1
0
mirror of https://git.FreeBSD.org/src.git synced 2024-12-18 10:35:55 +00:00
freebsd/sys/dev/raidframe/rf_paritylogging.c
Scott Long f9d186edc8 After much delay and anticipation, welcome RAIDFrame into the FreeBSD
world.  This should be considered highly experimental.

Approved-by:	re
2002-10-20 08:17:39 +00:00

1075 lines
36 KiB
C

/* $FreeBSD$ */
/* $NetBSD: rf_paritylogging.c,v 1.10 2000/02/12 16:06:27 oster Exp $ */
/*
* Copyright (c) 1995 Carnegie-Mellon University.
* All rights reserved.
*
* Author: William V. Courtright II
*
* Permission to use, copy, modify and distribute this software and
* its documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
*
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
*
* Carnegie Mellon requests users of this software to return to
*
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
* School of Computer Science
* Carnegie Mellon University
* Pittsburgh PA 15213-3890
*
* any improvements or extensions that they make and grant Carnegie the
* rights to redistribute these changes.
*/
/*
parity logging configuration, dag selection, and mapping is implemented here
*/
#include <dev/raidframe/rf_archs.h>
#if RF_INCLUDE_PARITYLOGGING > 0
#include <dev/raidframe/rf_types.h>
#include <dev/raidframe/rf_raid.h>
#include <dev/raidframe/rf_dag.h>
#include <dev/raidframe/rf_dagutils.h>
#include <dev/raidframe/rf_dagfuncs.h>
#include <dev/raidframe/rf_dagffrd.h>
#include <dev/raidframe/rf_dagffwr.h>
#include <dev/raidframe/rf_dagdegrd.h>
#include <dev/raidframe/rf_dagdegwr.h>
#include <dev/raidframe/rf_paritylog.h>
#include <dev/raidframe/rf_paritylogDiskMgr.h>
#include <dev/raidframe/rf_paritylogging.h>
#include <dev/raidframe/rf_parityloggingdags.h>
#include <dev/raidframe/rf_general.h>
#include <dev/raidframe/rf_map.h>
#include <dev/raidframe/rf_utils.h>
#include <dev/raidframe/rf_shutdown.h>
#include <dev/raidframe/rf_kintf.h>
typedef struct RF_ParityLoggingConfigInfo_s {
RF_RowCol_t **stripeIdentifier; /* filled in at config time & used by
* IdentifyStripe */
} RF_ParityLoggingConfigInfo_t;
static void FreeRegionInfo(RF_Raid_t * raidPtr, RF_RegionId_t regionID);
static void rf_ShutdownParityLogging(RF_ThreadArg_t arg);
static void rf_ShutdownParityLoggingRegionInfo(RF_ThreadArg_t arg);
static void rf_ShutdownParityLoggingPool(RF_ThreadArg_t arg);
static void rf_ShutdownParityLoggingRegionBufferPool(RF_ThreadArg_t arg);
static void rf_ShutdownParityLoggingParityBufferPool(RF_ThreadArg_t arg);
static void rf_ShutdownParityLoggingDiskQueue(RF_ThreadArg_t arg);
int
rf_ConfigureParityLogging(
RF_ShutdownList_t ** listp,
RF_Raid_t * raidPtr,
RF_Config_t * cfgPtr)
{
int i, j, startdisk, rc;
RF_SectorCount_t totalLogCapacity, fragmentation, lastRegionCapacity;
RF_SectorCount_t parityBufferCapacity, maxRegionParityRange;
RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
RF_ParityLoggingConfigInfo_t *info;
RF_ParityLog_t *l = NULL, *next;
caddr_t lHeapPtr;
if (rf_numParityRegions <= 0)
return(EINVAL);
/*
* We create multiple entries on the shutdown list here, since
* this configuration routine is fairly complicated in and of
* itself, and this makes backing out of a failed configuration
* much simpler.
*/
raidPtr->numSectorsPerLog = RF_DEFAULT_NUM_SECTORS_PER_LOG;
/* create a parity logging configuration structure */
RF_MallocAndAdd(info, sizeof(RF_ParityLoggingConfigInfo_t),
(RF_ParityLoggingConfigInfo_t *),
raidPtr->cleanupList);
if (info == NULL)
return (ENOMEM);
layoutPtr->layoutSpecificInfo = (void *) info;
RF_ASSERT(raidPtr->numRow == 1);
/* the stripe identifier must identify the disks in each stripe, IN
* THE ORDER THAT THEY APPEAR IN THE STRIPE. */
info->stripeIdentifier = rf_make_2d_array((raidPtr->numCol),
(raidPtr->numCol),
raidPtr->cleanupList);
if (info->stripeIdentifier == NULL)
return (ENOMEM);
startdisk = 0;
for (i = 0; i < (raidPtr->numCol); i++) {
for (j = 0; j < (raidPtr->numCol); j++) {
info->stripeIdentifier[i][j] = (startdisk + j) %
(raidPtr->numCol - 1);
}
if ((--startdisk) < 0)
startdisk = raidPtr->numCol - 1 - 1;
}
/* fill in the remaining layout parameters */
layoutPtr->numStripe = layoutPtr->stripeUnitsPerDisk;
layoutPtr->bytesPerStripeUnit = layoutPtr->sectorsPerStripeUnit <<
raidPtr->logBytesPerSector;
layoutPtr->numParityCol = 1;
layoutPtr->numParityLogCol = 1;
layoutPtr->numDataCol = raidPtr->numCol - layoutPtr->numParityCol -
layoutPtr->numParityLogCol;
layoutPtr->dataSectorsPerStripe = layoutPtr->numDataCol *
layoutPtr->sectorsPerStripeUnit;
layoutPtr->dataStripeUnitsPerDisk = layoutPtr->stripeUnitsPerDisk;
raidPtr->sectorsPerDisk = layoutPtr->stripeUnitsPerDisk *
layoutPtr->sectorsPerStripeUnit;
raidPtr->totalSectors = layoutPtr->stripeUnitsPerDisk *
layoutPtr->numDataCol * layoutPtr->sectorsPerStripeUnit;
/* configure parity log parameters
*
* parameter comment/constraints
* -------------------------------------------
* numParityRegions* all regions (except possibly last)
* of equal size
* totalInCoreLogCapacity* amount of memory in bytes available
* for in-core logs (default 1 MB)
* numSectorsPerLog# capacity of an in-core log in sectors
* (1 * disk track)
* numParityLogs total number of in-core logs,
* should be at least numParityRegions
* regionLogCapacity size of a region log (except possibly
* last one) in sectors
* totalLogCapacity total amount of log space in sectors
*
* where '*' denotes a user settable parameter.
