1
0
mirror of https://git.FreeBSD.org/src.git synced 2024-12-18 10:35:55 +00:00
freebsd/sys/arm/nvidia/tegra_pcie.c

1691 lines
44 KiB
C

/*-
* Copyright (c) 2016 Michal Meloun <mmel@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* Nvidia Integrated PCI/PCI-Express controller driver.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/mutex.h>
#include <sys/queue.h>
#include <sys/bus.h>
#include <sys/rman.h>
#include <sys/endian.h>
#include <machine/intr.h>
#include <vm/vm.h>
#include <vm/pmap.h>
#include <dev/extres/clk/clk.h>
#include <dev/extres/hwreset/hwreset.h>
#include <dev/extres/phy/phy.h>
#include <dev/extres/regulator/regulator.h>
#include <dev/fdt/fdt_common.h>
#include <dev/ofw/ofw_bus.h>
#include <dev/ofw/ofw_bus_subr.h>
#include <dev/ofw/ofw_pci.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcib_private.h>
#include <machine/devmap.h>
#include <machine/resource.h>
#include <machine/bus.h>
#include "ofw_bus_if.h"
#include "pcib_if.h"
#include <arm/nvidia/tegra_pmc.h>
/* --- Move to ofw_pci.c/.h ----------------------- */
struct tegra_pci_range {
/* parsed phys.hi */
int nonrelocatable;
int prefetchable;
int aliased;
int space_code; /* In native format (not shifted)*/
int bus;
int device;
int function;
int reg;
pci_addr_t pci_addr; /* PCI Address */
bus_addr_t host_addr; /* Host bus address*/
bus_size_t size; /* Range size */
};
static int
tegra_pci_get_ranges(phandle_t node, struct tegra_pci_range **ranges)
{
int host_address_cells, pci_address_cells, size_cells;
cell_t *base_ranges;
ssize_t nbase_ranges;
int nranges;
int i, j, k;
uint32_t flags;
uint64_t tmp;
host_address_cells = 1;
pci_address_cells = 3;
size_cells = 2;
OF_getencprop(OF_parent(node), "#address-cells", &host_address_cells,
sizeof(host_address_cells));
OF_getencprop(node, "#address-cells", &pci_address_cells,
sizeof(pci_address_cells));
OF_getencprop(node, "#size-cells", &size_cells, sizeof(size_cells));
nbase_ranges = OF_getproplen(node, "ranges");
if (nbase_ranges <= 0)
return (-1);
nranges = nbase_ranges / sizeof(cell_t) /
(pci_address_cells + host_address_cells + size_cells);
*ranges = malloc(nranges * sizeof(struct tegra_pci_range),
M_DEVBUF, M_WAITOK);
base_ranges = malloc(nbase_ranges, M_DEVBUF, M_WAITOK);
OF_getencprop(node, "ranges", base_ranges, nbase_ranges);
for (i = 0, j = 0; i < nranges; i++) {
flags = base_ranges[j++];
(*ranges)[i].nonrelocatable =
flags & OFW_PCI_PHYS_HI_NONRELOCATABLE ? 1 : 0;
(*ranges)[i].prefetchable =
flags & OFW_PCI_PHYS_HI_PREFETCHABLE ? 1 : 0;
(*ranges)[i].aliased =
flags & OFW_PCI_PHYS_HI_ALIASED ? 1 : 0;
(*ranges)[i].space_code = flags & OFW_PCI_PHYS_HI_SPACEMASK;
(*ranges)[i].bus = OFW_PCI_PHYS_HI_BUS(flags);
(*ranges)[i].device = OFW_PCI_PHYS_HI_DEVICE(flags);
(*ranges)[i].function = OFW_PCI_PHYS_HI_FUNCTION(flags);
(*ranges)[i].reg = flags & OFW_PCI_PHYS_HI_REGISTERMASK;
tmp = 0;
for (k = 0; k < pci_address_cells - 1; k++) {
tmp <<= 32;
tmp |= base_ranges[j++];
}
(*ranges)[i].pci_addr = (pci_addr_t)tmp;
tmp = 0;
for (k = 0; k < host_address_cells; k++) {
tmp <<= 32;
tmp |= base_ranges[j++];
}
(*ranges)[i].host_addr = (bus_addr_t)tmp;
tmp = 0;
for (k = 0; k < size_cells; k++) {
tmp <<= 32;
tmp |= base_ranges[j++];
}
(*ranges)[i].size = (bus_size_t)tmp;
}
free(base_ranges, M_DEVBUF);
return (nranges);
}
/* -------------------------------------------------------------------------- */
#define AFI_AXI_BAR0_SZ 0x000
#define AFI_AXI_BAR1_SZ 0x004
#define AFI_AXI_BAR2_SZ 0x008
#define AFI_AXI_BAR3_SZ 0x00c
#define AFI_AXI_BAR4_SZ 0x010
#define AFI_AXI_BAR5_SZ 0x014
#define AFI_AXI_BAR0_START 0x018
#define AFI_AXI_BAR1_START 0x01c
#define AFI_AXI_BAR2_START 0x020
#define AFI_AXI_BAR3_START 0x024
#define AFI_AXI_BAR4_START 0x028
#define AFI_AXI_BAR5_START 0x02c
#define AFI_FPCI_BAR0 0x030
#define AFI_FPCI_BAR1 0x034
#define AFI_FPCI_BAR2 0x038
#define AFI_FPCI_BAR3 0x03c
#define AFI_FPCI_BAR4 0x040
#define AFI_FPCI_BAR5 0x044
#define AFI_MSI_BAR_SZ 0x060
#define AFI_MSI_FPCI_BAR_ST 0x064
#define AFI_MSI_AXI_BAR_ST 0x068
#define AFI_AXI_BAR6_SZ 0x134
#define AFI_AXI_BAR7_SZ 0x138
#define AFI_AXI_BAR8_SZ 0x13c
#define AFI_AXI_BAR6_START 0x140
#define AFI_AXI_BAR7_START 0x144
#define AFI_AXI_BAR8_START 0x148
#define AFI_FPCI_BAR6 0x14c
#define AFI_FPCI_BAR7 0x150
#define AFI_FPCI_BAR8 0x154
#define AFI_CONFIGURATION 0x0ac
#define AFI_CONFIGURATION_EN_FPCI (1 << 0)
#define AFI_FPCI_ERROR_MASKS 0x0b0
#define AFI_INTR_MASK 0x0b4
#define AFI_INTR_MASK_MSI_MASK (1 << 8)
#define AFI_INTR_MASK_INT_MASK (1 << 0)
#define AFI_INTR_CODE 0x0b8
#define AFI_INTR_CODE_MASK 0xf
#define AFI_INTR_CODE_INT_CODE_INI_SLVERR 1
#define AFI_INTR_CODE_INT_CODE_INI_DECERR 2
#define AFI_INTR_CODE_INT_CODE_TGT_SLVERR 3
#define AFI_INTR_CODE_INT_CODE_TGT_DECERR 4
#define AFI_INTR_CODE_INT_CODE_TGT_WRERR 5
#define AFI_INTR_CODE_INT_CODE_SM_MSG 6
#define AFI_INTR_CODE_INT_CODE_DFPCI_DECERR 7
#define AFI_INTR_CODE_INT_CODE_AXI_DECERR 8
#define AFI_INTR_CODE_INT_CODE_FPCI_TIMEOUT 9
#define AFI_INTR_CODE_INT_CODE_PE_PRSNT_SENSE 10
#define AFI_INTR_CODE_INT_CODE_PE_CLKREQ_SENSE 11
#define AFI_INTR_CODE_INT_CODE_CLKCLAMP_SENSE 12
#define AFI_INTR_CODE_INT_CODE_RDY4PD_SENSE 13
