int8_t c;
/* Compute CRC for the address value. */
crc = 0xFFFFFFFF; /* initial value */
for (i = 0; i < 6; i++) {
c = *(addr + i);
for (j = 0; j < 8; j++) {
carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
crc <<= 1;
c >>= 1;
if (carry)
crc = (crc ^ 0x04c11db6) | carry;
}
}
/* return the filter bit position */
return((crc >> 26) & 0x0000003F);
}
/*
* Program the 64-bit multicast hash filter.
*/
static void vr_setmulti(sc)
struct vr_softc *sc;
{
struct ifnet *ifp;
int h = 0;
u_int32_t hashes[2] = { 0, 0 };
struct ifmultiaddr *ifma;
u_int8_t rxfilt;
int mcnt = 0;
ifp = &sc->arpcom.ac_if;
rxfilt = CSR_READ_1(sc, VR_RXCFG);
if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
rxfilt |= VR_RXCFG_RX_MULTI;
CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
CSR_WRITE_4(sc, VR_MAR0, 0xFFFFFFFF);
CSR_WRITE_4(sc, VR_MAR1, 0xFFFFFFFF);
return;
}
/* first, zot all the existing hash bits */
CSR_WRITE_4(sc, VR_MAR0, 0);
CSR_WRITE_4(sc, VR_MAR1, 0);
/* now program new ones */
for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
ifma = ifma->ifma_link.le_next) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
h = vr_calchash(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
if (h < 32)
hashes[0] |= (1 << h);
else
hashes[1] |= (1 << (h - 32));
mcnt++;
}
if (mcnt)
rxfilt |= VR_RXCFG_RX_MULTI;
else
rxfilt &= ~VR_RXCFG_RX_MULTI;
CSR_WRITE_4(sc, VR_MAR0, hashes[0]);
CSR_WRITE_4(sc, VR_MAR1, hashes[1]);
CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
return;
}
/*
* Initiate an autonegotiation session.
*/
static void vr_autoneg_xmit(sc)
struct vr_softc *sc;
{
u_int16_t phy_sts;
vr_phy_writereg(sc, PHY_BMCR, PHY_BMCR_RESET);
DELAY(500);
while(vr_phy_readreg(sc, PHY_BMCR)
& PHY_BMCR_RESET);
phy_sts = vr_phy_readreg(sc, PHY_BMCR);
phy_sts |= PHY_BMCR_AUTONEGENBL|PHY_BMCR_AUTONEGRSTR;
vr_phy_writereg(sc, PHY_BMCR, phy_sts);
return;
}
/*
* Invoke autonegotiation on a PHY.
*/
static void vr_autoneg_mii(sc, flag, verbose)
struct vr_softc *sc;
int flag;
int verbose;
{
u_int16_t phy_sts = 0, media, advert, ability;
struct ifnet *ifp;
struct ifmedia *ifm;
ifm = &sc->ifmedia;
ifp = &sc->arpcom.ac_if;
ifm->ifm_media = IFM_ETHER | IFM_AUTO;
/*
* The 100baseT4 PHY on the 3c905-T4 has the 'autoneg supported'
* bit cleared in the status register, but has the 'autoneg enabled'
* bit set in the control register. This is a contradiction, and
* I'm not sure how to handle it. If you want to force an attempt
* to autoneg for 100baseT4 PHYs, #define FORCE_AUTONEG_TFOUR
* and see what happens.
*/
#ifndef FORCE_AUTONEG_TFOUR
/*
* First, see if autoneg is supported. If not, there's
* no point in continuing.
*/
phy_sts = vr_phy_readreg(sc, PHY_BMSR);
if (!(phy_sts & PHY_BMSR_CANAUTONEG)) {
if (verbose)
printf("vr%d: autonegotiation not supported\n",
sc->vr_unit);
ifm->ifm_media = IFM_ETHER|IFM_10_T|IFM_HDX;
return;
}
#endif
switch (flag) {
case VR_FLAG_FORCEDELAY:
/*
* XXX Never use this option anywhere but in the probe
* routine: making the kernel stop dead in its tracks
* for three whole seconds after we've gone multi-user
* is really bad manners.
*/
vr_autoneg_xmit(sc);
DELAY(5000000);
break;
case VR_FLAG_SCHEDDELAY:
/*
* Wait for the transmitter to go idle before starting
* an autoneg session, otherwise vr_start() may clobber
* our timeout, and we don't want to allow transmission
* during an autoneg session since that can screw it up.