* Note that logs are fixed to be the size of a disk track,
* value #defined in rf_paritylog.h
*
*/
totalLogCapacity = layoutPtr->stripeUnitsPerDisk * layoutPtr->sectorsPerStripeUnit * layoutPtr->numParityLogCol;
raidPtr->regionLogCapacity = totalLogCapacity / rf_numParityRegions;
if (rf_parityLogDebug)
printf("bytes per sector %d\n", raidPtr->bytesPerSector);
/* reduce fragmentation within a disk region by adjusting the number
* of regions in an attempt to allow an integral number of logs to fit
* into a disk region */
fragmentation = raidPtr->regionLogCapacity % raidPtr->numSectorsPerLog;
if (fragmentation > 0)
for (i = 1; i < (raidPtr->numSectorsPerLog / 2); i++) {
if (((totalLogCapacity / (rf_numParityRegions + i)) %
raidPtr->numSectorsPerLog) < fragmentation) {
rf_numParityRegions++;
raidPtr->regionLogCapacity = totalLogCapacity /
rf_numParityRegions;
fragmentation = raidPtr->regionLogCapacity %
raidPtr->numSectorsPerLog;
}
if (((totalLogCapacity / (rf_numParityRegions - i)) %
raidPtr->numSectorsPerLog) < fragmentation) {
rf_numParityRegions--;
raidPtr->regionLogCapacity = totalLogCapacity /
rf_numParityRegions;
fragmentation = raidPtr->regionLogCapacity %
raidPtr->numSectorsPerLog;
}
}
/* ensure integral number of regions per log */
raidPtr->regionLogCapacity = (raidPtr->regionLogCapacity /
raidPtr->numSectorsPerLog) *
raidPtr->numSectorsPerLog;
raidPtr->numParityLogs = rf_totalInCoreLogCapacity /
(raidPtr->bytesPerSector * raidPtr->numSectorsPerLog);
/* to avoid deadlock, must ensure that enough logs exist for each
* region to have one simultaneously */
if (raidPtr->numParityLogs < rf_numParityRegions)
raidPtr->numParityLogs = rf_numParityRegions;
/* create region information structs */
printf("Allocating %d bytes for in-core parity region info\n",
(int) (rf_numParityRegions * sizeof(RF_RegionInfo_t)));
RF_Malloc(raidPtr->regionInfo,
(rf_numParityRegions * sizeof(RF_RegionInfo_t)),
(RF_RegionInfo_t *));
if (raidPtr->regionInfo == NULL)
return (ENOMEM);
/* last region may not be full capacity */
lastRegionCapacity = raidPtr->regionLogCapacity;
while ((rf_numParityRegions - 1) * raidPtr->regionLogCapacity +
lastRegionCapacity > totalLogCapacity)
lastRegionCapacity = lastRegionCapacity -
raidPtr->numSectorsPerLog;
raidPtr->regionParityRange = raidPtr->sectorsPerDisk /
rf_numParityRegions;
maxRegionParityRange = raidPtr->regionParityRange;
/* i can't remember why this line is in the code -wvcii 6/30/95 */
/* if (raidPtr->sectorsPerDisk % rf_numParityRegions > 0)
regionParityRange++; */
/* build pool of unused parity logs */
printf("Allocating %d bytes for %d parity logs\n",
raidPtr->numParityLogs * raidPtr->numSectorsPerLog *
raidPtr->bytesPerSector,
raidPtr->numParityLogs);
RF_Malloc(raidPtr->parityLogBufferHeap, raidPtr->numParityLogs *
raidPtr->numSectorsPerLog * raidPtr->bytesPerSector,
(caddr_t));
if (raidPtr->parityLogBufferHeap == NULL)
return (ENOMEM);
lHeapPtr = raidPtr->parityLogBufferHeap;
rc = rf_mutex_init(&raidPtr->parityLogPool.mutex, "RF_PARITYLOGGING1");
if (rc) {
RF_ERRORMSG3("Unable to init mutex file %s line %d rc=%d\n",
__FILE__, __LINE__, rc);
RF_Free(raidPtr->parityLogBufferHeap, raidPtr->numParityLogs *
raidPtr->numSectorsPerLog * raidPtr->bytesPerSector);
return (ENOMEM);
}
for (i = 0; i < raidPtr->numParityLogs; i++) {
if (i == 0) {
RF_Calloc(raidPtr->parityLogPool.parityLogs, 1,
sizeof(RF_ParityLog_t), (RF_ParityLog_t *));
if (raidPtr->parityLogPool.parityLogs == NULL) {
RF_Free(raidPtr->parityLogBufferHeap,
raidPtr->numParityLogs *
raidPtr->numSectorsPerLog *
raidPtr->bytesPerSector);
return (ENOMEM);
}
l = raidPtr->parityLogPool.parityLogs;
} else {
RF_Calloc(l->next, 1, sizeof(RF_ParityLog_t),
(RF_ParityLog_t *));
if (l->next == NULL) {
RF_Free(raidPtr->parityLogBufferHeap,
raidPtr->numParityLogs *
raidPtr->numSectorsPerLog *
raidPtr->bytesPerSector);
for (l = raidPtr->parityLogPool.parityLogs;
l;
l = next) {
next = l->next;
if (l->records)