#define AFI_INTR_CODE_INT_CODE_P2P_ERROR 14
#define AFI_INTR_SIGNATURE 0x0bc
#define AFI_UPPER_FPCI_ADDRESS 0x0c0
#define AFI_SM_INTR_ENABLE 0x0c4
#define AFI_SM_INTR_RP_DEASSERT (1 << 14)
#define AFI_SM_INTR_RP_ASSERT (1 << 13)
#define AFI_SM_INTR_HOTPLUG (1 << 12)
#define AFI_SM_INTR_PME (1 << 11)
#define AFI_SM_INTR_FATAL_ERROR (1 << 10)
#define AFI_SM_INTR_UNCORR_ERROR (1 << 9)
#define AFI_SM_INTR_CORR_ERROR (1 << 8)
#define AFI_SM_INTR_INTD_DEASSERT (1 << 7)
#define AFI_SM_INTR_INTC_DEASSERT (1 << 6)
#define AFI_SM_INTR_INTB_DEASSERT (1 << 5)
#define AFI_SM_INTR_INTA_DEASSERT (1 << 4)
#define AFI_SM_INTR_INTD_ASSERT (1 << 3)
#define AFI_SM_INTR_INTC_ASSERT (1 << 2)
#define AFI_SM_INTR_INTB_ASSERT (1 << 1)
#define AFI_SM_INTR_INTA_ASSERT (1 << 0)
#define AFI_AFI_INTR_ENABLE 0x0c8
#define AFI_AFI_INTR_ENABLE_CODE(code) (1 << (code))
#define AFI_PCIE_CONFIG 0x0f8
#define AFI_PCIE_CONFIG_PCIE_DISABLE(x) (1 << ((x) + 1))
#define AFI_PCIE_CONFIG_PCIE_DISABLE_ALL 0x6
#define AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_MASK (0xf << 20)
#define AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_XBAR2_1 (0x0 << 20)
#define AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_XBAR4_1 (0x1 << 20)
#define AFI_FUSE 0x104
#define AFI_FUSE_PCIE_T0_GEN2_DIS (1 << 2)
#define AFI_PEX0_CTRL 0x110
#define AFI_PEX1_CTRL 0x118
#define AFI_PEX2_CTRL 0x128
#define AFI_PEX_CTRL_OVERRIDE_EN (1 << 4)
#define AFI_PEX_CTRL_REFCLK_EN (1 << 3)
#define AFI_PEX_CTRL_CLKREQ_EN (1 << 1)
#define AFI_PEX_CTRL_RST_L (1 << 0)
#define AFI_AXI_BAR6_SZ 0x134
#define AFI_AXI_BAR7_SZ 0x138
#define AFI_AXI_BAR8_SZ 0x13c
#define AFI_AXI_BAR6_START 0x140
#define AFI_AXI_BAR7_START 0x144
#define AFI_AXI_BAR8_START 0x148
#define AFI_FPCI_BAR6 0x14c
#define AFI_FPCI_BAR7 0x150
#define AFI_FPCI_BAR8 0x154
#define AFI_PLLE_CONTROL 0x160
#define AFI_PLLE_CONTROL_BYPASS_PADS2PLLE_CONTROL (1 << 9)
#define AFI_PLLE_CONTROL_BYPASS_PCIE2PLLE_CONTROL (1 << 8)
#define AFI_PLLE_CONTROL_PADS2PLLE_CONTROL_EN (1 << 1)
#define AFI_PLLE_CONTROL_PCIE2PLLE_CONTROL_EN (1 << 0)
#define AFI_PEXBIAS_CTRL 0x168
/* FPCI Address space */
#define FPCI_MAP_IO 0xfdfc000000ULL
#define FPCI_MAP_TYPE0_CONFIG 0xfdfc000000ULL
#define FPCI_MAP_TYPE1_CONFIG 0xfdff000000ULL
#define FPCI_MAP_EXT_TYPE0_CONFIG 0xfe00000000ULL
#define FPCI_MAP_EXT_TYPE1_CONFIG 0xfe10000000ULL
/* Configuration space */
#define RP_VEND_XP 0x00000F00
#define RP_VEND_XP_DL_UP (1 << 30)
#define RP_PRIV_MISC 0x00000FE0
#define RP_PRIV_MISC_PRSNT_MAP_EP_PRSNT (0xE << 0)
#define RP_PRIV_MISC_PRSNT_MAP_EP_ABSNT (0xF << 0)
#define RP_LINK_CONTROL_STATUS 0x00000090
#define RP_LINK_CONTROL_STATUS_DL_LINK_ACTIVE 0x20000000
#define RP_LINK_CONTROL_STATUS_LINKSTAT_MASK 0x3fff0000
#define TEGRA_PCIE_LINKUP_TIMEOUT 200
#define DEBUG
#ifdef DEBUG
#define debugf(fmt, args...) do { printf(fmt,##args); } while (0)
#else
#define debugf(fmt, args...)
#endif
/*
* Configuration space format:
* [27:24] extended register
* [23:16] bus
* [15:11] slot (device)
* [10: 8] function
* [ 7: 0] register
*/
#define PCI_CFG_EXT_REG(reg) ((((reg) >> 8) & 0x0f) << 24)
#define PCI_CFG_BUS(bus) (((bus) & 0xff) << 16)
#define PCI_CFG_DEV(dev) (((dev) & 0x1f) << 11)
#define PCI_CFG_FUN(fun) (((fun) & 0x07) << 8)
#define PCI_CFG_BASE_REG(reg) ((reg) & 0xff)
#define PADS_WR4(_sc, _r, _v) bus_write_4((_sc)-pads_mem_res, (_r), (_v))
#define PADS_RD4(_sc, _r) bus_read_4((_sc)->pads_mem_res, (_r))
#define AFI_WR4(_sc, _r, _v) bus_write_4((_sc)->afi_mem_res, (_r), (_v))
#define AFI_RD4(_sc, _r) bus_read_4((_sc)->afi_mem_res, (_r))
static struct {
bus_size_t axi_start;
bus_size_t fpci_start;
bus_size_t size;
} bars[] = {
{AFI_AXI_BAR0_START, AFI_FPCI_BAR0, AFI_AXI_BAR0_SZ}, /* BAR 0 */
{AFI_AXI_BAR1_START, AFI_FPCI_BAR1, AFI_AXI_BAR1_SZ}, /* BAR 1 */
{AFI_AXI_BAR2_START, AFI_FPCI_BAR2, AFI_AXI_BAR2_SZ}, /* BAR 2 */
{AFI_AXI_BAR3_START, AFI_FPCI_BAR3, AFI_AXI_BAR3_SZ}, /* BAR 3 */
{AFI_AXI_BAR4_START, AFI_FPCI_BAR4, AFI_AXI_BAR4_SZ}, /* BAR 4 */
{AFI_AXI_BAR5_START, AFI_FPCI_BAR5, AFI_AXI_BAR5_SZ}, /* BAR 5 */
{AFI_AXI_BAR6_START, AFI_FPCI_BAR6, AFI_AXI_BAR6_SZ}, /* BAR 6 */
{AFI_AXI_BAR7_START, AFI_FPCI_BAR7, AFI_AXI_BAR7_SZ}, /* BAR 7 */
{AFI_AXI_BAR8_START, AFI_FPCI_BAR8, AFI_AXI_BAR8_SZ}, /* BAR 8 */
{AFI_MSI_AXI_BAR_ST, AFI_MSI_FPCI_BAR_ST, AFI_MSI_BAR_SZ}, /* MSI 9 */
};
/* Compatible devices. */
static struct ofw_compat_data compat_data[] = {
{"nvidia,tegra124-pcie", 1},
{NULL, 0},
};
struct tegra_pcib_port {
int enabled;
int port_idx; /* chip port index */
int num_lanes; /* number of lanes */
bus_size_t afi_pex_ctrl; /* offset of afi_pex_ctrl */
/* Config space properties. */
bus_addr_t rp_base_addr; /* PA of config window */
bus_size_t rp_size; /* size of config window */
bus_space_handle_t cfg_handle; /* handle of config window */
};
#define TEGRA_PCIB_MAX_PORTS 3
struct tegra_pcib_softc {
device_t dev;
struct mtx mtx;
struct ofw_bus_iinfo pci_iinfo;
struct rman pref_mem_rman;
struct rman mem_rman;
struct rman io_rman;
struct resource *pads_mem_res;
struct resource *afi_mem_res;
struct resource *cfg_mem_res;
struct resource *irq_res;
struct resource *msi_irq_res;
void *intr_cookie;
void *msi_intr_cookie;
