1
0
mirror of https://git.FreeBSD.org/src.git synced 2024-12-22 11:17:19 +00:00
freebsd/sys/netccitt/pk_input.c
1994-12-13 22:32:17 +00:00

1121 lines
29 KiB
C

/*
* Copyright (c) University of British Columbia, 1984
* Copyright (C) Computer Science Department IV,
* University of Erlangen-Nuremberg, Germany, 1992
* Copyright (c) 1991, 1992, 1993
* The Regents of the University of California. All rights reserved.
*
* This code is derived from software contributed to Berkeley by the
* Laboratory for Computation Vision and the Computer Science Department
* of the the University of British Columbia and the Computer Science
* Department (IV) of the University of Erlangen-Nuremberg, Germany.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)pk_input.c 8.1 (Berkeley) 6/10/93
* $Id: pk_input.c,v 1.2 1994/08/02 07:47:35 davidg Exp $
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/mbuf.h>
#include <sys/socket.h>
#include <sys/protosw.h>
#include <sys/socketvar.h>
#include <sys/errno.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_llc.h>
#include <net/route.h>
#include <netccitt/dll.h>
#include <netccitt/x25.h>
#include <netccitt/pk.h>
#include <netccitt/pk_var.h>
#include <netccitt/llc_var.h>
struct pkcb_q pkcb_q = {&pkcb_q, &pkcb_q};
/*
* ccittintr() is the generic interrupt handler for HDLC, LLC2, and X.25. This
* allows to have kernel running X.25 but no HDLC or LLC2 or both (in case we
* employ boards that do all the stuff themselves, e.g. ADAX X.25 or TPS ISDN.)
*/
void
ccittintr ()
{
extern struct ifqueue pkintrq;
extern struct ifqueue hdintrq;
extern struct ifqueue llcintrq;
#ifdef HDLC
if (hdintrq.ifq_len)
hdintr ();
#endif
#ifdef LLC
if (llcintrq.ifq_len)
llcintr ();
#endif
if (pkintrq.ifq_len)
pkintr ();
}
struct pkcb *
pk_newlink (ia, llnext)
struct x25_ifaddr *ia;
caddr_t llnext;
{
register struct x25config *xcp = &ia -> ia_xc;
register struct pkcb *pkp;
register struct pklcd *lcp;
register struct protosw *pp;
unsigned size;
pp = pffindproto (AF_CCITT, (int) xcp -> xc_lproto, 0);
if (pp == 0 || pp -> pr_output == 0) {
pk_message (0, xcp, "link level protosw error");
return ((struct pkcb *)0);
}
/*
* Allocate a network control block structure
*/
size = sizeof (struct pkcb);
pkp = (struct pkcb *) malloc (size, M_PCB, M_WAITOK);
if (pkp == 0)
return ((struct pkcb *)0);
bzero ((caddr_t) pkp, size);
pkp -> pk_lloutput = pp -> pr_output;
pkp -> pk_llctlinput = (caddr_t (*)()) pp -> pr_ctlinput;
pkp -> pk_xcp = xcp;
pkp -> pk_ia = ia;
pkp -> pk_state = DTE_WAITING;
pkp -> pk_llnext = llnext;
insque (pkp, &pkcb_q);
/*
* set defaults
*/
if (xcp -> xc_pwsize == 0)
xcp -> xc_pwsize = DEFAULT_WINDOW_SIZE;
if (xcp -> xc_psize == 0)
xcp -> xc_psize = X25_PS128;
/*
* Allocate logical channel descriptor vector
*/
(void) pk_resize (pkp);
return (pkp);
}
pk_dellink (pkp)
register struct pkcb *pkp;
{
register int i;
register struct protosw *pp;
/*
* Essentially we have the choice to
* (a) go ahead and let the route be deleted and
* leave the pkcb associated with that route
* as it is, i.e. the connections stay open
* (b) do a pk_disconnect() on all channels associated
* with the route via the pkcb and then proceed.
*
* For the time being we stick with (b)
*/
for (i = 1; i < pkp -> pk_maxlcn; ++i)
if (pkp -> pk_chan[i])
pk_disconnect (pkp -> pk_chan[i]);
/*
* Free the pkcb
*/
/*
* First find the protoswitch to get hold of the link level
* protocol to be notified that the packet level entity is
* dissolving ...
