1
0
mirror of https://git.FreeBSD.org/src.git synced 2024-12-23 11:18:54 +00:00
freebsd/sys/net/netisr.c
Robert Watson 938448cd87 Changes to support crashdump analysis of netisr:
- Rename the netisr protocol registration array, 'np' to 'netisr_proto',
  in order to reduce the chances of symbol name collisions.  It remains
  statically defined, but it will be looked up by netstat(1).

- Move certain internal structure definitions from netisr.c to
  netisr_internal.h so that netstat(1) can find them.  They remain
  private, and should not be used for any other purpose (for example,
  they should not be used by kernel modules, which must instead use the
  public interfaces in netisr.h).

- Store a kernel-compiled version of NETISR_MAXPROT in the global variable
  netisr_maxprot, and export via a sysctl, so that it is available for use
  by netstat(1).  This is especially important for crashdump
  interpretation, where the size of the workstream structure is determined
  by the maximum number of protocols compiled into the kernel.

MFC after:	1 week
Sponsored by:	Juniper Networks
2010-03-01 00:42:36 +00:00

1272 lines
37 KiB
C

/*-
* Copyright (c) 2007-2009 Robert N. M. Watson
* Copyright (c) 2010 Juniper Networks, Inc.
* All rights reserved.
*
* This software was developed by Robert N. M. Watson under contract
* to Juniper Networks, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* netisr is a packet dispatch service, allowing synchronous (directly
* dispatched) and asynchronous (deferred dispatch) processing of packets by
* registered protocol handlers. Callers pass a protocol identifier and
* packet to netisr, along with a direct dispatch hint, and work will either
* be immediately processed by the registered handler, or passed to a
* software interrupt (SWI) thread for deferred dispatch. Callers will
* generally select one or the other based on:
*
* - Whether directly dispatching a netisr handler lead to code reentrance or
* lock recursion, such as entering the socket code from the socket code.
* - Whether directly dispatching a netisr handler lead to recursive
* processing, such as when decapsulating several wrapped layers of tunnel
* information (IPSEC within IPSEC within ...).
*
* Maintaining ordering for protocol streams is a critical design concern.
* Enforcing ordering limits the opportunity for concurrency, but maintains
* the strong ordering requirements found in some protocols, such as TCP. Of
* related concern is CPU affinity--it is desirable to process all data
* associated with a particular stream on the same CPU over time in order to
* avoid acquiring locks associated with the connection on different CPUs,
* keep connection data in one cache, and to generally encourage associated
* user threads to live on the same CPU as the stream. It's also desirable
* to avoid lock migration and contention where locks are associated with
* more than one flow.
*
* netisr supports several policy variations, represented by the
* NETISR_POLICY_* constants, allowing protocols to play various roles in
* identifying flows, assigning work to CPUs, etc. These are described in
* netisr.h.
*/
#include "opt_ddb.h"
#include "opt_device_polling.h"
#include <sys/param.h>
#include <sys/bus.h>
#include <sys/kernel.h>
#include <sys/kthread.h>
#include <sys/interrupt.h>
#include <sys/lock.h>
#include <sys/mbuf.h>
#include <sys/mutex.h>
#include <sys/pcpu.h>
#include <sys/proc.h>
#include <sys/rmlock.h>
#include <sys/sched.h>
#include <sys/smp.h>
#include <sys/socket.h>
#include <sys/sysctl.h>
#include <sys/systm.h>
#ifdef DDB
#include <ddb/ddb.h>
#endif
#define _WANT_NETISR_INTERNAL /* Enable definitions from netisr_internal.h */
#include <net/if.h>
#include <net/if_var.h>
#include <net/netisr.h>
#include <net/netisr_internal.h>
#include <net/vnet.h>
/*-
* Synchronize use and modification of the registered netisr data structures;
* acquire a read lock while modifying the set of registered protocols to
* prevent partially registered or unregistered protocols from being run.
*
* The following data structures and fields are protected by this lock:
*
* - The netisr_proto array, including all fields of struct netisr_proto.
* - The nws array, including all fields of struct netisr_worker.
* - The nws_array array.
*
* Note: the NETISR_LOCKING define controls whether read locks are acquired
* in packet processing paths requiring netisr registration stability. This
* is disabled by default as it can lead to measurable performance
* degradation even with rmlocks (3%-6% for loopback ping-pong traffic), and
* because netisr registration and unregistration is extremely rare at
* runtime. If it becomes more common, this decision should be revisited.
*
* XXXRW: rmlocks don't support assertions.
*/
static struct rmlock netisr_rmlock;
#define NETISR_LOCK_INIT() rm_init_flags(&netisr_rmlock, "netisr", \
RM_NOWITNESS)
#define NETISR_LOCK_ASSERT()
#define NETISR_RLOCK(tracker) rm_rlock(&netisr_rmlock, (tracker))
#define NETISR_RUNLOCK(tracker) rm_runlock(&netisr_rmlock, (tracker))
#define NETISR_WLOCK() rm_wlock(&netisr_rmlock)
#define NETISR_WUNLOCK() rm_wunlock(&netisr_rmlock)
/* #define NETISR_LOCKING */
SYSCTL_NODE(_net, OID_AUTO, isr, CTLFLAG_RW, 0, "netisr");
/*-
* Three direct dispatch policies are supported:
*
* - Always defer: all work is scheduled for a netisr, regardless of context.
* (!direct)
*
* - Hybrid: if the executing context allows direct dispatch, and we're
* running on the CPU the work would be done on, then direct dispatch if it
* wouldn't violate ordering constraints on the workstream.
* (direct && !direct_force)
*
* - Always direct: if the executing context allows direct dispatch, always
* direct dispatch. (direct && direct_force)
*
* Notice that changing the global policy could lead to short periods of
* misordered processing, but this is considered acceptable as compared to
* the complexity of enforcing ordering during policy changes.