struct tegra_pci_range mem_range;
struct tegra_pci_range pref_mem_range;
struct tegra_pci_range io_range;
phy_t phy;
clk_t clk_pex;
clk_t clk_afi;
clk_t clk_pll_e;
clk_t clk_cml;
hwreset_t hwreset_pex;
hwreset_t hwreset_afi;
hwreset_t hwreset_pcie_x;
regulator_t supply_avddio_pex;
regulator_t supply_dvddio_pex;
regulator_t supply_avdd_pex_pll;
regulator_t supply_hvdd_pex;
regulator_t supply_hvdd_pex_pll_e;
regulator_t supply_vddio_pex_ctl;
regulator_t supply_avdd_pll_erefe;
int busnr; /* host bridge bus number */
uint32_t msi_bitmap;
bus_addr_t cfg_base_addr; /* base address of config */
bus_size_t cfg_cur_offs; /* currently mapped window */
bus_space_handle_t cfg_handle; /* handle of config window */
bus_space_tag_t bus_tag; /* tag of config window */
int lanes_cfg;
int num_ports;
struct tegra_pcib_port *ports[TEGRA_PCIB_MAX_PORTS];
};
/* ------------------------------------------------------------------------- */
/*
* Resource manager
*/
static int
tegra_pcib_rman_init(struct tegra_pcib_softc *sc)
{
int err;
char buf[64];
/* Memory management. */
sc->pref_mem_rman.rm_type = RMAN_ARRAY;
snprintf(buf, sizeof(buf), "%s prefetchable memory space",
device_get_nameunit(sc->dev));
sc->pref_mem_rman.rm_descr = strdup(buf, M_DEVBUF);
err = rman_init(&sc->pref_mem_rman);
if (err)
return (err);
sc->mem_rman.rm_type = RMAN_ARRAY;
snprintf(buf, sizeof(buf), "%s non prefetchable memory space",
device_get_nameunit(sc->dev));
sc->mem_rman.rm_descr = strdup(buf, M_DEVBUF);
err = rman_init(&sc->mem_rman);
if (err)
return (err);
sc->io_rman.rm_type = RMAN_ARRAY;
snprintf(buf, sizeof(buf), "%s I/O space",
device_get_nameunit(sc->dev));
sc->io_rman.rm_descr = strdup(buf, M_DEVBUF);
err = rman_init(&sc->io_rman);
if (err) {
rman_fini(&sc->mem_rman);
return (err);
}
err = rman_manage_region(&sc->pref_mem_rman,
sc->pref_mem_range.host_addr,
sc->pref_mem_range.host_addr + sc->pref_mem_range.size - 1);
if (err)
goto error;
err = rman_manage_region(&sc->mem_rman,
sc->mem_range.host_addr,
sc->mem_range.host_addr + sc->mem_range.size - 1);
if (err)
goto error;
err = rman_manage_region(&sc->io_rman,
sc->io_range.pci_addr,
sc->io_range.pci_addr + sc->io_range.size - 1);
if (err)
goto error;
return (0);
error:
rman_fini(&sc->pref_mem_rman);
rman_fini(&sc->mem_rman);
rman_fini(&sc->io_rman);
return (err);
}
static struct rman *
tegra_pcib_rman(struct tegra_pcib_softc *sc, int type, u_int flags)
{
switch (type) {
case SYS_RES_IOPORT:
return (&sc->io_rman);
case SYS_RES_MEMORY:
if (flags & RF_PREFETCHABLE)
return (&sc->pref_mem_rman);
else
return (&sc->mem_rman);
default:
break;
}
return (NULL);
}
static struct resource *
tegra_pcib_alloc_resource(device_t dev, device_t child, int type, int *rid,
rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
{
struct tegra_pcib_softc *sc;
struct rman *rm;
struct resource *res;
debugf("%s: enter %d start %#jx end %#jx count %#jx\n", __func__,
type, start, end, count);
sc = device_get_softc(dev);
#if defined(NEW_PCIB) && defined(PCI_RES_BUS)
if (type == PCI_RES_BUS) {
return (pci_domain_alloc_bus(0, child, rid, start, end, count,
flags));
}
#endif
rm = tegra_pcib_rman(sc, type, flags);
if (rm == NULL) {
res = BUS_ALLOC_RESOURCE(device_get_parent(dev), dev,
type, rid, start, end, count, flags);
return (res);
}
if (bootverbose) {
device_printf(dev,
"rman_reserve_resource: start=%#jx, end=%#jx, count=%#jx\n",
start, end, count);
}
res = rman_reserve_resource(rm, start, end, count, flags, child);
if (res == NULL)
goto fail;
rman_set_rid(res, *rid);
if (flags & RF_ACTIVE) {
if (bus_activate_resource(child, type, *rid, res)) {
rman_release_resource(res);
goto fail;
}
}
return (res);
fail:
if (bootverbose) {
device_printf(dev, "%s FAIL: type=%d, rid=%d, "
"start=%016jx, end=%016jx, count=%016jx, flags=%x\n",
__func__, type, *rid, start, end, count, flags);
}
return (NULL);
}
static int
tegra_pcib_release_resource(device_t dev, device_t child, int type, int rid,
struct resource *res)
{
struct tegra_pcib_softc *sc;
struct rman *rm;
sc = device_get_softc(dev);
debugf("%s: %d rid %x\n", __func__, type, rid);
#if defined(NEW_PCIB) && defined(PCI_RES_BUS)
if (type == PCI_RES_BUS)
return (pci_domain_release_bus(0, child, rid, res));
#endif
rm = tegra_pcib_rman(sc, type, rman_get_flags(res));
if (rm != NULL) {
KASSERT(rman_is_region_manager(res, rm), ("rman mismatch"));
rman_release_resource(res);
}
return (bus_generic_release_resource(dev, child, type, rid, res));
}
static int
tegra_pcib_adjust_resource(device_t dev, device_t child, int type,
struct resource *res, rman_res_t start, rman_res_t end)
{
struct tegra_pcib_softc *sc;
struct rman *rm;
sc = device_get_softc(dev);
debugf("%s: %d start %jx end %jx \n", __func__, type, start, end);
#if defined(NEW_PCIB) && defined(PCI_RES_BUS)
if (type == PCI_RES_BUS)
return (pci_domain_adjust_bus(0, child, res, start, end));
#endif
rm = tegra_pcib_rman(sc, type, rman_get_flags(res));
if (rm != NULL)
return (rman_adjust_resource(res, start, end));
return (bus_generic_adjust_resource(dev, child, type, res, start, end));
}
extern bus_space_tag_t fdtbus_bs_tag;
static int
tegra_pcib_pcie_activate_resource(device_t dev, device_t child, int type,