*/
pp = pffindproto (AF_CCITT, (int) pkp -> pk_xcp -> xc_lproto, 0);
if (pp == 0 || pp -> pr_output == 0) {
pk_message (0, pkp -> pk_xcp, "link level protosw error");
return (EPROTONOSUPPORT);
}
pkp -> pk_refcount--;
if (!pkp -> pk_refcount) {
struct dll_ctlinfo ctlinfo;
remque (pkp);
if (pkp -> pk_rt -> rt_llinfo == (caddr_t) pkp)
pkp -> pk_rt -> rt_llinfo = (caddr_t) NULL;
/*
* Tell the link level that the pkcb is dissolving
*/
if (pp -> pr_ctlinput && pkp -> pk_llnext) {
ctlinfo.dlcti_pcb = pkp -> pk_llnext;
ctlinfo.dlcti_rt = pkp -> pk_rt;
(pp -> pr_ctlinput)(PRC_DISCONNECT_REQUEST,
pkp -> pk_xcp, &ctlinfo);
}
free ((caddr_t) pkp -> pk_chan, M_IFADDR);
free ((caddr_t) pkp, M_PCB);
}
return (0);
}
pk_resize (pkp)
register struct pkcb *pkp;
{
struct pklcd *dev_lcp = 0;
struct x25config *xcp = pkp -> pk_xcp;
if (pkp -> pk_chan &&
(pkp -> pk_maxlcn != xcp -> xc_maxlcn)) {
pk_restart (pkp, X25_RESTART_NETWORK_CONGESTION);
dev_lcp = pkp -> pk_chan[0];
free ((caddr_t) pkp -> pk_chan, M_IFADDR);
pkp -> pk_chan = 0;
}
if (pkp -> pk_chan == 0) {
unsigned size;
pkp -> pk_maxlcn = xcp -> xc_maxlcn;
size = (pkp -> pk_maxlcn + 1) * sizeof (struct pklcd *);
pkp -> pk_chan =
(struct pklcd **) malloc (size, M_IFADDR, M_WAITOK);
if (pkp -> pk_chan) {
bzero ((caddr_t) pkp -> pk_chan, size);
/*
* Allocate a logical channel descriptor for lcn 0
*/
if (dev_lcp == 0 &&
(dev_lcp = pk_attach ((struct socket *)0)) == 0)
return (ENOBUFS);
dev_lcp -> lcd_state = READY;
dev_lcp -> lcd_pkp = pkp;
pkp -> pk_chan[0] = dev_lcp;
} else {
if (dev_lcp)
pk_close (dev_lcp);
return (ENOBUFS);
}
}
return 0;
}
/*
* This procedure is called by the link level whenever the link
* becomes operational, is reset, or when the link goes down.
*/
/*VARARGS*/
caddr_t
pk_ctlinput (code, src, addr)
struct sockaddr *src;
caddr_t addr;
{
register struct pkcb *pkp = (struct pkcb *) addr;
switch (code) {
case PRC_LINKUP:
if (pkp -> pk_state == DTE_WAITING)
pk_restart (pkp, X25_RESTART_NETWORK_CONGESTION);
break;
case PRC_LINKDOWN:
pk_restart (pkp, -1); /* Clear all active circuits */
pkp -> pk_state = DTE_WAITING;
break;
case PRC_LINKRESET:
pk_restart (pkp, X25_RESTART_NETWORK_CONGESTION);
break;
case PRC_CONNECT_INDICATION: {
struct rtentry *llrt;
if ((llrt = rtalloc1(src, 0, 0UL)) == 0)
return 0;
else llrt -> rt_refcnt--;
pkp = (((struct npaidbentry *) llrt -> rt_llinfo) -> np_rt) ?
(struct pkcb *)(((struct npaidbentry *) llrt -> rt_llinfo) -> np_rt -> rt_llinfo) : (struct pkcb *) 0;
if (pkp == (struct pkcb *) 0)
return 0;
pkp -> pk_llnext = addr;
return ((caddr_t) pkp);
}
case PRC_DISCONNECT_INDICATION:
pk_restart (pkp, -1) ; /* Clear all active circuits */
pkp -> pk_state = DTE_WAITING;
pkp -> pk_llnext = (caddr_t) 0;
}
return (0);
}
struct ifqueue pkintrq;
/*
* This routine is called if there are semi-smart devices that do HDLC
* in hardware and want to queue the packet and call level 3 directly
*/
pkintr ()
{
register struct mbuf *m;
register struct ifaddr *ifa;
register struct ifnet *ifp;
register int s;
for (;;) {
s = splimp ();
IF_DEQUEUE (&pkintrq, m);
splx (s);
if (m == 0)
break;
if (m -> m_len < PKHEADERLN) {
printf ("pkintr: packet too short (len=%d)\n",
m -> m_len);
m_freem (m);
continue;
}
pk_input (m);
}
}
struct mbuf *pk_bad_packet;
struct mbuf_cache pk_input_cache = {0 };
/*
* X.25 PACKET INPUT
*
* This procedure is called by a link level procedure whenever
* an information frame is received. It decodes the packet and
* demultiplexes based on the logical channel number.