*/
static int netisr_direct_force = 1; /* Always direct dispatch. */
TUNABLE_INT("net.isr.direct_force", &netisr_direct_force);
SYSCTL_INT(_net_isr, OID_AUTO, direct_force, CTLFLAG_RW,
&netisr_direct_force, 0, "Force direct dispatch");
static int netisr_direct = 1; /* Enable direct dispatch. */
TUNABLE_INT("net.isr.direct", &netisr_direct);
SYSCTL_INT(_net_isr, OID_AUTO, direct, CTLFLAG_RW,
&netisr_direct, 0, "Enable direct dispatch");
/*
* Allow the administrator to limit the number of threads (CPUs) to use for
* netisr. We don't check netisr_maxthreads before creating the thread for
* CPU 0, so in practice we ignore values <= 1. This must be set at boot.
* We will create at most one thread per CPU.
*/
static int netisr_maxthreads = -1; /* Max number of threads. */
TUNABLE_INT("net.isr.maxthreads", &netisr_maxthreads);
SYSCTL_INT(_net_isr, OID_AUTO, maxthreads, CTLFLAG_RDTUN,
&netisr_maxthreads, 0,
"Use at most this many CPUs for netisr processing");
static int netisr_bindthreads = 0; /* Bind threads to CPUs. */
TUNABLE_INT("net.isr.bindthreads", &netisr_bindthreads);
SYSCTL_INT(_net_isr, OID_AUTO, bindthreads, CTLFLAG_RDTUN,
&netisr_bindthreads, 0, "Bind netisr threads to CPUs.");
/*
* Limit per-workstream mbuf queue limits s to at most net.isr.maxqlimit,
* both for initial configuration and later modification using
* netisr_setqlimit().
*/
#define NETISR_DEFAULT_MAXQLIMIT 10240
static u_int netisr_maxqlimit = NETISR_DEFAULT_MAXQLIMIT;
TUNABLE_INT("net.isr.maxqlimit", &netisr_maxqlimit);
SYSCTL_INT(_net_isr, OID_AUTO, maxqlimit, CTLFLAG_RDTUN,
&netisr_maxqlimit, 0,
"Maximum netisr per-protocol, per-CPU queue depth.");
/*
* The default per-workstream mbuf queue limit for protocols that don't
* initialize the nh_qlimit field of their struct netisr_handler. If this is
* set above netisr_maxqlimit, we truncate it to the maximum during boot.
*/
#define NETISR_DEFAULT_DEFAULTQLIMIT 256
static u_int netisr_defaultqlimit = NETISR_DEFAULT_DEFAULTQLIMIT;
TUNABLE_INT("net.isr.defaultqlimit", &netisr_defaultqlimit);
SYSCTL_INT(_net_isr, OID_AUTO, defaultqlimit, CTLFLAG_RDTUN,
&netisr_defaultqlimit, 0,
"Default netisr per-protocol, per-CPU queue limit if not set by protocol");
/*
* Store and export the compile-time constant NETISR_MAXPROT limit on the
* number of protocols that can register with netisr at a time. This is
* required for crashdump analysis, as it sizes netisr_proto[].
*/
static u_int netisr_maxprot = NETISR_MAXPROT;
SYSCTL_INT(_net_isr, OID_AUTO, maxprot, CTLFLAG_RD,
&netisr_maxprot, 0,
"Compile-time limit on the number of protocols supported by netisr.");
/*
* The netisr_proto array describes all registered protocols, indexed by
* protocol number. See netisr_internal.h for more details.
*/
static struct netisr_proto netisr_proto[NETISR_MAXPROT];
/*
* Per-CPU workstream data. See netisr_internal.h for more details.
*/
DPCPU_DEFINE(struct netisr_workstream, nws);
/*
* Map contiguous values between 0 and nws_count into CPU IDs appropriate for
* accessing workstreams. This allows constructions of the form
* DPCPU_ID_GET(nws_array[arbitraryvalue % nws_count], nws).
*/
static u_int nws_array[MAXCPU];
/*
* Number of registered workstreams. Will be at most the number of running
* CPUs once fully started.
*/
static u_int nws_count;
SYSCTL_INT(_net_isr, OID_AUTO, numthreads, CTLFLAG_RD,
&nws_count, 0, "Number of extant netisr threads.");
/*
* Synchronization for each workstream: a mutex protects all mutable fields
* in each stream, including per-protocol state (mbuf queues). The SWI is
* woken up if asynchronous dispatch is required.
*/
#define NWS_LOCK(s) mtx_lock(&(s)->nws_mtx)
#define NWS_LOCK_ASSERT(s) mtx_assert(&(s)->nws_mtx, MA_OWNED)
#define NWS_UNLOCK(s) mtx_unlock(&(s)->nws_mtx)
#define NWS_SIGNAL(s) swi_sched((s)->nws_swi_cookie, 0)
/*
* Utility routines for protocols that implement their own mapping of flows
* to CPUs.
*/
u_int
netisr_get_cpucount(void)
{
return (nws_count);
}
u_int
netisr_get_cpuid(u_int cpunumber)
{
KASSERT(cpunumber < nws_count, ("%s: %u > %u", __func__, cpunumber,
nws_count));
return (nws_array[cpunumber]);
}
/*
* The default implementation of flow -> CPU ID mapping.
*
* Non-static so that protocols can use it to map their own work to specific
* CPUs in a manner consistent to netisr for affinity purposes.
*/
u_int
netisr_default_flow2cpu(u_int flowid)
{
return (nws_array[flowid % nws_count]);
}
/*
* Register a new netisr handler, which requires initializing per-protocol
* fields for each workstream. All netisr work is briefly suspended while
* the protocol is installed.
