1
0
mirror of https://git.FreeBSD.org/src.git synced 2024-12-16 10:20:30 +00:00
freebsd/share/examples/scsi_target/scsi_cmds.c
Kenneth D. Merry 130f4520cb Add the CAM Target Layer (CTL).
CTL is a disk and processor device emulation subsystem originally written
for Copan Systems under Linux starting in 2003.  It has been shipping in
Copan (now SGI) products since 2005.

It was ported to FreeBSD in 2008, and thanks to an agreement between SGI
(who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is
available under a BSD-style license.  The intent behind the agreement was
that Spectra would work to get CTL into the FreeBSD tree.

Some CTL features:

 - Disk and processor device emulation.
 - Tagged queueing
 - SCSI task attribute support (ordered, head of queue, simple tags)
 - SCSI implicit command ordering support.  (e.g. if a read follows a mode
   select, the read will be blocked until the mode select completes.)
 - Full task management support (abort, LUN reset, target reset, etc.)
 - Support for multiple ports
 - Support for multiple simultaneous initiators
 - Support for multiple simultaneous backing stores
 - Persistent reservation support
 - Mode sense/select support
 - Error injection support
 - High Availability support (1)
 - All I/O handled in-kernel, no userland context switch overhead.

(1) HA Support is just an API stub, and needs much more to be fully
    functional.

ctl.c:			The core of CTL.  Command handlers and processing,
			character driver, and HA support are here.

ctl.h:			Basic function declarations and data structures.

ctl_backend.c,
ctl_backend.h:		The basic CTL backend API.

ctl_backend_block.c,
ctl_backend_block.h:	The block and file backend.  This allows for using
			a disk or a file as the backing store for a LUN.
			Multiple threads are started to do I/O to the
			backing device, primarily because the VFS API
			requires that to get any concurrency.

ctl_backend_ramdisk.c:	A "fake" ramdisk backend.  It only allocates a
			small amount of memory to act as a source and sink
			for reads and writes from an initiator.  Therefore
			it cannot be used for any real data, but it can be
			used to test for throughput.  It can also be used
			to test initiators' support for extremely large LUNs.

ctl_cmd_table.c:	This is a table with all 256 possible SCSI opcodes,
			and command handler functions defined for supported
			opcodes.

ctl_debug.h:		Debugging support.

ctl_error.c,
ctl_error.h:		CTL-specific wrappers around the CAM sense building
			functions.

ctl_frontend.c,
ctl_frontend.h:		These files define the basic CTL frontend port API.

ctl_frontend_cam_sim.c:	This is a CTL frontend port that is also a CAM SIM.
			This frontend allows for using CTL without any
			target-capable hardware.  So any LUNs you create in
			CTL are visible in CAM via this port.

ctl_frontend_internal.c,
ctl_frontend_internal.h:
			This is a frontend port written for Copan to do
			some system-specific tasks that required sending
			commands into CTL from inside the kernel.  This
			isn't entirely relevant to FreeBSD in general,
			but can perhaps be repurposed.

ctl_ha.h:		This is a stubbed-out High Availability API.  Much
			more is needed for full HA support.  See the
			comments in the header and the description of what
			is needed in the README.ctl.txt file for more
			details.

ctl_io.h:		This defines most of the core CTL I/O structures.
			union ctl_io is conceptually very similar to CAM's
			union ccb.

ctl_ioctl.h:		This defines all ioctls available through the CTL
			character device, and the data structures needed
			for those ioctls.

ctl_mem_pool.c,
ctl_mem_pool.h:		Generic memory pool implementation used by the
			internal frontend.

ctl_private.h:		Private data structres (e.g. CTL softc) and
			function prototypes.  This also includes the SCSI
			vendor and product names used by CTL.

ctl_scsi_all.c,
ctl_scsi_all.h:		CTL wrappers around CAM sense printing functions.

ctl_ser_table.c:	Command serialization table.  This defines what
			happens when one type of command is followed by
			another type of command.

ctl_util.c,
ctl_util.h:		CTL utility functions, primarily designed to be
			used from userland.  See ctladm for the primary
			consumer of these functions.  These include CDB
			building functions.

scsi_ctl.c:		CAM target peripheral driver and CTL frontend port.
			This is the path into CTL for commands from
			target-capable hardware/SIMs.