*
* We change the original conventions of the UBC code here --
* since there may be multiple pkcb's for a given interface
* of type 802.2 class 2, we retrieve which one it is from
* m_pkthdr.rcvif (which has been overwritten by lower layers);
* That field is then restored for the benefit of upper layers which
* may make use of it, such as CLNP.
*
*/
#define RESTART_DTE_ORIGINATED(xp) (((xp) -> packet_cause == X25_RESTART_DTE_ORIGINATED) || \
((xp) -> packet_cause >= X25_RESTART_DTE_ORIGINATED2))
pk_input (m)
register struct mbuf *m;
{
register struct x25_packet *xp;
register struct pklcd *lcp;
register struct socket *so = 0;
register struct pkcb *pkp;
int ptype, lcn, lcdstate = LISTEN;
if (pk_input_cache.mbc_size || pk_input_cache.mbc_oldsize)
mbuf_cache (&pk_input_cache, m);
if ((m -> m_flags & M_PKTHDR) == 0)
panic ("pkintr");
if ((pkp = (struct pkcb *) m -> m_pkthdr.rcvif) == 0)
return;
xp = mtod (m, struct x25_packet *);
ptype = pk_decode (xp);
lcn = LCN(xp);
lcp = pkp -> pk_chan[lcn];
/*
* If the DTE is in Restart state, then it will ignore data,
* interrupt, call setup and clearing, flow control and reset
* packets.
*/
if (lcn < 0 || lcn > pkp -> pk_maxlcn) {
pk_message (lcn, pkp -> pk_xcp, "illegal lcn");
m_freem (m);
return;
}
pk_trace (pkp -> pk_xcp, m, "P-In");
if (pkp -> pk_state != DTE_READY && ptype != RESTART && ptype != RESTART_CONF) {
m_freem (m);
return;
}
if (lcp) {
so = lcp -> lcd_so;
lcdstate = lcp -> lcd_state;
} else {
if (ptype == CLEAR) { /* idle line probe (Datapac specific) */
/* send response on lcd 0's output queue */
lcp = pkp -> pk_chan[0];
lcp -> lcd_template = pk_template (lcn, X25_CLEAR_CONFIRM);
pk_output (lcp);
m_freem (m);
return;
}
if (ptype != CALL)
ptype = INVALID_PACKET;
}
if (lcn == 0 && ptype != RESTART && ptype != RESTART_CONF) {
pk_message (0, pkp -> pk_xcp, "illegal ptype (%d, %s) on lcn 0",
ptype, pk_name[ptype / MAXSTATES]);
if (pk_bad_packet)
m_freem (pk_bad_packet);
pk_bad_packet = m;
return;
}
m -> m_pkthdr.rcvif = pkp -> pk_ia -> ia_ifp;
switch (ptype + lcdstate) {
/*
* Incoming Call packet received.
*/
case CALL + LISTEN:
pk_incoming_call (pkp, m);
break;
/*
* Call collision: Just throw this "incoming call" away since
* the DCE will ignore it anyway.
*/
case CALL + SENT_CALL:
pk_message ((int) lcn, pkp -> pk_xcp,
"incoming call collision");
break;
/*
* Call confirmation packet received. This usually means our
* previous connect request is now complete.
*/
case CALL_ACCEPTED + SENT_CALL:
MCHTYPE(m, MT_CONTROL);
pk_call_accepted (lcp, m);
break;
/*
* This condition can only happen if the previous state was
* SENT_CALL. Just ignore the packet, eventually a clear
* confirmation should arrive.
*/
case CALL_ACCEPTED + SENT_CLEAR:
break;
/*
* Clear packet received. This requires a complete tear down
* of the virtual circuit. Free buffers and control blocks.
* and send a clear confirmation.
*/
case CLEAR + READY:
case CLEAR + RECEIVED_CALL:
case CLEAR + SENT_CALL:
case CLEAR + DATA_TRANSFER:
lcp -> lcd_state = RECEIVED_CLEAR;
lcp -> lcd_template = pk_template (lcp -> lcd_lcn, X25_CLEAR_CONFIRM);
pk_output (lcp);
pk_clearcause (pkp, xp);
if (lcp -> lcd_upper) {
MCHTYPE(m, MT_CONTROL);
lcp -> lcd_upper (lcp, m);
}
pk_close (lcp);
lcp = 0;
break;
/*
* Clear collision: Treat this clear packet as a confirmation.