int rid, struct resource *r)
{
struct tegra_pcib_softc *sc;
vm_offset_t start;
void *p;
int rv;
sc = device_get_softc(dev);
rv = rman_activate_resource(r);
if (rv != 0)
return (rv);
switch(type) {
case SYS_RES_IOPORT:
start = rman_get_start(r) + sc->io_range.host_addr;
break;
default:
start = rman_get_start(r);
rman_get_start(r);
break;
}
if (bootverbose)
printf("%s: start %zx, len %jd\n", __func__, start,
rman_get_size(r));
p = pmap_mapdev(start, (vm_size_t)rman_get_size(r));
rman_set_virtual(r, p);
rman_set_bustag(r, fdtbus_bs_tag);
rman_set_bushandle(r, (u_long)p);
return (0);
}
/* ------------------------------------------------------------------------- */
/*
* IVARs
*/
static int
tegra_pcib_read_ivar(device_t dev, device_t child, int which, uintptr_t *result)
{
struct tegra_pcib_softc *sc = device_get_softc(dev);
switch (which) {
case PCIB_IVAR_BUS:
*result = sc->busnr;
return (0);
case PCIB_IVAR_DOMAIN:
*result = device_get_unit(dev);
return (0);
}
return (ENOENT);
}
static int
tegra_pcib_write_ivar(device_t dev, device_t child, int which, uintptr_t value)
{
struct tegra_pcib_softc *sc = device_get_softc(dev);
switch (which) {
case PCIB_IVAR_BUS:
sc->busnr = value;
return (0);
}
return (ENOENT);
}
static int
tegra_pcib_maxslots(device_t dev)
{
return (16);
}
static int
tegra_pcib_route_interrupt(device_t bus, device_t dev, int pin)
{
struct tegra_pcib_softc *sc;
sc = device_get_softc(bus);
device_printf(bus, "route pin %d for device %d.%d to %ju\n",
pin, pci_get_slot(dev), pci_get_function(dev),
rman_get_start(sc->irq_res));
return (rman_get_start(sc->irq_res));
}
static int
tegra_pcbib_map_cfg(struct tegra_pcib_softc *sc, u_int bus, u_int slot,
u_int func, u_int reg)
{
bus_size_t offs;
int rv;
offs = sc->cfg_base_addr;
offs |= PCI_CFG_BUS(bus) | PCI_CFG_DEV(slot) | PCI_CFG_FUN(func) |
PCI_CFG_EXT_REG(reg);
if ((sc->cfg_handle != 0) && (sc->cfg_cur_offs == offs))
return (0);
if (sc->cfg_handle != 0)
bus_space_unmap(sc->bus_tag, sc->cfg_handle, 0x800);
rv = bus_space_map(sc->bus_tag, offs, 0x800, 0, &sc->cfg_handle);
if (rv != 0)
device_printf(sc->dev, "Cannot map config space\n");
else
sc->cfg_cur_offs = offs;
return (rv);
}
static uint32_t
tegra_pcib_read_config(device_t dev, u_int bus, u_int slot, u_int func,
u_int reg, int bytes)
{
struct tegra_pcib_softc *sc;
bus_space_handle_t hndl;
uint32_t off;
uint32_t val;
int rv, i;
sc = device_get_softc(dev);
if (bus == 0) {
if (func != 0)
return (0xFFFFFFFF);
for (i = 0; i < TEGRA_PCIB_MAX_PORTS; i++) {
if ((sc->ports[i] != NULL) &&
(sc->ports[i]->port_idx == slot)) {
hndl = sc->ports[i]->cfg_handle;
off = reg & 0xFFF;
break;
}
}
if (i >= TEGRA_PCIB_MAX_PORTS)
return (0xFFFFFFFF);
} else {
rv = tegra_pcbib_map_cfg(sc, bus, slot, func, reg);
if (rv != 0)
return (0xFFFFFFFF);
hndl = sc->cfg_handle;
off = PCI_CFG_BASE_REG(reg);
}
val = bus_space_read_4(sc->bus_tag, hndl, off & ~3);
switch (bytes) {
case 4:
break;
case 2:
if (off & 3)
val >>= 16;
val &= 0xffff;
break;
case 1:
val >>= ((off & 3) << 3);
val &= 0xff;
break;
}
return val;
}
static void
tegra_pcib_write_config(device_t dev, u_int bus, u_int slot, u_int func,
u_int reg, uint32_t val, int bytes)
{
struct tegra_pcib_softc *sc;
bus_space_handle_t hndl;
uint32_t off;
uint32_t val2;
int rv, i;
sc = device_get_softc(dev);
if (bus == 0) {
if (func != 0)
return;
for (i = 0; i < TEGRA_PCIB_MAX_PORTS; i++) {
if ((sc->ports[i] != NULL) &&
(sc->ports[i]->port_idx == slot)) {
hndl = sc->ports[i]->cfg_handle;
off = reg & 0xFFF;
break;
}
}
if (i >= TEGRA_PCIB_MAX_PORTS)
return;
} else {
rv = tegra_pcbib_map_cfg(sc, bus, slot, func, reg);
if (rv != 0)
return;
hndl = sc->cfg_handle;
off = PCI_CFG_BASE_REG(reg);
}
switch (bytes) {
case 4:
bus_space_write_4(sc->bus_tag, hndl, off, val);
break;
case 2:
val2 = bus_space_read_4(sc->bus_tag, hndl, off & ~3);
val2 &= ~(0xffff << ((off & 3) << 3));
val2 |= ((val & 0xffff) << ((off & 3) << 3));
bus_space_write_4(sc->bus_tag, hndl, off & ~3, val2);
break;
case 1:
val2 = bus_space_read_4(sc->bus_tag, hndl, off & ~3);
val2 &= ~(0xff << ((off & 3) << 3));
val2 |= ((val & 0xff) << ((off & 3) << 3));
bus_space_write_4(sc->bus_tag, hndl, off & ~3, val2);
break;
}
}
static int tegra_pci_intr(void *arg)
{
struct tegra_pcib_softc *sc = arg;
uint32_t code, signature;
code = bus_read_4(sc->afi_mem_res, AFI_INTR_CODE) & AFI_INTR_CODE_MASK;
signature = bus_read_4(sc->afi_mem_res, AFI_INTR_SIGNATURE);
bus_write_4(sc->afi_mem_res, AFI_INTR_CODE, 0);
if (code == AFI_INTR_CODE_INT_CODE_SM_MSG)
return(FILTER_STRAY);
printf("tegra_pci_intr: code %x sig %x\n", code, signature);
return (FILTER_HANDLED);
}
#if defined(TEGRA_PCI_MSI)
static int
tegra_pcib_map_msi(device_t dev, device_t child, int irq, uint64_t *addr,
uint32_t *data)
{
struct tegra_pcib_softc *sc;
sc = device_get_softc(dev);
irq = irq - MSI_IRQ;
/* validate parameters */
if (isclr(&sc->msi_bitmap, irq)) {
device_printf(dev, "invalid MSI 0x%x\n", irq);
return (EINVAL);
}
tegra_msi_data(irq, addr, data);
debugf("%s: irq: %d addr: %jx data: %x\n",
__func__, irq, *addr, *data);
return (0);
}
static int
tegra_pcib_alloc_msi(device_t dev, device_t child, int count,
int maxcount __unused, int *irqs)
{
struct tegra_pcib_softc *sc;