*/
if (sc->vr_cdata.vr_tx_head != NULL) {
sc->vr_want_auto = 1;
return;
}
vr_autoneg_xmit(sc);
ifp->if_timer = 5;
sc->vr_autoneg = 1;
sc->vr_want_auto = 0;
return;
break;
case VR_FLAG_DELAYTIMEO:
ifp->if_timer = 0;
sc->vr_autoneg = 0;
break;
default:
printf("vr%d: invalid autoneg flag: %d\n", sc->vr_unit, flag);
return;
}
if (vr_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_AUTONEGCOMP) {
if (verbose)
printf("vr%d: autoneg complete, ", sc->vr_unit);
phy_sts = vr_phy_readreg(sc, PHY_BMSR);
} else {
if (verbose)
printf("vr%d: autoneg not complete, ", sc->vr_unit);
}
media = vr_phy_readreg(sc, PHY_BMCR);
/* Link is good. Report modes and set duplex mode. */
if (vr_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_LINKSTAT) {
if (verbose)
printf("link status good ");
advert = vr_phy_readreg(sc, PHY_ANAR);
ability = vr_phy_readreg(sc, PHY_LPAR);
if (advert & PHY_ANAR_100BT4 && ability & PHY_ANAR_100BT4) {
ifm->ifm_media = IFM_ETHER|IFM_100_T4;
media |= PHY_BMCR_SPEEDSEL;
media &= ~PHY_BMCR_DUPLEX;
printf("(100baseT4)\n");
} else if (advert & PHY_ANAR_100BTXFULL &&
ability & PHY_ANAR_100BTXFULL) {
ifm->ifm_media = IFM_ETHER|IFM_100_TX|IFM_FDX;
media |= PHY_BMCR_SPEEDSEL;
media |= PHY_BMCR_DUPLEX;
printf("(full-duplex, 100Mbps)\n");
} else if (advert & PHY_ANAR_100BTXHALF &&
ability & PHY_ANAR_100BTXHALF) {
ifm->ifm_media = IFM_ETHER|IFM_100_TX|IFM_HDX;
media |= PHY_BMCR_SPEEDSEL;
media &= ~PHY_BMCR_DUPLEX;
printf("(half-duplex, 100Mbps)\n");
} else if (advert & PHY_ANAR_10BTFULL &&
ability & PHY_ANAR_10BTFULL) {
ifm->ifm_media = IFM_ETHER|IFM_10_T|IFM_FDX;
media &= ~PHY_BMCR_SPEEDSEL;
media |= PHY_BMCR_DUPLEX;
printf("(full-duplex, 10Mbps)\n");
} else {
ifm->ifm_media = IFM_ETHER|IFM_10_T|IFM_HDX;
media &= ~PHY_BMCR_SPEEDSEL;
media &= ~PHY_BMCR_DUPLEX;
printf("(half-duplex, 10Mbps)\n");
}
media &= ~PHY_BMCR_AUTONEGENBL;
/* Set ASIC's duplex mode to match the PHY. */
vr_setcfg(sc, media);
vr_phy_writereg(sc, PHY_BMCR, media);
} else {
if (verbose)
printf("no carrier\n");
}
vr_init(sc);
if (sc->vr_tx_pend) {
sc->vr_autoneg = 0;
sc->vr_tx_pend = 0;
vr_start(ifp);
}
return;
}
static void vr_getmode_mii(sc)
struct vr_softc *sc;
{
u_int16_t bmsr;
struct ifnet *ifp;
ifp = &sc->arpcom.ac_if;
bmsr = vr_phy_readreg(sc, PHY_BMSR);
if (bootverbose)
printf("vr%d: PHY status word: %x\n", sc->vr_unit, bmsr);
/* fallback */
sc->ifmedia.ifm_media = IFM_ETHER|IFM_10_T|IFM_HDX;
if (bmsr & PHY_BMSR_10BTHALF) {
if (bootverbose)
printf("vr%d: 10Mbps half-duplex mode supported\n",
sc->vr_unit);
ifmedia_add(&sc->ifmedia,
IFM_ETHER|IFM_10_T|IFM_HDX, 0, NULL);
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
}
if (bmsr & PHY_BMSR_10BTFULL) {
if (bootverbose)
printf("vr%d: 10Mbps full-duplex mode supported\n",
sc->vr_unit);
ifmedia_add(&sc->ifmedia,
IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
sc->ifmedia.ifm_media = IFM_ETHER|IFM_10_T|IFM_FDX;
}
if (bmsr & PHY_BMSR_100BTXHALF) {
if (bootverbose)
printf("vr%d: 100Mbps half-duplex mode supported\n",
sc->vr_unit);
ifp->if_baudrate = 100000000;
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
ifmedia_add(&sc->ifmedia,
IFM_ETHER|IFM_100_TX|IFM_HDX, 0, NULL);
sc->ifmedia.ifm_media = IFM_ETHER|IFM_100_TX|IFM_HDX;
}
if (bmsr & PHY_BMSR_100BTXFULL) {
if (bootverbose)
printf("vr%d: 100Mbps full-duplex mode supported\n",
sc->vr_unit);
ifp->if_baudrate = 100000000;
ifmedia_add(&sc->ifmedia,
IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
sc->ifmedia.ifm_media = IFM_ETHER|IFM_100_TX|IFM_FDX;
}
/* Some also support 100BaseT4. */
if (bmsr & PHY_BMSR_100BT4) {
if (bootverbose)
printf("vr%d: 100baseT4 mode supported\n", sc->vr_unit);
ifp->if_baudrate = 100000000;
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_T4, 0, NULL);
sc->ifmedia.ifm_media = IFM_ETHER|IFM_100_T4;
#ifdef FORCE_AUTONEG_TFOUR
if (bootverbose)
printf("vr%d: forcing on autoneg support for BT4\n",
sc->vr_unit);
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0 NULL):
sc->ifmedia.ifm_media = IFM_ETHER|IFM_AUTO;
#endif
}
if (bmsr & PHY_BMSR_CANAUTONEG) {
if (bootverbose)
printf("vr%d: autoneg supported\n", sc->vr_unit);
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
sc->ifmedia.ifm_media = IFM_ETHER|IFM_AUTO;
}
return;
}
/*
* Set speed and duplex mode.
*/
static void vr_setmode_mii(sc, media)
struct vr_softc *sc;
int media;
{
u_int16_t bmcr;
struct ifnet *ifp;
ifp = &sc->arpcom.ac_if;
/*
* If an autoneg session is in progress, stop it.