*/
case CLEAR + SENT_CLEAR:
pk_close (lcp);
break;
/*
* Clear confirmation received. This usually means the virtual
* circuit is now completely removed.
*/
case CLEAR_CONF + SENT_CLEAR:
pk_close (lcp);
break;
/*
* A clear confirmation on an unassigned logical channel - just
* ignore it. Note: All other packets on an unassigned channel
* results in a clear.
*/
case CLEAR_CONF + READY:
case CLEAR_CONF + LISTEN:
break;
/*
* Data packet received. Pass on to next level. Move the Q and M
* bits into the data portion for the next level.
*/
case DATA + DATA_TRANSFER:
if (lcp -> lcd_reset_condition) {
ptype = DELETE_PACKET;
break;
}
/*
* Process the P(S) flow control information in this Data packet.
* Check that the packets arrive in the correct sequence and that
* they are within the "lcd_input_window". Input window rotation is
* initiated by the receive interface.
*/
if (PS(xp) != ((lcp -> lcd_rsn + 1) % MODULUS) ||
PS(xp) == ((lcp -> lcd_input_window + lcp -> lcd_windowsize) % MODULUS)) {
m_freem (m);
pk_procerror (RESET, lcp, "p(s) flow control error", 1);
break;
}
lcp -> lcd_rsn = PS(xp);
if (pk_ack (lcp, PR(xp)) != PACKET_OK) {
m_freem (m);
break;
}
m -> m_data += PKHEADERLN;
m -> m_len -= PKHEADERLN;
m -> m_pkthdr.len -= PKHEADERLN;
lcp -> lcd_rxcnt++;
if (lcp -> lcd_flags & X25_MBS_HOLD) {
register struct mbuf *n = lcp -> lcd_cps;
int mbit = MBIT(xp);
octet q_and_d_bits;
if (n) {
n -> m_pkthdr.len += m -> m_pkthdr.len;
while (n -> m_next)
n = n -> m_next;
n -> m_next = m;
m = lcp -> lcd_cps;
if (lcp -> lcd_cpsmax &&
n -> m_pkthdr.len > lcp -> lcd_cpsmax) {
pk_procerror (RESET, lcp,
"C.P.S. overflow", 128);
return;
}
q_and_d_bits = 0xc0 & *(octet *) xp;
xp = (struct x25_packet *)
(mtod (m, octet *) - PKHEADERLN);
*(octet *) xp |= q_and_d_bits;
}
if (mbit) {
lcp -> lcd_cps = m;
pk_flowcontrol (lcp, 0, 1);
return;
}
lcp -> lcd_cps = 0;
}
if (so == 0)
break;
if (lcp -> lcd_flags & X25_MQBIT) {
octet t = (X25GBITS(xp -> bits, q_bit)) ? t = 0x80 : 0;
if (MBIT(xp))
t |= 0x40;
m -> m_data -= 1;
m -> m_len += 1;
m -> m_pkthdr.len += 1;
*mtod (m, octet *) = t;
}
/*
* Discard Q-BIT packets if the application
* doesn't want to be informed of M and Q bit status
*/
if (X25GBITS(xp -> bits, q_bit)
&& (lcp -> lcd_flags & X25_MQBIT) == 0) {
m_freem (m);
/*
* NB. This is dangerous: sending a RR here can
* cause sequence number errors if a previous data
* packet has not yet been passed up to the application
* (RR's are normally generated via PRU_RCVD).
*/
pk_flowcontrol (lcp, 0, 1);
} else {
sbappendrecord (&so -> so_rcv, m);
sorwakeup (so);
}
break;
/*
* Interrupt packet received.
*/
case INTERRUPT + DATA_TRANSFER:
if (lcp -> lcd_reset_condition)
break;
lcp -> lcd_intrdata = xp -> packet_data;
lcp -> lcd_template = pk_template (lcp -> lcd_lcn, X25_INTERRUPT_CONFIRM);
pk_output (lcp);
m -> m_data += PKHEADERLN;
m -> m_len -= PKHEADERLN;
m -> m_pkthdr.len -= PKHEADERLN;
MCHTYPE(m, MT_OOBDATA);
if (so) {
if (so -> so_options & SO_OOBINLINE)
sbinsertoob (&so -> so_rcv, m);
else
m_freem (m);
sohasoutofband (so);
}
break;
/*
* Interrupt confirmation packet received.
*/
case INTERRUPT_CONF + DATA_TRANSFER:
if (lcp -> lcd_reset_condition)
break;
if (lcp -> lcd_intrconf_pending == TRUE)
lcp -> lcd_intrconf_pending = FALSE;
else
pk_procerror (RESET, lcp, "unexpected packet", 43);
break;
/*
* Receiver ready received. Rotate the output window and output
* any data packets waiting transmission.