u_int start = 0, i;
if (powerof2(count) == 0 || count > MSI_IRQ_NUM)
return (EINVAL);
sc = device_get_softc(dev);
mtx_lock(&sc->mtx);
for (start = 0; (start + count) < MSI_IRQ_NUM; start++) {
for (i = start; i < start + count; i++) {
if (isset(&sc->msi_bitmap, i))
break;
}
if (i == start + count)
break;
}
if ((start + count) == MSI_IRQ_NUM) {
mtx_unlock(&sc->mtx);
return (ENXIO);
}
for (i = start; i < start + count; i++) {
setbit(&sc->msi_bitmap, i);
irqs[i] = MSI_IRQ + i;
}
debugf("%s: start: %x count: %x\n", __func__, start, count);
mtx_unlock(&sc->mtx);
return (0);
}
static int
tegra_pcib_release_msi(device_t dev, device_t child, int count, int *irqs)
{
struct tegra_pcib_softc *sc;
u_int i;
sc = device_get_softc(dev);
mtx_lock(&sc->mtx);
for (i = 0; i < count; i++)
clrbit(&sc->msi_bitmap, irqs[i] - MSI_IRQ);
mtx_unlock(&sc->mtx);
return (0);
}
#endif
static bus_size_t
tegra_pcib_pex_ctrl(struct tegra_pcib_softc *sc, int port)
{
if (port >= TEGRA_PCIB_MAX_PORTS)
panic("invalid port number: %d\n", port);
if (port == 0)
return (AFI_PEX0_CTRL);
else if (port == 1)
return (AFI_PEX1_CTRL);
else if (port == 2)
return (AFI_PEX2_CTRL);
else
panic("invalid port number: %d\n", port);
}
static int
tegra_pcib_enable_fdt_resources(struct tegra_pcib_softc *sc)
{
int rv;
rv = hwreset_assert(sc->hwreset_pcie_x);
if (rv != 0) {
device_printf(sc->dev, "Cannot assert 'pcie_x' reset\n");
return (rv);
}
rv = hwreset_assert(sc->hwreset_afi);
if (rv != 0) {
device_printf(sc->dev, "Cannot assert 'afi' reset\n");
return (rv);
}
rv = hwreset_assert(sc->hwreset_pex);
if (rv != 0) {
device_printf(sc->dev, "Cannot assert 'pex' reset\n");
return (rv);
}
tegra_powergate_power_off(TEGRA_POWERGATE_PCX);
/* Power supplies. */
rv = regulator_enable(sc->supply_avddio_pex);
if (rv != 0) {
device_printf(sc->dev,
"Cannot enable 'avddio_pex' regulator\n");
return (rv);
}
rv = regulator_enable(sc->supply_dvddio_pex);
if (rv != 0) {
device_printf(sc->dev,
"Cannot enable 'dvddio_pex' regulator\n");
return (rv);
}
rv = regulator_enable(sc->supply_avdd_pex_pll);
if (rv != 0) {
device_printf(sc->dev,
"Cannot enable 'avdd-pex-pll' regulator\n");
return (rv);
}
rv = regulator_enable(sc->supply_hvdd_pex);
if (rv != 0) {
device_printf(sc->dev,
"Cannot enable 'hvdd-pex-supply' regulator\n");
return (rv);
}
rv = regulator_enable(sc->supply_hvdd_pex_pll_e);
if (rv != 0) {
device_printf(sc->dev,
"Cannot enable 'hvdd-pex-pll-e-supply' regulator\n");
return (rv);
}
rv = regulator_enable(sc->supply_vddio_pex_ctl);
if (rv != 0) {
device_printf(sc->dev,
"Cannot enable 'vddio-pex-ctl' regulator\n");
return (rv);
}
rv = regulator_enable(sc->supply_avdd_pll_erefe);
if (rv != 0) {
device_printf(sc->dev,
"Cannot enable 'avdd-pll-erefe-supply' regulator\n");
return (rv);
}
rv = tegra_powergate_sequence_power_up(TEGRA_POWERGATE_PCX,
sc->clk_pex, sc->hwreset_pex);
if (rv != 0) {
device_printf(sc->dev, "Cannot enable 'PCX' powergate\n");
return (rv);
}
rv = hwreset_deassert(sc->hwreset_afi);
if (rv != 0) {
device_printf(sc->dev, "Cannot unreset 'afi' reset\n");
return (rv);
}
rv = clk_enable(sc->clk_afi);
if (rv != 0) {
device_printf(sc->dev, "Cannot enable 'afi' clock\n");
return (rv);
}
rv = clk_enable(sc->clk_cml);
if (rv != 0) {
device_printf(sc->dev, "Cannot enable 'cml' clock\n");
return (rv);
}
rv = clk_enable(sc->clk_pll_e);
if (rv != 0) {
device_printf(sc->dev, "Cannot enable 'pll_e' clock\n");
return (rv);
}
return (0);
}
static struct tegra_pcib_port *
tegra_pcib_parse_port(struct tegra_pcib_softc *sc, phandle_t node)
{
struct tegra_pcib_port *port;
uint32_t tmp[5];
char tmpstr[6];
int rv;
port = malloc(sizeof(struct tegra_pcib_port), M_DEVBUF, M_WAITOK);
rv = OF_getprop(node, "status", tmpstr, sizeof(tmpstr));
if (rv <= 0 || strcmp(tmpstr, "okay") == 0 ||
strcmp(tmpstr, "ok") == 0)
port->enabled = 1;
else
port->enabled = 0;
rv = OF_getencprop(node, "assigned-addresses", tmp, sizeof(tmp));
if (rv != sizeof(tmp)) {
device_printf(sc->dev, "Cannot parse assigned-address: %d\n",
rv);
goto fail;
}
port->rp_base_addr = tmp[2];
port->rp_size = tmp[4];
port->port_idx = OFW_PCI_PHYS_HI_DEVICE(tmp[0]) - 1;
if (port->port_idx >= TEGRA_PCIB_MAX_PORTS) {
device_printf(sc->dev, "Invalid port index: %d\n",
port->port_idx);
goto fail;
}
/* XXX - TODO:
* Implement proper function for parsing pci "reg" property:
* - it have PCI bus format
* - its relative to matching "assigned-addresses"
*/
rv = OF_getencprop(node, "reg", tmp, sizeof(tmp));
if (rv != sizeof(tmp)) {
device_printf(sc->dev, "Cannot parse reg: %d\n", rv);
goto fail;
}
port->rp_base_addr += tmp[2];
rv = OF_getencprop(node, "nvidia,num-lanes", &port->num_lanes,
sizeof(port->num_lanes));
if (rv != sizeof(port->num_lanes)) {
device_printf(sc->dev, "Cannot parse nvidia,num-lanes: %d\n",
rv);
goto fail;
}
if (port->num_lanes > 4) {
device_printf(sc->dev, "Invalid nvidia,num-lanes: %d\n",
port->num_lanes);
goto fail;
}
port->afi_pex_ctrl = tegra_pcib_pex_ctrl(sc, port->port_idx);
sc->lanes_cfg |= port->num_lanes << (4 * port->port_idx);
return (port);
fail:
free(port, M_DEVBUF);
return (NULL);
}
static int
tegra_pcib_parse_fdt_resources(struct tegra_pcib_softc *sc, phandle_t node)