README.ctl.txt:		CTL code features, roadmap, to-do list.

usr.sbin/Makefile:	Add ctladm.

ctladm/Makefile,
ctladm/ctladm.8,
ctladm/ctladm.c,
ctladm/ctladm.h,
ctladm/util.c:		ctladm(8) is the CTL management utility.
			It fills a role similar to camcontrol(8).
			It allow configuring LUNs, issuing commands,
			injecting errors and various other control
			functions.

usr.bin/Makefile:	Add ctlstat.

ctlstat/Makefile
ctlstat/ctlstat.8,
ctlstat/ctlstat.c:	ctlstat(8) fills a role similar to iostat(8).
			It reports I/O statistics for CTL.

sys/conf/files:		Add CTL files.

sys/conf/NOTES:		Add device ctl.

sys/cam/scsi_all.h:	To conform to more recent specs, the inquiry CDB
			length field is now 2 bytes long.

			Add several mode page definitions for CTL.

sys/cam/scsi_all.c:	Handle the new 2 byte inquiry length.

sys/dev/ciss/ciss.c,
sys/dev/ata/atapi-cam.c,
sys/cam/scsi/scsi_targ_bh.c,
scsi_target/scsi_cmds.c,
mlxcontrol/interface.c:	Update for 2 byte inquiry length field.

scsi_da.h:		Add versions of the format and rigid disk pages
			that are in a more reasonable format for CTL.

amd64/conf/GENERIC,
i386/conf/GENERIC,
ia64/conf/GENERIC,
sparc64/conf/GENERIC:	Add device ctl.

i386/conf/PAE:		The CTL frontend SIM at least does not compile
			cleanly on PAE.

Sponsored by:	Copan Systems, SGI and Spectra Logic
MFC after:	1 month
2012-01-12 00:34:33 +00:00

