1
0
mirror of https://git.FreeBSD.org/src.git synced 2024-12-25 11:37:56 +00:00
freebsd/sys/dev/an/if_an.c

2293 lines
54 KiB
C

/*
* Copyright (c) 1997, 1998, 1999
* Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*
* $FreeBSD$
*/
/*
* Aironet 4500/4800 802.11 PCMCIA/ISA/PCI driver for FreeBSD.
*
* Written by Bill Paul <wpaul@ctr.columbia.edu>
* Electrical Engineering Department
* Columbia University, New York City
*/
/*
* The Aironet 4500/4800 series cards come in PCMCIA, ISA and PCI form.
* This driver supports all three device types (PCI devices are supported
* through an extra PCI shim: /sys/pci/if_an_p.c). ISA devices can be
* supported either using hard-coded IO port/IRQ settings or via Plug
* and Play. The 4500 series devices support 1Mbps and 2Mbps data rates.
* The 4800 devices support 1, 2, 5.5 and 11Mbps rates.
*
* Like the WaveLAN/IEEE cards, the Aironet NICs are all essentially
* PCMCIA devices. The ISA and PCI cards are a combination of a PCMCIA
* device and a PCMCIA to ISA or PCMCIA to PCI adapter card. There are
* a couple of important differences though:
*
* - Lucent ISA card looks to the host like a PCMCIA controller with
* a PCMCIA WaveLAN card inserted. This means that even desktop
* machines need to be configured with PCMCIA support in order to
* use WaveLAN/IEEE ISA cards. The Aironet cards on the other hand
* actually look like normal ISA and PCI devices to the host, so
* no PCMCIA controller support is needed
*
* The latter point results in a small gotcha. The Aironet PCMCIA
* cards can be configured for one of two operating modes depending
* on how the Vpp1 and Vpp2 programming voltages are set when the
* card is activated. In order to put the card in proper PCMCIA
* operation (where the CIS table is visible and the interface is
* programmed for PCMCIA operation), both Vpp1 and Vpp2 have to be
* set to 5 volts. FreeBSD by default doesn't set the Vpp voltages,
* which leaves the card in ISA/PCI mode, which prevents it from
* being activated as an PCMCIA device.
*
* Note that some PCMCIA controller software packages for Windows NT
* fail to set the voltages as well.
*
* The Aironet devices can operate in both station mode and access point
* mode. Typically, when programmed for station mode, the card can be set
* to automatically perform encapsulation/decapsulation of Ethernet II
* and 802.3 frames within 802.11 frames so that the host doesn't have
* to do it itself. This driver doesn't program the card that way: the
* driver handles all of the encapsulation/decapsulation itself.
*/
#include "opt_inet.h"
#ifdef INET
#define ANCACHE /* enable signal strength cache */
#endif
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/proc.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#ifdef ANCACHE
#include <sys/syslog.h>
#include <sys/sysctl.h>
#endif
#include <sys/module.h>
#include <sys/sysctl.h>
#include <sys/bus.h>
#include <machine/bus.h>
#include <sys/rman.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <machine/resource.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_types.h>
#include <net/if_ieee80211.h>
#include <net/if_media.h>
#ifdef INET
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#endif
#include <net/bpf.h>
#include <machine/md_var.h>
#include <dev/an/if_aironet_ieee.h>
#include <dev/an/if_anreg.h>
#if !defined(lint)
static const char rcsid[] =
"$FreeBSD$";
#endif
/* These are global because we need them in sys/pci/if_an_p.c. */
static void an_reset __P((struct an_softc *));
static int an_ioctl __P((struct ifnet *, u_long, caddr_t));
static void an_init __P((void *));
static int an_init_tx_ring __P((struct an_softc *));
static void an_start __P((struct ifnet *));
static void an_watchdog __P((struct ifnet *));
static void an_rxeof __P((struct an_softc *));
static void an_txeof __P((struct an_softc *, int));
static void an_promisc __P((struct an_softc *, int));
static int an_cmd __P((struct an_softc *, int, int));
static int an_read_record __P((struct an_softc *, struct an_ltv_gen *));
static int an_write_record __P((struct an_softc *, struct an_ltv_gen *));
static int an_read_data __P((struct an_softc *, int,
int, caddr_t, int));
static int an_write_data __P((struct an_softc *, int,
int, caddr_t, int));
static int an_seek __P((struct an_softc *, int, int, int));
static int an_alloc_nicmem __P((struct an_softc *, int, int *));
static void an_stats_update __P((void *));
static void an_setdef __P((struct an_softc *, struct an_req *));
#ifdef ANCACHE
static void an_cache_store __P((struct an_softc *, struct ether_header *,
struct mbuf *, unsigned short));
#endif
static void an_dump_record __P((struct an_softc *,struct an_ltv_gen *,
char *));
static int an_media_change __P((struct ifnet *));
static void an_media_status __P((struct ifnet *, struct ifmediareq *));
static int an_dump = 0;
static char an_conf[256];
/* sysctl vars */
SYSCTL_NODE(_machdep, OID_AUTO, an, CTLFLAG_RD, 0, "dump RID");
static int
sysctl_an_dump(SYSCTL_HANDLER_ARGS)
{
int error, r, last;
char *s = an_conf;
last = an_dump;
bzero(an_conf, sizeof(an_conf));
switch (an_dump) {
case 0:
strcat(an_conf, "off");
break;
case 1:
strcat(an_conf, "type");
break;
case 2:
strcat(an_conf, "dump");
break;
default:
snprintf(an_conf, 5, "%x", an_dump);
break;
}
error = sysctl_handle_string(oidp, an_conf, sizeof(an_conf), req);
if (strncmp(an_conf,"off", 4) == 0) {
an_dump = 0;
}
if (strncmp(an_conf,"dump", 4) == 0) {
an_dump = 1;
}
if (strncmp(an_conf,"type", 4) == 0) {
an_dump = 2;
}
if (*s == 'f') {
r = 0;
for (;;s++) {
if ((*s >= '0') && (*s <= '9')) {
r = r * 16 + (*s - '0');
} else if ((*s >= 'a') && (*s <= 'f')) {
r = r * 16 + (*s - 'a' + 10);
} else {
break;
}
}
an_dump = r;
}
if (an_dump != last)
printf("Sysctl changed for Aironet driver\n");
return error;
}
SYSCTL_PROC(_machdep, OID_AUTO, an_dump, CTLTYPE_STRING | CTLFLAG_RW,
0, sizeof(an_conf), sysctl_an_dump, "A", "");
/*
* We probe for an Aironet 4500/4800 card by attempting to
* read the default SSID list. On reset, the first entry in
* the SSID list will contain the name "tsunami." If we don't
* find this, then there's no card present.
*/
int
an_probe(dev)
device_t dev;
{
struct an_softc *sc = device_get_softc(dev);
struct an_ltv_ssidlist ssid;
int error;
bzero((char *)&ssid, sizeof(ssid));
error = an_alloc_port(dev, 0, AN_IOSIZ);
if (error != 0)
return (0);
/* can't do autoprobing */
if (rman_get_start(sc->port_res) == -1)
return(0);
/*
* We need to fake up a softc structure long enough
* to be able to issue commands and call some of the
* other routines.