*/
void
netisr_register(const struct netisr_handler *nhp)
{
struct netisr_work *npwp;
const char *name;
u_int i, proto;
proto = nhp->nh_proto;
name = nhp->nh_name;
/*
* Test that the requested registration is valid.
*/
KASSERT(nhp->nh_name != NULL,
("%s: nh_name NULL for %u", __func__, proto));
KASSERT(nhp->nh_handler != NULL,
("%s: nh_handler NULL for %s", __func__, name));
KASSERT(nhp->nh_policy == NETISR_POLICY_SOURCE ||
nhp->nh_policy == NETISR_POLICY_FLOW ||
nhp->nh_policy == NETISR_POLICY_CPU,
("%s: unsupported nh_policy %u for %s", __func__,
nhp->nh_policy, name));
KASSERT(nhp->nh_policy == NETISR_POLICY_FLOW ||
nhp->nh_m2flow == NULL,
("%s: nh_policy != FLOW but m2flow defined for %s", __func__,
name));
KASSERT(nhp->nh_policy == NETISR_POLICY_CPU || nhp->nh_m2cpuid == NULL,
("%s: nh_policy != CPU but m2cpuid defined for %s", __func__,
name));
KASSERT(nhp->nh_policy != NETISR_POLICY_CPU || nhp->nh_m2cpuid != NULL,
("%s: nh_policy == CPU but m2cpuid not defined for %s", __func__,
name));
KASSERT(proto < NETISR_MAXPROT,
("%s(%u, %s): protocol too big", __func__, proto, name));
/*
* Test that no existing registration exists for this protocol.
*/
NETISR_WLOCK();
KASSERT(netisr_proto[proto].np_name == NULL,
("%s(%u, %s): name present", __func__, proto, name));
KASSERT(netisr_proto[proto].np_handler == NULL,
("%s(%u, %s): handler present", __func__, proto, name));
netisr_proto[proto].np_name = name;
netisr_proto[proto].np_handler = nhp->nh_handler;
netisr_proto[proto].np_m2flow = nhp->nh_m2flow;
netisr_proto[proto].np_m2cpuid = nhp->nh_m2cpuid;
netisr_proto[proto].np_drainedcpu = nhp->nh_drainedcpu;
if (nhp->nh_qlimit == 0)
netisr_proto[proto].np_qlimit = netisr_defaultqlimit;
else if (nhp->nh_qlimit > netisr_maxqlimit) {
printf("%s: %s requested queue limit %u capped to "
"net.isr.maxqlimit %u\n", __func__, name, nhp->nh_qlimit,
netisr_maxqlimit);
netisr_proto[proto].np_qlimit = netisr_maxqlimit;
} else
netisr_proto[proto].np_qlimit = nhp->nh_qlimit;
netisr_proto[proto].np_policy = nhp->nh_policy;
for (i = 0; i <= mp_maxid; i++) {
if (CPU_ABSENT(i))
continue;
npwp = &(DPCPU_ID_PTR(i, nws))->nws_work[proto];
bzero(npwp, sizeof(*npwp));
npwp->nw_qlimit = netisr_proto[proto].np_qlimit;
}
NETISR_WUNLOCK();
}
/*
* Clear drop counters across all workstreams for a protocol.
*/
void
netisr_clearqdrops(const struct netisr_handler *nhp)
{
struct netisr_work *npwp;
#ifdef INVARIANTS
const char *name;
#endif
u_int i, proto;
proto = nhp->nh_proto;
#ifdef INVARIANTS
name = nhp->nh_name;
#endif
KASSERT(proto < NETISR_MAXPROT,
("%s(%u): protocol too big for %s", __func__, proto, name));
NETISR_WLOCK();
KASSERT(netisr_proto[proto].np_handler != NULL,
("%s(%u): protocol not registered for %s", __func__, proto,
name));
for (i = 0; i <= mp_maxid; i++) {
if (CPU_ABSENT(i))
continue;
npwp = &(DPCPU_ID_PTR(i, nws))->nws_work[proto];
npwp->nw_qdrops = 0;
}
NETISR_WUNLOCK();
}
/*
* Query current drop counters across all workstreams for a protocol.
*/
void
netisr_getqdrops(const struct netisr_handler *nhp, u_int64_t *qdropp)
{
struct netisr_work *npwp;
struct rm_priotracker tracker;
#ifdef INVARIANTS
const char *name;
#endif
u_int i, proto;
*qdropp = 0;
proto = nhp->nh_proto;
#ifdef INVARIANTS
name = nhp->nh_name;
#endif
KASSERT(proto < NETISR_MAXPROT,
("%s(%u): protocol too big for %s", __func__, proto, name));
NETISR_RLOCK(&tracker);
KASSERT(netisr_proto[proto].np_handler != NULL,
("%s(%u): protocol not registered for %s", __func__, proto,
name));
for (i = 0; i <= mp_maxid; i++) {
if (CPU_ABSENT(i))
continue;
npwp = &(DPCPU_ID_PTR(i, nws))->nws_work[proto];
*qdropp += npwp->nw_qdrops;
}
NETISR_RUNLOCK(&tracker);
}
/*
* Query current per-workstream queue limit for a protocol.
*/
void
netisr_getqlimit(const struct netisr_handler *nhp, u_int *qlimitp)
{
struct rm_priotracker tracker;
#ifdef INVARIANTS
const char *name;
#endif
u_int proto;
proto = nhp->nh_proto;
#ifdef INVARIANTS
name = nhp->nh_name;
#endif
KASSERT(proto < NETISR_MAXPROT,
("%s(%u): protocol too big for %s", __func__, proto, name));
NETISR_RLOCK(&tracker);
KASSERT(netisr_proto[proto].np_handler != NULL,
("%s(%u): protocol not registered for %s", __func__, proto,
name));
*qlimitp = netisr_proto[proto].np_qlimit;
NETISR_RUNLOCK(&tracker);
}
/*
* Update the queue limit across per-workstream queues for a protocol. We
* simply change the limits, and don't drain overflowed packets as they will
* (hopefully) take care of themselves shortly.