814 lines
22 KiB
C

/*
* SCSI Disk Emulator
*
* Copyright (c) 2002 Nate Lawson.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer,
* without modification, immediately at the beginning of the file.
* 2. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#include <stdio.h>
#include <stddef.h>
#include <stdarg.h>
#include <stdlib.h>
#include <string.h>
#include <err.h>
#include <aio.h>
#include <unistd.h>
#include <assert.h>
#include <sys/param.h>
#include <sys/types.h>
#include <cam/cam.h>
#include <cam/cam_ccb.h>
#include <cam/scsi/scsi_all.h>
#include <cam/scsi/scsi_targetio.h>
#include "scsi_target.h"
typedef int targ_start_func(struct ccb_accept_tio *, struct ccb_scsiio *);
typedef void targ_done_func(struct ccb_accept_tio *, struct ccb_scsiio *,
io_ops);
#ifndef REPORT_LUNS
#define REPORT_LUNS 0xa0
#endif
struct targ_cdb_handlers {
u_int8_t cmd;
targ_start_func *start;
targ_done_func *done;
#define ILLEGAL_CDB 0xFF
};
static targ_start_func tcmd_inquiry;
static targ_start_func tcmd_req_sense;
static targ_start_func tcmd_rd_cap;
#ifdef READ_16
static targ_start_func tcmd_rd_cap16;
#endif
static targ_start_func tcmd_rdwr;
static targ_start_func tcmd_rdwr_decode;
static targ_done_func tcmd_rdwr_done;
static targ_start_func tcmd_null_ok;
static targ_start_func tcmd_illegal_req;
static int start_io(struct ccb_accept_tio *atio,
struct ccb_scsiio *ctio, int dir);
static int init_inquiry(u_int16_t req_flags, u_int16_t sim_flags);
static struct initiator_state *
tcmd_get_istate(u_int init_id);
static void cdb_debug(u_int8_t *cdb, const char *msg, ...);
static struct targ_cdb_handlers cdb_handlers[] = {
{ READ_10, tcmd_rdwr, tcmd_rdwr_done },
{ WRITE_10, tcmd_rdwr, tcmd_rdwr_done },
{ READ_6, tcmd_rdwr, tcmd_rdwr_done },
{ WRITE_6, tcmd_rdwr, tcmd_rdwr_done },
{ INQUIRY, tcmd_inquiry, NULL },
{ REQUEST_SENSE, tcmd_req_sense, NULL },
{ READ_CAPACITY, tcmd_rd_cap, NULL },
{ TEST_UNIT_READY, tcmd_null_ok, NULL },
{ START_STOP_UNIT, tcmd_null_ok, NULL },
{ SYNCHRONIZE_CACHE, tcmd_null_ok, NULL },
{ MODE_SENSE_6, tcmd_illegal_req, NULL },
{ MODE_SELECT_6, tcmd_illegal_req, NULL },
{ REPORT_LUNS, tcmd_illegal_req, NULL },
#ifdef READ_16
{ READ_16, tcmd_rdwr, tcmd_rdwr_done },
{ WRITE_16, tcmd_rdwr, tcmd_rdwr_done },
{ SERVICE_ACTION_IN, tcmd_rd_cap16, NULL },
#endif
{ ILLEGAL_CDB, NULL, NULL }
};
static struct scsi_inquiry_data inq_data;
static struct initiator_state istates[MAX_INITIATORS];
extern int debug;
extern off_t volume_size;
extern u_int sector_size;
extern size_t buf_size;
cam_status
tcmd_init(u_int16_t req_inq_flags, u_int16_t sim_inq_flags)
{
struct initiator_state *istate;
int i, ret;
/* Initialize our inquiry data */
ret = init_inquiry(req_inq_flags, sim_inq_flags);
if (ret != 0)
return (ret);
/* We start out life with a UA to indicate power-on/reset. */
for (i = 0; i < MAX_INITIATORS; i++) {
istate = tcmd_get_istate(i);
bzero(istate, sizeof(*istate));
istate->pending_ua = UA_POWER_ON;
}
return (0);
}
/* Caller allocates CTIO, sets its init_id
return 0 if done, 1 if more processing needed
on 0, caller sets SEND_STATUS */
int
tcmd_handle(struct ccb_accept_tio *atio, struct ccb_scsiio *ctio, io_ops event)
{
static struct targ_cdb_handlers *last_cmd;
struct initiator_state *istate;
struct atio_descr *a_descr;
int ret;
if (debug) {
warnx("tcmd_handle atio %p ctio %p atioflags %#x", atio, ctio,