{
phandle_t child;
struct tegra_pcib_port *port;
int rv;
/* Power supplies. */
rv = regulator_get_by_ofw_property(sc->dev, "avddio-pex-supply",
&sc->supply_avddio_pex);
if (rv != 0) {
device_printf(sc->dev,
"Cannot get 'avddio-pex' regulator\n");
return (ENXIO);
}
rv = regulator_get_by_ofw_property(sc->dev, "dvddio-pex-supply",
&sc->supply_dvddio_pex);
if (rv != 0) {
device_printf(sc->dev,
"Cannot get 'dvddio-pex' regulator\n");
return (ENXIO);
}
rv = regulator_get_by_ofw_property(sc->dev, "avdd-pex-pll-supply",
&sc->supply_avdd_pex_pll);
if (rv != 0) {
device_printf(sc->dev,
"Cannot get 'avdd-pex-pll' regulator\n");
return (ENXIO);
}
rv = regulator_get_by_ofw_property(sc->dev, "hvdd-pex-supply",
&sc->supply_hvdd_pex);
if (rv != 0) {
device_printf(sc->dev,
"Cannot get 'hvdd-pex' regulator\n");
return (ENXIO);
}
rv = regulator_get_by_ofw_property(sc->dev, "hvdd-pex-pll-e-supply",
&sc->supply_hvdd_pex_pll_e);
if (rv != 0) {
device_printf(sc->dev,
"Cannot get 'hvdd-pex-pll-e' regulator\n");
return (ENXIO);
}
rv = regulator_get_by_ofw_property(sc->dev, "vddio-pex-ctl-supply",
&sc->supply_vddio_pex_ctl);
if (rv != 0) {
device_printf(sc->dev,
"Cannot get 'vddio-pex-ctl' regulator\n");
return (ENXIO);
}
rv = regulator_get_by_ofw_property(sc->dev, "avdd-pll-erefe-supply",
&sc->supply_avdd_pll_erefe);
if (rv != 0) {
device_printf(sc->dev,
"Cannot get 'avdd-pll-erefe' regulator\n");
return (ENXIO);
}
/* Resets. */
rv = hwreset_get_by_ofw_name(sc->dev, "pex", &sc->hwreset_pex);
if (rv != 0) {
device_printf(sc->dev, "Cannot get 'pex' reset\n");
return (ENXIO);
}
rv = hwreset_get_by_ofw_name(sc->dev, "afi", &sc->hwreset_afi);
if (rv != 0) {
device_printf(sc->dev, "Cannot get 'afi' reset\n");
return (ENXIO);
}
rv = hwreset_get_by_ofw_name(sc->dev, "pcie_x", &sc->hwreset_pcie_x);
if (rv != 0) {
device_printf(sc->dev, "Cannot get 'pcie_x' reset\n");
return (ENXIO);
}
/* Clocks. */
rv = clk_get_by_ofw_name(sc->dev, "pex", &sc->clk_pex);
if (rv != 0) {
device_printf(sc->dev, "Cannot get 'pex' clock\n");
return (ENXIO);
}
rv = clk_get_by_ofw_name(sc->dev, "afi", &sc->clk_afi);
if (rv != 0) {
device_printf(sc->dev, "Cannot get 'afi' clock\n");
return (ENXIO);
}
rv = clk_get_by_ofw_name(sc->dev, "pll_e", &sc->clk_pll_e);
if (rv != 0) {
device_printf(sc->dev, "Cannot get 'pll_e' clock\n");
return (ENXIO);
}
rv = clk_get_by_ofw_name(sc->dev, "cml", &sc->clk_cml);
if (rv != 0) {
device_printf(sc->dev, "Cannot get 'cml' clock\n");
return (ENXIO);
}
/* Phy. */
rv = phy_get_by_ofw_name(sc->dev, "pcie", &sc->phy);
if (rv != 0) {
device_printf(sc->dev, "Cannot get 'pcie' phy\n");
return (ENXIO);
}
/* Ports */
sc->num_ports = 0;
for (child = OF_child(node); child != 0; child = OF_peer(child)) {
port = tegra_pcib_parse_port(sc, child);
if (port == NULL) {
device_printf(sc->dev, "Cannot parse PCIe port node\n");
return (ENXIO);
}
sc->ports[sc->num_ports++] = port;
}
return (0);
}
static int
tegra_pcib_decode_ranges(struct tegra_pcib_softc *sc,
struct tegra_pci_range *ranges, int nranges)
{
int i;
for (i = 2; i < nranges; i++) {
if (ranges[i].space_code == OFW_PCI_PHYS_HI_SPACE_IO) {
if (sc->io_range.size != 0) {
device_printf(sc->dev,
"Duplicated IO range found in DT\n");
return (ENXIO);
}
sc->io_range = ranges[i];
}
if ((ranges[i].space_code == OFW_PCI_PHYS_HI_SPACE_MEM32) &&
!ranges[i].prefetchable) {
if (sc->mem_range.size != 0) {
device_printf(sc->dev,
"Duplicated memory range found in DT\n");
return (ENXIO);
}
sc->mem_range = ranges[i];
}
if ((ranges[i].space_code == OFW_PCI_PHYS_HI_SPACE_MEM32) &&
ranges[i].prefetchable) {
if (sc->pref_mem_range.size != 0) {
device_printf(sc->dev,
"Duplicated memory range found in DT\n");
return (ENXIO);
}
sc->pref_mem_range = ranges[i];
}
}
if ((sc->io_range.size == 0) || (sc->mem_range.size == 0)
|| (sc->pref_mem_range.size == 0)) {
device_printf(sc->dev,
" Not all required ranges are found in DT\n");
return (ENXIO);
}
return (0);
}
/*
* Hardware config.
*/
static int
tegra_pcib_wait_for_link(struct tegra_pcib_softc *sc,
struct tegra_pcib_port *port)
{
uint32_t reg;
int i;
/* Setup link detection. */
reg = tegra_pcib_read_config(sc->dev, 0, port->port_idx, 0,
RP_PRIV_MISC, 4);
reg &= ~RP_PRIV_MISC_PRSNT_MAP_EP_ABSNT;
reg |= RP_PRIV_MISC_PRSNT_MAP_EP_PRSNT;
tegra_pcib_write_config(sc->dev, 0, port->port_idx, 0,
RP_PRIV_MISC, reg, 4);
for (i = TEGRA_PCIE_LINKUP_TIMEOUT; i > 0; i--) {
reg = tegra_pcib_read_config(sc->dev, 0, port->port_idx, 0,
RP_VEND_XP, 4);
if (reg & RP_VEND_XP_DL_UP)
break;
}
if (i <= 0)
return (ETIMEDOUT);
for (i = TEGRA_PCIE_LINKUP_TIMEOUT; i > 0; i--) {
reg = tegra_pcib_read_config(sc->dev, 0, port->port_idx, 0,
RP_LINK_CONTROL_STATUS, 4);
if (reg & RP_LINK_CONTROL_STATUS_DL_LINK_ACTIVE)
break;
}
if (i <= 0)
return (ETIMEDOUT);
return (0);
}
static void
tegra_pcib_port_enable(struct tegra_pcib_softc *sc, int port_num)
{
struct tegra_pcib_port *port;
uint32_t reg;
int rv;
port = sc->ports[port_num];
/* Put port to reset. */
reg = AFI_RD4(sc, port->afi_pex_ctrl);
reg &= ~AFI_PEX_CTRL_RST_L;
AFI_WR4(sc, port->afi_pex_ctrl, reg);
AFI_RD4(sc, port->afi_pex_ctrl);
DELAY(10);
/* Enable clocks. */
reg |= AFI_PEX_CTRL_REFCLK_EN;
reg |= AFI_PEX_CTRL_CLKREQ_EN;