*/
int
netisr_setqlimit(const struct netisr_handler *nhp, u_int qlimit)
{
struct netisr_work *npwp;
#ifdef INVARIANTS
const char *name;
#endif
u_int i, proto;
if (qlimit > netisr_maxqlimit)
return (EINVAL);
proto = nhp->nh_proto;
#ifdef INVARIANTS
name = nhp->nh_name;
#endif
KASSERT(proto < NETISR_MAXPROT,
("%s(%u): protocol too big for %s", __func__, proto, name));
NETISR_WLOCK();
KASSERT(netisr_proto[proto].np_handler != NULL,
("%s(%u): protocol not registered for %s", __func__, proto,
name));
netisr_proto[proto].np_qlimit = qlimit;
for (i = 0; i <= mp_maxid; i++) {
if (CPU_ABSENT(i))
continue;
npwp = &(DPCPU_ID_PTR(i, nws))->nws_work[proto];
npwp->nw_qlimit = qlimit;
}
NETISR_WUNLOCK();
return (0);
}
/*
* Drain all packets currently held in a particular protocol work queue.
*/
static void
netisr_drain_proto(struct netisr_work *npwp)
{
struct mbuf *m;
/*
* We would assert the lock on the workstream but it's not passed in.
*/
while ((m = npwp->nw_head) != NULL) {
npwp->nw_head = m->m_nextpkt;
m->m_nextpkt = NULL;
if (npwp->nw_head == NULL)
npwp->nw_tail = NULL;
npwp->nw_len--;
m_freem(m);
}
KASSERT(npwp->nw_tail == NULL, ("%s: tail", __func__));
KASSERT(npwp->nw_len == 0, ("%s: len", __func__));
}
/*
* Remove the registration of a network protocol, which requires clearing
* per-protocol fields across all workstreams, including freeing all mbufs in
* the queues at time of unregister. All work in netisr is briefly suspended
* while this takes place.
*/
void
netisr_unregister(const struct netisr_handler *nhp)
{
struct netisr_work *npwp;
#ifdef INVARIANTS
const char *name;
#endif
u_int i, proto;
proto = nhp->nh_proto;
#ifdef INVARIANTS
name = nhp->nh_name;
#endif
KASSERT(proto < NETISR_MAXPROT,
("%s(%u): protocol too big for %s", __func__, proto, name));
NETISR_WLOCK();
KASSERT(netisr_proto[proto].np_handler != NULL,
("%s(%u): protocol not registered for %s", __func__, proto,
name));
netisr_proto[proto].np_name = NULL;
netisr_proto[proto].np_handler = NULL;
netisr_proto[proto].np_m2flow = NULL;
netisr_proto[proto].np_m2cpuid = NULL;
netisr_proto[proto].np_qlimit = 0;
netisr_proto[proto].np_policy = 0;
for (i = 0; i <= mp_maxid; i++) {
if (CPU_ABSENT(i))
continue;
npwp = &(DPCPU_ID_PTR(i, nws))->nws_work[proto];
netisr_drain_proto(npwp);
bzero(npwp, sizeof(*npwp));
}
NETISR_WUNLOCK();
}
/*
* Look up the workstream given a packet and source identifier. Do this by
* checking the protocol's policy, and optionally call out to the protocol
* for assistance if required.
*/
static struct mbuf *
netisr_select_cpuid(struct netisr_proto *npp, uintptr_t source,
struct mbuf *m, u_int *cpuidp)
{
struct ifnet *ifp;
NETISR_LOCK_ASSERT();
/*
* In the event we have only one worker, shortcut and deliver to it
* without further ado.
*/
if (nws_count == 1) {
*cpuidp = nws_array[0];
return (m);
}
/*
* What happens next depends on the policy selected by the protocol.
* If we want to support per-interface policies, we should do that
* here first.
*/
switch (npp->np_policy) {
case NETISR_POLICY_CPU:
return (npp->np_m2cpuid(m, source, cpuidp));
case NETISR_POLICY_FLOW:
if (!(m->m_flags & M_FLOWID) && npp->np_m2flow != NULL) {
m = npp->np_m2flow(m, source);
if (m == NULL)
return (NULL);
}
if (m->m_flags & M_FLOWID) {
*cpuidp =
netisr_default_flow2cpu(m->m_pkthdr.flowid);
return (m);
}
/* FALLTHROUGH */
case NETISR_POLICY_SOURCE:
ifp = m->m_pkthdr.rcvif;
if (ifp != NULL)
*cpuidp = nws_array[(ifp->if_index + source) %
nws_count];
else
*cpuidp = nws_array[source % nws_count];
return (m);
default:
panic("%s: invalid policy %u for %s", __func__,
npp->np_policy, npp->np_name);
}
}
/*
* Process packets associated with a workstream and protocol. For reasons of
* fairness, we process up to one complete netisr queue at a time, moving the
* queue to a stack-local queue for processing, but do not loop refreshing
* from the global queue. The caller is responsible for deciding whether to
* loop, and for setting the NWS_RUNNING flag. The passed workstream will be
* locked on entry and relocked before return, but will be released while
* processing. The number of packets processed is returned.