atio->ccb_h.flags);
}
ret = 0;
a_descr = (struct atio_descr *)atio->ccb_h.targ_descr;
/* Do a full lookup if one-behind cache failed */
if (last_cmd == NULL || last_cmd->cmd != a_descr->cdb[0]) {
struct targ_cdb_handlers *h;
for (h = cdb_handlers; h->cmd != ILLEGAL_CDB; h++) {
if (a_descr->cdb[0] == h->cmd)
break;
}
last_cmd = h;
}
/* call completion and exit */
if (event != ATIO_WORK) {
if (last_cmd->done != NULL)
last_cmd->done(atio, ctio, event);
else
free_ccb((union ccb *)ctio);
return (1);
}
if (last_cmd->cmd == ILLEGAL_CDB) {
if (event != ATIO_WORK) {
warnx("no done func for %#x???", a_descr->cdb[0]);
abort();
}
/* Not found, return illegal request */
warnx("cdb %#x not handled", a_descr->cdb[0]);
tcmd_illegal_req(atio, ctio);
send_ccb((union ccb *)ctio, /*priority*/1);
return (0);
}
istate = tcmd_get_istate(ctio->init_id);
if (istate == NULL) {
tcmd_illegal_req(atio, ctio);
send_ccb((union ccb *)ctio, /*priority*/1);
return (0);
}
if (istate->pending_ca == 0 && istate->pending_ua != 0 &&
a_descr->cdb[0] != INQUIRY) {
tcmd_sense(ctio->init_id, ctio, SSD_KEY_UNIT_ATTENTION,
0x29, istate->pending_ua == UA_POWER_ON ? 1 : 2);
istate->pending_ca = CA_UNIT_ATTN;
if (debug) {
cdb_debug(a_descr->cdb, "UA active for %u: ",
atio->init_id);
}
send_ccb((union ccb *)ctio, /*priority*/1);
return (0);
}
/* Store current CA and UA for later */
istate->orig_ua = istate->pending_ua;
istate->orig_ca = istate->pending_ca;
/*
* As per SAM2, any command that occurs
* after a CA is reported, clears the CA. We must
* also clear the UA condition, if any, that caused
* the CA to occur assuming the UA is not for a
* persistent condition.
*/
istate->pending_ca = CA_NONE;
if (istate->orig_ca == CA_UNIT_ATTN)
istate->pending_ua = UA_NONE;
/* If we have a valid handler, call start or completion function */
if (last_cmd->cmd != ILLEGAL_CDB) {
ret = last_cmd->start(atio, ctio);
/* XXX hack */
if (last_cmd->start != tcmd_rdwr) {
a_descr->init_req += ctio->dxfer_len;
send_ccb((union ccb *)ctio, /*priority*/1);
}
}
return (ret);
}
static struct initiator_state *
tcmd_get_istate(u_int init_id)
{
if (init_id >= MAX_INITIATORS) {
warnx("illegal init_id %d, max %d", init_id, MAX_INITIATORS - 1);
return (NULL);
} else {
return (&istates[init_id]);
}
}
void
tcmd_sense(u_int init_id, struct ccb_scsiio *ctio, u_int8_t flags,
u_int8_t asc, u_int8_t ascq)
{
struct initiator_state *istate;
struct scsi_sense_data_fixed *sense;
/* Set our initiator's istate */
istate = tcmd_get_istate(init_id);
if (istate == NULL)
return;
istate->pending_ca |= CA_CMD_SENSE; /* XXX set instead of or? */
sense = (struct scsi_sense_data_fixed *)&istate->sense_data;
bzero(sense, sizeof(*sense));
sense->error_code = SSD_CURRENT_ERROR;
sense->flags = flags;
sense->add_sense_code = asc;
sense->add_sense_code_qual = ascq;
sense->extra_len =
offsetof(struct scsi_sense_data_fixed, sense_key_spec[2]) -
offsetof(struct scsi_sense_data_fixed, extra_len);
/* Fill out the supplied CTIO */
if (ctio != NULL) {
bcopy(sense, &ctio->sense_data, sizeof(*sense));
ctio->sense_len = sizeof(*sense); /* XXX */
ctio->ccb_h.flags &= ~CAM_DIR_MASK;
ctio->ccb_h.flags |= CAM_DIR_NONE | CAM_SEND_SENSE |
CAM_SEND_STATUS;
ctio->dxfer_len = 0;
ctio->scsi_status = SCSI_STATUS_CHECK_COND;
}
}
void
tcmd_ua(u_int init_id, ua_types new_ua)
{
struct initiator_state *istate;