*/
if (sc->vr_autoneg) {
printf("vr%d: canceling autoneg session\n", sc->vr_unit);
ifp->if_timer = sc->vr_autoneg = sc->vr_want_auto = 0;
bmcr = vr_phy_readreg(sc, PHY_BMCR);
bmcr &= ~PHY_BMCR_AUTONEGENBL;
vr_phy_writereg(sc, PHY_BMCR, bmcr);
}
printf("vr%d: selecting MII, ", sc->vr_unit);
bmcr = vr_phy_readreg(sc, PHY_BMCR);
bmcr &= ~(PHY_BMCR_AUTONEGENBL|PHY_BMCR_SPEEDSEL|
PHY_BMCR_DUPLEX|PHY_BMCR_LOOPBK);
if (IFM_SUBTYPE(media) == IFM_100_T4) {
printf("100Mbps/T4, half-duplex\n");
bmcr |= PHY_BMCR_SPEEDSEL;
bmcr &= ~PHY_BMCR_DUPLEX;
}
if (IFM_SUBTYPE(media) == IFM_100_TX) {
printf("100Mbps, ");
bmcr |= PHY_BMCR_SPEEDSEL;
}
if (IFM_SUBTYPE(media) == IFM_10_T) {
printf("10Mbps, ");
bmcr &= ~PHY_BMCR_SPEEDSEL;
}
if ((media & IFM_GMASK) == IFM_FDX) {
printf("full duplex\n");
bmcr |= PHY_BMCR_DUPLEX;
} else {
printf("half duplex\n");
bmcr &= ~PHY_BMCR_DUPLEX;
}
vr_setcfg(sc, bmcr);
vr_phy_writereg(sc, PHY_BMCR, bmcr);
return;
}
/*
* In order to fiddle with the
* 'full-duplex' and '100Mbps' bits in the netconfig register, we
* first have to put the transmit and/or receive logic in the idle state.
*/
static void vr_setcfg(sc, bmcr)
struct vr_softc *sc;
u_int16_t bmcr;
{
int restart = 0;
if (CSR_READ_2(sc, VR_COMMAND) & (VR_CMD_TX_ON|VR_CMD_RX_ON)) {
restart = 1;
VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_TX_ON|VR_CMD_RX_ON));
}
if (bmcr & PHY_BMCR_DUPLEX)
VR_SETBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
else
VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
if (restart)
VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_RX_ON);
return;
}
static void vr_reset(sc)
struct vr_softc *sc;
{
register int i;
VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RESET);
for (i = 0; i < VR_TIMEOUT; i++) {
DELAY(10);
if (!(CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RESET))
break;
}
if (i == VR_TIMEOUT)
printf("vr%d: reset never completed!\n", sc->vr_unit);
/* Wait a little while for the chip to get its brains in order. */
DELAY(1000);
return;
}
/*
* Probe for a VIA Rhine chip. Check the PCI vendor and device
* IDs against our list and return a device name if we find a match.
*/
static const char *
vr_probe(config_id, device_id)
pcici_t config_id;
pcidi_t device_id;
{
struct vr_type *t;
t = vr_devs;
while(t->vr_name != NULL) {
if ((device_id & 0xFFFF) == t->vr_vid &&
((device_id >> 16) & 0xFFFF) == t->vr_did) {
return(t->vr_name);
}
t++;
}
return(NULL);
}
/*
* Attach the interface. Allocate softc structures, do ifmedia
* setup and ethernet/BPF attach.
*/
static void
vr_attach(config_id, unit)
pcici_t config_id;
int unit;
{
int s, i;
#ifndef VR_USEIOSPACE
vm_offset_t pbase, vbase;
#endif
u_char eaddr[ETHER_ADDR_LEN];
u_int32_t command;
struct vr_softc *sc;
struct ifnet *ifp;
int media = IFM_ETHER|IFM_100_TX|IFM_FDX;
unsigned int round;
caddr_t roundptr;
struct vr_type *p;
u_int16_t phy_vid, phy_did, phy_sts;
s = splimp();
sc = malloc(sizeof(struct vr_softc), M_DEVBUF, M_NOWAIT);
if (sc == NULL) {
printf("vr%d: no memory for softc struct!\n", unit);
return;
}
bzero(sc, sizeof(struct vr_softc));
/*
* Handle power management nonsense.
*/
command = pci_conf_read(config_id, VR_PCI_CAPID) & 0x000000FF;
if (command == 0x01) {
command = pci_conf_read(config_id, VR_PCI_PWRMGMTCTRL);
if (command & VR_PSTATE_MASK) {
u_int32_t iobase, membase, irq;
/* Save important PCI config data. */
iobase = pci_conf_read(config_id, VR_PCI_LOIO);
membase = pci_conf_read(config_id, VR_PCI_LOMEM);
irq = pci_conf_read(config_id, VR_PCI_INTLINE);
/* Reset the power state. */
printf("vr%d: chip is in D%d power mode "
"-- setting to D0\n", unit, command & VR_PSTATE_MASK);
command &= 0xFFFFFFFC;
pci_conf_write(config_id, VR_PCI_PWRMGMTCTRL, command);
/* Restore PCI config data. */
pci_conf_write(config_id, VR_PCI_LOIO, iobase);
pci_conf_write(config_id, VR_PCI_LOMEM, membase);
pci_conf_write(config_id, VR_PCI_INTLINE, irq);
}
}
/*
* Map control/status registers.
