mirror of
https://git.FreeBSD.org/src.git
synced 2025-01-07 13:14:51 +00:00
2d9db0bc63
A single gratuitous ARP (GARP) is always transmitted when an IPv4 address is added to an interface, and that is usually sufficient. However, in some circumstances, such as when a shared address is passed between cluster nodes, this single GARP may occasionally be dropped or lost. This can lead to neighbors on the network link working with a stale ARP cache and sending packets destined for that address to the node that previously owned the address, which may not respond. To avoid this situation, GARP retransmissions can be enabled by setting the net.link.ether.inet.garp_rexmit_count sysctl to a value greater than zero. The setting represents the maximum number of retransmissions. The interval between retransmissions is calculated using an exponential backoff algorithm, doubling each time, so the retransmission intervals are: {1, 2, 4, 8, 16, ...} (seconds). Due to the exponential backoff algorithm used for the interval between GARP retransmissions, the maximum number of retransmissions is limited to 16 for sanity. This limit corresponds to a maximum interval between retransmissions of 2^16 seconds ~= 18 hours. Increasing this limit is possible, but sending out GARPs spaced days apart would be of little use. Submitted by: David A. Bright <david.a.bright@dell.com> MFC after: 1 month Relnotes: yes Sponsored by: Dell EMC Differential Revision: https://reviews.freebsd.org/D7695
1504 lines
41 KiB
C
1504 lines
41 KiB
C
/*-
|
|
* Copyright (c) 1982, 1986, 1988, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)if_ether.c 8.1 (Berkeley) 6/10/93
|
|
*/
|
|
|
|
/*
|
|
* Ethernet address resolution protocol.
|
|
* TODO:
|
|
* add "inuse/lock" bit (or ref. count) along with valid bit
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include "opt_inet.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/queue.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/rmlock.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/syslog.h>
|
|
|
|
#include <net/if.h>
|
|
#include <net/if_var.h>
|
|
#include <net/if_dl.h>
|
|
#include <net/if_types.h>
|
|
#include <net/netisr.h>
|
|
#include <net/ethernet.h>
|
|
#include <net/route.h>
|
|
#include <net/vnet.h>
|
|
|
|
#include <netinet/in.h>
|
|
#include <netinet/in_fib.h>
|
|
#include <netinet/in_var.h>
|
|
#include <net/if_llatbl.h>
|
|
#include <netinet/if_ether.h>
|
|
#ifdef INET
|
|
#include <netinet/ip_carp.h>
|
|
#endif
|
|
|
|
#include <security/mac/mac_framework.h>
|
|
|
|
#define SIN(s) ((const struct sockaddr_in *)(s))
|
|
|
|
static struct timeval arp_lastlog;
|
|
static int arp_curpps;
|
|
static int arp_maxpps = 1;
|
|
|
|
/* Simple ARP state machine */
|
|
enum arp_llinfo_state {
|
|
ARP_LLINFO_INCOMPLETE = 0, /* No LLE data */
|
|
ARP_LLINFO_REACHABLE, /* LLE is valid */
|
|
ARP_LLINFO_VERIFY, /* LLE is valid, need refresh */
|
|
ARP_LLINFO_DELETED, /* LLE is deleted */
|
|
};
|
|
|
|
SYSCTL_DECL(_net_link_ether);
|
|
static SYSCTL_NODE(_net_link_ether, PF_INET, inet, CTLFLAG_RW, 0, "");
|
|
static SYSCTL_NODE(_net_link_ether, PF_ARP, arp, CTLFLAG_RW, 0, "");
|
|
|
|
/* timer values */
|
|
static VNET_DEFINE(int, arpt_keep) = (20*60); /* once resolved, good for 20
|
|
* minutes */
|
|
static VNET_DEFINE(int, arp_maxtries) = 5;
|
|
static VNET_DEFINE(int, arp_proxyall) = 0;
|
|
static VNET_DEFINE(int, arpt_down) = 20; /* keep incomplete entries for
|
|
* 20 seconds */
|
|
static VNET_DEFINE(int, arpt_rexmit) = 1; /* retransmit arp entries, sec*/
|
|
VNET_PCPUSTAT_DEFINE(struct arpstat, arpstat); /* ARP statistics, see if_arp.h */
|
|
VNET_PCPUSTAT_SYSINIT(arpstat);
|
|
|
|
#ifdef VIMAGE
|
|
VNET_PCPUSTAT_SYSUNINIT(arpstat);
|
|
#endif /* VIMAGE */
|
|
|
|
static VNET_DEFINE(int, arp_maxhold) = 1;
|
|
|
|
#define V_arpt_keep VNET(arpt_keep)
|
|
#define V_arpt_down VNET(arpt_down)
|
|
#define V_arpt_rexmit VNET(arpt_rexmit)
|
|
#define V_arp_maxtries VNET(arp_maxtries)
|
|
#define V_arp_proxyall VNET(arp_proxyall)
|
|
#define V_arp_maxhold VNET(arp_maxhold)
|
|
|
|
SYSCTL_INT(_net_link_ether_inet, OID_AUTO, max_age, CTLFLAG_VNET | CTLFLAG_RW,
|
|
&VNET_NAME(arpt_keep), 0,
|
|
"ARP entry lifetime in seconds");
|
|
SYSCTL_INT(_net_link_ether_inet, OID_AUTO, maxtries, CTLFLAG_VNET | CTLFLAG_RW,
|
|
&VNET_NAME(arp_maxtries), 0,
|
|
"ARP resolution attempts before returning error");
|
|
SYSCTL_INT(_net_link_ether_inet, OID_AUTO, proxyall, CTLFLAG_VNET | CTLFLAG_RW,
|
|
&VNET_NAME(arp_proxyall), 0,
|
|
"Enable proxy ARP for all suitable requests");
|
|
SYSCTL_INT(_net_link_ether_inet, OID_AUTO, wait, CTLFLAG_VNET | CTLFLAG_RW,
|
|
&VNET_NAME(arpt_down), 0,
|
|
"Incomplete ARP entry lifetime in seconds");
|
|
SYSCTL_VNET_PCPUSTAT(_net_link_ether_arp, OID_AUTO, stats, struct arpstat,
|
|
arpstat, "ARP statistics (struct arpstat, net/if_arp.h)");
|
|
SYSCTL_INT(_net_link_ether_inet, OID_AUTO, maxhold, CTLFLAG_VNET | CTLFLAG_RW,
|
|
&VNET_NAME(arp_maxhold), 0,
|
|
"Number of packets to hold per ARP entry");
|
|
SYSCTL_INT(_net_link_ether_inet, OID_AUTO, max_log_per_second,
|
|
CTLFLAG_RW, &arp_maxpps, 0,
|
|
"Maximum number of remotely triggered ARP messages that can be "
|
|
"logged per second");
|
|
|
|
/*
|
|
* Due to the exponential backoff algorithm used for the interval between GARP
|
|
* retransmissions, the maximum number of retransmissions is limited for
|
|
* sanity. This limit corresponds to a maximum interval between retransmissions
|
|
* of 2^16 seconds ~= 18 hours.
|
|
*
|
|
* Making this limit more dynamic is more complicated than worthwhile,
|
|
* especially since sending out GARPs spaced days apart would be of little
|
|
* use. A maximum dynamic limit would look something like:
|
|
*
|
|
* const int max = fls(INT_MAX / hz) - 1;
|
|
*/
|
|
#define MAX_GARP_RETRANSMITS 16
|
|
static int sysctl_garp_rexmit(SYSCTL_HANDLER_ARGS);
|
|
static int garp_rexmit_count = 0; /* GARP retransmission setting. */
|
|
|
|
SYSCTL_PROC(_net_link_ether_inet, OID_AUTO, garp_rexmit_count,
|
|
CTLTYPE_INT|CTLFLAG_RW|CTLFLAG_MPSAFE,
|
|
&garp_rexmit_count, 0, sysctl_garp_rexmit, "I",
|
|
"Number of times to retransmit GARP packets;"
|
|
" 0 to disable, maximum of 16");
|
|
|
|
#define ARP_LOG(pri, ...) do { \
|
|
if (ppsratecheck(&arp_lastlog, &arp_curpps, arp_maxpps)) \
|
|
log((pri), "arp: " __VA_ARGS__); \
|
|
} while (0)
|
|
|
|
|
|
static void arpintr(struct mbuf *);
|
|
static void arptimer(void *);
|
|
#ifdef INET
|
|
static void in_arpinput(struct mbuf *);
|
|
#endif
|
|
|
|
static void arp_check_update_lle(struct arphdr *ah, struct in_addr isaddr,
|
|
struct ifnet *ifp, int bridged, struct llentry *la);
|
|
static void arp_mark_lle_reachable(struct llentry *la);
|
|
static void arp_iflladdr(void *arg __unused, struct ifnet *ifp);
|
|
|
|
static eventhandler_tag iflladdr_tag;
|
|
|
|
static const struct netisr_handler arp_nh = {
|
|
.nh_name = "arp",
|
|
.nh_handler = arpintr,
|
|
.nh_proto = NETISR_ARP,
|
|
.nh_policy = NETISR_POLICY_SOURCE,
|
|
};
|
|
|
|
/*
|
|
* Timeout routine. Age arp_tab entries periodically.