*/
sc->an_bhandle = rman_get_bushandle(sc->port_res);
sc->an_btag = rman_get_bustag(sc->port_res);
sc->an_unit = device_get_unit(dev);
ssid.an_len = sizeof(ssid);
ssid.an_type = AN_RID_SSIDLIST;
/* Make sure interrupts are disabled. */
CSR_WRITE_2(sc, AN_INT_EN, 0);
CSR_WRITE_2(sc, AN_EVENT_ACK, 0xFFFF);
an_reset(sc);
if (an_cmd(sc, AN_CMD_READCFG, 0))
return(0);
if (an_read_record(sc, (struct an_ltv_gen *)&ssid))
return(0);
/* See if the ssid matches what we expect ... but doesn't have to */
if (strcmp(ssid.an_ssid1, AN_DEF_SSID))
return(0);
return(AN_IOSIZ);
}
/*
* Allocate a port resource with the given resource id.
*/
int
an_alloc_port(dev, rid, size)
device_t dev;
int rid;
int size;
{
struct an_softc *sc = device_get_softc(dev);
struct resource *res;
res = bus_alloc_resource(dev, SYS_RES_IOPORT, &rid,
0ul, ~0ul, size, RF_ACTIVE);
if (res) {
sc->port_rid = rid;
sc->port_res = res;
return (0);
} else {
return (ENOENT);
}
}
/*
* Allocate an irq resource with the given resource id.
*/
int
an_alloc_irq(dev, rid, flags)
device_t dev;
int rid;
int flags;
{
struct an_softc *sc = device_get_softc(dev);
struct resource *res;
res = bus_alloc_resource(dev, SYS_RES_IRQ, &rid,
0ul, ~0ul, 1, (RF_ACTIVE | flags));
if (res) {
sc->irq_rid = rid;
sc->irq_res = res;
return (0);
} else {
return (ENOENT);
}
}
/*
* Release all resources
*/
void
an_release_resources(dev)
device_t dev;
{
struct an_softc *sc = device_get_softc(dev);
if (sc->port_res) {
bus_release_resource(dev, SYS_RES_IOPORT,
sc->port_rid, sc->port_res);
sc->port_res = 0;
}
if (sc->irq_res) {
bus_release_resource(dev, SYS_RES_IRQ,
sc->irq_rid, sc->irq_res);
sc->irq_res = 0;
}
}
int
an_attach(sc, unit, flags)
struct an_softc *sc;
int unit;
int flags;
{
struct ifnet *ifp = &sc->arpcom.ac_if;
mtx_init(&sc->an_mtx, device_get_nameunit(sc->an_dev), MTX_DEF |
MTX_RECURSE);
AN_LOCK(sc);
sc->an_gone = 0;
sc->an_associated = 0;
sc->an_monitor = 0;
sc->an_was_monitor = 0;
/* Reset the NIC. */
an_reset(sc);
/* Load factory config */
if (an_cmd(sc, AN_CMD_READCFG, 0)) {
printf("an%d: failed to load config data\n", sc->an_unit);
AN_UNLOCK(sc);
mtx_destroy(&sc->an_mtx);
return(EIO);
}
/* Read the current configuration */
sc->an_config.an_type = AN_RID_GENCONFIG;
sc->an_config.an_len = sizeof(struct an_ltv_genconfig);
if (an_read_record(sc, (struct an_ltv_gen *)&sc->an_config)) {
printf("an%d: read record failed\n", sc->an_unit);
AN_UNLOCK(sc);
mtx_destroy(&sc->an_mtx);
return(EIO);
}
/* Read the card capabilities */
sc->an_caps.an_type = AN_RID_CAPABILITIES;
sc->an_caps.an_len = sizeof(struct an_ltv_caps);
if (an_read_record(sc, (struct an_ltv_gen *)&sc->an_caps)) {
printf("an%d: read record failed\n", sc->an_unit);
AN_UNLOCK(sc);
mtx_destroy(&sc->an_mtx);
return(EIO);
}
/* Read ssid list */
sc->an_ssidlist.an_type = AN_RID_SSIDLIST;
sc->an_ssidlist.an_len = sizeof(struct an_ltv_ssidlist);
if (an_read_record(sc, (struct an_ltv_gen *)&sc->an_ssidlist)) {
printf("an%d: read record failed\n", sc->an_unit);
AN_UNLOCK(sc);
mtx_destroy(&sc->an_mtx);
return(EIO);
}
/* Read AP list */
sc->an_aplist.an_type = AN_RID_APLIST;
sc->an_aplist.an_len = sizeof(struct an_ltv_aplist);
if (an_read_record(sc, (struct an_ltv_gen *)&sc->an_aplist)) {
printf("an%d: read record failed\n", sc->an_unit);
AN_UNLOCK(sc);
mtx_destroy(&sc->an_mtx);
return(EIO);
}
bcopy((char *)&sc->an_caps.an_oemaddr,
(char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
printf("an%d: Ethernet address: %6D\n", sc->an_unit,
sc->arpcom.ac_enaddr, ":");
ifp->if_softc = sc;
ifp->if_unit = sc->an_unit = unit;
ifp->if_name = "an";
ifp->if_mtu = ETHERMTU;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = an_ioctl;
ifp->if_output = ether_output;
ifp->if_start = an_start;
ifp->if_watchdog = an_watchdog;
ifp->if_init = an_init;
ifp->if_baudrate = 10000000;
ifp->if_snd.ifq_maxlen = IFQ_MAXLEN;
bzero(sc->an_config.an_nodename, sizeof(sc->an_config.an_nodename));
bcopy(AN_DEFAULT_NODENAME, sc->an_config.an_nodename,
sizeof(AN_DEFAULT_NODENAME) - 1);
bzero(sc->an_ssidlist.an_ssid1, sizeof(sc->an_ssidlist.an_ssid1));
bcopy(AN_DEFAULT_NETNAME, sc->an_ssidlist.an_ssid1,
sizeof(AN_DEFAULT_NETNAME) - 1);
sc->an_ssidlist.an_ssid1_len = strlen(AN_DEFAULT_NETNAME);
sc->an_config.an_opmode =
AN_OPMODE_INFRASTRUCTURE_STATION;
sc->an_tx_rate = 0;
bzero((char *)&sc->an_stats, sizeof(sc->an_stats));
ifmedia_init(&sc->an_ifmedia, 0, an_media_change, an_media_status);
#define ADD(m, c) ifmedia_add(&sc->an_ifmedia, (m), (c), NULL)
ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS1,
IFM_IEEE80211_ADHOC, 0), 0);
ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS1, 0, 0), 0);
ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS2,
IFM_IEEE80211_ADHOC, 0), 0);
ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS2, 0, 0), 0);
if (sc->an_caps.an_rates[2] == AN_RATE_5_5MBPS) {
ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS5,
IFM_IEEE80211_ADHOC, 0), 0);
ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS5, 0, 0), 0);
}
if (sc->an_caps.an_rates[3] == AN_RATE_11MBPS) {
ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS11,
IFM_IEEE80211_ADHOC, 0), 0);
ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS11, 0, 0), 0);
}
ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO,
IFM_IEEE80211_ADHOC, 0), 0);
ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, 0, 0), 0);
#undef ADD
ifmedia_set(&sc->an_ifmedia, IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO,
0, 0));
/*
* Call MI attach routine.