*/
case RR + DATA_TRANSFER:
if (lcp -> lcd_reset_condition ||
pk_ack (lcp, PR(xp)) != PACKET_OK) {
ptype = DELETE_PACKET;
break;
}
if (lcp -> lcd_rnr_condition == TRUE)
lcp -> lcd_rnr_condition = FALSE;
pk_output (lcp);
break;
/*
* Receiver Not Ready received. Packets up to the P(R) can be
* be sent. Condition is cleared with a RR.
*/
case RNR + DATA_TRANSFER:
if (lcp -> lcd_reset_condition ||
pk_ack (lcp, PR(xp)) != PACKET_OK) {
ptype = DELETE_PACKET;
break;
}
lcp -> lcd_rnr_condition = TRUE;
break;
/*
* Reset packet received. Set state to FLOW_OPEN. The Input and
* Output window edges ar set to zero. Both the send and receive
* numbers are reset. A confirmation is returned.
*/
case RESET + DATA_TRANSFER:
if (lcp -> lcd_reset_condition)
/* Reset collision. Just ignore packet. */
break;
pk_resetcause (pkp, xp);
lcp -> lcd_window_condition = lcp -> lcd_rnr_condition =
lcp -> lcd_intrconf_pending = FALSE;
lcp -> lcd_output_window = lcp -> lcd_input_window =
lcp -> lcd_last_transmitted_pr = 0;
lcp -> lcd_ssn = 0;
lcp -> lcd_rsn = MODULUS - 1;
lcp -> lcd_template = pk_template (lcp -> lcd_lcn, X25_RESET_CONFIRM);
pk_output (lcp);
pk_flush (lcp);
if (so == 0)
break;
wakeup ((caddr_t) & so -> so_timeo);
sorwakeup (so);
sowwakeup (so);
break;
/*
* Reset confirmation received.
*/
case RESET_CONF + DATA_TRANSFER:
if (lcp -> lcd_reset_condition) {
lcp -> lcd_reset_condition = FALSE;
pk_output (lcp);
}
else
pk_procerror (RESET, lcp, "unexpected packet", 32);
break;
case DATA + SENT_CLEAR:
ptype = DELETE_PACKET;
case RR + SENT_CLEAR:
case RNR + SENT_CLEAR:
case INTERRUPT + SENT_CLEAR:
case INTERRUPT_CONF + SENT_CLEAR:
case RESET + SENT_CLEAR:
case RESET_CONF + SENT_CLEAR:
/* Just ignore p if we have sent a CLEAR already.
*/
break;
/*
* Restart sets all the permanent virtual circuits to the "Data
* Transfer" stae and all the switched virtual circuits to the
* "Ready" state.
*/
case RESTART + READY:
switch (pkp -> pk_state) {
case DTE_SENT_RESTART:
/*
* Restart collision.
* If case the restart cause is "DTE originated" we
* have a DTE-DTE situation and are trying to resolve
* who is going to play DTE/DCE [ISO 8208:4.2-4.5]
*/
if (RESTART_DTE_ORIGINATED(xp)) {
pk_restart (pkp, X25_RESTART_DTE_ORIGINATED);
pk_message (0, pkp -> pk_xcp,
"RESTART collision");
if ((pkp -> pk_restartcolls++) > MAXRESTARTCOLLISIONS) {
pk_message (0, pkp -> pk_xcp,
"excessive RESTART collisions");
pkp -> pk_restartcolls = 0;
}
break;
}
pkp -> pk_state = DTE_READY;
pkp -> pk_dxerole |= DTE_PLAYDTE;
pkp -> pk_dxerole &= ~DTE_PLAYDCE;
pk_message (0, pkp -> pk_xcp,
"Packet level operational");
pk_message (0, pkp -> pk_xcp,
"Assuming DTE role");
if (pkp -> pk_dxerole & DTE_CONNECTPENDING)
pk_callcomplete (pkp);
break;
default:
pk_restart (pkp, -1);
pk_restartcause (pkp, xp);
pkp -> pk_chan[0] -> lcd_template = pk_template (0,
X25_RESTART_CONFIRM);
pk_output (pkp -> pk_chan[0]);
pkp -> pk_state = DTE_READY;
pkp -> pk_dxerole |= RESTART_DTE_ORIGINATED(xp) ? DTE_PLAYDCE :
DTE_PLAYDTE;
if (pkp -> pk_dxerole & DTE_PLAYDTE) {
pkp -> pk_dxerole &= ~DTE_PLAYDCE;
pk_message (0, pkp -> pk_xcp,
"Assuming DTE role");
} else {
pkp -> pk_dxerole &= ~DTE_PLAYDTE;
pk_message (0, pkp -> pk_xcp,
"Assuming DCE role");
}
if (pkp -> pk_dxerole & DTE_CONNECTPENDING)
pk_callcomplete (pkp);
}
break;
/*
* Restart confirmation received. All logical channels are set
* to READY.