RF_Free(l->records, (raidPtr->numSectorsPerLog * sizeof(RF_ParityLogRecord_t)));
RF_Free(l, sizeof(RF_ParityLog_t));
}
return (ENOMEM);
}
l = l->next;
}
l->bufPtr = lHeapPtr;
lHeapPtr += raidPtr->numSectorsPerLog *
raidPtr->bytesPerSector;
RF_Malloc(l->records, (raidPtr->numSectorsPerLog *
sizeof(RF_ParityLogRecord_t)),
(RF_ParityLogRecord_t *));
if (l->records == NULL) {
RF_Free(raidPtr->parityLogBufferHeap,
raidPtr->numParityLogs *
raidPtr->numSectorsPerLog *
raidPtr->bytesPerSector);
for (l = raidPtr->parityLogPool.parityLogs;
l;
l = next) {
next = l->next;
if (l->records)
RF_Free(l->records,
(raidPtr->numSectorsPerLog *
sizeof(RF_ParityLogRecord_t)));
RF_Free(l, sizeof(RF_ParityLog_t));
}
return (ENOMEM);
}
}
rc = rf_ShutdownCreate(listp, rf_ShutdownParityLoggingPool, raidPtr);
if (rc) {
RF_ERRORMSG3("Unable to create shutdown entry file %s line %d rc=%d\n", __FILE__,
__LINE__, rc);
rf_ShutdownParityLoggingPool(raidPtr);
return (rc);
}
/* build pool of region buffers */
rc = rf_mutex_init(&raidPtr->regionBufferPool.mutex, "RF_PARITYLOGGING3");
if (rc) {
RF_ERRORMSG3("Unable to init mutex file %s line %d rc=%d\n",
__FILE__, __LINE__, rc);
return (ENOMEM);
}
rc = rf_cond_init(&raidPtr->regionBufferPool.cond);
if (rc) {
RF_ERRORMSG3("Unable to init cond file %s line %d rc=%d\n",
__FILE__, __LINE__, rc);
rf_mutex_destroy(&raidPtr->regionBufferPool.mutex);
return (ENOMEM);
}
raidPtr->regionBufferPool.bufferSize = raidPtr->regionLogCapacity *
raidPtr->bytesPerSector;
printf("regionBufferPool.bufferSize %d\n",
raidPtr->regionBufferPool.bufferSize);
/* for now, only one region at a time may be reintegrated */
raidPtr->regionBufferPool.totalBuffers = 1;
raidPtr->regionBufferPool.availableBuffers =
raidPtr->regionBufferPool.totalBuffers;
raidPtr->regionBufferPool.availBuffersIndex = 0;
raidPtr->regionBufferPool.emptyBuffersIndex = 0;
printf("Allocating %d bytes for regionBufferPool\n",
(int) (raidPtr->regionBufferPool.totalBuffers *
sizeof(caddr_t)));
RF_Malloc(raidPtr->regionBufferPool.buffers,
raidPtr->regionBufferPool.totalBuffers * sizeof(caddr_t),
(caddr_t *));
if (raidPtr->regionBufferPool.buffers == NULL) {
rf_mutex_destroy(&raidPtr->regionBufferPool.mutex);
rf_cond_destroy(&raidPtr->regionBufferPool.cond);
return (ENOMEM);
}
for (i = 0; i < raidPtr->regionBufferPool.totalBuffers; i++) {
printf("Allocating %d bytes for regionBufferPool#%d\n",
(int) (raidPtr->regionBufferPool.bufferSize *
sizeof(char)), i);
RF_Malloc(raidPtr->regionBufferPool.buffers[i],
raidPtr->regionBufferPool.bufferSize * sizeof(char),
(caddr_t));
if (raidPtr->regionBufferPool.buffers[i] == NULL) {
rf_mutex_destroy(&raidPtr->regionBufferPool.mutex);
rf_cond_destroy(&raidPtr->regionBufferPool.cond);
for (j = 0; j < i; j++) {
RF_Free(raidPtr->regionBufferPool.buffers[i],
raidPtr->regionBufferPool.bufferSize *
sizeof(char));
}
RF_Free(raidPtr->regionBufferPool.buffers,
raidPtr->regionBufferPool.totalBuffers *
sizeof(caddr_t));
return (ENOMEM);
}
printf("raidPtr->regionBufferPool.buffers[%d] = %lx\n", i,
(long) raidPtr->regionBufferPool.buffers[i]);
}
rc = rf_ShutdownCreate(listp,
rf_ShutdownParityLoggingRegionBufferPool,
raidPtr);
if (rc) {
RF_ERRORMSG3("Unable to create shutdown entry file %s line %d rc=%d\n", __FILE__,
__LINE__, rc);
rf_ShutdownParityLoggingRegionBufferPool(raidPtr);
return (rc);
}
/* build pool of parity buffers */
parityBufferCapacity = maxRegionParityRange;
rc = rf_mutex_init(&raidPtr->parityBufferPool.mutex, "RF_PARITYLOGGING3");
if (rc) {
RF_ERRORMSG3("Unable to init mutex file %s line %d rc=%d\n",
__FILE__, __LINE__, rc);
return (rc);
}
rc = rf_cond_init(&raidPtr->parityBufferPool.cond);
if (rc) {
RF_ERRORMSG3("Unable to init cond file %s line %d rc=%d\n",
__FILE__, __LINE__, rc);
rf_mutex_destroy(&raidPtr->parityBufferPool.mutex);
return (ENOMEM);
}
raidPtr->parityBufferPool.bufferSize = parityBufferCapacity *
raidPtr->bytesPerSector;
printf("parityBufferPool.bufferSize %d\n",
raidPtr->parityBufferPool.bufferSize);
