1
0
mirror of https://git.FreeBSD.org/src.git synced 2024-12-26 11:47:31 +00:00
freebsd/sys/kern/kern_synch.c
Jeff Roberson b61ce5b0e6 - Move all of the PS_ flags into either p_flag or td_flags.
- p_sflag was mostly protected by PROC_LOCK rather than the PROC_SLOCK or
   previously the sched_lock.  These bugs have existed for some time.
 - Allow swapout to try each thread in a process individually and then
   swapin the whole process if any of these fail.  This allows us to move
   most scheduler related swap flags into td_flags.
 - Keep ki_sflag for backwards compat but change all in source tools to
   use the new and more correct location of P_INMEM.

Reported by:	pho
Reviewed by:	attilio, kib
Approved by:	re (kensmith)
2007-09-17 05:31:39 +00:00

561 lines
15 KiB
C

/*-
* Copyright (c) 1982, 1986, 1990, 1991, 1993
* The Regents of the University of California. All rights reserved.
* (c) UNIX System Laboratories, Inc.
* All or some portions of this file are derived from material licensed
* to the University of California by American Telephone and Telegraph
* Co. or Unix System Laboratories, Inc. and are reproduced herein with
* the permission of UNIX System Laboratories, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_ktrace.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/condvar.h>
#include <sys/kdb.h>
#include <sys/kernel.h>
#include <sys/ktr.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/resourcevar.h>
#include <sys/sched.h>
#include <sys/signalvar.h>
#include <sys/sleepqueue.h>
#include <sys/smp.h>
#include <sys/sx.h>
#include <sys/sysctl.h>
#include <sys/sysproto.h>
#include <sys/vmmeter.h>
#ifdef KTRACE
#include <sys/uio.h>
#include <sys/ktrace.h>
#endif
#include <machine/cpu.h>
static void synch_setup(void *dummy);
SYSINIT(synch_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, synch_setup, NULL)
int hogticks;
int lbolt;
static int pause_wchan;
static struct callout loadav_callout;
static struct callout lbolt_callout;
struct loadavg averunnable =
{ {0, 0, 0}, FSCALE }; /* load average, of runnable procs */
/*
* Constants for averages over 1, 5, and 15 minutes
* when sampling at 5 second intervals.
*/
static fixpt_t cexp[3] = {
0.9200444146293232 * FSCALE, /* exp(-1/12) */
0.9834714538216174 * FSCALE, /* exp(-1/60) */
0.9944598480048967 * FSCALE, /* exp(-1/180) */
};
/* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
static int fscale __unused = FSCALE;
SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
static void loadav(void *arg);
static void lboltcb(void *arg);
void
sleepinit(void)
{
hogticks = (hz / 10) * 2; /* Default only. */
init_sleepqueues();
}
/*
* General sleep call. Suspends the current thread until a wakeup is
* performed on the specified identifier. The thread will then be made
* runnable with the specified priority. Sleeps at most timo/hz seconds
* (0 means no timeout). If pri includes PCATCH flag, signals are checked
* before and after sleeping, else signals are not checked. Returns 0 if
* awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
* signal needs to be delivered, ERESTART is returned if the current system
* call should be restarted if possible, and EINTR is returned if the system
* call should be interrupted by the signal (return EINTR).
*
* The lock argument is unlocked before the caller is suspended, and
* re-locked before _sleep() returns. If priority includes the PDROP
* flag the lock is not re-locked before returning.
*/
int
_sleep(ident, lock, priority, wmesg, timo)
void *ident;
struct lock_object *lock;
int priority, timo;
const char *wmesg;
{
struct thread *td;
struct proc *p;
struct lock_class *class;
int catch, flags, lock_state, pri, rval;
WITNESS_SAVE_DECL(lock_witness);
td = curthread;
p = td->td_proc;
#ifdef KTRACE
if (KTRPOINT(td, KTR_CSW))
ktrcsw(1, 0);
#endif
WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, lock,
"Sleeping on \"%s\"", wmesg);
KASSERT(timo != 0 || mtx_owned(&Giant) || lock != NULL ||
ident == &lbolt, ("sleeping without a lock"));
KASSERT(p != NULL, ("msleep1"));
KASSERT(ident != NULL && TD_IS_RUNNING(td), ("msleep"));
if (lock != NULL)
class = LOCK_CLASS(lock);
else
class = NULL;
if (cold) {
/*
* During autoconfiguration, just return;
* don't run any other threads or panic below,
* in case this is the idle thread and already asleep.