*/
case RESTART_CONF + READY:
switch (pkp -> pk_state) {
case DTE_SENT_RESTART:
pkp -> pk_state = DTE_READY;
pkp -> pk_dxerole |= DTE_PLAYDTE;
pkp -> pk_dxerole &= ~DTE_PLAYDCE;
pk_message (0, pkp -> pk_xcp,
"Packet level operational");
pk_message (0, pkp -> pk_xcp,
"Assuming DTE role");
if (pkp -> pk_dxerole & DTE_CONNECTPENDING)
pk_callcomplete (pkp);
break;
default:
/* Restart local procedure error. */
pk_restart (pkp, X25_RESTART_LOCAL_PROCEDURE_ERROR);
pkp -> pk_state = DTE_SENT_RESTART;
pkp -> pk_dxerole &= ~(DTE_PLAYDTE | DTE_PLAYDCE);
}
break;
default:
if (lcp) {
pk_procerror (CLEAR, lcp, "unknown packet error", 33);
pk_message (lcn, pkp -> pk_xcp,
"\"%s\" unexpected in \"%s\" state",
pk_name[ptype/MAXSTATES], pk_state[lcdstate]);
} else
pk_message (lcn, pkp -> pk_xcp,
"packet arrived on unassigned lcn");
break;
}
if (so == 0 && lcp && lcp -> lcd_upper && lcdstate == DATA_TRANSFER) {
if (ptype != DATA && ptype != INTERRUPT)
MCHTYPE(m, MT_CONTROL);
lcp -> lcd_upper (lcp, m);
} else if (ptype != DATA && ptype != INTERRUPT)
m_freem (m);
}
static
prune_dnic (from, to, dnicname, xcp)
char *from, *to, *dnicname;
register struct x25config *xcp;
{
register char *cp1 = from, *cp2 = from;
if (xcp -> xc_prepnd0 && *cp1 == '0') {
from = ++cp1;
goto copyrest;
}
if (xcp -> xc_nodnic) {
for (cp1 = dnicname; *cp2 = *cp1++;)
cp2++;
cp1 = from;
}
copyrest:
for (cp1 = dnicname; *cp2 = *cp1++;)
cp2++;
}
/* static */
pk_simple_bsd (from, to, lower, len)
register octet *from, *to;
register len, lower;
{
register int c;
while (--len >= 0) {
c = *from;
if (lower & 0x01)
*from++;
else
c >>= 4;
c &= 0x0f; c |= 0x30; *to++ = c; lower++;
}
*to = 0;
}
/*static octet * */
pk_from_bcd (a, iscalling, sa, xcp)
register struct x25_calladdr *a;
register struct sockaddr_x25 *sa;
register struct x25config *xcp;
{
octet buf[MAXADDRLN+1];
octet *cp;
unsigned count;
bzero ((caddr_t) sa, sizeof (*sa));
sa -> x25_len = sizeof (*sa);
sa -> x25_family = AF_CCITT;
if (iscalling) {
cp = a -> address_field + (X25GBITS(a -> addrlens, called_addrlen) / 2);
count = X25GBITS(a -> addrlens, calling_addrlen);
pk_simple_bsd (cp, buf, X25GBITS(a -> addrlens, called_addrlen), count);
} else {
count = X25GBITS(a -> addrlens, called_addrlen);
pk_simple_bsd (a -> address_field, buf, 0, count);
}
if (xcp -> xc_addr.x25_net && (xcp -> xc_nodnic || xcp -> xc_prepnd0)) {
octet dnicname[sizeof (long) * NBBY/3 + 2];
sprintf ((char *) dnicname, "%d", xcp -> xc_addr.x25_net);
prune_dnic ((char *) buf, sa -> x25_addr, dnicname, xcp);
} else
bcopy ((caddr_t) buf, (caddr_t) sa -> x25_addr, count + 1);
}
static
save_extra (m0, fp, so)
struct mbuf *m0;
octet *fp;
struct socket *so;
{
register struct mbuf *m;
struct cmsghdr cmsghdr;
if (m = m_copy (m, 0, (int)M_COPYALL)) {
int off = fp - mtod (m0, octet *);
int len = m -> m_pkthdr.len - off + sizeof (cmsghdr);
cmsghdr.cmsg_len = len;
cmsghdr.cmsg_level = AF_CCITT;
cmsghdr.cmsg_type = PK_FACILITIES;
m_adj (m, off);
M_PREPEND (m, sizeof (cmsghdr), M_DONTWAIT);
if (m == 0)
return;
bcopy ((caddr_t)&cmsghdr, mtod (m, caddr_t), sizeof (cmsghdr));
MCHTYPE(m, MT_CONTROL);
sbappendrecord (&so -> so_rcv, m);
}
}
/*
* This routine handles incoming call packets. It matches the protocol
* field on the Call User Data field (usually the first four bytes) with
* sockets awaiting connections.