*/
command = pci_conf_read(config_id, PCI_COMMAND_STATUS_REG);
command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
pci_conf_write(config_id, PCI_COMMAND_STATUS_REG, command);
command = pci_conf_read(config_id, PCI_COMMAND_STATUS_REG);
#ifdef VR_USEIOSPACE
if (!(command & PCIM_CMD_PORTEN)) {
printf("vr%d: failed to enable I/O ports!\n", unit);
free(sc, M_DEVBUF);
goto fail;
}
if (!pci_map_port(config_id, VR_PCI_LOIO,
(pci_port_t *)(&sc->vr_bhandle))) {
printf ("vr%d: couldn't map ports\n", unit);
goto fail;
}
sc->vr_btag = I386_BUS_SPACE_IO;
#else
if (!(command & PCIM_CMD_MEMEN)) {
printf("vr%d: failed to enable memory mapping!\n", unit);
goto fail;
}
if (!pci_map_mem(config_id, VR_PCI_LOMEM, &vbase, &pbase)) {
printf ("vr%d: couldn't map memory\n", unit);
goto fail;
}
sc->vr_bhandle = vbase;
sc->vr_btag = I386_BUS_SPACE_MEM;
#endif
/* Allocate interrupt */
if (!pci_map_int(config_id, vr_intr, sc, &net_imask)) {
printf("vr%d: couldn't map interrupt\n", unit);
goto fail;
}
/* Reset the adapter. */
vr_reset(sc);
/*
* Get station address. The way the Rhine chips work,
* you're not allowed to directly access the EEPROM once
* they've been programmed a special way. Consequently,
* we need to read the node address from the PAR0 and PAR1
* registers.
*/
VR_SETBIT(sc, VR_EECSR, VR_EECSR_LOAD);
DELAY(200);
for (i = 0; i < ETHER_ADDR_LEN; i++)
eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i);
/*
* A Rhine chip was detected. Inform the world.
*/
printf("vr%d: Ethernet address: %6D\n", unit, eaddr, ":");
sc->vr_unit = unit;
bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
sc->vr_ldata_ptr = malloc(sizeof(struct vr_list_data) + 8,
M_DEVBUF, M_NOWAIT);
if (sc->vr_ldata_ptr == NULL) {
free(sc, M_DEVBUF);
printf("vr%d: no memory for list buffers!\n", unit);
return;
}
sc->vr_ldata = (struct vr_list_data *)sc->vr_ldata_ptr;
round = (unsigned int)sc->vr_ldata_ptr & 0xF;
roundptr = sc->vr_ldata_ptr;
for (i = 0; i < 8; i++) {
if (round % 8) {
round++;
roundptr++;
} else
break;
}
sc->vr_ldata = (struct vr_list_data *)roundptr;
bzero(sc->vr_ldata, sizeof(struct vr_list_data));
ifp = &sc->arpcom.ac_if;
ifp->if_softc = sc;
ifp->if_unit = unit;
ifp->if_name = "vr";
ifp->if_mtu = ETHERMTU;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = vr_ioctl;
ifp->if_output = ether_output;
ifp->if_start = vr_start;
ifp->if_watchdog = vr_watchdog;
ifp->if_init = vr_init;
ifp->if_baudrate = 10000000;
ifp->if_snd.ifq_maxlen = VR_TX_LIST_CNT - 1;
if (bootverbose)
printf("vr%d: probing for a PHY\n", sc->vr_unit);
for (i = VR_PHYADDR_MIN; i < VR_PHYADDR_MAX + 1; i++) {
if (bootverbose)
printf("vr%d: checking address: %d\n",
sc->vr_unit, i);
sc->vr_phy_addr = i;
vr_phy_writereg(sc, PHY_BMCR, PHY_BMCR_RESET);
DELAY(500);
while(vr_phy_readreg(sc, PHY_BMCR)
& PHY_BMCR_RESET);
if ((phy_sts = vr_phy_readreg(sc, PHY_BMSR)))
break;
}
if (phy_sts) {
phy_vid = vr_phy_readreg(sc, PHY_VENID);
phy_did = vr_phy_readreg(sc, PHY_DEVID);
if (bootverbose)
printf("vr%d: found PHY at address %d, ",
sc->vr_unit, sc->vr_phy_addr);
if (bootverbose)
printf("vendor id: %x device id: %x\n",
phy_vid, phy_did);
p = vr_phys;
while(p->vr_vid) {
if (phy_vid == p->vr_vid &&
(phy_did | 0x000F) == p->vr_did) {
sc->vr_pinfo = p;
break;
}
p++;
}
if (sc->vr_pinfo == NULL)
sc->vr_pinfo = &vr_phys[PHY_UNKNOWN];
if (bootverbose)
printf("vr%d: PHY type: %s\n",
sc->vr_unit, sc->vr_pinfo->vr_name);
} else {
printf("vr%d: MII without any phy!\n", sc->vr_unit);
goto fail;
}
/*
* Do ifmedia setup.
*/
ifmedia_init(&sc->ifmedia, 0, vr_ifmedia_upd, vr_ifmedia_sts);
vr_getmode_mii(sc);
vr_autoneg_mii(sc, VR_FLAG_FORCEDELAY, 1);
media = sc->ifmedia.ifm_media;
vr_stop(sc);
ifmedia_set(&sc->ifmedia, media);
/*
* Call MI attach routines.
*/
if_attach(ifp);
ether_ifattach(ifp);
#if NBPF > 0
bpfattach(ifp, DLT_EN10MB, sizeof(struct ether_header));
#endif
at_shutdown(vr_shutdown, sc, SHUTDOWN_POST_SYNC);
fail:
splx(s);
return;
}
/*
* Initialize the transmit descriptors.
*/
static int vr_list_tx_init(sc)
struct vr_softc *sc;
{
struct vr_chain_data *cd;
struct vr_list_data *ld;
int i;
cd = &sc->vr_cdata;
ld = sc->vr_ldata;
for (i = 0; i < VR_TX_LIST_CNT; i++) {
cd->vr_tx_chain[i].vr_ptr = &ld->vr_tx_list[i];
if (i == (VR_TX_LIST_CNT - 1))
cd->vr_tx_chain[i].vr_nextdesc =
&cd->vr_tx_chain[0];
else
cd->vr_tx_chain[i].vr_nextdesc =
&cd->vr_tx_chain[i + 1];
}
cd->vr_tx_free = &cd->vr_tx_chain[0];
cd->vr_tx_tail = cd->vr_tx_head = NULL;
return(0);
}
/*
* Initialize the RX descriptors and allocate mbufs for them. Note that
* we arrange the descriptors in a closed ring, so that the last descriptor
* points back to the first.