* XXX: this used to do "s = splhigh(); splx(safepri);
* splx(s);" to give interrupts a chance, but there is
* no way to give interrupts a chance now.
*/
if (lock != NULL && priority & PDROP)
class->lc_unlock(lock);
return (0);
}
catch = priority & PCATCH;
rval = 0;
/*
* If we are already on a sleep queue, then remove us from that
* sleep queue first. We have to do this to handle recursive
* sleeps.
*/
if (TD_ON_SLEEPQ(td))
sleepq_remove(td, td->td_wchan);
if (ident == &pause_wchan)
flags = SLEEPQ_PAUSE;
else
flags = SLEEPQ_SLEEP;
if (catch)
flags |= SLEEPQ_INTERRUPTIBLE;
sleepq_lock(ident);
CTR5(KTR_PROC, "sleep: thread %ld (pid %ld, %s) on %s (%p)",
td->td_tid, p->p_pid, p->p_comm, wmesg, ident);
DROP_GIANT();
if (lock != NULL && !(class->lc_flags & LC_SLEEPABLE)) {
WITNESS_SAVE(lock, lock_witness);
lock_state = class->lc_unlock(lock);
} else
/* GCC needs to follow the Yellow Brick Road */
lock_state = -1;
/*
* We put ourselves on the sleep queue and start our timeout
* before calling thread_suspend_check, as we could stop there,
* and a wakeup or a SIGCONT (or both) could occur while we were
* stopped without resuming us. Thus, we must be ready for sleep
* when cursig() is called. If the wakeup happens while we're
* stopped, then td will no longer be on a sleep queue upon
* return from cursig().
*/
sleepq_add(ident, ident == &lbolt ? NULL : lock, wmesg, flags, 0);
if (timo)
sleepq_set_timeout(ident, timo);
if (lock != NULL && class->lc_flags & LC_SLEEPABLE) {
sleepq_release(ident);
WITNESS_SAVE(lock, lock_witness);
lock_state = class->lc_unlock(lock);
sleepq_lock(ident);
}
/*
* Adjust this thread's priority, if necessary.
*/
pri = priority & PRIMASK;
if (pri != 0 && pri != td->td_priority) {
thread_lock(td);
sched_prio(td, pri);
thread_unlock(td);
}
if (timo && catch)
rval = sleepq_timedwait_sig(ident);
else if (timo)
rval = sleepq_timedwait(ident);
else if (catch)
rval = sleepq_wait_sig(ident);
else {
sleepq_wait(ident);
rval = 0;
}
#ifdef KTRACE
if (KTRPOINT(td, KTR_CSW))
ktrcsw(0, 0);
#endif
PICKUP_GIANT();
if (lock != NULL && !(priority & PDROP)) {
class->lc_lock(lock, lock_state);
WITNESS_RESTORE(lock, lock_witness);
}
return (rval);
}
int
msleep_spin(ident, mtx, wmesg, timo)
void *ident;
struct mtx *mtx;
const char *wmesg;
int timo;
{
struct thread *td;
struct proc *p;
int rval;
WITNESS_SAVE_DECL(mtx);
td = curthread;
p = td->td_proc;
KASSERT(mtx != NULL, ("sleeping without a mutex"));
KASSERT(p != NULL, ("msleep1"));
KASSERT(ident != NULL && TD_IS_RUNNING(td), ("msleep"));
if (cold) {
/*
* During autoconfiguration, just return;
* don't run any other threads or panic below,
* in case this is the idle thread and already asleep.
* XXX: this used to do "s = splhigh(); splx(safepri);
* splx(s);" to give interrupts a chance, but there is
* no way to give interrupts a chance now.
*/
return (0);
}
sleepq_lock(ident);
CTR5(KTR_PROC, "msleep_spin: thread %ld (pid %ld, %s) on %s (%p)",
td->td_tid, p->p_pid, p->p_comm, wmesg, ident);
DROP_GIANT();
mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
WITNESS_SAVE(&mtx->lock_object, mtx);
mtx_unlock_spin(mtx);
/*
* We put ourselves on the sleep queue and start our timeout.