*/
static u_int
netisr_process_workstream_proto(struct netisr_workstream *nwsp, u_int proto)
{
struct netisr_work local_npw, *npwp;
u_int handled;
struct mbuf *m;
NETISR_LOCK_ASSERT();
NWS_LOCK_ASSERT(nwsp);
KASSERT(nwsp->nws_flags & NWS_RUNNING,
("%s(%u): not running", __func__, proto));
KASSERT(proto >= 0 && proto < NETISR_MAXPROT,
("%s(%u): invalid proto\n", __func__, proto));
npwp = &nwsp->nws_work[proto];
if (npwp->nw_len == 0)
return (0);
/*
* Move the global work queue to a thread-local work queue.
*
* Notice that this means the effective maximum length of the queue
* is actually twice that of the maximum queue length specified in
* the protocol registration call.
*/
handled = npwp->nw_len;
local_npw = *npwp;
npwp->nw_head = NULL;
npwp->nw_tail = NULL;
npwp->nw_len = 0;
nwsp->nws_pendingbits &= ~(1 << proto);
NWS_UNLOCK(nwsp);
while ((m = local_npw.nw_head) != NULL) {
local_npw.nw_head = m->m_nextpkt;
m->m_nextpkt = NULL;
if (local_npw.nw_head == NULL)
local_npw.nw_tail = NULL;
local_npw.nw_len--;
VNET_ASSERT(m->m_pkthdr.rcvif != NULL);
CURVNET_SET(m->m_pkthdr.rcvif->if_vnet);
netisr_proto[proto].np_handler(m);
CURVNET_RESTORE();
}
KASSERT(local_npw.nw_len == 0,
("%s(%u): len %u", __func__, proto, local_npw.nw_len));
if (netisr_proto[proto].np_drainedcpu)
netisr_proto[proto].np_drainedcpu(nwsp->nws_cpu);
NWS_LOCK(nwsp);
npwp->nw_handled += handled;
return (handled);
}
/*
* SWI handler for netisr -- processes packets in a set of workstreams that
* it owns, woken up by calls to NWS_SIGNAL(). If this workstream is already
* being direct dispatched, go back to sleep and wait for the dispatching
* thread to wake us up again.
*/
static void
swi_net(void *arg)
{
#ifdef NETISR_LOCKING
struct rm_priotracker tracker;
#endif
struct netisr_workstream *nwsp;
u_int bits, prot;
nwsp = arg;
#ifdef DEVICE_POLLING
KASSERT(nws_count == 1,
("%s: device_polling but nws_count != 1", __func__));
netisr_poll();
#endif
#ifdef NETISR_LOCKING
NETISR_RLOCK(&tracker);
#endif
NWS_LOCK(nwsp);
KASSERT(!(nwsp->nws_flags & NWS_RUNNING), ("swi_net: running"));
if (nwsp->nws_flags & NWS_DISPATCHING)
goto out;
nwsp->nws_flags |= NWS_RUNNING;
nwsp->nws_flags &= ~NWS_SCHEDULED;
while ((bits = nwsp->nws_pendingbits) != 0) {
while ((prot = ffs(bits)) != 0) {
prot--;
bits &= ~(1 << prot);
(void)netisr_process_workstream_proto(nwsp, prot);
}
}
nwsp->nws_flags &= ~NWS_RUNNING;
out:
NWS_UNLOCK(nwsp);
#ifdef NETISR_LOCKING
NETISR_RUNLOCK(&tracker);
#endif
#ifdef DEVICE_POLLING
netisr_pollmore();
#endif
}
static int
netisr_queue_workstream(struct netisr_workstream *nwsp, u_int proto,
struct netisr_work *npwp, struct mbuf *m, int *dosignalp)
{
NWS_LOCK_ASSERT(nwsp);
*dosignalp = 0;
if (npwp->nw_len < npwp->nw_qlimit) {
m->m_nextpkt = NULL;
if (npwp->nw_head == NULL) {
npwp->nw_head = m;
npwp->nw_tail = m;
} else {
npwp->nw_tail->m_nextpkt = m;
npwp->nw_tail = m;
}
npwp->nw_len++;
if (npwp->nw_len > npwp->nw_watermark)
npwp->nw_watermark = npwp->nw_len;
/*
* We must set the bit regardless of NWS_RUNNING, so that
* swi_net() keeps calling netisr_process_workstream_proto().
*/
nwsp->nws_pendingbits |= (1 << proto);
if (!(nwsp->nws_flags &
(NWS_RUNNING | NWS_DISPATCHING | NWS_SCHEDULED))) {
nwsp->nws_flags |= NWS_SCHEDULED;
*dosignalp = 1; /* Defer until unlocked. */
}
npwp->nw_queued++;
return (0);
} else {
m_freem(m);
npwp->nw_qdrops++;
return (ENOBUFS);
}
}
static int
netisr_queue_internal(u_int proto, struct mbuf *m, u_int cpuid)
{
struct netisr_workstream *nwsp;
struct netisr_work *npwp;
int dosignal, error;
#ifdef NETISR_LOCKING
NETISR_LOCK_ASSERT();
#endif
KASSERT(cpuid <= mp_maxid, ("%s: cpuid too big (%u, %u)", __func__,
cpuid, mp_maxid));
KASSERT(!CPU_ABSENT(cpuid), ("%s: CPU %u absent", __func__, cpuid));
dosignal = 0;
error = 0;
nwsp = DPCPU_ID_PTR(cpuid, nws);
npwp = &nwsp->nws_work[proto];
NWS_LOCK(nwsp);
error = netisr_queue_workstream(nwsp, proto, npwp, m, &dosignal);
NWS_UNLOCK(nwsp);
if (dosignal)
NWS_SIGNAL(nwsp);
return (error);
}
int
netisr_queue_src(u_int proto, uintptr_t source, struct mbuf *m)
{
#ifdef NETISR_LOCKING
struct rm_priotracker tracker;
#endif
u_int cpuid;
int error;
KASSERT(proto < NETISR_MAXPROT,
("%s: invalid proto %u", __func__, proto));
#ifdef NETISR_LOCKING
NETISR_RLOCK(&tracker);
#endif
KASSERT(netisr_proto[proto].np_handler != NULL,
("%s: invalid proto %u", __func__, proto));
m = netisr_select_cpuid(&netisr_proto[proto], source, m, &cpuid);
if (m != NULL) {
KASSERT(!CPU_ABSENT(cpuid), ("%s: CPU %u absent", __func__,
cpuid));
error = netisr_queue_internal(proto, m, cpuid);
} else
error = ENOBUFS;
#ifdef NETISR_LOCKING
NETISR_RUNLOCK(&tracker);
#endif
return (error);
}
int
netisr_queue(u_int proto, struct mbuf *m)
{
return (netisr_queue_src(proto, 0, m));
}
/*
* Dispatch a packet for netisr processing; direct dispatch is permitted by
* calling context.