reg |= AFI_PEX_CTRL_OVERRIDE_EN;
AFI_WR4(sc, port->afi_pex_ctrl, reg);
AFI_RD4(sc, port->afi_pex_ctrl);
DELAY(100);
/* Release reset. */
reg |= AFI_PEX_CTRL_RST_L;
AFI_WR4(sc, port->afi_pex_ctrl, reg);
rv = tegra_pcib_wait_for_link(sc, port);
if (bootverbose)
device_printf(sc->dev, " port %d (%d lane%s): Link is %s\n",
port->port_idx, port->num_lanes,
port->num_lanes > 1 ? "s": "",
rv == 0 ? "up": "down");
}
static void
tegra_pcib_port_disable(struct tegra_pcib_softc *sc, uint32_t port_num)
{
struct tegra_pcib_port *port;
uint32_t reg;
port = sc->ports[port_num];
/* Put port to reset. */
reg = AFI_RD4(sc, port->afi_pex_ctrl);
reg &= ~AFI_PEX_CTRL_RST_L;
AFI_WR4(sc, port->afi_pex_ctrl, reg);
AFI_RD4(sc, port->afi_pex_ctrl);
DELAY(10);
/* Disable clocks. */
reg &= ~AFI_PEX_CTRL_CLKREQ_EN;
reg &= ~AFI_PEX_CTRL_REFCLK_EN;
AFI_WR4(sc, port->afi_pex_ctrl, reg);
if (bootverbose)
device_printf(sc->dev, " port %d (%d lane%s): Disabled\n",
port->port_idx, port->num_lanes,
port->num_lanes > 1 ? "s": "");
}
static void
tegra_pcib_set_bar(struct tegra_pcib_softc *sc, int bar, uint32_t axi,
uint64_t fpci, uint32_t size, int is_memory)
{
uint32_t fpci_reg;
uint32_t axi_reg;
uint32_t size_reg;
axi_reg = axi & ~0xFFF;
size_reg = size >> 12;
fpci_reg = (uint32_t)(fpci >> 8) & ~0xF;
fpci_reg |= is_memory ? 0x1 : 0x0;
AFI_WR4(sc, bars[bar].axi_start, axi_reg);
AFI_WR4(sc, bars[bar].size, size_reg);
AFI_WR4(sc, bars[bar].fpci_start, fpci_reg);
}
static int
tegra_pcib_enable(struct tegra_pcib_softc *sc, uint32_t port)
{
int rv;
int i;
uint32_t reg;
rv = tegra_pcib_enable_fdt_resources(sc);
if (rv != 0) {
device_printf(sc->dev, "Cannot enable FDT resources\n");
return (rv);
}
/* Enable PLLE control. */
reg = AFI_RD4(sc, AFI_PLLE_CONTROL);
reg &= ~AFI_PLLE_CONTROL_BYPASS_PADS2PLLE_CONTROL;
reg |= AFI_PLLE_CONTROL_PADS2PLLE_CONTROL_EN;
AFI_WR4(sc, AFI_PLLE_CONTROL, reg);
/* Set bias pad. */
AFI_WR4(sc, AFI_PEXBIAS_CTRL, 0);
/* Configure mode and ports. */
reg = AFI_RD4(sc, AFI_PCIE_CONFIG);
reg &= ~AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_MASK;
if (sc->lanes_cfg == 0x14) {
if (bootverbose)
device_printf(sc->dev,
"Using x1,x4 configuration\n");
reg |= AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_XBAR4_1;
} else if (sc->lanes_cfg == 0x12) {
if (bootverbose)
device_printf(sc->dev,
"Using x1,x2 configuration\n");
reg |= AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_XBAR2_1;
} else {
device_printf(sc->dev,
"Unsupported lanes configuration: 0x%X\n", sc->lanes_cfg);
}
reg |= AFI_PCIE_CONFIG_PCIE_DISABLE_ALL;
for (i = 0; i < TEGRA_PCIB_MAX_PORTS; i++) {
if ((sc->ports[i] != NULL))
reg &=
~AFI_PCIE_CONFIG_PCIE_DISABLE(sc->ports[i]->port_idx);
}
AFI_WR4(sc, AFI_PCIE_CONFIG, reg);
/* Enable Gen2 support. */
reg = AFI_RD4(sc, AFI_FUSE);
reg &= ~AFI_FUSE_PCIE_T0_GEN2_DIS;
AFI_WR4(sc, AFI_FUSE, reg);
/* Enable PCIe phy. */
rv = phy_enable(sc->dev, sc->phy);
if (rv != 0) {
device_printf(sc->dev, "Cannot enable phy\n");
return (rv);
}
rv = hwreset_deassert(sc->hwreset_pcie_x);
if (rv != 0) {
device_printf(sc->dev, "Cannot unreset 'pci_x' reset\n");
return (rv);
}
/* Enable config space. */
reg = AFI_RD4(sc, AFI_CONFIGURATION);
reg |= AFI_CONFIGURATION_EN_FPCI;
AFI_WR4(sc, AFI_CONFIGURATION, reg);
/* Enable AFI errors. */
reg = 0;
reg |= AFI_AFI_INTR_ENABLE_CODE(AFI_INTR_CODE_INT_CODE_INI_SLVERR);
reg |= AFI_AFI_INTR_ENABLE_CODE(AFI_INTR_CODE_INT_CODE_INI_DECERR);
reg |= AFI_AFI_INTR_ENABLE_CODE(AFI_INTR_CODE_INT_CODE_TGT_SLVERR);
reg |= AFI_AFI_INTR_ENABLE_CODE(AFI_INTR_CODE_INT_CODE_TGT_DECERR);
reg |= AFI_AFI_INTR_ENABLE_CODE(AFI_INTR_CODE_INT_CODE_TGT_WRERR);
reg |= AFI_AFI_INTR_ENABLE_CODE(AFI_INTR_CODE_INT_CODE_SM_MSG);
reg |= AFI_AFI_INTR_ENABLE_CODE(AFI_INTR_CODE_INT_CODE_DFPCI_DECERR);
reg |= AFI_AFI_INTR_ENABLE_CODE(AFI_INTR_CODE_INT_CODE_AXI_DECERR);
reg |= AFI_AFI_INTR_ENABLE_CODE(AFI_INTR_CODE_INT_CODE_FPCI_TIMEOUT);
reg |= AFI_AFI_INTR_ENABLE_CODE(AFI_INTR_CODE_INT_CODE_PE_PRSNT_SENSE);
reg |= AFI_AFI_INTR_ENABLE_CODE(AFI_INTR_CODE_INT_CODE_PE_CLKREQ_SENSE);
reg |= AFI_AFI_INTR_ENABLE_CODE(AFI_INTR_CODE_INT_CODE_CLKCLAMP_SENSE);
reg |= AFI_AFI_INTR_ENABLE_CODE(AFI_INTR_CODE_INT_CODE_RDY4PD_SENSE);
reg |= AFI_AFI_INTR_ENABLE_CODE(AFI_INTR_CODE_INT_CODE_P2P_ERROR);
AFI_WR4(sc, AFI_AFI_INTR_ENABLE, reg);
AFI_WR4(sc, AFI_SM_INTR_ENABLE, 0xffffffff);
/* Enable INT, disable MSI. */
AFI_WR4(sc, AFI_INTR_MASK, AFI_INTR_MASK_INT_MASK);
/* Mask all FPCI errors. */
AFI_WR4(sc, AFI_FPCI_ERROR_MASKS, 0);
/* Setup AFI translation windows. */
/* BAR 0 - type 1 extended configuration. */
tegra_pcib_set_bar(sc, 0, rman_get_start(sc->cfg_mem_res),
FPCI_MAP_EXT_TYPE1_CONFIG, rman_get_size(sc->cfg_mem_res), 0);
/* BAR 1 - downstream I/O. */
tegra_pcib_set_bar(sc, 1, sc->io_range.host_addr, FPCI_MAP_IO,
sc->io_range.size, 0);
/* BAR 2 - downstream prefetchable memory 1:1. */
tegra_pcib_set_bar(sc, 2, sc->pref_mem_range.host_addr,
sc->pref_mem_range.host_addr, sc->pref_mem_range.size, 1);
/* BAR 3 - downstream not prefetchable memory 1:1 .*/
tegra_pcib_set_bar(sc, 3, sc->mem_range.host_addr,
sc->mem_range.host_addr, sc->mem_range.size, 1);
/* BAR 3-8 clear. */
tegra_pcib_set_bar(sc, 4, 0, 0, 0, 0);