*/
sleepq_add(ident, &mtx->lock_object, wmesg, SLEEPQ_SLEEP, 0);
if (timo)
sleepq_set_timeout(ident, timo);
/*
* Can't call ktrace with any spin locks held so it can lock the
* ktrace_mtx lock, and WITNESS_WARN considers it an error to hold
* any spin lock. Thus, we have to drop the sleepq spin lock while
* we handle those requests. This is safe since we have placed our
* thread on the sleep queue already.
*/
#ifdef KTRACE
if (KTRPOINT(td, KTR_CSW)) {
sleepq_release(ident);
ktrcsw(1, 0);
sleepq_lock(ident);
}
#endif
#ifdef WITNESS
sleepq_release(ident);
WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "Sleeping on \"%s\"",
wmesg);
sleepq_lock(ident);
#endif
if (timo)
rval = sleepq_timedwait(ident);
else {
sleepq_wait(ident);
rval = 0;
}
#ifdef KTRACE
if (KTRPOINT(td, KTR_CSW))
ktrcsw(0, 0);
#endif
PICKUP_GIANT();
mtx_lock_spin(mtx);
WITNESS_RESTORE(&mtx->lock_object, mtx);
return (rval);
}
/*
* pause() is like tsleep() except that the intention is to not be
* explicitly woken up by another thread. Instead, the current thread
* simply wishes to sleep until the timeout expires. It is
* implemented using a dummy wait channel.
*/
int
pause(wmesg, timo)
const char *wmesg;
int timo;
{
KASSERT(timo != 0, ("pause: timeout required"));
return (tsleep(&pause_wchan, 0, wmesg, timo));
}
/*
* Make all threads sleeping on the specified identifier runnable.
*/
void
wakeup(ident)
register void *ident;
{
sleepq_lock(ident);
sleepq_broadcast(ident, SLEEPQ_SLEEP, -1, 0);
}
/*
* Make a thread sleeping on the specified identifier runnable.
* May wake more than one thread if a target thread is currently
* swapped out.
*/
void
wakeup_one(ident)
register void *ident;
{
sleepq_lock(ident);
sleepq_signal(ident, SLEEPQ_SLEEP, -1, 0);
sleepq_release(ident);
}
/*
* The machine independent parts of context switching.
*/
void
mi_switch(int flags, struct thread *newtd)
{
uint64_t new_switchtime;
struct thread *td;
struct proc *p;
td = curthread; /* XXX */
THREAD_LOCK_ASSERT(td, MA_OWNED | MA_NOTRECURSED);
p = td->td_proc; /* XXX */
KASSERT(!TD_ON_RUNQ(td), ("mi_switch: called by old code"));
#ifdef INVARIANTS
if (!TD_ON_LOCK(td) && !TD_IS_RUNNING(td))
mtx_assert(&Giant, MA_NOTOWNED);
#endif
KASSERT(td->td_critnest == 1 || (td->td_critnest == 2 &&
(td->td_owepreempt) && (flags & SW_INVOL) != 0 &&
newtd == NULL) || panicstr,
("mi_switch: switch in a critical section"));
KASSERT((flags & (SW_INVOL | SW_VOL)) != 0,
("mi_switch: switch must be voluntary or involuntary"));
KASSERT(newtd != curthread, ("mi_switch: preempting back to ourself"));
/*
* Don't perform context switches from the debugger.
*/
if (kdb_active) {
thread_unlock(td);
kdb_backtrace();
kdb_reenter();
panic("%s: did not reenter debugger", __func__);
}
if (flags & SW_VOL)
td->td_ru.ru_nvcsw++;
else
td->td_ru.ru_nivcsw++;
/*
* Compute the amount of time during which the current
* thread was running, and add that to its total so far.