*/
int
netisr_dispatch_src(u_int proto, uintptr_t source, struct mbuf *m)
{
#ifdef NETISR_LOCKING
struct rm_priotracker tracker;
#endif
struct netisr_workstream *nwsp;
struct netisr_work *npwp;
int dosignal, error;
u_int cpuid;
/*
* If direct dispatch is entirely disabled, fall back on queueing.
*/
if (!netisr_direct)
return (netisr_queue_src(proto, source, m));
KASSERT(proto < NETISR_MAXPROT,
("%s: invalid proto %u", __func__, proto));
#ifdef NETISR_LOCKING
NETISR_RLOCK(&tracker);
#endif
KASSERT(netisr_proto[proto].np_handler != NULL,
("%s: invalid proto %u", __func__, proto));
/*
* If direct dispatch is forced, then unconditionally dispatch
* without a formal CPU selection. Borrow the current CPU's stats,
* even if there's no worker on it. In this case we don't update
* nws_flags because all netisr processing will be source ordered due
* to always being forced to directly dispatch.
*/
if (netisr_direct_force) {
nwsp = DPCPU_PTR(nws);
npwp = &nwsp->nws_work[proto];
npwp->nw_dispatched++;
npwp->nw_handled++;
netisr_proto[proto].np_handler(m);
error = 0;
goto out_unlock;
}
/*
* Otherwise, we execute in a hybrid mode where we will try to direct
* dispatch if we're on the right CPU and the netisr worker isn't
* already running.
*/
m = netisr_select_cpuid(&netisr_proto[proto], source, m, &cpuid);
if (m == NULL) {
error = ENOBUFS;
goto out_unlock;
}
KASSERT(!CPU_ABSENT(cpuid), ("%s: CPU %u absent", __func__, cpuid));
sched_pin();
if (cpuid != curcpu)
goto queue_fallback;
nwsp = DPCPU_PTR(nws);
npwp = &nwsp->nws_work[proto];
/*-
* We are willing to direct dispatch only if three conditions hold:
*
* (1) The netisr worker isn't already running,
* (2) Another thread isn't already directly dispatching, and
* (3) The netisr hasn't already been woken up.
*/
NWS_LOCK(nwsp);
if (nwsp->nws_flags & (NWS_RUNNING | NWS_DISPATCHING | NWS_SCHEDULED)) {
error = netisr_queue_workstream(nwsp, proto, npwp, m,
&dosignal);
NWS_UNLOCK(nwsp);
if (dosignal)
NWS_SIGNAL(nwsp);
goto out_unpin;
}
/*
* The current thread is now effectively the netisr worker, so set
* the dispatching flag to prevent concurrent processing of the
* stream from another thread (even the netisr worker), which could
* otherwise lead to effective misordering of the stream.
*/
nwsp->nws_flags |= NWS_DISPATCHING;
NWS_UNLOCK(nwsp);
netisr_proto[proto].np_handler(m);
NWS_LOCK(nwsp);
nwsp->nws_flags &= ~NWS_DISPATCHING;
npwp->nw_handled++;
npwp->nw_hybrid_dispatched++;
/*
* If other work was enqueued by another thread while we were direct
* dispatching, we need to signal the netisr worker to do that work.
* In the future, we might want to do some of that work in the
* current thread, rather than trigger further context switches. If
* so, we'll want to establish a reasonable bound on the work done in
* the "borrowed" context.
*/
if (nwsp->nws_pendingbits != 0) {
nwsp->nws_flags |= NWS_SCHEDULED;
dosignal = 1;
} else
dosignal = 0;
NWS_UNLOCK(nwsp);
if (dosignal)
NWS_SIGNAL(nwsp);
error = 0;
goto out_unpin;
queue_fallback:
error = netisr_queue_internal(proto, m, cpuid);
out_unpin:
sched_unpin();
out_unlock:
#ifdef NETISR_LOCKING
NETISR_RUNLOCK(&tracker);
#endif
return (error);
}
int
netisr_dispatch(u_int proto, struct mbuf *m)
{
return (netisr_dispatch_src(proto, 0, m));
}
#ifdef DEVICE_POLLING
/*
* Kernel polling borrows a netisr thread to run interface polling in; this
* function allows kernel polling to request that the netisr thread be
* scheduled even if no packets are pending for protocols.