|
|
*/
|
|
static void
|
|
arptimer(void *arg)
|
|
{
|
|
struct llentry *lle = (struct llentry *)arg;
|
|
struct ifnet *ifp;
|
|
int r_skip_req;
|
|
|
|
if (lle->la_flags & LLE_STATIC) {
|
|
return;
|
|
}
|
|
LLE_WLOCK(lle);
|
|
if (callout_pending(&lle->lle_timer)) {
|
|
/*
|
|
* Here we are a bit odd here in the treatment of
|
|
* active/pending. If the pending bit is set, it got
|
|
* rescheduled before I ran. The active
|
|
* bit we ignore, since if it was stopped
|
|
* in ll_tablefree() and was currently running
|
|
* it would have return 0 so the code would
|
|
* not have deleted it since the callout could
|
|
* not be stopped so we want to go through
|
|
* with the delete here now. If the callout
|
|
* was restarted, the pending bit will be back on and
|
|
* we just want to bail since the callout_reset would
|
|
* return 1 and our reference would have been removed
|
|
* by arpresolve() below.
|
|
*/
|
|
LLE_WUNLOCK(lle);
|
|
return;
|
|
}
|
|
ifp = lle->lle_tbl->llt_ifp;
|
|
CURVNET_SET(ifp->if_vnet);
|
|
|
|
switch (lle->ln_state) {
|
|
case ARP_LLINFO_REACHABLE:
|
|
|
|
/*
|
|
* Expiration time is approaching.
|
|
* Let's try to refresh entry if it is still
|
|
* in use.
|
|
*
|
|
* Set r_skip_req to get feedback from
|
|
* fast path. Change state and re-schedule
|
|
* ourselves.
|
|
*/
|
|
LLE_REQ_LOCK(lle);
|
|
lle->r_skip_req = 1;
|
|
LLE_REQ_UNLOCK(lle);
|
|
lle->ln_state = ARP_LLINFO_VERIFY;
|
|
callout_schedule(&lle->lle_timer, hz * V_arpt_rexmit);
|
|
LLE_WUNLOCK(lle);
|
|
CURVNET_RESTORE();
|
|
return;
|
|
case ARP_LLINFO_VERIFY:
|
|
LLE_REQ_LOCK(lle);
|
|
r_skip_req = lle->r_skip_req;
|
|
LLE_REQ_UNLOCK(lle);
|
|
|
|
if (r_skip_req == 0 && lle->la_preempt > 0) {
|
|
/* Entry was used, issue refresh request */
|
|
struct in_addr dst;
|
|
dst = lle->r_l3addr.addr4;
|
|
lle->la_preempt--;
|
|
callout_schedule(&lle->lle_timer, hz * V_arpt_rexmit);
|
|
LLE_WUNLOCK(lle);
|
|
arprequest(ifp, NULL, &dst, NULL);
|
|
CURVNET_RESTORE();
|
|
return;
|
|
}
|
|
/* Nothing happened. Reschedule if not too late */
|
|
if (lle->la_expire > time_uptime) {
|
|
callout_schedule(&lle->lle_timer, hz * V_arpt_rexmit);
|
|
LLE_WUNLOCK(lle);
|
|
CURVNET_RESTORE();
|
|
return;
|
|
}
|
|
break;
|
|
case ARP_LLINFO_INCOMPLETE:
|
|
case ARP_LLINFO_DELETED:
|
|
break;
|
|
}
|
|
|
|
if ((lle->la_flags & LLE_DELETED) == 0) {
|
|
int evt;
|
|
|
|
if (lle->la_flags & LLE_VALID)
|
|
evt = LLENTRY_EXPIRED;
|
|
else
|
|
evt = LLENTRY_TIMEDOUT;
|
|
EVENTHANDLER_INVOKE(lle_event, lle, evt);
|
|
}
|
|
|
|
callout_stop(&lle->lle_timer);
|
|
|
|
/* XXX: LOR avoidance. We still have ref on lle. */
|
|
LLE_WUNLOCK(lle);
|
|
IF_AFDATA_LOCK(ifp);
|
|
LLE_WLOCK(lle);
|
|
|
|
/* Guard against race with other llentry_free(). */
|
|
if (lle->la_flags & LLE_LINKED) {
|
|
LLE_REMREF(lle);
|
|
lltable_unlink_entry(lle->lle_tbl, lle);
|
|
}
|
|
IF_AFDATA_UNLOCK(ifp);
|
|
|
|
size_t pkts_dropped = llentry_free(lle);
|
|
|
|
ARPSTAT_ADD(dropped, pkts_dropped);
|
|
ARPSTAT_INC(timeouts);
|
|
|
|
CURVNET_RESTORE();
|
|
}
|
|
|
|
/*
|
|
* Stores link-layer header for @ifp in format suitable for if_output()
|
|
* into buffer @buf. Resulting header length is stored in @bufsize.
|
|
*
|
|
* Returns 0 on success.
|
|
*/
|
|
static int
|
|
arp_fillheader(struct ifnet *ifp, struct arphdr *ah, int bcast, u_char *buf,
|
|
size_t *bufsize)
|
|
{
|
|
struct if_encap_req ereq;
|
|
int error;
|
|
|
|
bzero(buf, *bufsize);
|
|
bzero(&ereq, sizeof(ereq));
|
|
ereq.buf = buf;
|
|
ereq.bufsize = *bufsize;
|
|
ereq.rtype = IFENCAP_LL;
|
|
ereq.family = AF_ARP;
|
|
ereq.lladdr = ar_tha(ah);
|
|
ereq.hdata = (u_char *)ah;
|
|
if (bcast)
|
|
ereq.flags = IFENCAP_FLAG_BROADCAST;
|
|
error = ifp->if_requestencap(ifp, &ereq);
|
|
if (error == 0)
|
|
*bufsize = ereq.bufsize;
|
|
|
|
return (error);
|
|
}
|
|
|
|
|
|
/*
|
|
* Broadcast an ARP request. Caller specifies:
|
|
* - arp header source ip address
|
|
* - arp header target ip address
|
|
* - arp header source ethernet address
|
|
*/
|
|
void
|
|
arprequest(struct ifnet *ifp, const struct in_addr *sip,
|
|
const struct in_addr *tip, u_char *enaddr)
|
|
{
|
|
struct mbuf *m;
|
|
struct arphdr *ah;
|
|
struct sockaddr sa;
|
|
u_char *carpaddr = NULL;
|
|
uint8_t linkhdr[LLE_MAX_LINKHDR];
|
|
size_t linkhdrsize;
|
|
struct route ro;
|
|
int error;
|
|
|
|
if (sip == NULL) {
|
|
/*
|
|
* The caller did not supply a source address, try to find
|
|
* a compatible one among those assigned to this interface.