u_int start, end;
if (init_id == CAM_TARGET_WILDCARD) {
start = 0;
end = MAX_INITIATORS - 1;
} else {
start = end = init_id;
}
for (; start <= end; start++) {
istate = tcmd_get_istate(start);
if (istate == NULL)
break;
istate->pending_ua = new_ua;
}
}
static int
tcmd_inquiry(struct ccb_accept_tio *atio, struct ccb_scsiio *ctio)
{
struct scsi_inquiry *inq;
struct atio_descr *a_descr;
struct initiator_state *istate;
struct scsi_sense_data_fixed *sense;
a_descr = (struct atio_descr *)atio->ccb_h.targ_descr;
inq = (struct scsi_inquiry *)a_descr->cdb;
if (debug)
cdb_debug(a_descr->cdb, "INQUIRY from %u: ", atio->init_id);
/*
* Validate the command. We don't support any VPD pages, so
* complain if EVPD or CMDDT is set.
*/
istate = tcmd_get_istate(ctio->init_id);
sense = (struct scsi_sense_data_fixed *)&istate->sense_data;
if ((inq->byte2 & SI_EVPD) != 0) {
tcmd_illegal_req(atio, ctio);
sense->sense_key_spec[0] = SSD_SCS_VALID | SSD_FIELDPTR_CMD |
SSD_BITPTR_VALID | /*bit value*/1;
sense->sense_key_spec[1] = 0;
sense->sense_key_spec[2] =
offsetof(struct scsi_inquiry, byte2);
} else if (inq->page_code != 0) {
tcmd_illegal_req(atio, ctio);
sense->sense_key_spec[0] = SSD_SCS_VALID | SSD_FIELDPTR_CMD;
sense->sense_key_spec[1] = 0;
sense->sense_key_spec[2] =
offsetof(struct scsi_inquiry, page_code);
} else {
bcopy(&inq_data, ctio->data_ptr, sizeof(inq_data));
ctio->dxfer_len = inq_data.additional_length + 4;
ctio->dxfer_len = min(ctio->dxfer_len,
scsi_2btoul(inq->length));
ctio->ccb_h.flags |= CAM_DIR_IN | CAM_SEND_STATUS;
ctio->scsi_status = SCSI_STATUS_OK;
}
return (0);
}
/* Initialize the inquiry response structure with the requested flags */
static int
init_inquiry(u_int16_t req_flags, u_int16_t sim_flags)
{
struct scsi_inquiry_data *inq;
inq = &inq_data;
bzero(inq, sizeof(*inq));
inq->device = T_DIRECT | (SID_QUAL_LU_CONNECTED << 5);
#ifdef SCSI_REV_SPC
inq->version = SCSI_REV_SPC; /* was 2 */
#else
inq->version = SCSI_REV_3; /* was 2 */
#endif
/*
* XXX cpi.hba_inquiry doesn't support Addr16 so we give the
* user what they want if they ask for it.
*/
if ((req_flags & SID_Addr16) != 0) {
sim_flags |= SID_Addr16;
warnx("Not sure SIM supports Addr16 but enabling it anyway");
}
/* Advertise only what the SIM can actually support */
req_flags &= sim_flags;
scsi_ulto2b(req_flags, &inq->spc2_flags);
inq->response_format = 2; /* SCSI2 Inquiry Format */
inq->additional_length = SHORT_INQUIRY_LENGTH -
offsetof(struct scsi_inquiry_data, additional_length);
bcopy("FreeBSD ", inq->vendor, SID_VENDOR_SIZE);
bcopy("Emulated Disk ", inq->product, SID_PRODUCT_SIZE);
bcopy("0.1 ", inq->revision, SID_REVISION_SIZE);
return (0);
}
static int
tcmd_req_sense(struct ccb_accept_tio *atio, struct ccb_scsiio *ctio)
{
struct scsi_request_sense *rsense;
struct scsi_sense_data_fixed *sense;
struct initiator_state *istate;
size_t dlen;
struct atio_descr *a_descr;
a_descr = (struct atio_descr *)atio->ccb_h.targ_descr;
rsense = (struct scsi_request_sense *)a_descr->cdb;
istate = tcmd_get_istate(ctio->init_id);
sense = (struct scsi_sense_data_fixed *)&istate->sense_data;
if (debug) {
cdb_debug(a_descr->cdb, "REQ SENSE from %u: ", atio->init_id);
warnx("Sending sense: %#x %#x %#x", sense->flags,
sense->add_sense_code, sense->add_sense_code_qual);
}
if (istate->orig_ca == 0) {
tcmd_sense(ctio->init_id, NULL, SSD_KEY_NO_SENSE, 0, 0);