*/
void
netisr_sched_poll(void)
{
struct netisr_workstream *nwsp;
nwsp = DPCPU_ID_PTR(nws_array[0], nws);
NWS_SIGNAL(nwsp);
}
#endif
static void
netisr_start_swi(u_int cpuid, struct pcpu *pc)
{
char swiname[12];
struct netisr_workstream *nwsp;
int error;
KASSERT(!CPU_ABSENT(cpuid), ("%s: CPU %u absent", __func__, cpuid));
nwsp = DPCPU_ID_PTR(cpuid, nws);
mtx_init(&nwsp->nws_mtx, "netisr_mtx", NULL, MTX_DEF);
nwsp->nws_cpu = cpuid;
snprintf(swiname, sizeof(swiname), "netisr %u", cpuid);
error = swi_add(&nwsp->nws_intr_event, swiname, swi_net, nwsp,
SWI_NET, INTR_MPSAFE, &nwsp->nws_swi_cookie);
if (error)
panic("%s: swi_add %d", __func__, error);
pc->pc_netisr = nwsp->nws_intr_event;
if (netisr_bindthreads) {
error = intr_event_bind(nwsp->nws_intr_event, cpuid);
if (error != 0)
printf("%s: cpu %u: intr_event_bind: %d", __func__,
cpuid, error);
}
NETISR_WLOCK();
nws_array[nws_count] = nwsp->nws_cpu;
nws_count++;
NETISR_WUNLOCK();
}
/*
* Initialize the netisr subsystem. We rely on BSS and static initialization
* of most fields in global data structures.
*
* Start a worker thread for the boot CPU so that we can support network
* traffic immediately in case the network stack is used before additional
* CPUs are started (for example, diskless boot).
*/
static void
netisr_init(void *arg)
{
KASSERT(curcpu == 0, ("%s: not on CPU 0", __func__));
NETISR_LOCK_INIT();
if (netisr_maxthreads < 1)
netisr_maxthreads = 1;
if (netisr_maxthreads > mp_ncpus) {
printf("netisr_init: forcing maxthreads from %d to %d\n",
netisr_maxthreads, mp_ncpus);
netisr_maxthreads = mp_ncpus;
}
if (netisr_defaultqlimit > netisr_maxqlimit) {
printf("netisr_init: forcing defaultqlimit from %d to %d\n",
netisr_defaultqlimit, netisr_maxqlimit);
netisr_defaultqlimit = netisr_maxqlimit;
}
#ifdef DEVICE_POLLING
/*
* The device polling code is not yet aware of how to deal with
* multiple netisr threads, so for the time being compiling in device
* polling disables parallel netisr workers.
*/
if (netisr_maxthreads != 1 || netisr_bindthreads != 0) {
printf("netisr_init: forcing maxthreads to 1 and "
"bindthreads to 0 for device polling\n");
netisr_maxthreads = 1;
netisr_bindthreads = 0;
}
#endif
netisr_start_swi(curcpu, pcpu_find(curcpu));
}
SYSINIT(netisr_init, SI_SUB_SOFTINTR, SI_ORDER_FIRST, netisr_init, NULL);
/*
* Start worker threads for additional CPUs. No attempt to gracefully handle
* work reassignment, we don't yet support dynamic reconfiguration.
*/
static void
netisr_start(void *arg)
{
struct pcpu *pc;
SLIST_FOREACH(pc, &cpuhead, pc_allcpu) {
if (nws_count >= netisr_maxthreads)
break;
/* XXXRW: Is skipping absent CPUs still required here? */
if (CPU_ABSENT(pc->pc_cpuid))
continue;
/* Worker will already be present for boot CPU. */
if (pc->pc_netisr != NULL)
continue;
netisr_start_swi(pc->pc_cpuid, pc);
}
}
SYSINIT(netisr_start, SI_SUB_SMP, SI_ORDER_MIDDLE, netisr_start, NULL);
/*
* Sysctl monitoring for netisr: query a list of registered protocols.
*/
static int
sysctl_netisr_proto(SYSCTL_HANDLER_ARGS)
{
struct rm_priotracker tracker;
struct sysctl_netisr_proto *snpp, *snp_array;
struct netisr_proto *npp;
u_int counter, proto;
int error;
if (req->newptr != NULL)
return (EINVAL);
snp_array = malloc(sizeof(*snp_array) * NETISR_MAXPROT, M_TEMP,
M_ZERO | M_WAITOK);
counter = 0;
NETISR_RLOCK(&tracker);
for (proto = 0; proto < NETISR_MAXPROT; proto++) {
npp = &netisr_proto[proto];
if (npp->np_name == NULL)
continue;
snpp = &snp_array[counter];
snpp->snp_version = sizeof(*snpp);
strlcpy(snpp->snp_name, npp->np_name, NETISR_NAMEMAXLEN);
snpp->snp_proto = proto;
snpp->snp_qlimit = npp->np_qlimit;
snpp->snp_policy = npp->np_policy;
if (npp->np_m2flow != NULL)
snpp->snp_flags |= NETISR_SNP_FLAGS_M2FLOW;
if (npp->np_m2cpuid != NULL)
snpp->snp_flags |= NETISR_SNP_FLAGS_M2CPUID;
if (npp->np_drainedcpu != NULL)
snpp->snp_flags |= NETISR_SNP_FLAGS_DRAINEDCPU;
counter++;
}
NETISR_RUNLOCK(&tracker);
KASSERT(counter <= NETISR_MAXPROT,
("sysctl_netisr_proto: counter too big (%d)", counter));
error = SYSCTL_OUT(req, snp_array, sizeof(*snp_array) * counter);
free(snp_array, M_TEMP);
return (error);
}
SYSCTL_PROC(_net_isr, OID_AUTO, proto,
CTLFLAG_RD|CTLTYPE_STRUCT|CTLFLAG_MPSAFE, 0, 0, sysctl_netisr_proto,
"S,sysctl_netisr_proto",
"Return list of protocols registered with netisr");
/*
* Sysctl monitoring for netisr: query a list of workstreams.