/* for now, only one region at a time may be reintegrated */
raidPtr->parityBufferPool.totalBuffers = 1;
raidPtr->parityBufferPool.availableBuffers =
raidPtr->parityBufferPool.totalBuffers;
raidPtr->parityBufferPool.availBuffersIndex = 0;
raidPtr->parityBufferPool.emptyBuffersIndex = 0;
printf("Allocating %d bytes for parityBufferPool of %d units\n",
(int) (raidPtr->parityBufferPool.totalBuffers *
sizeof(caddr_t)),
raidPtr->parityBufferPool.totalBuffers );
RF_Malloc(raidPtr->parityBufferPool.buffers,
raidPtr->parityBufferPool.totalBuffers * sizeof(caddr_t),
(caddr_t *));
if (raidPtr->parityBufferPool.buffers == NULL) {
rf_mutex_destroy(&raidPtr->parityBufferPool.mutex);
rf_cond_destroy(&raidPtr->parityBufferPool.cond);
return (ENOMEM);
}
for (i = 0; i < raidPtr->parityBufferPool.totalBuffers; i++) {
printf("Allocating %d bytes for parityBufferPool#%d\n",
(int) (raidPtr->parityBufferPool.bufferSize *
sizeof(char)),i);
RF_Malloc(raidPtr->parityBufferPool.buffers[i],
raidPtr->parityBufferPool.bufferSize * sizeof(char),
(caddr_t));
if (raidPtr->parityBufferPool.buffers == NULL) {
rf_mutex_destroy(&raidPtr->parityBufferPool.mutex);
rf_cond_destroy(&raidPtr->parityBufferPool.cond);
for (j = 0; j < i; j++) {
RF_Free(raidPtr->parityBufferPool.buffers[i],
raidPtr->regionBufferPool.bufferSize *
sizeof(char));
}
RF_Free(raidPtr->parityBufferPool.buffers,
raidPtr->regionBufferPool.totalBuffers *
sizeof(caddr_t));
return (ENOMEM);
}
printf("parityBufferPool.buffers[%d] = %lx\n", i,
(long) raidPtr->parityBufferPool.buffers[i]);
}
rc = rf_ShutdownCreate(listp,
rf_ShutdownParityLoggingParityBufferPool,
raidPtr);
if (rc) {
RF_ERRORMSG3("Unable to create shutdown entry file %s line %d rc=%d\n", __FILE__,
__LINE__, rc);
rf_ShutdownParityLoggingParityBufferPool(raidPtr);
return (rc);
}
/* initialize parityLogDiskQueue */
rc = rf_create_managed_mutex(listp,
&raidPtr->parityLogDiskQueue.mutex);
if (rc) {
RF_ERRORMSG3("Unable to init mutex file %s line %d rc=%d\n",
__FILE__, __LINE__, rc);
return (rc);
}
rc = rf_create_managed_cond(listp, &raidPtr->parityLogDiskQueue.cond);
if (rc) {
RF_ERRORMSG3("Unable to init cond file %s line %d rc=%d\n",
__FILE__, __LINE__, rc);
return (rc);
}
raidPtr->parityLogDiskQueue.flushQueue = NULL;
raidPtr->parityLogDiskQueue.reintQueue = NULL;
raidPtr->parityLogDiskQueue.bufHead = NULL;
raidPtr->parityLogDiskQueue.bufTail = NULL;
raidPtr->parityLogDiskQueue.reintHead = NULL;
raidPtr->parityLogDiskQueue.reintTail = NULL;
raidPtr->parityLogDiskQueue.logBlockHead = NULL;
raidPtr->parityLogDiskQueue.logBlockTail = NULL;
raidPtr->parityLogDiskQueue.reintBlockHead = NULL;
raidPtr->parityLogDiskQueue.reintBlockTail = NULL;
raidPtr->parityLogDiskQueue.freeDataList = NULL;
raidPtr->parityLogDiskQueue.freeCommonList = NULL;
rc = rf_ShutdownCreate(listp,
rf_ShutdownParityLoggingDiskQueue,
raidPtr);
if (rc) {
RF_ERRORMSG3("Unable to create shutdown entry file %s line %d rc=%d\n", __FILE__,
__LINE__, rc);
return (rc);
}
for (i = 0; i < rf_numParityRegions; i++) {
rc = rf_mutex_init(&raidPtr->regionInfo[i].mutex, "RF_PARITYLOGGING3");
if (rc) {
RF_ERRORMSG3("Unable to init mutex file %s line %d rc=%d\n", __FILE__,
__LINE__, rc);
for (j = 0; j < i; j++)
FreeRegionInfo(raidPtr, j);
RF_Free(raidPtr->regionInfo,
(rf_numParityRegions *
sizeof(RF_RegionInfo_t)));
return (ENOMEM);
}
rc = rf_mutex_init(&raidPtr->regionInfo[i].reintMutex, "RF_PARITYLOGGING4");
if (rc) {
RF_ERRORMSG3("Unable to init mutex file %s line %d rc=%d\n", __FILE__,
__LINE__, rc);
rf_mutex_destroy(&raidPtr->regionInfo[i].mutex);
for (j = 0; j < i; j++)
FreeRegionInfo(raidPtr, j);
RF_Free(raidPtr->regionInfo,
(rf_numParityRegions *
sizeof(RF_RegionInfo_t)));
return (ENOMEM);
}
raidPtr->regionInfo[i].reintInProgress = RF_FALSE;
raidPtr->regionInfo[i].regionStartAddr =
raidPtr->regionLogCapacity * i;
raidPtr->regionInfo[i].parityStartAddr =
raidPtr->regionParityRange * i;
if (i < rf_numParityRegions - 1) {