*/
ether_ifattach(ifp, ETHER_BPF_SUPPORTED);
callout_handle_init(&sc->an_stat_ch);
AN_UNLOCK(sc);
return(0);
}
static void
an_rxeof(sc)
struct an_softc *sc;
{
struct ifnet *ifp;
struct ether_header *eh;
struct ieee80211_frame *ih;
struct an_rxframe rx_frame;
struct an_rxframe_802_3 rx_frame_802_3;
struct mbuf *m;
int len, id, error = 0;
int ieee80211_header_len;
u_char *bpf_buf;
u_short fc1;
ifp = &sc->arpcom.ac_if;
id = CSR_READ_2(sc, AN_RX_FID);
if (sc->an_monitor && (ifp->if_flags & IFF_PROMISC)) {
/* read raw 802.11 packet */
bpf_buf = sc->buf_802_11;
/* read header */
if (an_read_data(sc, id, 0x0, (caddr_t)&rx_frame,
sizeof(rx_frame))) {
ifp->if_ierrors++;
return;
}
/*
* skip beacon by default since this increases the
* system load a lot
*/
if (!(sc->an_monitor & AN_MONITOR_INCLUDE_BEACON) &&
(rx_frame.an_frame_ctl & IEEE80211_FC0_SUBTYPE_BEACON)) {
return;
}
if (sc->an_monitor & AN_MONITOR_AIRONET_HEADER) {
len = rx_frame.an_rx_payload_len
+ sizeof(rx_frame);
/* Check for insane frame length */
if (len > sizeof(sc->buf_802_11)) {
printf("an%d: oversized packet received (%d, %d)\n",
sc->an_unit, len, MCLBYTES);
ifp->if_ierrors++;
return;
}
bcopy((char *)&rx_frame,
bpf_buf, sizeof(rx_frame));
error = an_read_data(sc, id, sizeof(rx_frame),
(caddr_t)bpf_buf+sizeof(rx_frame),
rx_frame.an_rx_payload_len);
} else {
fc1=rx_frame.an_frame_ctl >> 8;
ieee80211_header_len = sizeof(struct ieee80211_frame);
if ((fc1 & IEEE80211_FC1_DIR_TODS) &&
(fc1 & IEEE80211_FC1_DIR_FROMDS)) {
ieee80211_header_len += ETHER_ADDR_LEN;
}
len = rx_frame.an_rx_payload_len
+ ieee80211_header_len;
/* Check for insane frame length */
if (len > sizeof(sc->buf_802_11)) {
printf("an%d: oversized packet received (%d, %d)\n",
sc->an_unit, len, MCLBYTES);
ifp->if_ierrors++;
return;
}
ih = (struct ieee80211_frame *)bpf_buf;
bcopy((char *)&rx_frame.an_frame_ctl,
(char *)ih, ieee80211_header_len);
error = an_read_data(sc, id, sizeof(rx_frame) +
rx_frame.an_gaplen,
(caddr_t)ih +ieee80211_header_len,
rx_frame.an_rx_payload_len);
}
/* dump raw 802.11 packet to bpf and skip ip stack */
if (ifp->if_bpf != NULL) {
bpf_tap(ifp, bpf_buf, len);
}
} else {
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL) {
ifp->if_ierrors++;
return;
}
MCLGET(m, M_DONTWAIT);
if (!(m->m_flags & M_EXT)) {
m_freem(m);
ifp->if_ierrors++;
return;
}
m->m_pkthdr.rcvif = ifp;
/* Read Ethenet encapsulated packet */
#ifdef ANCACHE
/* Read NIC frame header */
if (an_read_data(sc, id, 0, (caddr_t) & rx_frame, sizeof(rx_frame))) {
ifp->if_ierrors++;
return;
}
#endif
/* Read in the 802_3 frame header */
if (an_read_data(sc, id, 0x34, (caddr_t) & rx_frame_802_3,
sizeof(rx_frame_802_3))) {
ifp->if_ierrors++;
return;
}
if (rx_frame_802_3.an_rx_802_3_status != 0) {
ifp->if_ierrors++;
return;
}
/* Check for insane frame length */
if (rx_frame_802_3.an_rx_802_3_payload_len > MCLBYTES) {
ifp->if_ierrors++;
return;
}
m->m_pkthdr.len = m->m_len =
rx_frame_802_3.an_rx_802_3_payload_len + 12;
eh = mtod(m, struct ether_header *);
bcopy((char *)&rx_frame_802_3.an_rx_dst_addr,
(char *)&eh->ether_dhost, ETHER_ADDR_LEN);
bcopy((char *)&rx_frame_802_3.an_rx_src_addr,
(char *)&eh->ether_shost, ETHER_ADDR_LEN);
/* in mbuf header type is just before payload */
error = an_read_data(sc, id, 0x44, (caddr_t)&(eh->ether_type),
rx_frame_802_3.an_rx_802_3_payload_len);
if (error) {
m_freem(m);
ifp->if_ierrors++;
return;
}
ifp->if_ipackets++;
/* Receive packet. */
m_adj(m, sizeof(struct ether_header));
#ifdef ANCACHE
an_cache_store(sc, eh, m, rx_frame.an_rx_signal_strength);
#endif
ether_input(ifp, eh, m);
}
}
static void
an_txeof(sc, status)
struct an_softc *sc;
int status;
{
struct ifnet *ifp;
int id, i;
ifp = &sc->arpcom.ac_if;
ifp->if_timer = 0;
ifp->if_flags &= ~IFF_OACTIVE;
id = CSR_READ_2(sc, AN_TX_CMP_FID);
if (status & AN_EV_TX_EXC) {
ifp->if_oerrors++;
} else
ifp->if_opackets++;
for (i = 0; i < AN_TX_RING_CNT; i++) {
if (id == sc->an_rdata.an_tx_ring[i]) {
sc->an_rdata.an_tx_ring[i] = 0;
break;
}
}
AN_INC(sc->an_rdata.an_tx_cons, AN_TX_RING_CNT);
return;
}
/*
* We abuse the stats updater to check the current NIC status. This
* is important because we don't want to allow transmissions until
* the NIC has synchronized to the current cell (either as the master
* in an ad-hoc group, or as a station connected to an access point).