*/
static int
sysctl_netisr_workstream(SYSCTL_HANDLER_ARGS)
{
struct rm_priotracker tracker;
struct sysctl_netisr_workstream *snwsp, *snws_array;
struct netisr_workstream *nwsp;
u_int counter, cpuid;
int error;
if (req->newptr != NULL)
return (EINVAL);
snws_array = malloc(sizeof(*snws_array) * MAXCPU, M_TEMP,
M_ZERO | M_WAITOK);
counter = 0;
NETISR_RLOCK(&tracker);
for (cpuid = 0; cpuid < MAXCPU; cpuid++) {
if (CPU_ABSENT(cpuid))
continue;
nwsp = DPCPU_ID_PTR(cpuid, nws);
if (nwsp->nws_intr_event == NULL)
continue;
NWS_LOCK(nwsp);
snwsp = &snws_array[counter];
snwsp->snws_version = sizeof(*snwsp);
/*
* For now, we equate workstream IDs and CPU IDs in the
* kernel, but expose them independently to userspace in case
* that assumption changes in the future.
*/
snwsp->snws_wsid = cpuid;
snwsp->snws_cpu = cpuid;
if (nwsp->nws_intr_event != NULL)
snwsp->snws_flags |= NETISR_SNWS_FLAGS_INTR;
NWS_UNLOCK(nwsp);
counter++;
}
NETISR_RUNLOCK(&tracker);
KASSERT(counter <= MAXCPU,
("sysctl_netisr_workstream: counter too big (%d)", counter));
error = SYSCTL_OUT(req, snws_array, sizeof(*snws_array) * counter);
free(snws_array, M_TEMP);
return (error);
}
SYSCTL_PROC(_net_isr, OID_AUTO, workstream,
CTLFLAG_RD|CTLTYPE_STRUCT|CTLFLAG_MPSAFE, 0, 0, sysctl_netisr_workstream,
"S,sysctl_netisr_workstream",
"Return list of workstreams implemented by netisr");
/*
* Sysctl monitoring for netisr: query per-protocol data across all
* workstreams.
*/
static int
sysctl_netisr_work(SYSCTL_HANDLER_ARGS)
{
struct rm_priotracker tracker;
struct sysctl_netisr_work *snwp, *snw_array;
struct netisr_workstream *nwsp;
struct netisr_proto *npp;
struct netisr_work *nwp;
u_int counter, cpuid, proto;
int error;
if (req->newptr != NULL)
return (EINVAL);
snw_array = malloc(sizeof(*snw_array) * MAXCPU * NETISR_MAXPROT,
M_TEMP, M_ZERO | M_WAITOK);
counter = 0;
NETISR_RLOCK(&tracker);
for (cpuid = 0; cpuid < MAXCPU; cpuid++) {
if (CPU_ABSENT(cpuid))
continue;
nwsp = DPCPU_ID_PTR(cpuid, nws);
if (nwsp->nws_intr_event == NULL)
continue;
NWS_LOCK(nwsp);
for (proto = 0; proto < NETISR_MAXPROT; proto++) {
npp = &netisr_proto[proto];
if (npp->np_name == NULL)
continue;
nwp = &nwsp->nws_work[proto];
snwp = &snw_array[counter];
snwp->snw_version = sizeof(*snwp);
snwp->snw_wsid = cpuid; /* See comment above. */
snwp->snw_proto = proto;
snwp->snw_len = nwp->nw_len;
snwp->snw_watermark = nwp->nw_watermark;
snwp->snw_dispatched = nwp->nw_dispatched;
snwp->snw_hybrid_dispatched =
nwp->nw_hybrid_dispatched;
snwp->snw_qdrops = nwp->nw_qdrops;
snwp->snw_queued = nwp->nw_queued;
snwp->snw_handled = nwp->nw_handled;
counter++;
}
NWS_UNLOCK(nwsp);
}
KASSERT(counter <= MAXCPU * NETISR_MAXPROT,
("sysctl_netisr_work: counter too big (%d)", counter));
NETISR_RUNLOCK(&tracker);
error = SYSCTL_OUT(req, snw_array, sizeof(*snw_array) * counter);
free(snw_array, M_TEMP);
return (error);
}
SYSCTL_PROC(_net_isr, OID_AUTO, work,
CTLFLAG_RD|CTLTYPE_STRUCT|CTLFLAG_MPSAFE, 0, 0, sysctl_netisr_work,
"S,sysctl_netisr_work",
"Return list of per-workstream, per-protocol work in netisr");
#ifdef DDB
DB_SHOW_COMMAND(netisr, db_show_netisr)
{
struct netisr_workstream *nwsp;
struct netisr_work *nwp;
int first, proto;
u_int cpuid;
db_printf("%3s %6s %5s %5s %5s %8s %8s %8s %8s\n", "CPU", "Proto",
"Len", "WMark", "Max", "Disp", "HDisp", "Drop", "Queue");
for (cpuid = 0; cpuid <= mp_maxid; cpuid++) {
if (CPU_ABSENT(cpuid))
continue;
nwsp = DPCPU_ID_PTR(cpuid, nws);
if (nwsp->nws_intr_event == NULL)
continue;
first = 1;
for (proto = 0; proto < NETISR_MAXPROT; proto++) {
if (netisr_proto[proto].np_handler == NULL)
continue;
nwp = &nwsp->nws_work[proto];
if (first) {
db_printf("%3d ", cpuid);
first = 0;
} else
db_printf("%3s ", "");
db_printf(
"%6s %5d %5d %5d %8ju %8ju %8ju %8ju\n",
netisr_proto[proto].np_name, nwp->nw_len,
nwp->nw_watermark, nwp->nw_qlimit,
nwp->nw_dispatched, nwp->nw_hybrid_dispatched,
nwp->nw_qdrops, nwp->nw_queued);
}
}
}
#endif