*/
pk_incoming_call (pkp, m0)
struct mbuf *m0;
struct pkcb *pkp;
{
register struct pklcd *lcp = 0, *l;
register struct sockaddr_x25 *sa;
register struct x25_calladdr *a;
register struct socket *so = 0;
struct x25_packet *xp = mtod (m0, struct x25_packet *);
struct mbuf *m;
struct x25config *xcp = pkp -> pk_xcp;
int len = m0 -> m_pkthdr.len;
unsigned udlen;
char *errstr = "server unavailable";
octet *u, *facp;
int lcn = LCN(xp);
/* First, copy the data from the incoming call packet to a X25 address
descriptor. It is to be regretted that you have
to parse the facilities into a sockaddr to determine
if reverse charging is being requested */
if ((m = m_get (M_DONTWAIT, MT_SONAME)) == 0)
return;
sa = mtod (m, struct sockaddr_x25 *);
a = (struct x25_calladdr *) &xp -> packet_data;
facp = u = (octet *) (a -> address_field +
((X25GBITS(a -> addrlens, called_addrlen) + X25GBITS(a -> addrlens, calling_addrlen) + 1) / 2));
u += *u + 1;
udlen = min (16, ((octet *) xp) + len - u);
if (udlen < 0)
udlen = 0;
pk_from_bcd (a, 1, sa, pkp -> pk_xcp); /* get calling address */
pk_parse_facilities (facp, sa);
bcopy ((caddr_t) u, sa -> x25_udata, udlen);
sa -> x25_udlen = udlen;
/*
* Now, loop through the listen sockets looking for a match on the
* PID. That is the first few octets of the user data field.
* This is the closest thing to a port number for X.25 packets.
* It does provide a way of multiplexing services at the user level.
*/
for (l = pk_listenhead; l; l = l -> lcd_listen) {
struct sockaddr_x25 *sxp = l -> lcd_ceaddr;
if (bcmp (sxp -> x25_udata, u, sxp -> x25_udlen))
continue;
if (sxp -> x25_net &&
sxp -> x25_net != xcp -> xc_addr.x25_net)
continue;
/*
* don't accept incoming calls with the D-Bit on
* unless the server agrees
*/
if (X25GBITS(xp -> bits, d_bit) && !(sxp -> x25_opts.op_flags & X25_DBIT)) {
errstr = "incoming D-Bit mismatch";
break;
}
/*
* don't accept incoming collect calls unless
* the server sets the reverse charging option.
*/
if ((sxp -> x25_opts.op_flags & (X25_OLDSOCKADDR|X25_REVERSE_CHARGE)) == 0 &&
sa -> x25_opts.op_flags & X25_REVERSE_CHARGE) {
errstr = "incoming collect call refused";
break;
}
if (l -> lcd_so) {
if (so = sonewconn (l -> lcd_so, SS_ISCONNECTED))
lcp = (struct pklcd *) so -> so_pcb;
} else
lcp = pk_attach ((struct socket *) 0);
if (lcp == 0) {
/*
* Insufficient space or too many unaccepted
* connections. Just throw the call away.
*/
errstr = "server malfunction";
break;
}
lcp -> lcd_upper = l -> lcd_upper;
lcp -> lcd_upnext = l -> lcd_upnext;
lcp -> lcd_lcn = lcn;
lcp -> lcd_state = RECEIVED_CALL;
sa -> x25_opts.op_flags |= (sxp -> x25_opts.op_flags &
~X25_REVERSE_CHARGE) | l -> lcd_flags;
pk_assoc (pkp, lcp, sa);
lcp -> lcd_faddr = *sa;
lcp -> lcd_laddr.x25_udlen = sxp -> x25_udlen;
lcp -> lcd_craddr = &lcp -> lcd_faddr;
lcp -> lcd_template = pk_template (lcp -> lcd_lcn, X25_CALL_ACCEPTED);
if (lcp -> lcd_flags & X25_DBIT) {
if (X25GBITS(xp -> bits, d_bit))
X25SBITS(mtod (lcp -> lcd_template,
struct x25_packet *) -> bits, d_bit, 1);
else
lcp -> lcd_flags &= ~X25_DBIT;
}
if (so) {
pk_output (lcp);
soisconnected (so);
if (so -> so_options & SO_OOBINLINE)
save_extra (m0, facp, so);
} else if (lcp -> lcd_upper) {
(*lcp -> lcd_upper) (lcp, m0);
}
(void) m_free (m);
return;
}
/*
* If the call fails for whatever reason, we still need to build a
* skeleton LCD in order to be able to properly receive the CLEAR
* CONFIRMATION.