*/
new_switchtime = cpu_ticks();
td->td_runtime += new_switchtime - PCPU_GET(switchtime);
PCPU_SET(switchtime, new_switchtime);
td->td_generation++; /* bump preempt-detect counter */
PCPU_INC(cnt.v_swtch);
PCPU_SET(switchticks, ticks);
CTR4(KTR_PROC, "mi_switch: old thread %ld (kse %p, pid %ld, %s)",
td->td_tid, td->td_sched, p->p_pid, p->p_comm);
#if (KTR_COMPILE & KTR_SCHED) != 0
if (TD_IS_IDLETHREAD(td))
CTR3(KTR_SCHED, "mi_switch: %p(%s) prio %d idle",
td, td->td_proc->p_comm, td->td_priority);
else if (newtd != NULL)
CTR5(KTR_SCHED,
"mi_switch: %p(%s) prio %d preempted by %p(%s)",
td, td->td_proc->p_comm, td->td_priority, newtd,
newtd->td_proc->p_comm);
else
CTR6(KTR_SCHED,
"mi_switch: %p(%s) prio %d inhibit %d wmesg %s lock %s",
td, td->td_proc->p_comm, td->td_priority,
td->td_inhibitors, td->td_wmesg, td->td_lockname);
#endif
/*
* We call thread_switchout after the KTR_SCHED prints above so kse
* selecting a new thread to run does not show up as a preemption.
*/
#ifdef KSE
if ((flags & SW_VOL) && (td->td_proc->p_flag & P_SA))
newtd = thread_switchout(td, flags, newtd);
#endif
sched_switch(td, newtd, flags);
CTR3(KTR_SCHED, "mi_switch: running %p(%s) prio %d",
td, td->td_proc->p_comm, td->td_priority);
CTR4(KTR_PROC, "mi_switch: new thread %ld (kse %p, pid %ld, %s)",
td->td_tid, td->td_sched, p->p_pid, p->p_comm);
/*
* If the last thread was exiting, finish cleaning it up.
*/
if ((td = PCPU_GET(deadthread))) {
PCPU_SET(deadthread, NULL);
thread_stash(td);
}
}
/*
* Change process state to be runnable,
* placing it on the run queue if it is in memory,
* and awakening the swapper if it isn't in memory.
*/
void
setrunnable(struct thread *td)
{
THREAD_LOCK_ASSERT(td, MA_OWNED);
KASSERT(td->td_proc->p_state != PRS_ZOMBIE,
("setrunnable: pid %d is a zombie", td->td_proc->p_pid));
switch (td->td_state) {
case TDS_RUNNING:
case TDS_RUNQ:
return;
case TDS_INHIBITED:
/*
* If we are only inhibited because we are swapped out
* then arange to swap in this process. Otherwise just return.
*/
if (td->td_inhibitors != TDI_SWAPPED)
return;
/* XXX: intentional fall-through ? */
case TDS_CAN_RUN:
break;
default:
printf("state is 0x%x", td->td_state);
panic("setrunnable(2)");
}
if ((td->td_flags & TDF_INMEM) == 0) {
if ((td->td_flags & TDF_SWAPINREQ) == 0) {
td->td_flags |= TDF_SWAPINREQ;
/*
* due to a LOR between the thread lock and
* the sleepqueue chain locks, use
* lower level scheduling functions.
*/
kick_proc0();
}
} else
sched_wakeup(td);
}
/*
* Compute a tenex style load average of a quantity on
* 1, 5 and 15 minute intervals.
* XXXKSE Needs complete rewrite when correct info is available.
* Completely Bogus.. only works with 1:1 (but compiles ok now :-)
*/
static void
loadav(void *arg)
{
int i, nrun;
struct loadavg *avg;
nrun = sched_load();
avg = &averunnable;
for (i = 0; i < 3; i++)
avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
/*
* Schedule the next update to occur after 5 seconds, but add a
* random variation to avoid synchronisation with processes that
* run at regular intervals.
*/
callout_reset(&loadav_callout, hz * 4 + (int)(random() % (hz * 2 + 1)),
loadav, NULL);
}
static void
lboltcb(void *arg)
{
wakeup(&lbolt);
callout_reset(&lbolt_callout, hz, lboltcb, NULL);
}
/* ARGSUSED */
static void
synch_setup(dummy)
void *dummy;
{
callout_init(&loadav_callout, CALLOUT_MPSAFE);
callout_init(&lbolt_callout, CALLOUT_MPSAFE);
/* Kick off timeout driven events by calling first time. */
loadav(NULL);
lboltcb(NULL);
}
/*
* General purpose yield system call.
*/
int
yield(struct thread *td, struct yield_args *uap)
{
mtx_assert(&Giant, MA_NOTOWNED);
(void)uap;
sched_relinquish(td);
return (0);
}