|
|
*/
|
|
struct ifaddr *ifa;
|
|
|
|
IF_ADDR_RLOCK(ifp);
|
|
TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
|
|
if (ifa->ifa_addr->sa_family != AF_INET)
|
|
continue;
|
|
|
|
if (ifa->ifa_carp) {
|
|
if ((*carp_iamatch_p)(ifa, &carpaddr) == 0)
|
|
continue;
|
|
sip = &IA_SIN(ifa)->sin_addr;
|
|
} else {
|
|
carpaddr = NULL;
|
|
sip = &IA_SIN(ifa)->sin_addr;
|
|
}
|
|
|
|
if (0 == ((sip->s_addr ^ tip->s_addr) &
|
|
IA_MASKSIN(ifa)->sin_addr.s_addr))
|
|
break; /* found it. */
|
|
}
|
|
IF_ADDR_RUNLOCK(ifp);
|
|
if (sip == NULL) {
|
|
printf("%s: cannot find matching address\n", __func__);
|
|
return;
|
|
}
|
|
}
|
|
if (enaddr == NULL)
|
|
enaddr = carpaddr ? carpaddr : (u_char *)IF_LLADDR(ifp);
|
|
|
|
if ((m = m_gethdr(M_NOWAIT, MT_DATA)) == NULL)
|
|
return;
|
|
m->m_len = sizeof(*ah) + 2 * sizeof(struct in_addr) +
|
|
2 * ifp->if_addrlen;
|
|
m->m_pkthdr.len = m->m_len;
|
|
M_ALIGN(m, m->m_len);
|
|
ah = mtod(m, struct arphdr *);
|
|
bzero((caddr_t)ah, m->m_len);
|
|
#ifdef MAC
|
|
mac_netinet_arp_send(ifp, m);
|
|
#endif
|
|
ah->ar_pro = htons(ETHERTYPE_IP);
|
|
ah->ar_hln = ifp->if_addrlen; /* hardware address length */
|
|
ah->ar_pln = sizeof(struct in_addr); /* protocol address length */
|
|
ah->ar_op = htons(ARPOP_REQUEST);
|
|
bcopy(enaddr, ar_sha(ah), ah->ar_hln);
|
|
bcopy(sip, ar_spa(ah), ah->ar_pln);
|
|
bcopy(tip, ar_tpa(ah), ah->ar_pln);
|
|
sa.sa_family = AF_ARP;
|
|
sa.sa_len = 2;
|
|
|
|
/* Calculate link header for sending frame */
|
|
bzero(&ro, sizeof(ro));
|
|
linkhdrsize = sizeof(linkhdr);
|
|
error = arp_fillheader(ifp, ah, 1, linkhdr, &linkhdrsize);
|
|
if (error != 0 && error != EAFNOSUPPORT) {
|
|
ARP_LOG(LOG_ERR, "Failed to calculate ARP header on %s: %d\n",
|
|
if_name(ifp), error);
|
|
return;
|
|
}
|
|
|
|
ro.ro_prepend = linkhdr;
|
|
ro.ro_plen = linkhdrsize;
|
|
ro.ro_flags = 0;
|
|
|
|
m->m_flags |= M_BCAST;
|
|
m_clrprotoflags(m); /* Avoid confusing lower layers. */
|
|
(*ifp->if_output)(ifp, m, &sa, &ro);
|
|
ARPSTAT_INC(txrequests);
|
|
}
|
|
|
|
|
|
/*
|
|
* Resolve an IP address into an ethernet address - heavy version.
|
|
* Used internally by arpresolve().
|
|
* We have already checked than we can't use existing lle without
|
|
* modification so we have to acquire LLE_EXCLUSIVE lle lock.
|
|
*
|
|
* On success, desten and flags are filled in and the function returns 0;
|
|
* If the packet must be held pending resolution, we return EWOULDBLOCK
|
|
* On other errors, we return the corresponding error code.
|
|
* Note that m_freem() handles NULL.
|
|
*/
|
|
static int
|
|
arpresolve_full(struct ifnet *ifp, int is_gw, int flags, struct mbuf *m,
|
|
const struct sockaddr *dst, u_char *desten, uint32_t *pflags,
|
|
struct llentry **plle)
|
|
{
|
|
struct llentry *la = NULL, *la_tmp;
|
|
struct mbuf *curr = NULL;
|
|
struct mbuf *next = NULL;
|
|
int error, renew;
|
|
char *lladdr;
|
|
int ll_len;
|
|
|
|
if (pflags != NULL)
|
|
*pflags = 0;
|
|
if (plle != NULL)
|
|
*plle = NULL;
|
|
|
|
if ((flags & LLE_CREATE) == 0) {
|
|
IF_AFDATA_RLOCK(ifp);
|
|
la = lla_lookup(LLTABLE(ifp), LLE_EXCLUSIVE, dst);
|
|
IF_AFDATA_RUNLOCK(ifp);
|
|
}
|
|
if (la == NULL && (ifp->if_flags & (IFF_NOARP | IFF_STATICARP)) == 0) {
|
|
la = lltable_alloc_entry(LLTABLE(ifp), 0, dst);
|
|
if (la == NULL) {
|
|
log(LOG_DEBUG,
|
|
"arpresolve: can't allocate llinfo for %s on %s\n",
|
|
inet_ntoa(SIN(dst)->sin_addr), if_name(ifp));
|
|
m_freem(m);
|
|
return (EINVAL);
|
|
}
|
|
|
|
IF_AFDATA_WLOCK(ifp);
|
|
LLE_WLOCK(la);
|
|
la_tmp = lla_lookup(LLTABLE(ifp), LLE_EXCLUSIVE, dst);
|
|
/* Prefer ANY existing lle over newly-created one */
|
|
if (la_tmp == NULL)
|
|
lltable_link_entry(LLTABLE(ifp), la);
|
|
IF_AFDATA_WUNLOCK(ifp);
|
|
if (la_tmp != NULL) {
|
|
lltable_free_entry(LLTABLE(ifp), la);
|
|
la = la_tmp;
|
|
}
|
|
}
|
|
if (la == NULL) {
|
|
m_freem(m);
|
|
return (EINVAL);
|
|
}
|
|
|
|
if ((la->la_flags & LLE_VALID) &&
|
|
((la->la_flags & LLE_STATIC) || la->la_expire > time_uptime)) {
|
|
if (flags & LLE_ADDRONLY) {
|
|
lladdr = la->ll_addr;
|
|
ll_len = ifp->if_addrlen;
|
|
} else {
|
|
lladdr = la->r_linkdata;
|
|
ll_len = la->r_hdrlen;
|
|
}
|
|
bcopy(lladdr, desten, ll_len);
|
|
|
|
/* Check if we have feedback request from arptimer() */
|
|
if (la->r_skip_req != 0) {
|
|
LLE_REQ_LOCK(la);
|
|
la->r_skip_req = 0; /* Notify that entry was used */
|
|
LLE_REQ_UNLOCK(la);
|
|
}
|
|
if (pflags != NULL)
|
|
*pflags = la->la_flags & (LLE_VALID|LLE_IFADDR);
|
|
if (plle) {
|
|
LLE_ADDREF(la);
|
|
*plle = la;
|
|
}
|
|
LLE_WUNLOCK(la);
|
|
return (0);
|
|
}
|
|
|
|
renew = (la->la_asked == 0 || la->la_expire != time_uptime);
|
|
/*
|
|
* There is an arptab entry, but no ethernet address
|
|
* response yet. Add the mbuf to the list, dropping
|
|
* the oldest packet if we have exceeded the system
|
|
* setting.
|
|
*/
|
|
if (m != NULL) {
|
|
if (la->la_numheld >= V_arp_maxhold) {
|
|
if (la->la_hold != NULL) {
|
|
next = la->la_hold->m_nextpkt;
|
|
m_freem(la->la_hold);
|
|
la->la_hold = next;
|
|
la->la_numheld--;
|
|
ARPSTAT_INC(dropped);
|
|
}
|
|
}
|
|
if (la->la_hold != NULL) {
|
|
curr = la->la_hold;
|
|
while (curr->m_nextpkt != NULL)
|
|
curr = curr->m_nextpkt;
|
|
curr->m_nextpkt = m;
|
|
} else
|
|
la->la_hold = m;
|
|
la->la_numheld++;
|
|
}
|
|
/*
|
|
* Return EWOULDBLOCK if we have tried less than arp_maxtries. It
|
|
* will be masked by ether_output(). Return EHOSTDOWN/EHOSTUNREACH
|
|
* if we have already sent arp_maxtries ARP requests. Retransmit the
|
|
* ARP request, but not faster than one request per second.