*/
void
an_stats_update(xsc)
void *xsc;
{
struct an_softc *sc;
struct ifnet *ifp;
sc = xsc;
AN_LOCK(sc);
ifp = &sc->arpcom.ac_if;
sc->an_status.an_type = AN_RID_STATUS;
sc->an_status.an_len = sizeof(struct an_ltv_status);
an_read_record(sc, (struct an_ltv_gen *)&sc->an_status);
if (sc->an_status.an_opmode & AN_STATUS_OPMODE_IN_SYNC)
sc->an_associated = 1;
else
sc->an_associated = 0;
/* Don't do this while we're transmitting */
if (ifp->if_flags & IFF_OACTIVE) {
sc->an_stat_ch = timeout(an_stats_update, sc, hz);
AN_UNLOCK(sc);
return;
}
sc->an_stats.an_len = sizeof(struct an_ltv_stats);
sc->an_stats.an_type = AN_RID_32BITS_CUM;
an_read_record(sc, (struct an_ltv_gen *)&sc->an_stats.an_len);
sc->an_stat_ch = timeout(an_stats_update, sc, hz);
AN_UNLOCK(sc);
return;
}
void
an_intr(xsc)
void *xsc;
{
struct an_softc *sc;
struct ifnet *ifp;
u_int16_t status;
sc = (struct an_softc*)xsc;
AN_LOCK(sc);
if (sc->an_gone) {
AN_UNLOCK(sc);
return;
}
ifp = &sc->arpcom.ac_if;
/* Disable interrupts. */
CSR_WRITE_2(sc, AN_INT_EN, 0);
status = CSR_READ_2(sc, AN_EVENT_STAT);
CSR_WRITE_2(sc, AN_EVENT_ACK, ~AN_INTRS);
if (status & AN_EV_AWAKE) {
CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_AWAKE);
}
if (status & AN_EV_LINKSTAT) {
if (CSR_READ_2(sc, AN_LINKSTAT) == AN_LINKSTAT_ASSOCIATED)
sc->an_associated = 1;
else
sc->an_associated = 0;
CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_LINKSTAT);
}
if (status & AN_EV_RX) {
an_rxeof(sc);
CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_RX);
}
if (status & AN_EV_TX) {
an_txeof(sc, status);
CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_TX);
}
if (status & AN_EV_TX_EXC) {
an_txeof(sc, status);
CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_TX_EXC);
}
if (status & AN_EV_ALLOC)
CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_ALLOC);
/* Re-enable interrupts. */
CSR_WRITE_2(sc, AN_INT_EN, AN_INTRS);
if ((ifp->if_flags & IFF_UP) && (ifp->if_snd.ifq_head != NULL))
an_start(ifp);
AN_UNLOCK(sc);
return;
}
static int
an_cmd(sc, cmd, val)
struct an_softc *sc;
int cmd;
int val;
{
int i, s = 0;
CSR_WRITE_2(sc, AN_PARAM0, val);
CSR_WRITE_2(sc, AN_PARAM1, 0);
CSR_WRITE_2(sc, AN_PARAM2, 0);
CSR_WRITE_2(sc, AN_COMMAND, cmd);
for (i = 0; i < AN_TIMEOUT; i++) {
if (CSR_READ_2(sc, AN_EVENT_STAT) & AN_EV_CMD)
break;
else {
if (CSR_READ_2(sc, AN_COMMAND) == cmd)
CSR_WRITE_2(sc, AN_COMMAND, cmd);
}
}
for (i = 0; i < AN_TIMEOUT; i++) {
CSR_READ_2(sc, AN_RESP0);
CSR_READ_2(sc, AN_RESP1);
CSR_READ_2(sc, AN_RESP2);
s = CSR_READ_2(sc, AN_STATUS);
if ((s & AN_STAT_CMD_CODE) == (cmd & AN_STAT_CMD_CODE))
break;
}
/* Ack the command */
CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_CMD);
if (CSR_READ_2(sc, AN_COMMAND) & AN_CMD_BUSY)
CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_CLR_STUCK_BUSY);
if (i == AN_TIMEOUT)
return(ETIMEDOUT);
return(0);
}
/*
* This reset sequence may look a little strange, but this is the
* most reliable method I've found to really kick the NIC in the
* head and force it to reboot correctly.
*/
static void
an_reset(sc)
struct an_softc *sc;
{
if (sc->an_gone)
return;
an_cmd(sc, AN_CMD_ENABLE, 0);
an_cmd(sc, AN_CMD_FW_RESTART, 0);
an_cmd(sc, AN_CMD_NOOP2, 0);
if (an_cmd(sc, AN_CMD_FORCE_SYNCLOSS, 0) == ETIMEDOUT)
printf("an%d: reset failed\n", sc->an_unit);
an_cmd(sc, AN_CMD_DISABLE, 0);
return;
}
/*
* Read an LTV record from the NIC.
*/
static int
an_read_record(sc, ltv)
struct an_softc *sc;
struct an_ltv_gen *ltv;
{
u_int16_t *ptr;
u_int8_t *ptr2;
int i, len;
if (ltv->an_len < 4 || ltv->an_type == 0)
return(EINVAL);
/* Tell the NIC to enter record read mode. */
if (an_cmd(sc, AN_CMD_ACCESS|AN_ACCESS_READ, ltv->an_type)) {
printf("an%d: RID access failed\n", sc->an_unit);
return(EIO);
}
/* Seek to the record. */
if (an_seek(sc, ltv->an_type, 0, AN_BAP1)) {
printf("an%d: seek to record failed\n", sc->an_unit);
return(EIO);
}
/*
* Read the length and record type and make sure they
* match what we expect (this verifies that we have enough
* room to hold all of the returned data).
* Length includes type but not length.
*/
len = CSR_READ_2(sc, AN_DATA1);
if (len > (ltv->an_len - 2)) {
printf("an%d: record length mismatch -- expected %d, "
"got %d for Rid %x\n", sc->an_unit,
ltv->an_len - 2, len, ltv->an_type);
len = ltv->an_len - 2;
} else {
ltv->an_len = len + 2;
}
/* Now read the data. */
len -= 2; /* skip the type */
ptr = &ltv->an_val;
for (i = len; i > 1; i -= 2)
*ptr++ = CSR_READ_2(sc, AN_DATA1);
if (i) {
ptr2 = (u_int8_t *)ptr;
*ptr2 = CSR_READ_1(sc, AN_DATA1);
}
if (an_dump)
an_dump_record(sc, ltv, "Read");
return(0);
}
/*
* Same as read, except we inject data instead of reading it.
*/
static int
an_write_record(sc, ltv)
struct an_softc *sc;
struct an_ltv_gen *ltv;
{
u_int16_t *ptr;
u_int8_t *ptr2;
int i, len;
if (an_dump)
an_dump_record(sc, ltv, "Write");
if (an_cmd(sc, AN_CMD_ACCESS|AN_ACCESS_READ, ltv->an_type))
return(EIO);
if (an_seek(sc, ltv->an_type, 0, AN_BAP1))
return(EIO);
/*
* Length includes type but not length.