raidPtr->regionInfo[i].capacity =
raidPtr->regionLogCapacity;
raidPtr->regionInfo[i].numSectorsParity =
raidPtr->regionParityRange;
} else {
raidPtr->regionInfo[i].capacity =
lastRegionCapacity;
raidPtr->regionInfo[i].numSectorsParity =
raidPtr->sectorsPerDisk -
raidPtr->regionParityRange * i;
if (raidPtr->regionInfo[i].numSectorsParity >
maxRegionParityRange)
maxRegionParityRange =
raidPtr->regionInfo[i].numSectorsParity;
}
raidPtr->regionInfo[i].diskCount = 0;
RF_ASSERT(raidPtr->regionInfo[i].capacity +
raidPtr->regionInfo[i].regionStartAddr <=
totalLogCapacity);
RF_ASSERT(raidPtr->regionInfo[i].parityStartAddr +
raidPtr->regionInfo[i].numSectorsParity <=
raidPtr->sectorsPerDisk);
printf("Allocating %d bytes for region %d\n",
(int) (raidPtr->regionInfo[i].capacity *
sizeof(RF_DiskMap_t)), i);
RF_Malloc(raidPtr->regionInfo[i].diskMap,
(raidPtr->regionInfo[i].capacity *
sizeof(RF_DiskMap_t)),
(RF_DiskMap_t *));
if (raidPtr->regionInfo[i].diskMap == NULL) {
rf_mutex_destroy(&raidPtr->regionInfo[i].mutex);
rf_mutex_destroy(&raidPtr->regionInfo[i].reintMutex);
for (j = 0; j < i; j++)
FreeRegionInfo(raidPtr, j);
RF_Free(raidPtr->regionInfo,
(rf_numParityRegions *
sizeof(RF_RegionInfo_t)));
return (ENOMEM);
}
raidPtr->regionInfo[i].loggingEnabled = RF_FALSE;
raidPtr->regionInfo[i].coreLog = NULL;
}
rc = rf_ShutdownCreate(listp,
rf_ShutdownParityLoggingRegionInfo,
raidPtr);
if (rc) {
RF_ERRORMSG3("Unable to create shutdown entry file %s line %d rc=%d\n", __FILE__,
__LINE__, rc);
rf_ShutdownParityLoggingRegionInfo(raidPtr);
return (rc);
}
RF_ASSERT(raidPtr->parityLogDiskQueue.threadState == 0);
raidPtr->parityLogDiskQueue.threadState = RF_PLOG_CREATED;
rc = RF_CREATE_THREAD(raidPtr->pLogDiskThreadHandle,
rf_ParityLoggingDiskManager, raidPtr,"rf_log");
if (rc) {
raidPtr->parityLogDiskQueue.threadState = 0;
RF_ERRORMSG3("Unable to create parity logging disk thread file %s line %d rc=%d\n",
__FILE__, __LINE__, rc);
return (ENOMEM);
}
/* wait for thread to start */
RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
while (!(raidPtr->parityLogDiskQueue.threadState & RF_PLOG_RUNNING)) {
RF_WAIT_COND(raidPtr->parityLogDiskQueue.cond,
raidPtr->parityLogDiskQueue.mutex);
}
RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
rc = rf_ShutdownCreate(listp, rf_ShutdownParityLogging, raidPtr);
if (rc) {
RF_ERRORMSG1("Got rc=%d adding parity logging shutdown event\n", rc);
rf_ShutdownParityLogging(raidPtr);
return (rc);
}
if (rf_parityLogDebug) {
printf(" size of disk log in sectors: %d\n",
(int) totalLogCapacity);
printf(" total number of parity regions is %d\n", (int) rf_numParityRegions);
printf(" nominal sectors of log per parity region is %d\n", (int) raidPtr->regionLogCapacity);
printf(" nominal region fragmentation is %d sectors\n", (int) fragmentation);
printf(" total number of parity logs is %d\n", raidPtr->numParityLogs);
printf(" parity log size is %d sectors\n", raidPtr->numSectorsPerLog);
printf(" total in-core log space is %d bytes\n", (int) rf_totalInCoreLogCapacity);
}
rf_EnableParityLogging(raidPtr);
return (0);
}
static void
FreeRegionInfo(
RF_Raid_t * raidPtr,
RF_RegionId_t regionID)
{
RF_LOCK_MUTEX(raidPtr->regionInfo[regionID].mutex);
RF_Free(raidPtr->regionInfo[regionID].diskMap,
(raidPtr->regionInfo[regionID].capacity *
sizeof(RF_DiskMap_t)));
if (!rf_forceParityLogReint && raidPtr->regionInfo[regionID].coreLog) {
rf_ReleaseParityLogs(raidPtr,
raidPtr->regionInfo[regionID].coreLog);
raidPtr->regionInfo[regionID].coreLog = NULL;
} else {
RF_ASSERT(raidPtr->regionInfo[regionID].coreLog == NULL);
RF_ASSERT(raidPtr->regionInfo[regionID].diskCount == 0);
}
RF_UNLOCK_MUTEX(raidPtr->regionInfo[regionID].mutex);
rf_mutex_destroy(&raidPtr->regionInfo[regionID].mutex);
rf_mutex_destroy(&raidPtr->regionInfo[regionID].reintMutex);
}
static void
FreeParityLogQueue(
RF_Raid_t * raidPtr,
RF_ParityLogQueue_t * queue)
{
RF_ParityLog_t *l1, *l2;
RF_LOCK_MUTEX(queue->mutex);
l1 = queue->parityLogs;
while (l1) {