|
|
*/
|
|
if (la->la_asked < V_arp_maxtries)
|
|
error = EWOULDBLOCK; /* First request. */
|
|
else
|
|
error = is_gw != 0 ? EHOSTUNREACH : EHOSTDOWN;
|
|
|
|
if (renew) {
|
|
int canceled;
|
|
|
|
LLE_ADDREF(la);
|
|
la->la_expire = time_uptime;
|
|
canceled = callout_reset(&la->lle_timer, hz * V_arpt_down,
|
|
arptimer, la);
|
|
if (canceled)
|
|
LLE_REMREF(la);
|
|
la->la_asked++;
|
|
LLE_WUNLOCK(la);
|
|
arprequest(ifp, NULL, &SIN(dst)->sin_addr, NULL);
|
|
return (error);
|
|
}
|
|
|
|
LLE_WUNLOCK(la);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Resolve an IP address into an ethernet address.
|
|
*/
|
|
int
|
|
arpresolve_addr(struct ifnet *ifp, int flags, const struct sockaddr *dst,
|
|
char *desten, uint32_t *pflags, struct llentry **plle)
|
|
{
|
|
int error;
|
|
|
|
flags |= LLE_ADDRONLY;
|
|
error = arpresolve_full(ifp, 0, flags, NULL, dst, desten, pflags, plle);
|
|
return (error);
|
|
}
|
|
|
|
|
|
/*
|
|
* Lookups link header based on an IP address.
|
|
* On input:
|
|
* ifp is the interface we use
|
|
* is_gw != 0 if @dst represents gateway to some destination
|
|
* m is the mbuf. May be NULL if we don't have a packet.
|
|
* dst is the next hop,
|
|
* desten is the storage to put LL header.
|
|
* flags returns subset of lle flags: LLE_VALID | LLE_IFADDR
|
|
*
|
|
* On success, full/partial link header and flags are filled in and
|
|
* the function returns 0.
|
|
* If the packet must be held pending resolution, we return EWOULDBLOCK
|
|
* On other errors, we return the corresponding error code.
|
|
* Note that m_freem() handles NULL.
|
|
*/
|
|
int
|
|
arpresolve(struct ifnet *ifp, int is_gw, struct mbuf *m,
|
|
const struct sockaddr *dst, u_char *desten, uint32_t *pflags,
|
|
struct llentry **plle)
|
|
{
|
|
struct llentry *la = NULL;
|
|
|
|
if (pflags != NULL)
|
|
*pflags = 0;
|
|
if (plle != NULL)
|
|
*plle = NULL;
|
|
|
|
if (m != NULL) {
|
|
if (m->m_flags & M_BCAST) {
|
|
/* broadcast */
|
|
(void)memcpy(desten,
|
|
ifp->if_broadcastaddr, ifp->if_addrlen);
|
|
return (0);
|
|
}
|
|
if (m->m_flags & M_MCAST) {
|
|
/* multicast */
|
|
ETHER_MAP_IP_MULTICAST(&SIN(dst)->sin_addr, desten);
|
|
return (0);
|
|
}
|
|
}
|
|
|
|
IF_AFDATA_RLOCK(ifp);
|
|
la = lla_lookup(LLTABLE(ifp), plle ? LLE_EXCLUSIVE : LLE_UNLOCKED, dst);
|
|
if (la != NULL && (la->r_flags & RLLE_VALID) != 0) {
|
|
/* Entry found, let's copy lle info */
|
|
bcopy(la->r_linkdata, desten, la->r_hdrlen);
|
|
if (pflags != NULL)
|
|
*pflags = LLE_VALID | (la->r_flags & RLLE_IFADDR);
|
|
/* Check if we have feedback request from arptimer() */
|
|
if (la->r_skip_req != 0) {
|
|
LLE_REQ_LOCK(la);
|
|
la->r_skip_req = 0; /* Notify that entry was used */
|
|
LLE_REQ_UNLOCK(la);
|
|
}
|
|
if (plle) {
|
|
LLE_ADDREF(la);
|
|
*plle = la;
|
|
LLE_WUNLOCK(la);
|
|
}
|
|
IF_AFDATA_RUNLOCK(ifp);
|
|
return (0);
|
|
}
|
|
if (plle && la)
|
|
LLE_WUNLOCK(la);
|
|
IF_AFDATA_RUNLOCK(ifp);
|
|
|
|
return (arpresolve_full(ifp, is_gw, la == NULL ? LLE_CREATE : 0, m, dst,
|
|
desten, pflags, plle));
|
|
}
|
|
|
|
/*
|
|
* Common length and type checks are done here,
|
|
* then the protocol-specific routine is called.
|
|
*/
|
|
static void
|
|
arpintr(struct mbuf *m)
|
|
{
|
|
struct arphdr *ar;
|
|
struct ifnet *ifp;
|
|
char *layer;
|
|
int hlen;
|
|
|
|
ifp = m->m_pkthdr.rcvif;
|
|
|
|
if (m->m_len < sizeof(struct arphdr) &&
|
|
((m = m_pullup(m, sizeof(struct arphdr))) == NULL)) {
|
|
ARP_LOG(LOG_NOTICE, "packet with short header received on %s\n",
|
|
if_name(ifp));
|
|
return;
|
|
}
|
|
ar = mtod(m, struct arphdr *);
|
|
|
|
/* Check if length is sufficient */
|
|
if (m->m_len < arphdr_len(ar)) {
|
|
m = m_pullup(m, arphdr_len(ar));
|
|
if (m == NULL) {
|
|
ARP_LOG(LOG_NOTICE, "short packet received on %s\n",
|
|
if_name(ifp));
|
|
return;
|
|
}
|
|
ar = mtod(m, struct arphdr *);
|
|
}
|
|
|
|
hlen = 0;
|
|
layer = "";
|
|
switch (ntohs(ar->ar_hrd)) {
|
|
case ARPHRD_ETHER:
|
|
hlen = ETHER_ADDR_LEN; /* RFC 826 */
|
|
layer = "ethernet";
|
|
break;
|
|
case ARPHRD_IEEE802:
|
|
hlen = 6; /* RFC 1390, FDDI_ADDR_LEN */
|
|
layer = "fddi";
|
|
break;
|
|
case ARPHRD_ARCNET:
|
|
hlen = 1; /* RFC 1201, ARC_ADDR_LEN */
|
|
layer = "arcnet";
|
|
break;
|
|
case ARPHRD_INFINIBAND:
|
|
hlen = 20; /* RFC 4391, INFINIBAND_ALEN */
|
|
layer = "infiniband";
|
|
break;
|
|
case ARPHRD_IEEE1394:
|
|
hlen = 0; /* SHALL be 16 */ /* RFC 2734 */
|
|
layer = "firewire";
|
|
|
|
/*
|
|
* Restrict too long hardware addresses.
|
|
* Currently we are capable of handling 20-byte
|
|
* addresses ( sizeof(lle->ll_addr) )
|
|
*/
|
|
if (ar->ar_hln >= 20)
|
|
hlen = 16;
|
|
break;
|
|
default:
|
|
ARP_LOG(LOG_NOTICE,
|
|
"packet with unknown hardware format 0x%02d received on "
|
|
"%s\n", ntohs(ar->ar_hrd), if_name(ifp));
|
|
m_freem(m);
|
|
return;
|
|
}
|
|
|
|
if (hlen != 0 && hlen != ar->ar_hln) {
|
|
ARP_LOG(LOG_NOTICE,
|
|
"packet with invalid %s address length %d received on %s\n",
|
|
layer, ar->ar_hln, if_name(ifp));
|
|
m_freem(m);
|
|
return;
|
|
}
|
|
|
|
ARPSTAT_INC(received);
|
|
switch (ntohs(ar->ar_pro)) {
|
|
#ifdef INET
|
|
case ETHERTYPE_IP:
|
|
in_arpinput(m);
|
|
return;
|
|
#endif
|
|
}
|
|
m_freem(m);
|
|
}
|
|
|
|
#ifdef INET
|
|
/*
|
|
* ARP for Internet protocols on 10 Mb/s Ethernet.
|
|
* Algorithm is that given in RFC 826.
|
|
* In addition, a sanity check is performed on the sender
|
|
* protocol address, to catch impersonators.
|
|
* We no longer handle negotiations for use of trailer protocol:
|
|
* Formerly, ARP replied for protocol type ETHERTYPE_TRAIL sent
|
|
* along with IP replies if we wanted trailers sent to us,
|
|
* and also sent them in response to IP replies.
|
|
* This allowed either end to announce the desire to receive
|
|
* trailer packets.
|
|
* We no longer reply to requests for ETHERTYPE_TRAIL protocol either,
|
|
* but formerly didn't normally send requests.