*/
static int vr_list_rx_init(sc)
struct vr_softc *sc;
{
struct vr_chain_data *cd;
struct vr_list_data *ld;
int i;
cd = &sc->vr_cdata;
ld = sc->vr_ldata;
for (i = 0; i < VR_RX_LIST_CNT; i++) {
cd->vr_rx_chain[i].vr_ptr =
(struct vr_desc *)&ld->vr_rx_list[i];
if (vr_newbuf(sc, &cd->vr_rx_chain[i]) == ENOBUFS)
return(ENOBUFS);
if (i == (VR_RX_LIST_CNT - 1)) {
cd->vr_rx_chain[i].vr_nextdesc =
&cd->vr_rx_chain[0];
ld->vr_rx_list[i].vr_next =
vtophys(&ld->vr_rx_list[0]);
} else {
cd->vr_rx_chain[i].vr_nextdesc =
&cd->vr_rx_chain[i + 1];
ld->vr_rx_list[i].vr_next =
vtophys(&ld->vr_rx_list[i + 1]);
}
}
cd->vr_rx_head = &cd->vr_rx_chain[0];
return(0);
}
/*
* Initialize an RX descriptor and attach an MBUF cluster.
* Note: the length fields are only 11 bits wide, which means the
* largest size we can specify is 2047. This is important because
* MCLBYTES is 2048, so we have to subtract one otherwise we'll
* overflow the field and make a mess.
*/
static int vr_newbuf(sc, c)
struct vr_softc *sc;
struct vr_chain_onefrag *c;
{
struct mbuf *m_new = NULL;
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
if (m_new == NULL) {
printf("vr%d: no memory for rx list -- packet dropped!\n",
sc->vr_unit);
return(ENOBUFS);
}
MCLGET(m_new, M_DONTWAIT);
if (!(m_new->m_flags & M_EXT)) {
printf("vr%d: no memory for rx list -- packet dropped!\n",
sc->vr_unit);
m_freem(m_new);
return(ENOBUFS);
}
c->vr_mbuf = m_new;
c->vr_ptr->vr_status = VR_RXSTAT;
c->vr_ptr->vr_data = vtophys(mtod(m_new, caddr_t));
c->vr_ptr->vr_ctl = VR_RXCTL | VR_RXLEN;
return(0);
}
/*
* A frame has been uploaded: pass the resulting mbuf chain up to
* the higher level protocols.
*/
static void vr_rxeof(sc)
struct vr_softc *sc;
{
struct ether_header *eh;
struct mbuf *m;
struct ifnet *ifp;
struct vr_chain_onefrag *cur_rx;
int total_len = 0;
u_int32_t rxstat;
ifp = &sc->arpcom.ac_if;
while(!((rxstat = sc->vr_cdata.vr_rx_head->vr_ptr->vr_status) &
VR_RXSTAT_OWN)) {
cur_rx = sc->vr_cdata.vr_rx_head;
sc->vr_cdata.vr_rx_head = cur_rx->vr_nextdesc;
/*
* If an error occurs, update stats, clear the
* status word and leave the mbuf cluster in place:
* it should simply get re-used next time this descriptor
* comes up in the ring.
*/
if (rxstat & VR_RXSTAT_RXERR) {
ifp->if_ierrors++;
printf("vr%d: rx error: ", sc->vr_unit);
switch(rxstat & 0x000000FF) {
case VR_RXSTAT_CRCERR:
printf("crc error\n");
break;
case VR_RXSTAT_FRAMEALIGNERR:
printf("frame alignment error\n");
break;
case VR_RXSTAT_FIFOOFLOW:
printf("FIFO overflow\n");
break;
case VR_RXSTAT_GIANT:
printf("received giant packet\n");
break;
case VR_RXSTAT_RUNT:
printf("received runt packet\n");
break;
case VR_RXSTAT_BUSERR:
printf("system bus error\n");
break;
case VR_RXSTAT_BUFFERR:
printf("rx buffer error\n");
break;
default:
printf("unknown rx error\n");
break;
}
cur_rx->vr_ptr->vr_status = VR_RXSTAT;
cur_rx->vr_ptr->vr_ctl = VR_RXCTL|VR_RXLEN;
continue;
}
/* No errors; receive the packet. */
m = cur_rx->vr_mbuf;
total_len = VR_RXBYTES(cur_rx->vr_ptr->vr_status);
/*
* XXX The VIA Rhine chip includes the CRC with every
* received frame, and there's no way to turn this
* behavior off (at least, I can't find anything in
* the manual that explains how to do it) so we have
* to trim off the CRC manually.
*/
total_len -= ETHER_CRC_LEN;
/*
* Try to conjure up a new mbuf cluster. If that
* fails, it means we have an out of memory condition and
* should leave the buffer in place and continue. This will
* result in a lost packet, but there's little else we
* can do in this situation.
*/
if (vr_newbuf(sc, cur_rx) == ENOBUFS) {
ifp->if_ierrors++;
cur_rx->vr_ptr->vr_status = VR_RXSTAT;
cur_rx->vr_ptr->vr_ctl = VR_RXCTL|VR_RXLEN;
continue;
}
ifp->if_ipackets++;
eh = mtod(m, struct ether_header *);
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = m->m_len = total_len;
#if NBPF > 0
/*
* Handle BPF listeners. Let the BPF user see the packet, but
* don't pass it up to the ether_input() layer unless it's
* a broadcast packet, multicast packet, matches our ethernet
* address or the interface is in promiscuous mode.