*/
len = ltv->an_len - 2;
CSR_WRITE_2(sc, AN_DATA1, len);
len -= 2; /* skip the type */
ptr = &ltv->an_val;
for (i = len; i > 1; i -= 2)
CSR_WRITE_2(sc, AN_DATA1, *ptr++);
if (i) {
ptr2 = (u_int8_t *)ptr;
CSR_WRITE_1(sc, AN_DATA0, *ptr2);
}
if (an_cmd(sc, AN_CMD_ACCESS|AN_ACCESS_WRITE, ltv->an_type))
return(EIO);
return(0);
}
static void
an_dump_record(sc, ltv, string)
struct an_softc *sc;
struct an_ltv_gen *ltv;
char *string;
{
u_int8_t *ptr2;
int len;
int i;
int count = 0;
char buf[17], temp;
len = ltv->an_len - 4;
printf("an%d: RID %4x, Length %4d, Mode %s\n",
sc->an_unit, ltv->an_type, ltv->an_len - 4, string);
if (an_dump == 1 || (an_dump == ltv->an_type)) {
printf("an%d:\t", sc->an_unit);
bzero(buf,sizeof(buf));
ptr2 = (u_int8_t *)&ltv->an_val;
for (i = len; i > 0; i--) {
printf("%02x ", *ptr2);
temp = *ptr2++;
if (temp >= ' ' && temp <= '~')
buf[count] = temp;
else if (temp >= 'A' && temp <= 'Z')
buf[count] = temp;
else
buf[count] = '.';
if (++count == 16) {
count = 0;
printf("%s\n",buf);
printf("an%d:\t", sc->an_unit);
bzero(buf,sizeof(buf));
}
}
for (; count != 16; count++) {
printf(" ");
}
printf(" %s\n",buf);
}
}
static int
an_seek(sc, id, off, chan)
struct an_softc *sc;
int id, off, chan;
{
int i;
int selreg, offreg;
switch (chan) {
case AN_BAP0:
selreg = AN_SEL0;
offreg = AN_OFF0;
break;
case AN_BAP1:
selreg = AN_SEL1;
offreg = AN_OFF1;
break;
default:
printf("an%d: invalid data path: %x\n", sc->an_unit, chan);
return(EIO);
}
CSR_WRITE_2(sc, selreg, id);
CSR_WRITE_2(sc, offreg, off);
for (i = 0; i < AN_TIMEOUT; i++) {
if (!(CSR_READ_2(sc, offreg) & (AN_OFF_BUSY|AN_OFF_ERR)))
break;
}
if (i == AN_TIMEOUT)
return(ETIMEDOUT);
return(0);
}
static int
an_read_data(sc, id, off, buf, len)
struct an_softc *sc;
int id, off;
caddr_t buf;
int len;
{
int i;
u_int16_t *ptr;
u_int8_t *ptr2;
if (off != -1) {
if (an_seek(sc, id, off, AN_BAP1))
return(EIO);
}
ptr = (u_int16_t *)buf;
for (i = len; i > 1; i -= 2)
*ptr++ = CSR_READ_2(sc, AN_DATA1);
if (i) {
ptr2 = (u_int8_t *)ptr;
*ptr2 = CSR_READ_1(sc, AN_DATA1);
}
return(0);
}
static int
an_write_data(sc, id, off, buf, len)
struct an_softc *sc;
int id, off;
caddr_t buf;
int len;
{
int i;
u_int16_t *ptr;
u_int8_t *ptr2;
if (off != -1) {
if (an_seek(sc, id, off, AN_BAP0))
return(EIO);
}
ptr = (u_int16_t *)buf;
for (i = len; i > 1; i -= 2)
CSR_WRITE_2(sc, AN_DATA0, *ptr++);
if (i) {
ptr2 = (u_int8_t *)ptr;
CSR_WRITE_1(sc, AN_DATA0, *ptr2);
}
return(0);
}
/*
* Allocate a region of memory inside the NIC and zero
* it out.
*/
static int
an_alloc_nicmem(sc, len, id)
struct an_softc *sc;
int len;
int *id;
{
int i;
if (an_cmd(sc, AN_CMD_ALLOC_MEM, len)) {
printf("an%d: failed to allocate %d bytes on NIC\n",
sc->an_unit, len);
return(ENOMEM);
}
for (i = 0; i < AN_TIMEOUT; i++) {
if (CSR_READ_2(sc, AN_EVENT_STAT) & AN_EV_ALLOC)
break;
}
if (i == AN_TIMEOUT)
return(ETIMEDOUT);
CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_ALLOC);
*id = CSR_READ_2(sc, AN_ALLOC_FID);
if (an_seek(sc, *id, 0, AN_BAP0))
return(EIO);
for (i = 0; i < len / 2; i++)
CSR_WRITE_2(sc, AN_DATA0, 0);
return(0);
}
static void
an_setdef(sc, areq)
struct an_softc *sc;
struct an_req *areq;
{
struct sockaddr_dl *sdl;
struct ifaddr *ifa;
struct ifnet *ifp;
struct an_ltv_genconfig *cfg;
struct an_ltv_ssidlist *ssid;
struct an_ltv_aplist *ap;
struct an_ltv_gen *sp;
ifp = &sc->arpcom.ac_if;
switch (areq->an_type) {
case AN_RID_GENCONFIG:
cfg = (struct an_ltv_genconfig *)areq;
ifa = ifaddr_byindex(ifp->if_index);
sdl = (struct sockaddr_dl *)ifa->ifa_addr;
bcopy((char *)&cfg->an_macaddr, (char *)&sc->arpcom.ac_enaddr,
ETHER_ADDR_LEN);
bcopy((char *)&cfg->an_macaddr, LLADDR(sdl), ETHER_ADDR_LEN);
bcopy((char *)cfg, (char *)&sc->an_config,
sizeof(struct an_ltv_genconfig));
break;
case AN_RID_SSIDLIST:
ssid = (struct an_ltv_ssidlist *)areq;
bcopy((char *)ssid, (char *)&sc->an_ssidlist,
sizeof(struct an_ltv_ssidlist));
break;
case AN_RID_APLIST:
ap = (struct an_ltv_aplist *)areq;
bcopy((char *)ap, (char *)&sc->an_aplist,
sizeof(struct an_ltv_aplist));
break;
case AN_RID_TX_SPEED:
sp = (struct an_ltv_gen *)areq;
sc->an_tx_rate = sp->an_val;
break;
case AN_RID_WEP_TEMP:
case AN_RID_WEP_PERM:
/* Disable the MAC. */
an_cmd(sc, AN_CMD_DISABLE, 0);
/* Write the key */
an_write_record(sc, (struct an_ltv_gen *)areq);
/* Turn the MAC back on. */
an_cmd(sc, AN_CMD_ENABLE, 0);
break;
case AN_RID_MONITOR_MODE:
cfg = (struct an_ltv_genconfig *)areq;
bpfdetach(ifp);
if (ng_ether_detach_p != NULL)
(*ng_ether_detach_p) (ifp);
sc->an_monitor = cfg->an_len;
if (sc->an_monitor & AN_MONITOR) {
if (sc->an_monitor & AN_MONITOR_AIRONET_HEADER) {
bpfattach(ifp, DLT_AIRONET_HEADER,
sizeof(struct ether_header));
} else {
bpfattach(ifp, DLT_IEEE802_11,
sizeof(struct ether_header));
}
} else {
bpfattach(ifp, DLT_EN10MB,
sizeof(struct ether_header));
if (ng_ether_attach_p != NULL)
(*ng_ether_attach_p) (ifp);
}
break;
default:
printf("an%d: unknown RID: %x\n", sc->an_unit, areq->an_type);
return;
break;
}
/* Reinitialize the card. */
if (ifp->if_flags)
an_init(sc);
return;
}
/*
* Derived from Linux driver to enable promiscious mode.