l2 = l1;
l1 = l2->next;
RF_Free(l2->records, (raidPtr->numSectorsPerLog *
sizeof(RF_ParityLogRecord_t)));
RF_Free(l2, sizeof(RF_ParityLog_t));
}
RF_UNLOCK_MUTEX(queue->mutex);
rf_mutex_destroy(&queue->mutex);
}
static void
FreeRegionBufferQueue(RF_RegionBufferQueue_t * queue)
{
int i;
RF_LOCK_MUTEX(queue->mutex);
if (queue->availableBuffers != queue->totalBuffers) {
printf("Attempt to free region queue which is still in use!\n");
RF_ASSERT(0);
}
for (i = 0; i < queue->totalBuffers; i++)
RF_Free(queue->buffers[i], queue->bufferSize);
RF_Free(queue->buffers, queue->totalBuffers * sizeof(caddr_t));
RF_UNLOCK_MUTEX(queue->mutex);
rf_mutex_destroy(&queue->mutex);
}
static void
rf_ShutdownParityLoggingRegionInfo(RF_ThreadArg_t arg)
{
RF_Raid_t *raidPtr;
RF_RegionId_t i;
raidPtr = (RF_Raid_t *) arg;
if (rf_parityLogDebug) {
printf("raid%d: ShutdownParityLoggingRegionInfo\n",
raidPtr->raidid);
}
/* free region information structs */
for (i = 0; i < rf_numParityRegions; i++)
FreeRegionInfo(raidPtr, i);
RF_Free(raidPtr->regionInfo, (rf_numParityRegions *
sizeof(raidPtr->regionInfo)));
raidPtr->regionInfo = NULL;
}
static void
rf_ShutdownParityLoggingPool(RF_ThreadArg_t arg)
{
RF_Raid_t *raidPtr;
raidPtr = (RF_Raid_t *) arg;
if (rf_parityLogDebug) {
printf("raid%d: ShutdownParityLoggingPool\n", raidPtr->raidid);
}
/* free contents of parityLogPool */
FreeParityLogQueue(raidPtr, &raidPtr->parityLogPool);
RF_Free(raidPtr->parityLogBufferHeap, raidPtr->numParityLogs *
raidPtr->numSectorsPerLog * raidPtr->bytesPerSector);
}
static void
rf_ShutdownParityLoggingRegionBufferPool(RF_ThreadArg_t arg)
{
RF_Raid_t *raidPtr;
raidPtr = (RF_Raid_t *) arg;
if (rf_parityLogDebug) {
printf("raid%d: ShutdownParityLoggingRegionBufferPool\n",
raidPtr->raidid);
}
FreeRegionBufferQueue(&raidPtr->regionBufferPool);
}
static void
rf_ShutdownParityLoggingParityBufferPool(RF_ThreadArg_t arg)
{
RF_Raid_t *raidPtr;
raidPtr = (RF_Raid_t *) arg;
if (rf_parityLogDebug) {
printf("raid%d: ShutdownParityLoggingParityBufferPool\n",
raidPtr->raidid);
}
FreeRegionBufferQueue(&raidPtr->parityBufferPool);
}
static void
rf_ShutdownParityLoggingDiskQueue(RF_ThreadArg_t arg)
{
RF_ParityLogData_t *d;
RF_CommonLogData_t *c;
RF_Raid_t *raidPtr;
raidPtr = (RF_Raid_t *) arg;
if (rf_parityLogDebug) {
printf("raid%d: ShutdownParityLoggingDiskQueue\n",
raidPtr->raidid);
}
/* free disk manager stuff */
RF_ASSERT(raidPtr->parityLogDiskQueue.bufHead == NULL);
RF_ASSERT(raidPtr->parityLogDiskQueue.bufTail == NULL);
RF_ASSERT(raidPtr->parityLogDiskQueue.reintHead == NULL);
RF_ASSERT(raidPtr->parityLogDiskQueue.reintTail == NULL);
while (raidPtr->parityLogDiskQueue.freeDataList) {
d = raidPtr->parityLogDiskQueue.freeDataList;
raidPtr->parityLogDiskQueue.freeDataList =
raidPtr->parityLogDiskQueue.freeDataList->next;
RF_Free(d, sizeof(RF_ParityLogData_t));
}
while (raidPtr->parityLogDiskQueue.freeCommonList) {
c = raidPtr->parityLogDiskQueue.freeCommonList;
rf_mutex_destroy(&c->mutex);
raidPtr->parityLogDiskQueue.freeCommonList =
raidPtr->parityLogDiskQueue.freeCommonList->next;
RF_Free(c, sizeof(RF_CommonLogData_t));
}
}
static void
rf_ShutdownParityLogging(RF_ThreadArg_t arg)
{
RF_Raid_t *raidPtr;
raidPtr = (RF_Raid_t *) arg;
if (rf_parityLogDebug) {
printf("raid%d: ShutdownParityLogging\n", raidPtr->raidid);
}
/* shutdown disk thread */
/* This has the desirable side-effect of forcing all regions to be
* reintegrated. This is necessary since all parity log maps are
* currently held in volatile memory. */
RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
raidPtr->parityLogDiskQueue.threadState |= RF_PLOG_TERMINATE;
RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
RF_SIGNAL_COND(raidPtr->parityLogDiskQueue.cond);
/*
* pLogDiskThread will now terminate when queues are cleared
* now wait for it to be done
*/
RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
while (!(raidPtr->parityLogDiskQueue.threadState & RF_PLOG_SHUTDOWN)) {