*/
if (ifp->if_bpf) {
bpf_mtap(ifp, m);
if (ifp->if_flags & IFF_PROMISC &&
(bcmp(eh->ether_dhost, sc->arpcom.ac_enaddr,
ETHER_ADDR_LEN) &&
(eh->ether_dhost[0] & 1) == 0)) {
m_freem(m);
continue;
}
}
#endif
/* Remove header from mbuf and pass it on. */
m_adj(m, sizeof(struct ether_header));
ether_input(ifp, eh, m);
}
return;
}
void vr_rxeoc(sc)
struct vr_softc *sc;
{
vr_rxeof(sc);
VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
CSR_WRITE_4(sc, VR_RXADDR, vtophys(sc->vr_cdata.vr_rx_head->vr_ptr));
VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_GO);
return;
}
/*
* A frame was downloaded to the chip. It's safe for us to clean up
* the list buffers.
*/
static void vr_txeof(sc)
struct vr_softc *sc;
{
struct vr_chain *cur_tx;
struct ifnet *ifp;
register struct mbuf *n;
ifp = &sc->arpcom.ac_if;
/* Clear the timeout timer. */
ifp->if_timer = 0;
/* Sanity check. */
if (sc->vr_cdata.vr_tx_head == NULL)
return;
/*
* Go through our tx list and free mbufs for those
* frames that have been transmitted.
*/
while(sc->vr_cdata.vr_tx_head->vr_mbuf != NULL) {
u_int32_t txstat;
cur_tx = sc->vr_cdata.vr_tx_head;
txstat = cur_tx->vr_ptr->vr_status;
if (txstat & VR_TXSTAT_OWN)
break;
if (txstat & VR_TXSTAT_ERRSUM) {
ifp->if_oerrors++;
if (txstat & VR_TXSTAT_DEFER)
ifp->if_collisions++;
if (txstat & VR_TXSTAT_LATECOLL)
ifp->if_collisions++;
}
ifp->if_collisions +=(txstat & VR_TXSTAT_COLLCNT) >> 3;
ifp->if_opackets++;
MFREE(cur_tx->vr_mbuf, n);
cur_tx->vr_mbuf = NULL;
if (sc->vr_cdata.vr_tx_head == sc->vr_cdata.vr_tx_tail) {
sc->vr_cdata.vr_tx_head = NULL;
sc->vr_cdata.vr_tx_tail = NULL;
break;
}
sc->vr_cdata.vr_tx_head = cur_tx->vr_nextdesc;
}
return;
}
/*
* TX 'end of channel' interrupt handler.
*/
static void vr_txeoc(sc)
struct vr_softc *sc;
{
struct ifnet *ifp;
ifp = &sc->arpcom.ac_if;
ifp->if_timer = 0;
if (sc->vr_cdata.vr_tx_head == NULL) {
ifp->if_flags &= ~IFF_OACTIVE;
sc->vr_cdata.vr_tx_tail = NULL;
if (sc->vr_want_auto)
vr_autoneg_mii(sc, VR_FLAG_SCHEDDELAY, 1);
}
return;
}
static void vr_intr(arg)
void *arg;
{
struct vr_softc *sc;
struct ifnet *ifp;
u_int16_t status;
sc = arg;
ifp = &sc->arpcom.ac_if;
/* Supress unwanted interrupts. */
if (!(ifp->if_flags & IFF_UP)) {
vr_stop(sc);
return;
}
/* Disable interrupts. */
CSR_WRITE_2(sc, VR_IMR, 0x0000);
for (;;) {
status = CSR_READ_2(sc, VR_ISR);
if (status)
CSR_WRITE_2(sc, VR_ISR, status);
if ((status & VR_INTRS) == 0)
break;
if (status & VR_ISR_RX_OK)
vr_rxeof(sc);
if ((status & VR_ISR_RX_ERR) || (status & VR_ISR_RX_NOBUF) ||
(status & VR_ISR_RX_NOBUF) || (status & VR_ISR_RX_OFLOW) ||
(status & VR_ISR_RX_DROPPED)) {
vr_rxeof(sc);
vr_rxeoc(sc);
}
if (status & VR_ISR_TX_OK) {
vr_txeof(sc);
vr_txeoc(sc);
}
if ((status & VR_ISR_TX_UNDERRUN)||(status & VR_ISR_TX_ABRT)){
ifp->if_oerrors++;
vr_txeof(sc);
if (sc->vr_cdata.vr_tx_head != NULL) {
VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON);
VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO);
}
}
if (status & VR_ISR_BUSERR) {
vr_reset(sc);
vr_init(sc);
}
}
/* Re-enable interrupts. */
CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
if (ifp->if_snd.ifq_head != NULL) {
vr_start(ifp);
}
return;
}
/*
* Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
* pointers to the fragment pointers.
*/
static int vr_encap(sc, c, m_head)
struct vr_softc *sc;
struct vr_chain *c;
struct mbuf *m_head;
{
int frag = 0;
struct vr_desc *f = NULL;
int total_len;
struct mbuf *m;
m = m_head;
total_len = 0;
/*
* The VIA Rhine wants packet buffers to be longword
* aligned, but very often our mbufs aren't. Rather than
* waste time trying to decide when to copy and when not
* to copy, just do it all the time.
*/
if (m != NULL) {
struct mbuf *m_new = NULL;
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
if (m_new == NULL) {
printf("vr%d: no memory for tx list", sc->vr_unit);
return(1);
}
if (m_head->m_pkthdr.len > MHLEN) {
MCLGET(m_new, M_DONTWAIT);
if (!(m_new->m_flags & M_EXT)) {
m_freem(m_new);
printf("vr%d: no memory for tx list",
sc->vr_unit);
return(1);
}
}
m_copydata(m_head, 0, m_head->m_pkthdr.len,
mtod(m_new, caddr_t));
m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
m_freem(m_head);
m_head = m_new;
/*
* The Rhine chip doesn't auto-pad, so we have to make
* sure to pad short frames out to the minimum frame length
* ourselves.