*/
static void
an_promisc(sc, promisc)
struct an_softc *sc;
int promisc;
{
if (sc->an_was_monitor)
an_reset(sc);
if (sc->an_monitor || sc->an_was_monitor)
an_init(sc);
sc->an_was_monitor = sc->an_monitor;
an_cmd(sc, AN_CMD_SET_MODE, promisc ? 0xffff : 0);
return;
}
static int
an_ioctl(ifp, command, data)
struct ifnet *ifp;
u_long command;
caddr_t data;
{
int error = 0;
int len;
int i;
struct an_softc *sc;
struct an_req areq;
struct ifreq *ifr;
struct proc *p = curproc;
struct ieee80211req *ireq;
u_int8_t tmpstr[IEEE80211_NWID_LEN*2];
u_int8_t *tmpptr;
struct an_ltv_genconfig *config;
struct an_ltv_key *key;
struct an_ltv_status *status;
struct an_ltv_ssidlist *ssids;
sc = ifp->if_softc;
AN_LOCK(sc);
ifr = (struct ifreq *)data;
ireq = (struct ieee80211req *)data;
config = (struct an_ltv_genconfig *)&areq;
key = (struct an_ltv_key *)&areq;
status = (struct an_ltv_status *)&areq;
ssids = (struct an_ltv_ssidlist *)&areq;
if (sc->an_gone) {
error = ENODEV;
goto out;
}
switch (command) {
case SIOCSIFADDR:
case SIOCGIFADDR:
case SIOCSIFMTU:
error = ether_ioctl(ifp, command, data);
break;
case SIOCSIFFLAGS:
if (ifp->if_flags & IFF_UP) {
if (ifp->if_flags & IFF_RUNNING &&
ifp->if_flags & IFF_PROMISC &&
!(sc->an_if_flags & IFF_PROMISC)) {
an_promisc(sc, 1);
} else if (ifp->if_flags & IFF_RUNNING &&
!(ifp->if_flags & IFF_PROMISC) &&
sc->an_if_flags & IFF_PROMISC) {
an_promisc(sc, 0);
} else
an_init(sc);
} else {
if (ifp->if_flags & IFF_RUNNING)
an_stop(sc);
}
sc->an_if_flags = ifp->if_flags;
error = 0;
break;
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
error = ifmedia_ioctl(ifp, ifr, &sc->an_ifmedia, command);
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
/* The Aironet has no multicast filter. */
error = 0;
break;
case SIOCGAIRONET:
error = copyin(ifr->ifr_data, &areq, sizeof(areq));
if (error != 0)
break;
#ifdef ANCACHE
if (areq.an_type == AN_RID_ZERO_CACHE) {
sc->an_sigitems = sc->an_nextitem = 0;
break;
} else if (areq.an_type == AN_RID_READ_CACHE) {
char *pt = (char *)&areq.an_val;
bcopy((char *)&sc->an_sigitems, (char *)pt,
sizeof(int));
pt += sizeof(int);
areq.an_len = sizeof(int) / 2;
bcopy((char *)&sc->an_sigcache, (char *)pt,
sizeof(struct an_sigcache) * sc->an_sigitems);
areq.an_len += ((sizeof(struct an_sigcache) *
sc->an_sigitems) / 2) + 1;
} else
#endif
if (an_read_record(sc, (struct an_ltv_gen *)&areq)) {
error = EINVAL;
break;
}
error = copyout(&areq, ifr->ifr_data, sizeof(areq));
break;
case SIOCSAIRONET:
if ((error = suser(p)))
goto out;
error = copyin(ifr->ifr_data, &areq, sizeof(areq));
if (error != 0)
break;
an_setdef(sc, &areq);
break;
case SIOCG80211:
areq.an_len = sizeof(areq);
switch (ireq->i_type) {
case IEEE80211_IOC_SSID:
if (ireq->i_val == -1) {
areq.an_type = AN_RID_STATUS;
if (an_read_record(sc,
(struct an_ltv_gen *)&areq)) {
error = EINVAL;
break;
}
len = status->an_ssidlen;
tmpptr = status->an_ssid;
} else if (ireq->i_val >= 0) {
areq.an_type = AN_RID_SSIDLIST;
if (an_read_record(sc,
(struct an_ltv_gen *)&areq)) {
error = EINVAL;
break;
}
if (ireq->i_val == 0) {
len = ssids->an_ssid1_len;
tmpptr = ssids->an_ssid1;
} else if (ireq->i_val == 1) {
len = ssids->an_ssid2_len;
tmpptr = ssids->an_ssid3;
} else if (ireq->i_val == 1) {
len = ssids->an_ssid3_len;
tmpptr = ssids->an_ssid3;
} else {
error = EINVAL;
break;
}
} else {
error = EINVAL;
break;
}
if (len > IEEE80211_NWID_LEN) {
error = EINVAL;
break;
}
ireq->i_len = len;
bzero(tmpstr, IEEE80211_NWID_LEN);
bcopy(tmpptr, tmpstr, len);
error = copyout(tmpstr, ireq->i_data,
IEEE80211_NWID_LEN);
break;
case IEEE80211_IOC_NUMSSIDS:
ireq->i_val = 3;
break;
case IEEE80211_IOC_WEP:
areq.an_type = AN_RID_ACTUALCFG;
if (an_read_record(sc,
(struct an_ltv_gen *)&areq)) {
error = EINVAL;
break;
}
if (config->an_authtype & AN_AUTHTYPE_PRIVACY_IN_USE) {
if (config->an_authtype &
AN_AUTHTYPE_ALLOW_UNENCRYPTED)
ireq->i_val = IEEE80211_WEP_MIXED;
else
ireq->i_val = IEEE80211_WEP_ON;
} else {
ireq->i_val = IEEE80211_WEP_OFF;
}
break;
case IEEE80211_IOC_WEPKEY:
/*
* XXX: I'm not entierly convinced this is
* correct, but it's what is implemented in
* ancontrol so it will have to do until we get
* access to actual Cisco code.
*/
if (ireq->i_val < 0 || ireq->i_val > 7) {
error = EINVAL;
break;
}
len = 0;
if (ireq->i_val < 4) {
areq.an_type = AN_RID_WEP_TEMP;
for (i = 0; i < 5; i++) {
if (an_read_record(sc,
(struct an_ltv_gen *)&areq)) {
error = EINVAL;
break;
}
if (key->kindex == 0xffff)
break;
if (key->kindex == ireq->i_val)
len = key->klen;
/* Required to get next entry */
areq.an_type = AN_RID_WEP_PERM;
}
if (error != 0)
break;
}
/* We aren't allowed to read the value of the
* key from the card so we just output zeros
* like we would if we could read the card, but
* denied the user access.
*/
bzero(tmpstr, len);
ireq->i_len = len;
error = copyout(tmpstr, ireq->i_data, len);
break;
case IEEE80211_IOC_NUMWEPKEYS:
ireq->i_val = 8;
break;
case IEEE80211_IOC_WEPTXKEY:
/*
* For some strange reason, you have to read all
* keys before you can read the txkey.