tegra_pcib_set_bar(sc, 5, 0, 0, 0, 0);
tegra_pcib_set_bar(sc, 6, 0, 0, 0, 0);
tegra_pcib_set_bar(sc, 7, 0, 0, 0, 0);
tegra_pcib_set_bar(sc, 8, 0, 0, 0, 0);
/* MSI BAR - clear. */
tegra_pcib_set_bar(sc, 9, 0, 0, 0, 0);
return(0);
}
static int
tegra_pcib_probe(device_t dev)
{
if (!ofw_bus_status_okay(dev))
return (ENXIO);
if (ofw_bus_search_compatible(dev, compat_data)->ocd_data != 0) {
device_set_desc(dev, "Nvidia Integrated PCI/PCI-E Controller");
return (BUS_PROBE_DEFAULT);
}
return (ENXIO);
}
static int
tegra_pcib_attach(device_t dev)
{
struct tegra_pcib_softc *sc;
phandle_t node;
uint32_t unit;
int rv;
int rid;
int nranges;
struct tegra_pci_range *ranges;
struct tegra_pcib_port *port;
int i;
sc = device_get_softc(dev);
sc->dev = dev;
unit = fdt_get_unit(dev);
mtx_init(&sc->mtx, "msi_mtx", NULL, MTX_DEF);
node = ofw_bus_get_node(dev);
rv = tegra_pcib_parse_fdt_resources(sc, node);
if (rv != 0) {
device_printf(dev, "Cannot get FDT resources\n");
return (rv);
}
nranges = tegra_pci_get_ranges(node, &ranges);
if (nranges != 5) {
device_printf(sc->dev, "Unexpected number of ranges: %d\n",
nranges);
rv = ENXIO;
goto out;
}
/* Allocate bus_space resources. */
rid = 0;
sc->pads_mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
RF_ACTIVE);
if (sc->pads_mem_res == NULL) {
device_printf(dev, "Cannot allocate PADS register\n");
rv = ENXIO;
goto out;
}
/*
* XXX - FIXME
* tag for config space is not filled when RF_ALLOCATED flag is used.
*/
sc->bus_tag = rman_get_bustag(sc->pads_mem_res);
rid = 1;
sc->afi_mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
RF_ACTIVE);
if (sc->afi_mem_res == NULL) {
device_printf(dev, "Cannot allocate AFI register\n");
rv = ENXIO;
goto out;
}
rid = 2;
sc->cfg_mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
RF_ALLOCATED);
if (sc->cfg_mem_res == NULL) {
device_printf(dev, "Cannot allocate config space memory\n");
rv = ENXIO;
goto out;
}
sc->cfg_base_addr = rman_get_start(sc->cfg_mem_res);
/* Map RP slots */
for (i = 0; i < TEGRA_PCIB_MAX_PORTS; i++) {
if (sc->ports[i] == NULL)
continue;
port = sc->ports[i];
rv = bus_space_map(sc->bus_tag, port->rp_base_addr,
port->rp_size, 0, &port->cfg_handle);
if (rv != 0) {
device_printf(sc->dev, "Cannot allocate memory for "
"port: %d\n", i);
rv = ENXIO;
goto out;
}
}
/*
* Get PCI interrupt info.
*/
ofw_bus_setup_iinfo(node, &sc->pci_iinfo, sizeof(pcell_t));
rid = 0;
sc->irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
RF_ACTIVE | RF_SHAREABLE);
if (sc->irq_res == NULL) {
device_printf(dev, "Cannot allocate IRQ resources\n");
rv = ENXIO;
goto out;
}
rid = 1;
sc->msi_irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
RF_ACTIVE);
if (sc->irq_res == NULL) {
device_printf(dev, "Cannot allocate MSI IRQ resources\n");
rv = ENXIO;
goto out;
}
if (bus_setup_intr(dev, sc->irq_res, INTR_TYPE_BIO | INTR_MPSAFE,
tegra_pci_intr, NULL, sc, &sc->intr_cookie)) {
device_printf(dev, "cannot setup interrupt handler\n");
rv = ENXIO;
goto out;
}
/* Memory management. */
rv = tegra_pcib_decode_ranges(sc, ranges, nranges);
if (rv != 0)
goto out;
rv = tegra_pcib_rman_init(sc);
if (rv != 0)
goto out;
free(ranges, M_DEVBUF);
ranges = NULL;
/*
* Enable PCIE device.
*/
rv = tegra_pcib_enable(sc, unit);
if (rv != 0)
goto out;
for (i = 0; i < TEGRA_PCIB_MAX_PORTS; i++) {
if (sc->ports[i] == NULL)
continue;
if (sc->ports[i]->enabled)
tegra_pcib_port_enable(sc, i);
else
tegra_pcib_port_disable(sc, i);
}
device_add_child(dev, "pci", -1);
return (bus_generic_attach(dev));
out:
if (ranges != NULL)
free(ranges, M_DEVBUF);
return (rv);
}
static device_method_t tegra_pcib_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, tegra_pcib_probe),
DEVMETHOD(device_attach, tegra_pcib_attach),
/* Bus interface */
DEVMETHOD(bus_read_ivar, tegra_pcib_read_ivar),
DEVMETHOD(bus_write_ivar, tegra_pcib_write_ivar),
DEVMETHOD(bus_alloc_resource, tegra_pcib_alloc_resource),
DEVMETHOD(bus_adjust_resource, tegra_pcib_adjust_resource),
DEVMETHOD(bus_release_resource, tegra_pcib_release_resource),
DEVMETHOD(bus_activate_resource, tegra_pcib_pcie_activate_resource),
DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource),
DEVMETHOD(bus_setup_intr, bus_generic_setup_intr),
DEVMETHOD(bus_teardown_intr, bus_generic_teardown_intr),
/* pcib interface */
DEVMETHOD(pcib_maxslots, tegra_pcib_maxslots),
DEVMETHOD(pcib_read_config, tegra_pcib_read_config),
DEVMETHOD(pcib_write_config, tegra_pcib_write_config),
DEVMETHOD(pcib_route_interrupt, tegra_pcib_route_interrupt),
#if defined(TEGRA_PCI_MSI)
DEVMETHOD(pcib_alloc_msi, tegra_pcib_alloc_msi),
DEVMETHOD(pcib_release_msi, tegra_pcib_release_msi),
DEVMETHOD(pcib_map_msi, tegra_pcib_map_msi),
#endif
/* OFW bus interface */
DEVMETHOD(ofw_bus_get_compat, ofw_bus_gen_get_compat),
DEVMETHOD(ofw_bus_get_model, ofw_bus_gen_get_model),
DEVMETHOD(ofw_bus_get_name, ofw_bus_gen_get_name),
DEVMETHOD(ofw_bus_get_node, ofw_bus_gen_get_node),
DEVMETHOD(ofw_bus_get_type, ofw_bus_gen_get_type),
DEVMETHOD_END
};
static driver_t tegra_pcib_driver = {
"pcib",
tegra_pcib_methods,
sizeof(struct tegra_pcib_softc),
};
devclass_t pcib_devclass;
DRIVER_MODULE(pcib, simplebus, tegra_pcib_driver, pcib_devclass, 0, 0);