*/
if (m_head->m_len < VR_MIN_FRAMELEN) {
m_new->m_pkthdr.len += VR_MIN_FRAMELEN - m_new->m_len;
m_new->m_len = m_new->m_pkthdr.len;
}
f = c->vr_ptr;
f->vr_data = vtophys(mtod(m_new, caddr_t));
f->vr_ctl = total_len = m_new->m_len;
f->vr_ctl |= VR_TXCTL_TLINK|VR_TXCTL_FIRSTFRAG;
f->vr_status = 0;
frag = 1;
}
c->vr_mbuf = m_head;
c->vr_ptr->vr_ctl |= VR_TXCTL_LASTFRAG|VR_TXCTL_FINT;
c->vr_ptr->vr_next = vtophys(c->vr_nextdesc->vr_ptr);
return(0);
}
/*
* Main transmit routine. To avoid having to do mbuf copies, we put pointers
* to the mbuf data regions directly in the transmit lists. We also save a
* copy of the pointers since the transmit list fragment pointers are
* physical addresses.
*/
static void vr_start(ifp)
struct ifnet *ifp;
{
struct vr_softc *sc;
struct mbuf *m_head = NULL;
struct vr_chain *cur_tx = NULL, *start_tx;
sc = ifp->if_softc;
if (sc->vr_autoneg) {
sc->vr_tx_pend = 1;
return;
}
/*
* Check for an available queue slot. If there are none,
* punt.
*/
if (sc->vr_cdata.vr_tx_free->vr_mbuf != NULL) {
ifp->if_flags |= IFF_OACTIVE;
return;
}
start_tx = sc->vr_cdata.vr_tx_free;
while(sc->vr_cdata.vr_tx_free->vr_mbuf == NULL) {
IF_DEQUEUE(&ifp->if_snd, m_head);
if (m_head == NULL)
break;
/* Pick a descriptor off the free list. */
cur_tx = sc->vr_cdata.vr_tx_free;
sc->vr_cdata.vr_tx_free = cur_tx->vr_nextdesc;
/* Pack the data into the descriptor. */
vr_encap(sc, cur_tx, m_head);
if (cur_tx != start_tx)
VR_TXOWN(cur_tx) = VR_TXSTAT_OWN;
#if NBPF > 0
/*
* If there's a BPF listener, bounce a copy of this frame
* to him.
*/
if (ifp->if_bpf)
bpf_mtap(ifp, cur_tx->vr_mbuf);
#endif
VR_TXOWN(cur_tx) = VR_TXSTAT_OWN;
VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_TX_GO);
}
/*
* If there are no frames queued, bail.
*/
if (cur_tx == NULL)
return;
sc->vr_cdata.vr_tx_tail = cur_tx;
if (sc->vr_cdata.vr_tx_head == NULL)
sc->vr_cdata.vr_tx_head = start_tx;
/*
* Set a timeout in case the chip goes out to lunch.
*/
ifp->if_timer = 5;
return;
}
static void vr_init(xsc)
void *xsc;
{
struct vr_softc *sc = xsc;
struct ifnet *ifp = &sc->arpcom.ac_if;
u_int16_t phy_bmcr = 0;
int s;
if (sc->vr_autoneg)
return;
s = splimp();
if (sc->vr_pinfo != NULL)
phy_bmcr = vr_phy_readreg(sc, PHY_BMCR);
/*
* Cancel pending I/O and free all RX/TX buffers.
*/
vr_stop(sc);
vr_reset(sc);
VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_THRESH);
VR_SETBIT(sc, VR_RXCFG, VR_RXTHRESH_STORENFWD);
VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TX_THRESH);
VR_SETBIT(sc, VR_TXCFG, VR_TXTHRESH_STORENFWD);
/* Init circular RX list. */
if (vr_list_rx_init(sc) == ENOBUFS) {
printf("vr%d: initialization failed: no "
"memory for rx buffers\n", sc->vr_unit);
vr_stop(sc);
(void)splx(s);
return;
}
/*
* Init tx descriptors.
*/
vr_list_tx_init(sc);
/* If we want promiscuous mode, set the allframes bit. */
if (ifp->if_flags & IFF_PROMISC)
VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
else
VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
/* Set capture broadcast bit to capture broadcast frames. */
if (ifp->if_flags & IFF_BROADCAST)
VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
else
VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
/*
* Program the multicast filter, if necessary.
*/
vr_setmulti(sc);
/*
* Load the address of the RX list.
*/
CSR_WRITE_4(sc, VR_RXADDR, vtophys(sc->vr_cdata.vr_rx_head->vr_ptr));
/* Enable receiver and transmitter. */
CSR_WRITE_2(sc, VR_COMMAND, VR_CMD_TX_NOPOLL|VR_CMD_START|
VR_CMD_TX_ON|VR_CMD_RX_ON|
VR_CMD_RX_GO);
vr_setcfg(sc, vr_phy_readreg(sc, PHY_BMCR));
CSR_WRITE_4(sc, VR_TXADDR, vtophys(&sc->vr_ldata->vr_tx_list[0]));
/*
* Enable interrupts.
*/
CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
/* Restore state of BMCR */
if (sc->vr_pinfo != NULL)
vr_phy_writereg(sc, PHY_BMCR, phy_bmcr);
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
(void)splx(s);
return;
}
/*
* Set media options.
*/
static int vr_ifmedia_upd(ifp)
struct ifnet *ifp;
{
struct vr_softc *sc;
struct ifmedia *ifm;
sc = ifp->if_softc;
ifm = &sc->ifmedia;
if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
return(EINVAL);
if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO)
vr_autoneg_mii(sc, VR_FLAG_SCHEDDELAY, 1);
else
vr_setmode_mii(sc, ifm->ifm_media);
return(0);
}
/*
* Report current media status.