RF_WAIT_COND(raidPtr->parityLogDiskQueue.cond,
raidPtr->parityLogDiskQueue.mutex);
}
RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
if (rf_parityLogDebug) {
printf("raid%d: ShutdownParityLogging done (thread completed)\n", raidPtr->raidid);
}
}
int
rf_GetDefaultNumFloatingReconBuffersParityLogging(RF_Raid_t * raidPtr)
{
return (20);
}
RF_HeadSepLimit_t
rf_GetDefaultHeadSepLimitParityLogging(RF_Raid_t * raidPtr)
{
return (10);
}
/* return the region ID for a given RAID address */
RF_RegionId_t
rf_MapRegionIDParityLogging(
RF_Raid_t * raidPtr,
RF_SectorNum_t address)
{
RF_RegionId_t regionID;
/* regionID = address / (raidPtr->regionParityRange * raidPtr->Layout.numDataCol); */
regionID = address / raidPtr->regionParityRange;
if (regionID == rf_numParityRegions) {
/* last region may be larger than other regions */
regionID--;
}
RF_ASSERT(address >= raidPtr->regionInfo[regionID].parityStartAddr);
RF_ASSERT(address < raidPtr->regionInfo[regionID].parityStartAddr +
raidPtr->regionInfo[regionID].numSectorsParity);
RF_ASSERT(regionID < rf_numParityRegions);
return (regionID);
}
/* given a logical RAID sector, determine physical disk address of data */
void
rf_MapSectorParityLogging(
RF_Raid_t * raidPtr,
RF_RaidAddr_t raidSector,
RF_RowCol_t * row,
RF_RowCol_t * col,
RF_SectorNum_t * diskSector,
int remap)
{
RF_StripeNum_t SUID = raidSector /
raidPtr->Layout.sectorsPerStripeUnit;
*row = 0;
/* *col = (SUID % (raidPtr->numCol -
* raidPtr->Layout.numParityLogCol)); */
*col = SUID % raidPtr->Layout.numDataCol;
*diskSector = (SUID / (raidPtr->Layout.numDataCol)) *
raidPtr->Layout.sectorsPerStripeUnit +
(raidSector % raidPtr->Layout.sectorsPerStripeUnit);
}
/* given a logical RAID sector, determine physical disk address of parity */
void
rf_MapParityParityLogging(
RF_Raid_t * raidPtr,
RF_RaidAddr_t raidSector,
RF_RowCol_t * row,
RF_RowCol_t * col,
RF_SectorNum_t * diskSector,
int remap)
{
RF_StripeNum_t SUID = raidSector /
raidPtr->Layout.sectorsPerStripeUnit;
*row = 0;
/* *col =
* raidPtr->Layout.numDataCol-(SUID/raidPtr->Layout.numDataCol)%(raidPt
* r->numCol - raidPtr->Layout.numParityLogCol); */
*col = raidPtr->Layout.numDataCol;
*diskSector = (SUID / (raidPtr->Layout.numDataCol)) *
raidPtr->Layout.sectorsPerStripeUnit +
(raidSector % raidPtr->Layout.sectorsPerStripeUnit);
}
/* given a regionID and sector offset, determine the physical disk address of the parity log */
void
rf_MapLogParityLogging(
RF_Raid_t * raidPtr,
RF_RegionId_t regionID,
RF_SectorNum_t regionOffset,
RF_RowCol_t * row,
RF_RowCol_t * col,
RF_SectorNum_t * startSector)
{
*row = 0;
*col = raidPtr->numCol - 1;
*startSector = raidPtr->regionInfo[regionID].regionStartAddr + regionOffset;
}
/* given a regionID, determine the physical disk address of the logged
parity for that region */
void
rf_MapRegionParity(
RF_Raid_t * raidPtr,
RF_RegionId_t regionID,
RF_RowCol_t * row,
RF_RowCol_t * col,
RF_SectorNum_t * startSector,
RF_SectorCount_t * numSector)
{
*row = 0;
*col = raidPtr->numCol - 2;
*startSector = raidPtr->regionInfo[regionID].parityStartAddr;
*numSector = raidPtr->regionInfo[regionID].numSectorsParity;
}
/* given a logical RAID address, determine the participating disks in
the stripe */
void
rf_IdentifyStripeParityLogging(
RF_Raid_t * raidPtr,
RF_RaidAddr_t addr,
RF_RowCol_t ** diskids,
RF_RowCol_t * outRow)
{
RF_StripeNum_t stripeID = rf_RaidAddressToStripeID(&raidPtr->Layout,
addr);
RF_ParityLoggingConfigInfo_t *info = (RF_ParityLoggingConfigInfo_t *)
raidPtr->Layout.layoutSpecificInfo;
*outRow = 0;
*diskids = info->stripeIdentifier[stripeID % raidPtr->numCol];
}
void
rf_MapSIDToPSIDParityLogging(
RF_RaidLayout_t * layoutPtr,
RF_StripeNum_t stripeID,
RF_StripeNum_t * psID,
RF_ReconUnitNum_t * which_ru)
{
*which_ru = 0;
*psID = stripeID;
}
/* select an algorithm for performing an access. Returns two pointers,
* one to a function that will return information about the DAG, and
* another to a function that will create the dag.