|
|
*/
|
|
static int log_arp_wrong_iface = 1;
|
|
static int log_arp_movements = 1;
|
|
static int log_arp_permanent_modify = 1;
|
|
static int allow_multicast = 0;
|
|
|
|
SYSCTL_INT(_net_link_ether_inet, OID_AUTO, log_arp_wrong_iface, CTLFLAG_RW,
|
|
&log_arp_wrong_iface, 0,
|
|
"log arp packets arriving on the wrong interface");
|
|
SYSCTL_INT(_net_link_ether_inet, OID_AUTO, log_arp_movements, CTLFLAG_RW,
|
|
&log_arp_movements, 0,
|
|
"log arp replies from MACs different than the one in the cache");
|
|
SYSCTL_INT(_net_link_ether_inet, OID_AUTO, log_arp_permanent_modify, CTLFLAG_RW,
|
|
&log_arp_permanent_modify, 0,
|
|
"log arp replies from MACs different than the one in the permanent arp entry");
|
|
SYSCTL_INT(_net_link_ether_inet, OID_AUTO, allow_multicast, CTLFLAG_RW,
|
|
&allow_multicast, 0, "accept multicast addresses");
|
|
|
|
static void
|
|
in_arpinput(struct mbuf *m)
|
|
{
|
|
struct rm_priotracker in_ifa_tracker;
|
|
struct arphdr *ah;
|
|
struct ifnet *ifp = m->m_pkthdr.rcvif;
|
|
struct llentry *la = NULL, *la_tmp;
|
|
struct ifaddr *ifa;
|
|
struct in_ifaddr *ia;
|
|
struct sockaddr sa;
|
|
struct in_addr isaddr, itaddr, myaddr;
|
|
u_int8_t *enaddr = NULL;
|
|
int op;
|
|
int bridged = 0, is_bridge = 0;
|
|
int carped;
|
|
struct sockaddr_in sin;
|
|
struct sockaddr *dst;
|
|
struct nhop4_basic nh4;
|
|
uint8_t linkhdr[LLE_MAX_LINKHDR];
|
|
struct route ro;
|
|
size_t linkhdrsize;
|
|
int lladdr_off;
|
|
int error;
|
|
|
|
sin.sin_len = sizeof(struct sockaddr_in);
|
|
sin.sin_family = AF_INET;
|
|
sin.sin_addr.s_addr = 0;
|
|
|
|
if (ifp->if_bridge)
|
|
bridged = 1;
|
|
if (ifp->if_type == IFT_BRIDGE)
|
|
is_bridge = 1;
|
|
|
|
/*
|
|
* We already have checked that mbuf contains enough contiguous data
|
|
* to hold entire arp message according to the arp header.
|
|
*/
|
|
ah = mtod(m, struct arphdr *);
|
|
|
|
/*
|
|
* ARP is only for IPv4 so we can reject packets with
|
|
* a protocol length not equal to an IPv4 address.
|
|
*/
|
|
if (ah->ar_pln != sizeof(struct in_addr)) {
|
|
ARP_LOG(LOG_NOTICE, "requested protocol length != %zu\n",
|
|
sizeof(struct in_addr));
|
|
goto drop;
|
|
}
|
|
|
|
if (allow_multicast == 0 && ETHER_IS_MULTICAST(ar_sha(ah))) {
|
|
ARP_LOG(LOG_NOTICE, "%*D is multicast\n",
|
|
ifp->if_addrlen, (u_char *)ar_sha(ah), ":");
|
|
goto drop;
|
|
}
|
|
|
|
op = ntohs(ah->ar_op);
|
|
(void)memcpy(&isaddr, ar_spa(ah), sizeof (isaddr));
|
|
(void)memcpy(&itaddr, ar_tpa(ah), sizeof (itaddr));
|
|
|
|
if (op == ARPOP_REPLY)
|
|
ARPSTAT_INC(rxreplies);
|
|
|
|
/*
|
|
* For a bridge, we want to check the address irrespective
|
|
* of the receive interface. (This will change slightly
|
|
* when we have clusters of interfaces).
|
|
*/
|
|
IN_IFADDR_RLOCK(&in_ifa_tracker);
|
|
LIST_FOREACH(ia, INADDR_HASH(itaddr.s_addr), ia_hash) {
|
|
if (((bridged && ia->ia_ifp->if_bridge == ifp->if_bridge) ||
|
|
ia->ia_ifp == ifp) &&
|
|
itaddr.s_addr == ia->ia_addr.sin_addr.s_addr &&
|
|
(ia->ia_ifa.ifa_carp == NULL ||
|
|
(*carp_iamatch_p)(&ia->ia_ifa, &enaddr))) {
|
|
ifa_ref(&ia->ia_ifa);
|
|
IN_IFADDR_RUNLOCK(&in_ifa_tracker);
|
|
goto match;
|
|
}
|
|
}
|
|
LIST_FOREACH(ia, INADDR_HASH(isaddr.s_addr), ia_hash)
|
|
if (((bridged && ia->ia_ifp->if_bridge == ifp->if_bridge) ||
|
|
ia->ia_ifp == ifp) &&
|
|
isaddr.s_addr == ia->ia_addr.sin_addr.s_addr) {
|
|
ifa_ref(&ia->ia_ifa);
|
|
IN_IFADDR_RUNLOCK(&in_ifa_tracker);
|
|
goto match;
|
|
}
|
|
|
|
#define BDG_MEMBER_MATCHES_ARP(addr, ifp, ia) \
|
|
(ia->ia_ifp->if_bridge == ifp->if_softc && \
|
|
!bcmp(IF_LLADDR(ia->ia_ifp), IF_LLADDR(ifp), ifp->if_addrlen) && \
|
|
addr == ia->ia_addr.sin_addr.s_addr)
|
|
/*
|
|
* Check the case when bridge shares its MAC address with
|
|
* some of its children, so packets are claimed by bridge
|
|
* itself (bridge_input() does it first), but they are really
|
|
* meant to be destined to the bridge member.
|
|
*/
|
|
if (is_bridge) {
|
|
LIST_FOREACH(ia, INADDR_HASH(itaddr.s_addr), ia_hash) {
|
|
if (BDG_MEMBER_MATCHES_ARP(itaddr.s_addr, ifp, ia)) {
|
|
ifa_ref(&ia->ia_ifa);
|
|
ifp = ia->ia_ifp;
|
|
IN_IFADDR_RUNLOCK(&in_ifa_tracker);
|
|
goto match;
|
|
}
|
|
}
|
|
}
|
|
#undef BDG_MEMBER_MATCHES_ARP
|
|
IN_IFADDR_RUNLOCK(&in_ifa_tracker);
|
|
|
|
/*
|
|
* No match, use the first inet address on the receive interface
|
|
* as a dummy address for the rest of the function.
|
|
*/
|
|
IF_ADDR_RLOCK(ifp);
|
|
TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link)
|
|
if (ifa->ifa_addr->sa_family == AF_INET &&
|
|
(ifa->ifa_carp == NULL ||
|
|
(*carp_iamatch_p)(ifa, &enaddr))) {
|
|
ia = ifatoia(ifa);
|
|
ifa_ref(ifa);
|
|
IF_ADDR_RUNLOCK(ifp);
|
|
goto match;
|
|
}
|
|
IF_ADDR_RUNLOCK(ifp);
|
|
|
|
/*
|
|
* If bridging, fall back to using any inet address.
|
|
*/
|
|
IN_IFADDR_RLOCK(&in_ifa_tracker);
|
|
if (!bridged || (ia = TAILQ_FIRST(&V_in_ifaddrhead)) == NULL) {
|
|
IN_IFADDR_RUNLOCK(&in_ifa_tracker);
|
|
goto drop;
|
|
}
|
|
ifa_ref(&ia->ia_ifa);
|
|
IN_IFADDR_RUNLOCK(&in_ifa_tracker);
|
|
match:
|
|
if (!enaddr)
|
|
enaddr = (u_int8_t *)IF_LLADDR(ifp);
|
|
carped = (ia->ia_ifa.ifa_carp != NULL);
|
|
myaddr = ia->ia_addr.sin_addr;
|
|
ifa_free(&ia->ia_ifa);
|
|
if (!bcmp(ar_sha(ah), enaddr, ifp->if_addrlen))
|
|
goto drop; /* it's from me, ignore it. */
|
|
if (!bcmp(ar_sha(ah), ifp->if_broadcastaddr, ifp->if_addrlen)) {
|
|
ARP_LOG(LOG_NOTICE, "link address is broadcast for IP address "
|
|
"%s!\n", inet_ntoa(isaddr));
|
|
goto drop;
|
|
}
|
|
|
|
if (ifp->if_addrlen != ah->ar_hln) {
|
|
ARP_LOG(LOG_WARNING, "from %*D: addr len: new %d, "
|
|
"i/f %d (ignored)\n", ifp->if_addrlen,
|
|
(u_char *) ar_sha(ah), ":", ah->ar_hln,
|
|
ifp->if_addrlen);
|
|
goto drop;
|
|
}
|
|
|
|
/*
|
|
* Warn if another host is using the same IP address, but only if the
|
|
* IP address isn't 0.0.0.0, which is used for DHCP only, in which
|
|
* case we suppress the warning to avoid false positive complaints of
|
|
* potential misconfiguration.