warnx("REQUEST SENSE from %u but no pending CA!",
ctio->init_id);
}
bcopy(sense, ctio->data_ptr, sizeof(struct scsi_sense_data));
dlen = offsetof(struct scsi_sense_data_fixed, extra_len) +
sense->extra_len + 1;
ctio->dxfer_len = min(dlen, SCSI_CDB6_LEN(rsense->length));
ctio->ccb_h.flags |= CAM_DIR_IN | CAM_SEND_STATUS;
ctio->scsi_status = SCSI_STATUS_OK;
return (0);
}
static int
tcmd_rd_cap(struct ccb_accept_tio *atio, struct ccb_scsiio *ctio)
{
struct scsi_read_capacity_data *srp;
struct atio_descr *a_descr;
uint32_t vsize;
a_descr = (struct atio_descr *)atio->ccb_h.targ_descr;
srp = (struct scsi_read_capacity_data *)ctio->data_ptr;
if (volume_size > 0xffffffff)
vsize = 0xffffffff;
else
vsize = (uint32_t)(volume_size - 1);
if (debug) {
cdb_debug(a_descr->cdb, "READ CAP from %u (%u, %u): ",
atio->init_id, vsize, sector_size);
}
bzero(srp, sizeof(*srp));
scsi_ulto4b(vsize, srp->addr);
scsi_ulto4b(sector_size, srp->length);
ctio->dxfer_len = sizeof(*srp);
ctio->ccb_h.flags |= CAM_DIR_IN | CAM_SEND_STATUS;
ctio->scsi_status = SCSI_STATUS_OK;
return (0);
}
#ifdef READ_16
static int
tcmd_rd_cap16(struct ccb_accept_tio *atio, struct ccb_scsiio *ctio)
{
struct scsi_read_capacity_16 *scsi_cmd;
struct scsi_read_capacity_data_long *srp;
struct atio_descr *a_descr;
a_descr = (struct atio_descr *)atio->ccb_h.targ_descr;
scsi_cmd = (struct scsi_read_capacity_16 *)a_descr->cdb;
srp = (struct scsi_read_capacity_data_long *)ctio->data_ptr;
if (scsi_cmd->service_action != SRC16_SERVICE_ACTION) {
tcmd_illegal_req(atio, ctio);
return (0);
}
if (debug) {
cdb_debug(a_descr->cdb, "READ CAP16 from %u (%u, %u): ",
atio->init_id, volume_size - 1, sector_size);
}
bzero(srp, sizeof(*srp));
scsi_u64to8b(volume_size - 1, srp->addr);
scsi_ulto4b(sector_size, srp->length);
ctio->dxfer_len = sizeof(*srp);
ctio->ccb_h.flags |= CAM_DIR_IN | CAM_SEND_STATUS;
ctio->scsi_status = SCSI_STATUS_OK;
return (0);
}
#endif
static int
tcmd_rdwr(struct ccb_accept_tio *atio, struct ccb_scsiio *ctio)
{
struct atio_descr *a_descr;
struct ctio_descr *c_descr;
int ret;
a_descr = (struct atio_descr *)atio->ccb_h.targ_descr;
c_descr = (struct ctio_descr *)ctio->ccb_h.targ_descr;
/* Command needs to be decoded */
if ((a_descr->flags & CAM_DIR_MASK) == CAM_DIR_BOTH) {
if (debug)
warnx("Calling rdwr_decode");
ret = tcmd_rdwr_decode(atio, ctio);
if (ret == 0) {
send_ccb((union ccb *)ctio, /*priority*/1);
return (0);
}
}
ctio->ccb_h.flags |= a_descr->flags;
/* Call appropriate work function */
if ((a_descr->flags & CAM_DIR_IN) != 0) {
ret = start_io(atio, ctio, CAM_DIR_IN);
if (debug)
warnx("Starting %p DIR_IN @" OFF_FMT ":%u",
a_descr, c_descr->offset, a_descr->targ_req);
} else {
ret = start_io(atio, ctio, CAM_DIR_OUT);
if (debug)
warnx("Starting %p DIR_OUT @" OFF_FMT ":%u",
a_descr, c_descr->offset, a_descr->init_req);
}
return (ret);
}
static int
tcmd_rdwr_decode(struct ccb_accept_tio *atio, struct ccb_scsiio *ctio)
{
uint64_t blkno;
uint32_t count;
struct atio_descr *a_descr;
u_int8_t *cdb;
a_descr = (struct atio_descr *)atio->ccb_h.targ_descr;
cdb = a_descr->cdb;
if (debug)
cdb_debug(cdb, "R/W from %u: ", atio->init_id);
switch (cdb[0]) {
case READ_6:
case WRITE_6:
{
struct scsi_rw_6 *rw_6 = (struct scsi_rw_6 *)cdb;
blkno = scsi_3btoul(rw_6->addr);
count = rw_6->length;
break;
}
case READ_10:
case WRITE_10:
{
struct scsi_rw_10 *rw_10 = (struct scsi_rw_10 *)cdb;
blkno = scsi_4btoul(rw_10->addr);
count = scsi_2btoul(rw_10->length);
break;
}
#ifdef READ_16
case READ_16:
case WRITE_16:
{
struct scsi_rw_16 *rw_16 = (struct scsi_rw_16 *)cdb;
blkno = scsi_8btou64(rw_16->addr);
count = scsi_4btoul(rw_16->length);
break;
}
#endif
default:
tcmd_illegal_req(atio, ctio);
return (0);
}
if (blkno + count > volume_size) {
warnx("Attempt to access past end of volume");
tcmd_sense(ctio->init_id, ctio,
SSD_KEY_ILLEGAL_REQUEST, 0x21, 0);
return (0);
}
/* Get an (overall) data length and set direction */
a_descr->base_off = ((off_t)blkno) * sector_size;
a_descr->total_len = count * sector_size;
if (a_descr->total_len == 0) {
if (debug)
warnx("r/w 0 blocks @ blkno " OFF_FMT, blkno);
tcmd_null_ok(atio, ctio);
return (0);
} else if (cdb[0] == WRITE_6 || cdb[0] == WRITE_10) {
a_descr->flags |= CAM_DIR_OUT;
if (debug)
warnx("write %u blocks @ blkno " OFF_FMT, count, blkno);
} else {
a_descr->flags |= CAM_DIR_IN;
if (debug)
warnx("read %u blocks @ blkno " OFF_FMT, count, blkno);
}
return (1);
}
static int
start_io(struct ccb_accept_tio *atio, struct ccb_scsiio *ctio, int dir)
{
struct atio_descr *a_descr;
struct ctio_descr *c_descr;
int ret;
/* Set up common structures */
a_descr = (struct atio_descr *)atio->ccb_h.targ_descr;
c_descr = (struct ctio_descr *)ctio->ccb_h.targ_descr;
if (dir == CAM_DIR_IN) {
c_descr->offset = a_descr->base_off + a_descr->targ_req;
ctio->dxfer_len = a_descr->total_len - a_descr->targ_req;
} else {
c_descr->offset = a_descr->base_off + a_descr->init_req;
ctio->dxfer_len = a_descr->total_len - a_descr->init_req;
}
ctio->dxfer_len = min(ctio->dxfer_len, buf_size);
assert(ctio->dxfer_len >= 0);
c_descr->aiocb.aio_offset = c_descr->offset;
c_descr->aiocb.aio_nbytes = ctio->dxfer_len;
/* If DIR_IN, start read from target, otherwise begin CTIO xfer. */
ret = 1;
if (dir == CAM_DIR_IN) {
if (notaio) {
if (debug)
warnx("read sync %lu @ block " OFF_FMT,
(unsigned long)
(ctio->dxfer_len / sector_size),
c_descr->offset / sector_size);
if (lseek(c_descr->aiocb.aio_fildes,
c_descr->aiocb.aio_offset, SEEK_SET) < 0) {
perror("lseek");
err(1, "lseek");
}
if (read(c_descr->aiocb.aio_fildes,
(void *)c_descr->aiocb.aio_buf,
ctio->dxfer_len) != ctio->dxfer_len) {
err(1, "read");
}
} else {
if (debug)
warnx("read async %lu @ block " OFF_FMT,
(unsigned long)
(ctio->dxfer_len / sector_size),
c_descr->offset / sector_size);
if (aio_read(&c_descr->aiocb) < 0) {
err(1, "aio_read"); /* XXX */
}
}
a_descr->targ_req += ctio->dxfer_len;
/* if we're done, we can mark the CCB as to send status */
if (a_descr->targ_req == a_descr->total_len) {
ctio->ccb_h.flags |= CAM_SEND_STATUS;
ctio->scsi_status = SCSI_STATUS_OK;
ret = 0;
}
if (notaio)
tcmd_rdwr_done(atio, ctio, AIO_DONE);
} else {
if (a_descr->targ_ack == a_descr->total_len)
tcmd_null_ok(atio, ctio);
a_descr->init_req += ctio->dxfer_len;
if (a_descr->init_req == a_descr->total_len &&
ctio->dxfer_len > 0) {
/*
* If data phase done, remove atio from workq.
* The completion handler will call work_atio to
* send the final status.
*/
ret = 0;
}
send_ccb((union ccb *)ctio, /*priority*/1);
}
return (ret);
}
static void
tcmd_rdwr_done(struct ccb_accept_tio *atio, struct ccb_scsiio *ctio,
io_ops event)
{
struct atio_descr *a_descr;
struct ctio_descr *c_descr;