*/
static void vr_ifmedia_sts(ifp, ifmr)
struct ifnet *ifp;
struct ifmediareq *ifmr;
{
struct vr_softc *sc;
u_int16_t advert = 0, ability = 0;
sc = ifp->if_softc;
ifmr->ifm_active = IFM_ETHER;
if (!(vr_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_AUTONEGENBL)) {
if (vr_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_SPEEDSEL)
ifmr->ifm_active = IFM_ETHER|IFM_100_TX;
else
ifmr->ifm_active = IFM_ETHER|IFM_10_T;
if (vr_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_DUPLEX)
ifmr->ifm_active |= IFM_FDX;
else
ifmr->ifm_active |= IFM_HDX;
return;
}
ability = vr_phy_readreg(sc, PHY_LPAR);
advert = vr_phy_readreg(sc, PHY_ANAR);
if (advert & PHY_ANAR_100BT4 &&
ability & PHY_ANAR_100BT4) {
ifmr->ifm_active = IFM_ETHER|IFM_100_T4;
} else if (advert & PHY_ANAR_100BTXFULL &&
ability & PHY_ANAR_100BTXFULL) {
ifmr->ifm_active = IFM_ETHER|IFM_100_TX|IFM_FDX;
} else if (advert & PHY_ANAR_100BTXHALF &&
ability & PHY_ANAR_100BTXHALF) {
ifmr->ifm_active = IFM_ETHER|IFM_100_TX|IFM_HDX;
} else if (advert & PHY_ANAR_10BTFULL &&
ability & PHY_ANAR_10BTFULL) {
ifmr->ifm_active = IFM_ETHER|IFM_10_T|IFM_FDX;
} else if (advert & PHY_ANAR_10BTHALF &&
ability & PHY_ANAR_10BTHALF) {
ifmr->ifm_active = IFM_ETHER|IFM_10_T|IFM_HDX;
}
return;
}
static int vr_ioctl(ifp, command, data)
struct ifnet *ifp;
u_long command;
caddr_t data;
{
struct vr_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *) data;
int s, error = 0;
s = splimp();
switch(command) {
case SIOCSIFADDR:
case SIOCGIFADDR:
case SIOCSIFMTU:
error = ether_ioctl(ifp, command, data);
break;
case SIOCSIFFLAGS:
if (ifp->if_flags & IFF_UP) {
vr_init(sc);
} else {
if (ifp->if_flags & IFF_RUNNING)
vr_stop(sc);
}
error = 0;
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
vr_setmulti(sc);
error = 0;
break;
case SIOCGIFMEDIA:
case SIOCSIFMEDIA:
error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
break;
default:
error = EINVAL;
break;
}
(void)splx(s);
return(error);
}
static void vr_watchdog(ifp)
struct ifnet *ifp;
{
struct vr_softc *sc;
sc = ifp->if_softc;
if (sc->vr_autoneg) {
vr_autoneg_mii(sc, VR_FLAG_DELAYTIMEO, 1);
return;
}
ifp->if_oerrors++;
printf("vr%d: watchdog timeout\n", sc->vr_unit);
if (!(vr_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_LINKSTAT))
printf("vr%d: no carrier - transceiver cable problem?\n",
sc->vr_unit);
vr_stop(sc);
vr_reset(sc);
vr_init(sc);
if (ifp->if_snd.ifq_head != NULL)
vr_start(ifp);
return;
}
/*
* Stop the adapter and free any mbufs allocated to the
* RX and TX lists.
*/
static void vr_stop(sc)
struct vr_softc *sc;
{
register int i;
struct ifnet *ifp;
ifp = &sc->arpcom.ac_if;
ifp->if_timer = 0;
VR_SETBIT16(sc, VR_COMMAND, VR_CMD_STOP);
VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_RX_ON|VR_CMD_TX_ON));
CSR_WRITE_2(sc, VR_IMR, 0x0000);
CSR_WRITE_4(sc, VR_TXADDR, 0x00000000);
CSR_WRITE_4(sc, VR_RXADDR, 0x00000000);
/*
* Free data in the RX lists.
*/
for (i = 0; i < VR_RX_LIST_CNT; i++) {
if (sc->vr_cdata.vr_rx_chain[i].vr_mbuf != NULL) {
m_freem(sc->vr_cdata.vr_rx_chain[i].vr_mbuf);
sc->vr_cdata.vr_rx_chain[i].vr_mbuf = NULL;
}
}
bzero((char *)&sc->vr_ldata->vr_rx_list,
sizeof(sc->vr_ldata->vr_rx_list));
/*
* Free the TX list buffers.
*/
for (i = 0; i < VR_TX_LIST_CNT; i++) {
if (sc->vr_cdata.vr_tx_chain[i].vr_mbuf != NULL) {
m_freem(sc->vr_cdata.vr_tx_chain[i].vr_mbuf);
sc->vr_cdata.vr_tx_chain[i].vr_mbuf = NULL;
}
}
bzero((char *)&sc->vr_ldata->vr_tx_list,
sizeof(sc->vr_ldata->vr_tx_list));
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
return;
}
/*
* Stop all chip I/O so that the kernel's probe routines don't
* get confused by errant DMAs when rebooting.
*/
static void vr_shutdown(howto, arg)
int howto;
void *arg;
{
struct vr_softc *sc = (struct vr_softc *)arg;
vr_stop(sc);
return;
}
static struct pci_device vr_device = {
"vr",
vr_probe,
vr_attach,
&vr_count,
NULL
};
COMPAT_PCI_DRIVER(vr, vr_device);