*/
void
rf_ParityLoggingDagSelect(
RF_Raid_t * raidPtr,
RF_IoType_t type,
RF_AccessStripeMap_t * asmp,
RF_VoidFuncPtr * createFunc)
{
RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
RF_PhysDiskAddr_t *failedPDA = NULL;
RF_RowCol_t frow, fcol;
RF_RowStatus_t rstat;
int prior_recon;
RF_ASSERT(RF_IO_IS_R_OR_W(type));
if (asmp->numDataFailed + asmp->numParityFailed > 1) {
RF_ERRORMSG("Multiple disks failed in a single group! Aborting I/O operation.\n");
/* *infoFunc = */ *createFunc = NULL;
return;
} else
if (asmp->numDataFailed + asmp->numParityFailed == 1) {
/* if under recon & already reconstructed, redirect
* the access to the spare drive and eliminate the
* failure indication */
failedPDA = asmp->failedPDAs[0];
frow = failedPDA->row;
fcol = failedPDA->col;
rstat = raidPtr->status[failedPDA->row];
prior_recon = (rstat == rf_rs_reconfigured) || (
(rstat == rf_rs_reconstructing) ?
rf_CheckRUReconstructed(raidPtr->reconControl[frow]->reconMap, failedPDA->startSector) : 0
);
if (prior_recon) {
RF_RowCol_t or = failedPDA->row, oc = failedPDA->col;
RF_SectorNum_t oo = failedPDA->startSector;
if (layoutPtr->map->flags &
RF_DISTRIBUTE_SPARE) {
/* redirect to dist spare space */
if (failedPDA == asmp->parityInfo) {
/* parity has failed */
(layoutPtr->map->MapParity) (raidPtr, failedPDA->raidAddress, &failedPDA->row,
&failedPDA->col, &failedPDA->startSector, RF_REMAP);
if (asmp->parityInfo->next) { /* redir 2nd component,
* if any */
RF_PhysDiskAddr_t *p = asmp->parityInfo->next;
RF_SectorNum_t SUoffs = p->startSector % layoutPtr->sectorsPerStripeUnit;
p->row = failedPDA->row;
p->col = failedPDA->col;
p->startSector = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, failedPDA->startSector) +
SUoffs; /* cheating:
* startSector is not
* really a RAID address */
}
} else
if (asmp->parityInfo->next && failedPDA == asmp->parityInfo->next) {
RF_ASSERT(0); /* should not ever
* happen */
} else {
/* data has failed */
(layoutPtr->map->MapSector) (raidPtr, failedPDA->raidAddress, &failedPDA->row,
&failedPDA->col, &failedPDA->startSector, RF_REMAP);
}
} else {
/* redirect to dedicated spare space */
failedPDA->row = raidPtr->Disks[frow][fcol].spareRow;
failedPDA->col = raidPtr->Disks[frow][fcol].spareCol;
/* the parity may have two distinct
* components, both of which may need
* to be redirected */
if (asmp->parityInfo->next) {
if (failedPDA == asmp->parityInfo) {
failedPDA->next->row = failedPDA->row;
failedPDA->next->col = failedPDA->col;
} else
if (failedPDA == asmp->parityInfo->next) { /* paranoid: should never occur */
asmp->parityInfo->row = failedPDA->row;
asmp->parityInfo->col = failedPDA->col;
}
}
}
RF_ASSERT(failedPDA->col != -1);
if (rf_dagDebug || rf_mapDebug) {
printf("raid%d: Redirected type '%c' r %d c %d o %ld -> r %d c %d o %ld\n",
raidPtr->raidid, type, or, oc, (long) oo, failedPDA->row, failedPDA->col, (long) failedPDA->startSector);
}
asmp->numDataFailed = asmp->numParityFailed = 0;
}
}
if (type == RF_IO_TYPE_READ) {
if (asmp->numDataFailed == 0)
*createFunc = (RF_VoidFuncPtr) rf_CreateFaultFreeReadDAG;
else
*createFunc = (RF_VoidFuncPtr) rf_CreateRaidFiveDegradedReadDAG;
} else {
/* if mirroring, always use large writes. If the access
* requires two distinct parity updates, always do a small
* write. If the stripe contains a failure but the access
* does not, do a small write. The first conditional
* (numStripeUnitsAccessed <= numDataCol/2) uses a
* less-than-or-equal rather than just a less-than because
* when G is 3 or 4, numDataCol/2 is 1, and I want
* single-stripe-unit updates to use just one disk. */
if ((asmp->numDataFailed + asmp->numParityFailed) == 0) {
if (((asmp->numStripeUnitsAccessed <=
(layoutPtr->numDataCol / 2)) &&
(layoutPtr->numDataCol != 1)) ||
(asmp->parityInfo->next != NULL) ||
rf_CheckStripeForFailures(raidPtr, asmp)) {
*createFunc = (RF_VoidFuncPtr) rf_CreateParityLoggingSmallWriteDAG;
} else
*createFunc = (RF_VoidFuncPtr) rf_CreateParityLoggingLargeWriteDAG;
} else
if (asmp->numParityFailed == 1)
*createFunc = (RF_VoidFuncPtr) rf_CreateNonRedundantWriteDAG;
else
if (asmp->numStripeUnitsAccessed != 1 && failedPDA->numSector != layoutPtr->sectorsPerStripeUnit)
*createFunc = NULL;
else
*createFunc = (RF_VoidFuncPtr) rf_CreateDegradedWriteDAG;
}
}
#endif /* RF_INCLUDE_PARITYLOGGING > 0 */