*/
areq.an_type = AN_RID_WEP_TEMP;
for (i = 0; i < 5; i++) {
if (an_read_record(sc,
(struct an_ltv_gen *)&areq)) {
error = EINVAL;
break;
}
if (key->kindex == 0xffff)
break;
/* Required to get next entry */
areq.an_type = AN_RID_WEP_PERM;
}
if (error != 0)
break;
areq.an_type = AN_RID_WEP_PERM;
key->kindex = 0xffff;
if (an_read_record(sc,
(struct an_ltv_gen *)&areq)) {
error = EINVAL;
break;
}
ireq->i_val = key->mac[0];
break;
case IEEE80211_IOC_AUTHMODE:
areq.an_type = AN_RID_ACTUALCFG;
if (an_read_record(sc,
(struct an_ltv_gen *)&areq)) {
error = EINVAL;
break;
}
if ((config->an_authtype & AN_AUTHTYPE_MASK) ==
AN_AUTHTYPE_NONE) {
ireq->i_val = IEEE80211_AUTH_NONE;
} else if ((config->an_authtype & AN_AUTHTYPE_MASK) ==
AN_AUTHTYPE_OPEN) {
ireq->i_val = IEEE80211_AUTH_OPEN;
} else if ((config->an_authtype & AN_AUTHTYPE_MASK) ==
AN_AUTHTYPE_SHAREDKEY) {
ireq->i_val = IEEE80211_AUTH_SHARED;
} else
error = EINVAL;
break;
case IEEE80211_IOC_STATIONNAME:
areq.an_type = AN_RID_ACTUALCFG;
if (an_read_record(sc,
(struct an_ltv_gen *)&areq)) {
error = EINVAL;
break;
}
ireq->i_len = sizeof(config->an_nodename);
tmpptr = config->an_nodename;
bzero(tmpstr, IEEE80211_NWID_LEN);
bcopy(tmpptr, tmpstr, ireq->i_len);
error = copyout(tmpstr, ireq->i_data,
IEEE80211_NWID_LEN);
break;
case IEEE80211_IOC_CHANNEL:
areq.an_type = AN_RID_STATUS;
if (an_read_record(sc,
(struct an_ltv_gen *)&areq)) {
error = EINVAL;
break;
}
ireq->i_val = status->an_cur_channel;
break;
case IEEE80211_IOC_POWERSAVE:
areq.an_type = AN_RID_ACTUALCFG;
if (an_read_record(sc,
(struct an_ltv_gen *)&areq)) {
error = EINVAL;
break;
}
if (config->an_psave_mode == AN_PSAVE_NONE) {
ireq->i_val = IEEE80211_POWERSAVE_OFF;
} else if (config->an_psave_mode == AN_PSAVE_CAM) {
ireq->i_val = IEEE80211_POWERSAVE_CAM;
} else if (config->an_psave_mode == AN_PSAVE_PSP) {
ireq->i_val = IEEE80211_POWERSAVE_PSP;
} else if (config->an_psave_mode == AN_PSAVE_PSP_CAM) {
ireq->i_val = IEEE80211_POWERSAVE_PSP_CAM;
} else
error = EINVAL;
break;
case IEEE80211_IOC_POWERSAVESLEEP:
areq.an_type = AN_RID_ACTUALCFG;
if (an_read_record(sc,
(struct an_ltv_gen *)&areq)) {
error = EINVAL;
break;
}
ireq->i_val = config->an_listen_interval;
break;
}
break;
case SIOCS80211:
if ((error = suser(p)))
goto out;
areq.an_len = sizeof(areq);
/*
* We need a config structure for everything but the WEP
* key management and SSIDs so we get it now so avoid
* duplicating this code every time.
*/
if (ireq->i_type != IEEE80211_IOC_SSID &&
ireq->i_type != IEEE80211_IOC_WEPKEY &&
ireq->i_type != IEEE80211_IOC_WEPTXKEY) {
areq.an_type = AN_RID_GENCONFIG;
if (an_read_record(sc,
(struct an_ltv_gen *)&areq)) {
error = EINVAL;
break;
}
}
switch (ireq->i_type) {
case IEEE80211_IOC_SSID:
areq.an_type = AN_RID_SSIDLIST;
if (an_read_record(sc,
(struct an_ltv_gen *)&areq)) {
error = EINVAL;
break;
}
if (ireq->i_len > IEEE80211_NWID_LEN) {
error = EINVAL;
break;
}
switch (ireq->i_val) {
case 0:
error = copyin(ireq->i_data,
ssids->an_ssid1, ireq->i_len);
ssids->an_ssid1_len = ireq->i_len;
break;
case 1:
error = copyin(ireq->i_data,
ssids->an_ssid2, ireq->i_len);
ssids->an_ssid2_len = ireq->i_len;
break;
case 2:
error = copyin(ireq->i_data,
ssids->an_ssid3, ireq->i_len);
ssids->an_ssid3_len = ireq->i_len;
break;
default:
error = EINVAL;
break;
}
break;
case IEEE80211_IOC_WEP:
switch (ireq->i_val) {
case IEEE80211_WEP_OFF:
config->an_authtype &=
~(AN_AUTHTYPE_PRIVACY_IN_USE |
AN_AUTHTYPE_ALLOW_UNENCRYPTED);
break;
case IEEE80211_WEP_ON:
config->an_authtype |=
AN_AUTHTYPE_PRIVACY_IN_USE;
config->an_authtype &=
~AN_AUTHTYPE_ALLOW_UNENCRYPTED;
break;
case IEEE80211_WEP_MIXED:
config->an_authtype |=
AN_AUTHTYPE_PRIVACY_IN_USE |
AN_AUTHTYPE_ALLOW_UNENCRYPTED;
break;
default:
error = EINVAL;
break;
}
break;
case IEEE80211_IOC_WEPKEY:
if (ireq->i_val < 0 || ireq->i_val > 7 ||
ireq->i_len > 13) {
error = EINVAL;
break;
}
error = copyin(ireq->i_data, tmpstr, 13);
if (error != 0)
break;
bzero(&areq, sizeof(struct an_ltv_key));
areq.an_len = sizeof(struct an_ltv_key);
key->mac[0] = 1; /* The others are 0. */
key->kindex = ireq->i_val % 4;
if (ireq->i_val < 4)
areq.an_type = AN_RID_WEP_TEMP;
else
areq.an_type = AN_RID_WEP_PERM;
key->klen = ireq->i_len;
bcopy(tmpstr, key->key, key->klen);
break;
case IEEE80211_IOC_WEPTXKEY:
if (ireq->i_val < 0 || ireq->i_val > 3) {
error = EINVAL;
break;
}
bzero(&areq, sizeof(struct an_ltv_key));
areq.an_len = sizeof(struct an_ltv_key);
areq.an_type = AN_RID_WEP_PERM;
key->kindex = 0xffff;
key->mac[0] = ireq->i_val;
break;
case IEEE80211_IOC_AUTHMODE:
switch (ireq->i_val) {
case IEEE80211_AUTH_NONE:
config->an_authtype = AN_AUTHTYPE_NONE |
(config->an_authtype & ~AN_AUTHTYPE_MASK);
break;
case IEEE80211_AUTH_OPEN:
config->an_authtype = AN_AUTHTYPE_OPEN |
(config->an_authtype & ~AN_AUTHTYPE_MASK);
break;
case IEEE80211_AUTH_SHARED:
config->an_authtype = AN_AUTHTYPE_SHAREDKEY |
(config->an_authtype & ~AN_AUTHTYPE_MASK);
break;
default:
error = EINVAL;
}
break;
case IEEE80211_IOC_STATIONNAME:
if (ireq->i_len > 16) {
error = EINVAL;
break;
}
bzero(config->an_nodename, 16);
error = copyin(ireq->i_data,
config->an_nodename, ireq->i_len);
break;
case IEEE80211_IOC_CHANNEL:
/*
* The actual range is 1-14, but if you set it
* to 0 you get the default so we let that work
* too.