|
|
*/
|
|
if (!bridged && !carped && isaddr.s_addr == myaddr.s_addr &&
|
|
myaddr.s_addr != 0) {
|
|
ARP_LOG(LOG_ERR, "%*D is using my IP address %s on %s!\n",
|
|
ifp->if_addrlen, (u_char *)ar_sha(ah), ":",
|
|
inet_ntoa(isaddr), ifp->if_xname);
|
|
itaddr = myaddr;
|
|
ARPSTAT_INC(dupips);
|
|
goto reply;
|
|
}
|
|
if (ifp->if_flags & IFF_STATICARP)
|
|
goto reply;
|
|
|
|
bzero(&sin, sizeof(sin));
|
|
sin.sin_len = sizeof(struct sockaddr_in);
|
|
sin.sin_family = AF_INET;
|
|
sin.sin_addr = isaddr;
|
|
dst = (struct sockaddr *)&sin;
|
|
IF_AFDATA_RLOCK(ifp);
|
|
la = lla_lookup(LLTABLE(ifp), LLE_EXCLUSIVE, dst);
|
|
IF_AFDATA_RUNLOCK(ifp);
|
|
if (la != NULL)
|
|
arp_check_update_lle(ah, isaddr, ifp, bridged, la);
|
|
else if (itaddr.s_addr == myaddr.s_addr) {
|
|
/*
|
|
* Request/reply to our address, but no lle exists yet.
|
|
* Calculate full link prepend to use in lle.
|
|
*/
|
|
linkhdrsize = sizeof(linkhdr);
|
|
if (lltable_calc_llheader(ifp, AF_INET, ar_sha(ah), linkhdr,
|
|
&linkhdrsize, &lladdr_off) != 0)
|
|
goto reply;
|
|
|
|
/* Allocate new entry */
|
|
la = lltable_alloc_entry(LLTABLE(ifp), 0, dst);
|
|
if (la == NULL) {
|
|
|
|
/*
|
|
* lle creation may fail if source address belongs
|
|
* to non-directly connected subnet. However, we
|
|
* will try to answer the request instead of dropping
|
|
* frame.
|
|
*/
|
|
goto reply;
|
|
}
|
|
lltable_set_entry_addr(ifp, la, linkhdr, linkhdrsize,
|
|
lladdr_off);
|
|
|
|
IF_AFDATA_WLOCK(ifp);
|
|
LLE_WLOCK(la);
|
|
la_tmp = lla_lookup(LLTABLE(ifp), LLE_EXCLUSIVE, dst);
|
|
|
|
/*
|
|
* Check if lle still does not exists.
|
|
* If it does, that means that we either
|
|
* 1) have configured it explicitly, via
|
|
* 1a) 'arp -s' static entry or
|
|
* 1b) interface address static record
|
|
* or
|
|
* 2) it was the result of sending first packet to-host
|
|
* or
|
|
* 3) it was another arp reply packet we handled in
|
|
* different thread.
|
|
*
|
|
* In all cases except 3) we definitely need to prefer
|
|
* existing lle. For the sake of simplicity, prefer any
|
|
* existing lle over newly-create one.
|
|
*/
|
|
if (la_tmp == NULL)
|
|
lltable_link_entry(LLTABLE(ifp), la);
|
|
IF_AFDATA_WUNLOCK(ifp);
|
|
|
|
if (la_tmp == NULL) {
|
|
arp_mark_lle_reachable(la);
|
|
LLE_WUNLOCK(la);
|
|
} else {
|
|
/* Free newly-create entry and handle packet */
|
|
lltable_free_entry(LLTABLE(ifp), la);
|
|
la = la_tmp;
|
|
la_tmp = NULL;
|
|
arp_check_update_lle(ah, isaddr, ifp, bridged, la);
|
|
/* arp_check_update_lle() returns @la unlocked */
|
|
}
|
|
la = NULL;
|
|
}
|
|
reply:
|
|
if (op != ARPOP_REQUEST)
|
|
goto drop;
|
|
ARPSTAT_INC(rxrequests);
|
|
|
|
if (itaddr.s_addr == myaddr.s_addr) {
|
|
/* Shortcut.. the receiving interface is the target. */
|
|
(void)memcpy(ar_tha(ah), ar_sha(ah), ah->ar_hln);
|
|
(void)memcpy(ar_sha(ah), enaddr, ah->ar_hln);
|
|
} else {
|
|
struct llentry *lle = NULL;
|
|
|
|
sin.sin_addr = itaddr;
|
|
IF_AFDATA_RLOCK(ifp);
|
|
lle = lla_lookup(LLTABLE(ifp), 0, (struct sockaddr *)&sin);
|
|
IF_AFDATA_RUNLOCK(ifp);
|
|
|
|
if ((lle != NULL) && (lle->la_flags & LLE_PUB)) {
|
|
(void)memcpy(ar_tha(ah), ar_sha(ah), ah->ar_hln);
|
|
(void)memcpy(ar_sha(ah), lle->ll_addr, ah->ar_hln);
|
|
LLE_RUNLOCK(lle);
|
|
} else {
|
|
|
|
if (lle != NULL)
|
|
LLE_RUNLOCK(lle);
|
|
|
|
if (!V_arp_proxyall)
|
|
goto drop;
|
|
|
|
/* XXX MRT use table 0 for arp reply */
|
|
if (fib4_lookup_nh_basic(0, itaddr, 0, 0, &nh4) != 0)
|
|
goto drop;
|
|
|
|
/*
|
|
* Don't send proxies for nodes on the same interface
|
|
* as this one came out of, or we'll get into a fight
|
|
* over who claims what Ether address.
|
|
*/
|
|
if (nh4.nh_ifp == ifp)
|
|
goto drop;
|
|
|
|
(void)memcpy(ar_tha(ah), ar_sha(ah), ah->ar_hln);
|
|
(void)memcpy(ar_sha(ah), enaddr, ah->ar_hln);
|
|
|
|
/*
|
|
* Also check that the node which sent the ARP packet
|
|
* is on the interface we expect it to be on. This
|
|
* avoids ARP chaos if an interface is connected to the
|
|
* wrong network.
|
|
*/
|
|
|
|
/* XXX MRT use table 0 for arp checks */
|
|
if (fib4_lookup_nh_basic(0, isaddr, 0, 0, &nh4) != 0)
|
|
goto drop;
|
|
if (nh4.nh_ifp != ifp) {
|
|
ARP_LOG(LOG_INFO, "proxy: ignoring request"
|
|
" from %s via %s\n",
|
|
inet_ntoa(isaddr), ifp->if_xname);
|
|
goto drop;
|
|
}
|
|
|
|
#ifdef DEBUG_PROXY
|
|
printf("arp: proxying for %s\n", inet_ntoa(itaddr));
|
|
#endif
|
|
}
|
|
}
|
|
|
|
if (itaddr.s_addr == myaddr.s_addr &&
|
|
IN_LINKLOCAL(ntohl(itaddr.s_addr))) {
|
|
/* RFC 3927 link-local IPv4; always reply by broadcast. */
|
|
#ifdef DEBUG_LINKLOCAL
|
|
printf("arp: sending reply for link-local addr %s\n",
|
|
inet_ntoa(itaddr));
|
|
#endif
|
|
m->m_flags |= M_BCAST;
|
|
m->m_flags &= ~M_MCAST;
|
|
} else {
|
|
/* default behaviour; never reply by broadcast. */
|
|
m->m_flags &= ~(M_BCAST|M_MCAST);
|
|
}
|
|
(void)memcpy(ar_tpa(ah), ar_spa(ah), ah->ar_pln);
|
|
(void)memcpy(ar_spa(ah), &itaddr, ah->ar_pln);
|
|
ah->ar_op = htons(ARPOP_REPLY);
|
|
ah->ar_pro = htons(ETHERTYPE_IP); /* let's be sure! */
|
|
m->m_len = sizeof(*ah) + (2 * ah->ar_pln) + (2 * ah->ar_hln);
|
|
m->m_pkthdr.len = m->m_len;
|
|
m->m_pkthdr.rcvif = NULL;
|
|
sa.sa_family = AF_ARP;
|
|
sa.sa_len = 2;
|
|
|
|
/* Calculate link header for sending frame */
|
|
bzero(&ro, sizeof(ro));
|
|
linkhdrsize = sizeof(linkhdr);
|
|
error = arp_fillheader(ifp, ah, 0, linkhdr, &linkhdrsize);
|
|
|
|
/*
|
|
* arp_fillheader() may fail due to lack of support inside encap request
|
|
* routing. This is not necessary an error, AF_ARP can/should be handled
|
|
* by if_output().