a_descr = (struct atio_descr *)atio->ccb_h.targ_descr;
c_descr = (struct ctio_descr *)ctio->ccb_h.targ_descr;
switch (event) {
case AIO_DONE:
if (!notaio && aio_return(&c_descr->aiocb) < 0) {
warn("aio_return error");
/* XXX */
tcmd_sense(ctio->init_id, ctio,
SSD_KEY_MEDIUM_ERROR, 0, 0);
send_ccb((union ccb *)ctio, /*priority*/1);
break;
}
a_descr->targ_ack += ctio->dxfer_len;
if ((a_descr->flags & CAM_DIR_IN) != 0) {
if (debug) {
if (notaio)
warnx("sending CTIO for AIO read");
else
warnx("sending CTIO for sync read");
}
a_descr->init_req += ctio->dxfer_len;
send_ccb((union ccb *)ctio, /*priority*/1);
} else {
/* Use work function to send final status */
if (a_descr->init_req == a_descr->total_len)
work_atio(atio);
if (debug)
warnx("AIO done freeing CTIO");
free_ccb((union ccb *)ctio);
}
break;
case CTIO_DONE:
switch (ctio->ccb_h.status & CAM_STATUS_MASK) {
case CAM_REQ_CMP:
break;
case CAM_REQUEUE_REQ:
warnx("requeueing request");
if ((a_descr->flags & CAM_DIR_MASK) == CAM_DIR_OUT) {
if (aio_write(&c_descr->aiocb) < 0) {
err(1, "aio_write"); /* XXX */
}
} else {
if (aio_read(&c_descr->aiocb) < 0) {
err(1, "aio_read"); /* XXX */
}
}
return;
default:
errx(1, "CTIO failed, status %#x", ctio->ccb_h.status);
}
a_descr->init_ack += ctio->dxfer_len;
if ((a_descr->flags & CAM_DIR_MASK) == CAM_DIR_OUT &&
ctio->dxfer_len > 0) {
a_descr->targ_req += ctio->dxfer_len;
if (notaio) {
if (debug)
warnx("write sync %lu @ block "
OFF_FMT, (unsigned long)
(ctio->dxfer_len / sector_size),
c_descr->offset / sector_size);
if (lseek(c_descr->aiocb.aio_fildes,
c_descr->aiocb.aio_offset, SEEK_SET) < 0) {
perror("lseek");
err(1, "lseek");
}
if (write(c_descr->aiocb.aio_fildes,
(void *) c_descr->aiocb.aio_buf,
ctio->dxfer_len) != ctio->dxfer_len) {
err(1, "write");
}
tcmd_rdwr_done(atio, ctio, AIO_DONE);
} else {
if (debug)
warnx("write async %lu @ block "
OFF_FMT, (unsigned long)
(ctio->dxfer_len / sector_size),
c_descr->offset / sector_size);
if (aio_write(&c_descr->aiocb) < 0) {
err(1, "aio_write"); /* XXX */
}
}
} else {
if (debug)
warnx("CTIO done freeing CTIO");
free_ccb((union ccb *)ctio);
}
break;
default:
warnx("Unknown completion code %d", event);
abort();
/* NOTREACHED */
}
}
/* Simple ok message used by TUR, SYNC_CACHE, etc. */
static int
tcmd_null_ok(struct ccb_accept_tio *atio, struct ccb_scsiio *ctio)
{
if (debug) {
struct atio_descr *a_descr;
a_descr = (struct atio_descr *)atio->ccb_h.targ_descr;
cdb_debug(a_descr->cdb, "Sending null ok to %u : ", atio->init_id);
}
ctio->dxfer_len = 0;
ctio->ccb_h.flags &= ~CAM_DIR_MASK;
ctio->ccb_h.flags |= CAM_DIR_NONE | CAM_SEND_STATUS;
ctio->scsi_status = SCSI_STATUS_OK;
return (0);
}
/* Simple illegal request message used by MODE SENSE, etc. */
static int
tcmd_illegal_req(struct ccb_accept_tio *atio, struct ccb_scsiio *ctio)
{
if (debug) {
struct atio_descr *a_descr;
a_descr = (struct atio_descr *)atio->ccb_h.targ_descr;
cdb_debug(a_descr->cdb, "Sending ill req to %u: ", atio->init_id);
}
tcmd_sense(atio->init_id, ctio, SSD_KEY_ILLEGAL_REQUEST,
/*asc*/0x24, /*ascq*/0);
return (0);
}
static void
cdb_debug(u_int8_t *cdb, const char *msg, ...)
{
char msg_buf[512];
int len;
va_list ap;
va_start(ap, msg);
vsnprintf(msg_buf, sizeof(msg_buf), msg, ap);
va_end(ap);
len = strlen(msg_buf);
scsi_cdb_string(cdb, msg_buf + len, sizeof(msg_buf) - len);
warnx("%s", msg_buf);
}