*/
#ifdef WATERLOO /* be explicit */
if (l == 0 && bcmp (sa -> x25_udata, "ean", 3) == 0)
pk_message (lcn, pkp -> pk_xcp, "host=%s ean%c: %s",
sa -> x25_addr, sa -> x25_udata[3] & 0xff, errstr);
else if (l == 0 && bcmp (sa -> x25_udata, "\1\0\0\0", 4) == 0)
pk_message (lcn, pkp -> pk_xcp, "host=%s x29d: %s",
sa -> x25_addr, errstr);
else
#endif
pk_message (lcn, pkp -> pk_xcp, "host=%s pid=%x %x %x %x: %s",
sa -> x25_addr, sa -> x25_udata[0] & 0xff,
sa -> x25_udata[1] & 0xff, sa -> x25_udata[2] & 0xff,
sa -> x25_udata[3] & 0xff, errstr);
if ((lcp = pk_attach ((struct socket *)0)) == 0) {
(void) m_free (m);
return;
}
lcp -> lcd_lcn = lcn;
lcp -> lcd_state = RECEIVED_CALL;
pk_assoc (pkp, lcp, sa);
(void) m_free (m);
pk_clear (lcp, 0, 1);
}
pk_call_accepted (lcp, m)
struct pklcd *lcp;
struct mbuf *m;
{
register struct x25_calladdr *ap;
register octet *fcp;
struct x25_packet *xp = mtod (m, struct x25_packet *);
int len = m -> m_len;
lcp -> lcd_state = DATA_TRANSFER;
if (lcp -> lcd_so)
soisconnected (lcp -> lcd_so);
if ((lcp -> lcd_flags & X25_DBIT) && (X25GBITS(xp -> bits, d_bit) == 0))
lcp -> lcd_flags &= ~X25_DBIT;
if (len > 3) {
ap = (struct x25_calladdr *) &xp -> packet_data;
fcp = (octet *) ap -> address_field + (X25GBITS(ap -> addrlens, calling_addrlen) +
X25GBITS(ap -> addrlens, called_addrlen) + 1) / 2;
if (fcp + *fcp <= ((octet *) xp) + len)
pk_parse_facilities (fcp, lcp -> lcd_ceaddr);
}
pk_assoc (lcp -> lcd_pkp, lcp, lcp -> lcd_ceaddr);
if (lcp -> lcd_so == 0 && lcp -> lcd_upper)
lcp -> lcd_upper (lcp, m);
}
pk_parse_facilities (fcp, sa)
register octet *fcp;
register struct sockaddr_x25 *sa;
{
register octet *maxfcp;
maxfcp = fcp + *fcp;
fcp++;
while (fcp < maxfcp) {
/*
* Ignore national DCE or DTE facilities
*/
if (*fcp == 0 || *fcp == 0xff)
break;
switch (*fcp) {
case FACILITIES_WINDOWSIZE:
sa -> x25_opts.op_wsize = fcp[1];
fcp += 3;
break;
case FACILITIES_PACKETSIZE:
sa -> x25_opts.op_psize = fcp[1];
fcp += 3;
break;
case FACILITIES_THROUGHPUT:
sa -> x25_opts.op_speed = fcp[1];
fcp += 2;
break;
case FACILITIES_REVERSE_CHARGE:
if (fcp[1] & 01)
sa -> x25_opts.op_flags |= X25_REVERSE_CHARGE;
/*
* Datapac specific: for a X.25(1976) DTE, bit 2
* indicates a "hi priority" (eg. international) call.
*/
if (fcp[1] & 02 && sa -> x25_opts.op_psize == 0)
sa -> x25_opts.op_psize = X25_PS128;
fcp += 2;
break;
default:
/*printf("unknown facility %x, class=%d\n", *fcp, (*fcp & 0xc0) >> 6);*/
switch ((*fcp & 0xc0) >> 6) {
case 0: /* class A */
fcp += 2;
break;
case 1:
fcp += 3;
break;
case 2:
fcp += 4;
break;
case 3:
fcp++;
fcp += *fcp;
}
}
}
}