|
|
*/
|
|
if (error != 0 && error != EAFNOSUPPORT) {
|
|
ARP_LOG(LOG_ERR, "Failed to calculate ARP header on %s: %d\n",
|
|
if_name(ifp), error);
|
|
return;
|
|
}
|
|
|
|
ro.ro_prepend = linkhdr;
|
|
ro.ro_plen = linkhdrsize;
|
|
ro.ro_flags = 0;
|
|
|
|
m_clrprotoflags(m); /* Avoid confusing lower layers. */
|
|
(*ifp->if_output)(ifp, m, &sa, &ro);
|
|
ARPSTAT_INC(txreplies);
|
|
return;
|
|
|
|
drop:
|
|
m_freem(m);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Checks received arp data against existing @la.
|
|
* Updates lle state/performs notification if necessary.
|
|
*/
|
|
static void
|
|
arp_check_update_lle(struct arphdr *ah, struct in_addr isaddr, struct ifnet *ifp,
|
|
int bridged, struct llentry *la)
|
|
{
|
|
struct sockaddr sa;
|
|
struct mbuf *m_hold, *m_hold_next;
|
|
uint8_t linkhdr[LLE_MAX_LINKHDR];
|
|
size_t linkhdrsize;
|
|
int lladdr_off;
|
|
|
|
LLE_WLOCK_ASSERT(la);
|
|
|
|
/* the following is not an error when doing bridging */
|
|
if (!bridged && la->lle_tbl->llt_ifp != ifp) {
|
|
if (log_arp_wrong_iface)
|
|
ARP_LOG(LOG_WARNING, "%s is on %s "
|
|
"but got reply from %*D on %s\n",
|
|
inet_ntoa(isaddr),
|
|
la->lle_tbl->llt_ifp->if_xname,
|
|
ifp->if_addrlen, (u_char *)ar_sha(ah), ":",
|
|
ifp->if_xname);
|
|
LLE_WUNLOCK(la);
|
|
return;
|
|
}
|
|
if ((la->la_flags & LLE_VALID) &&
|
|
bcmp(ar_sha(ah), la->ll_addr, ifp->if_addrlen)) {
|
|
if (la->la_flags & LLE_STATIC) {
|
|
LLE_WUNLOCK(la);
|
|
if (log_arp_permanent_modify)
|
|
ARP_LOG(LOG_ERR,
|
|
"%*D attempts to modify "
|
|
"permanent entry for %s on %s\n",
|
|
ifp->if_addrlen,
|
|
(u_char *)ar_sha(ah), ":",
|
|
inet_ntoa(isaddr), ifp->if_xname);
|
|
return;
|
|
}
|
|
if (log_arp_movements) {
|
|
ARP_LOG(LOG_INFO, "%s moved from %*D "
|
|
"to %*D on %s\n",
|
|
inet_ntoa(isaddr),
|
|
ifp->if_addrlen,
|
|
(u_char *)&la->ll_addr, ":",
|
|
ifp->if_addrlen, (u_char *)ar_sha(ah), ":",
|
|
ifp->if_xname);
|
|
}
|
|
}
|
|
|
|
/* Calculate full link prepend to use in lle */
|
|
linkhdrsize = sizeof(linkhdr);
|
|
if (lltable_calc_llheader(ifp, AF_INET, ar_sha(ah), linkhdr,
|
|
&linkhdrsize, &lladdr_off) != 0)
|
|
return;
|
|
|
|
/* Check if something has changed */
|
|
if (memcmp(la->r_linkdata, linkhdr, linkhdrsize) != 0 ||
|
|
(la->la_flags & LLE_VALID) == 0) {
|
|
/* Try to perform LLE update */
|
|
if (lltable_try_set_entry_addr(ifp, la, linkhdr, linkhdrsize,
|
|
lladdr_off) == 0)
|
|
return;
|
|
|
|
/* Clear fast path feedback request if set */
|
|
la->r_skip_req = 0;
|
|
}
|
|
|
|
arp_mark_lle_reachable(la);
|
|
|
|
/*
|
|
* The packets are all freed within the call to the output
|
|
* routine.
|
|
*
|
|
* NB: The lock MUST be released before the call to the
|
|
* output routine.
|
|
*/
|
|
if (la->la_hold != NULL) {
|
|
m_hold = la->la_hold;
|
|
la->la_hold = NULL;
|
|
la->la_numheld = 0;
|
|
lltable_fill_sa_entry(la, &sa);
|
|
LLE_WUNLOCK(la);
|
|
for (; m_hold != NULL; m_hold = m_hold_next) {
|
|
m_hold_next = m_hold->m_nextpkt;
|
|
m_hold->m_nextpkt = NULL;
|
|
/* Avoid confusing lower layers. */
|
|
m_clrprotoflags(m_hold);
|
|
(*ifp->if_output)(ifp, m_hold, &sa, NULL);
|
|
}
|
|
} else
|
|
LLE_WUNLOCK(la);
|
|
}
|
|
|
|
static void
|
|
arp_mark_lle_reachable(struct llentry *la)
|
|
{
|
|
int canceled, wtime;
|
|
|
|
LLE_WLOCK_ASSERT(la);
|
|
|
|
la->ln_state = ARP_LLINFO_REACHABLE;
|
|
EVENTHANDLER_INVOKE(lle_event, la, LLENTRY_RESOLVED);
|
|
|
|
if (!(la->la_flags & LLE_STATIC)) {
|
|
LLE_ADDREF(la);
|
|
la->la_expire = time_uptime + V_arpt_keep;
|
|
wtime = V_arpt_keep - V_arp_maxtries * V_arpt_rexmit;
|
|
if (wtime < 0)
|
|
wtime = V_arpt_keep;
|
|
canceled = callout_reset(&la->lle_timer,
|
|
hz * wtime, arptimer, la);
|
|
if (canceled)
|
|
LLE_REMREF(la);
|
|
}
|
|
la->la_asked = 0;
|
|
la->la_preempt = V_arp_maxtries;
|
|
}
|
|
|
|
/*
|
|
* Add pernament link-layer record for given interface address.
|
|
*/
|
|
static __noinline void
|
|
arp_add_ifa_lle(struct ifnet *ifp, const struct sockaddr *dst)
|
|
{
|
|
struct llentry *lle, *lle_tmp;
|
|
|
|
/*
|
|
* Interface address LLE record is considered static
|
|
* because kernel code relies on LLE_STATIC flag to check
|
|
* if these entries can be rewriten by arp updates.
|
|
*/
|
|
lle = lltable_alloc_entry(LLTABLE(ifp), LLE_IFADDR | LLE_STATIC, dst);
|
|
if (lle == NULL) {
|
|
log(LOG_INFO, "arp_ifinit: cannot create arp "
|
|
"entry for interface address\n");
|
|
return;
|
|
}
|
|
|
|
IF_AFDATA_WLOCK(ifp);
|
|
LLE_WLOCK(lle);
|
|
/* Unlink any entry if exists */
|
|
lle_tmp = lla_lookup(LLTABLE(ifp), LLE_EXCLUSIVE, dst);
|
|
if (lle_tmp != NULL)
|
|
lltable_unlink_entry(LLTABLE(ifp), lle_tmp);
|
|
|
|
lltable_link_entry(LLTABLE(ifp), lle);
|
|
IF_AFDATA_WUNLOCK(ifp);
|
|
|
|
if (lle_tmp != NULL)
|
|
EVENTHANDLER_INVOKE(lle_event, lle_tmp, LLENTRY_EXPIRED);
|
|
|
|
EVENTHANDLER_INVOKE(lle_event, lle, LLENTRY_RESOLVED);
|
|
LLE_WUNLOCK(lle);
|
|
if (lle_tmp != NULL)
|
|
lltable_free_entry(LLTABLE(ifp), lle_tmp);
|
|
}
|
|
|
|
/*
|
|
* Handle the garp_rexmit_count. Like sysctl_handle_int(), but limits the range
|
|
* of valid values.
|
|
*/
|
|
static int
|
|
sysctl_garp_rexmit(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
int error;
|
|
int rexmit_count = *(int *)arg1;
|
|
|
|
error = sysctl_handle_int(oidp, &rexmit_count, 0, req);
|
|
|
|
/* Enforce limits on any new value that may have been set. */
|
|
if (!error && req->newptr) {
|
|
/* A new value was set. */
|
|
if (rexmit_count < 0) {
|
|
rexmit_count = 0;
|
|
} else if (rexmit_count > MAX_GARP_RETRANSMITS) {
|
|
rexmit_count = MAX_GARP_RETRANSMITS;
|
|
}
|
|
*(int *)arg1 = rexmit_count;
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Retransmit a Gratuitous ARP (GARP) and, if necessary, schedule a callout to
|
|
* retransmit it again. A pending callout owns a reference to the ifa.
|
|
*/
|
|
static void
|
|
garp_rexmit(void *arg)
|
|
{
|
|
struct in_ifaddr *ia = arg;
|
|
|
|
if (callout_pending(&ia->ia_garp_timer) ||
|
|
!callout_active(&ia->ia_garp_timer)) {
|
|
IF_ADDR_WUNLOCK(ia->ia_ifa.ifa_ifp);
|
|
ifa_free(&ia->ia_ifa);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Drop lock while the ARP request is generated.
|
|
*/
|
|
IF_ADDR_WUNLOCK(ia->ia_ifa.ifa_ifp);
|
|
|
|
arprequest(ia->ia_ifa.ifa_ifp, &IA_SIN(ia)->sin_addr,
|
|
&IA_SIN(ia)->sin_addr, IF_LLADDR(ia->ia_ifa.ifa_ifp));
|
|
|
|
/*
|
|
* Increment the count of retransmissions. If the count has reached the
|
|
* maximum value, stop sending the GARP packets. Otherwise, schedule
|
|
* the callout to retransmit another GARP packet.
|
|
*/
|
|
++ia->ia_garp_count;
|
|
if (ia->ia_garp_count >= garp_rexmit_count) {
|
|
ifa_free(&ia->ia_ifa);
|
|
} else {
|
|
int rescheduled;
|
|
IF_ADDR_WLOCK(ia->ia_ifa.ifa_ifp);
|
|
rescheduled = callout_reset(&ia->ia_garp_timer,
|
|
(1 << ia->ia_garp_count) * hz,
|
|
garp_rexmit, ia);
|
|
IF_ADDR_WUNLOCK(ia->ia_ifa.ifa_ifp);
|
|
if (rescheduled) {
|
|
ifa_free(&ia->ia_ifa);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Start the GARP retransmit timer.
|
|
*
|
|
* A single GARP is always transmitted when an IPv4 address is added
|
|
* to an interface and that is usually sufficient. However, in some
|
|
* circumstances, such as when a shared address is passed between
|
|
* cluster nodes, this single GARP may occasionally be dropped or
|
|
* lost. This can lead to neighbors on the network link working with a
|
|
* stale ARP cache and sending packets destined for that address to
|
|
* the node that previously owned the address, which may not respond.
|
|
*
|
|
* To avoid this situation, GARP retransmits can be enabled by setting
|
|
* the net.link.ether.inet.garp_rexmit_count sysctl to a value greater
|
|
* than zero. The setting represents the maximum number of
|
|
* retransmissions. The interval between retransmissions is calculated
|
|
* using an exponential backoff algorithm, doubling each time, so the
|
|
* retransmission intervals are: {1, 2, 4, 8, 16, ...} (seconds).
|
|
*/
|
|
static void
|
|
garp_timer_start(struct ifaddr *ifa)
|
|
{
|
|
struct in_ifaddr *ia = (struct in_ifaddr *) ifa;
|
|
|
|
IF_ADDR_WLOCK(ia->ia_ifa.ifa_ifp);
|
|
ia->ia_garp_count = 0;
|
|
if (callout_reset(&ia->ia_garp_timer, (1 << ia->ia_garp_count) * hz,
|
|
garp_rexmit, ia) == 0) {
|
|
ifa_ref(ifa);
|
|
}
|
|
IF_ADDR_WUNLOCK(ia->ia_ifa.ifa_ifp);
|
|
}
|
|
|
|
void
|
|
arp_ifinit(struct ifnet *ifp, struct ifaddr *ifa)
|
|
{
|
|
const struct sockaddr_in *dst_in;
|
|
const struct sockaddr *dst;
|
|
|
|
if (ifa->ifa_carp != NULL)
|
|
return;
|
|
|
|
dst = ifa->ifa_addr;
|
|
dst_in = (const struct sockaddr_in *)dst;
|
|
|
|
if (ntohl(dst_in->sin_addr.s_addr) == INADDR_ANY)
|
|
return;
|
|
arp_announce_ifaddr(ifp, dst_in->sin_addr, IF_LLADDR(ifp));
|
|
if (garp_rexmit_count > 0) {
|
|
garp_timer_start(ifa);
|
|
}
|
|
|
|
arp_add_ifa_lle(ifp, dst);
|
|
}
|
|
|
|
void
|
|
arp_announce_ifaddr(struct ifnet *ifp, struct in_addr addr, u_char *enaddr)
|
|
{
|
|
|
|
if (ntohl(addr.s_addr) != INADDR_ANY)
|
|
arprequest(ifp, &addr, &addr, enaddr);
|
|
}
|
|
|
|
/*
|
|
* Sends gratuitous ARPs for each ifaddr to notify other
|
|
* nodes about the address change.
|
|
*/
|
|
static __noinline void
|
|
arp_handle_ifllchange(struct ifnet *ifp)
|
|
{
|
|
struct ifaddr *ifa;
|
|
|
|
TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
|
|
if (ifa->ifa_addr->sa_family == AF_INET)
|
|
arp_ifinit(ifp, ifa);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* A handler for interface link layer address change event.
|
|
*/
|
|
static void
|
|
arp_iflladdr(void *arg __unused, struct ifnet *ifp)
|
|
{
|
|
|
|
lltable_update_ifaddr(LLTABLE(ifp));
|
|
|
|
if ((ifp->if_flags & IFF_UP) != 0)
|
|
arp_handle_ifllchange(ifp);
|
|
}
|
|
|
|
static void
|
|
vnet_arp_init(void)
|
|
{
|
|
|
|
if (IS_DEFAULT_VNET(curvnet)) {
|
|
netisr_register(&arp_nh);
|
|
iflladdr_tag = EVENTHANDLER_REGISTER(iflladdr_event,
|
|
arp_iflladdr, NULL, EVENTHANDLER_PRI_ANY);
|
|
}
|
|
#ifdef VIMAGE
|
|
else
|
|
netisr_register_vnet(&arp_nh);
|
|
#endif
|
|
}
|
|
VNET_SYSINIT(vnet_arp_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_SECOND,
|
|
vnet_arp_init, 0);
|
|
|
|
#ifdef VIMAGE
|
|
/*
|
|
* We have to unregister ARP along with IP otherwise we risk doing INADDR_HASH
|
|
* lookups after destroying the hash. Ideally this would go on SI_ORDER_3.5.
|
|
*/
|
|
static void
|
|
vnet_arp_destroy(__unused void *arg)
|
|
{
|
|
|
|
netisr_unregister_vnet(&arp_nh);
|
|
}
|
|
VNET_SYSUNINIT(vnet_arp_uninit, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD,
|
|
vnet_arp_destroy, NULL);
|
|
#endif
|