*/
if (ireq->i_val < 0 || ireq->i_val >14) {
error = EINVAL;
break;
}
config->an_ds_channel = ireq->i_val;
break;
case IEEE80211_IOC_POWERSAVE:
switch (ireq->i_val) {
case IEEE80211_POWERSAVE_OFF:
config->an_psave_mode = AN_PSAVE_NONE;
break;
case IEEE80211_POWERSAVE_CAM:
config->an_psave_mode = AN_PSAVE_CAM;
break;
case IEEE80211_POWERSAVE_PSP:
config->an_psave_mode = AN_PSAVE_PSP;
break;
case IEEE80211_POWERSAVE_PSP_CAM:
config->an_psave_mode = AN_PSAVE_PSP_CAM;
break;
default:
error = EINVAL;
break;
}
break;
case IEEE80211_IOC_POWERSAVESLEEP:
config->an_listen_interval = ireq->i_val;
break;
}
if (!error)
an_setdef(sc, &areq);
break;
default:
error = EINVAL;
break;
}
out:
AN_UNLOCK(sc);
return(error != 0);
}
static int
an_init_tx_ring(sc)
struct an_softc *sc;
{
int i;
int id;
if (sc->an_gone)
return (0);
for (i = 0; i < AN_TX_RING_CNT; i++) {
if (an_alloc_nicmem(sc, 1518 +
0x44, &id))
return(ENOMEM);
sc->an_rdata.an_tx_fids[i] = id;
sc->an_rdata.an_tx_ring[i] = 0;
}
sc->an_rdata.an_tx_prod = 0;
sc->an_rdata.an_tx_cons = 0;
return(0);
}
static void
an_init(xsc)
void *xsc;
{
struct an_softc *sc = xsc;
struct ifnet *ifp = &sc->arpcom.ac_if;
AN_LOCK(sc);
if (sc->an_gone) {
AN_UNLOCK(sc);
return;
}
if (ifp->if_flags & IFF_RUNNING)
an_stop(sc);
sc->an_associated = 0;
/* Allocate the TX buffers */
if (an_init_tx_ring(sc)) {
an_reset(sc);
if (an_init_tx_ring(sc)) {
printf("an%d: tx buffer allocation "
"failed\n", sc->an_unit);
AN_UNLOCK(sc);
return;
}
}
/* Set our MAC address. */
bcopy((char *)&sc->arpcom.ac_enaddr,
(char *)&sc->an_config.an_macaddr, ETHER_ADDR_LEN);
if (ifp->if_flags & IFF_BROADCAST)
sc->an_config.an_rxmode = AN_RXMODE_BC_ADDR;
else
sc->an_config.an_rxmode = AN_RXMODE_ADDR;
if (ifp->if_flags & IFF_MULTICAST)
sc->an_config.an_rxmode = AN_RXMODE_BC_MC_ADDR;
if (ifp->if_flags & IFF_PROMISC) {
if (sc->an_monitor & AN_MONITOR) {
if (sc->an_monitor & AN_MONITOR_ANY_BSS) {
sc->an_config.an_rxmode |=
AN_RXMODE_80211_MONITOR_ANYBSS |
AN_RXMODE_NO_8023_HEADER;
} else {
sc->an_config.an_rxmode |=
AN_RXMODE_80211_MONITOR_CURBSS |
AN_RXMODE_NO_8023_HEADER;
}
}
}
/* Set the ssid list */
sc->an_ssidlist.an_type = AN_RID_SSIDLIST;
sc->an_ssidlist.an_len = sizeof(struct an_ltv_ssidlist);
if (an_write_record(sc, (struct an_ltv_gen *)&sc->an_ssidlist)) {
printf("an%d: failed to set ssid list\n", sc->an_unit);
AN_UNLOCK(sc);
return;
}
/* Set the AP list */
sc->an_aplist.an_type = AN_RID_APLIST;
sc->an_aplist.an_len = sizeof(struct an_ltv_aplist);
if (an_write_record(sc, (struct an_ltv_gen *)&sc->an_aplist)) {
printf("an%d: failed to set AP list\n", sc->an_unit);
AN_UNLOCK(sc);
return;
}
/* Set the configuration in the NIC */
sc->an_config.an_len = sizeof(struct an_ltv_genconfig);
sc->an_config.an_type = AN_RID_GENCONFIG;
if (an_write_record(sc, (struct an_ltv_gen *)&sc->an_config)) {
printf("an%d: failed to set configuration\n", sc->an_unit);
AN_UNLOCK(sc);
return;
}
/* Enable the MAC */
if (an_cmd(sc, AN_CMD_ENABLE, 0)) {
printf("an%d: failed to enable MAC\n", sc->an_unit);
AN_UNLOCK(sc);
return;
}
if (ifp->if_flags & IFF_PROMISC)
an_cmd(sc, AN_CMD_SET_MODE, 0xffff);
/* enable interrupts */
CSR_WRITE_2(sc, AN_INT_EN, AN_INTRS);
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
sc->an_stat_ch = timeout(an_stats_update, sc, hz);
AN_UNLOCK(sc);
return;
}
static void
an_start(ifp)
struct ifnet *ifp;
{
struct an_softc *sc;
struct mbuf *m0 = NULL;
struct an_txframe_802_3 tx_frame_802_3;
struct ether_header *eh;
int id;
int idx;
unsigned char txcontrol;
sc = ifp->if_softc;
if (sc->an_gone)
return;
if (ifp->if_flags & IFF_OACTIVE)
return;
if (!sc->an_associated)
return;
if (sc->an_monitor && (ifp->if_flags & IFF_PROMISC)) {
for (;;) {
IF_DEQUEUE(&ifp->if_snd, m0);
if (m0 == NULL)
break;
}
return;
}
idx = sc->an_rdata.an_tx_prod;
bzero((char *)&tx_frame_802_3, sizeof(tx_frame_802_3));
while (sc->an_rdata.an_tx_ring[idx] == 0) {
IF_DEQUEUE(&ifp->if_snd, m0);
if (m0 == NULL)
break;
id = sc->an_rdata.an_tx_fids[idx];
eh = mtod(m0, struct ether_header *);
bcopy((char *)&eh->ether_dhost,
(char *)&tx_frame_802_3.an_tx_dst_addr, ETHER_ADDR_LEN);
bcopy((char *)&eh->ether_shost,
(char *)&tx_frame_802_3.an_tx_src_addr, ETHER_ADDR_LEN);
tx_frame_802_3.an_tx_802_3_payload_len =
m0->m_pkthdr.len - 12; /* minus src/dest mac & type */
m_copydata(m0, sizeof(struct ether_header) - 2 ,
tx_frame_802_3.an_tx_802_3_payload_len,
(caddr_t)&sc->an_txbuf);
txcontrol = AN_TXCTL_8023;
/* write the txcontrol only */
an_write_data(sc, id, 0x08, (caddr_t)&txcontrol,
sizeof(txcontrol));
/* 802_3 header */
an_write_data(sc, id, 0x34, (caddr_t)&tx_frame_802_3,
sizeof(struct an_txframe_802_3));
/* in mbuf header type is just before payload */
an_write_data(sc, id, 0x44, (caddr_t)&sc->an_txbuf,
tx_frame_802_3.an_tx_802_3_payload_len);
/*
* If there's a BPF listner, bounce a copy of
* this frame to him.
*/
if (ifp->if_bpf)
bpf_mtap(ifp, m0);
m_freem(m0);
m0 = NULL;
sc->an_rdata.an_tx_ring[idx] = id;
if (an_cmd(sc, AN_CMD_TX, id))
printf("an%d: xmit failed\n", sc->an_unit);
AN_INC(idx, AN_TX_RING_CNT);
}
if (m0 != NULL)
ifp->if_flags |= IFF_OACTIVE;
sc->an_rdata.an_tx_prod = idx;
/*
* Set a timeout in case the chip goes out to lunch.
*/
ifp->if_timer = 5;
return;
}
void
an_stop(sc)
struct an_softc *sc;
{
struct ifnet *ifp;
int i;
AN_LOCK(sc);
if (sc->an_gone) {
AN_UNLOCK(sc);
return;
}
ifp = &sc->arpcom.ac_if;
an_cmd(sc, AN_CMD_FORCE_SYNCLOSS, 0);
CSR_WRITE_2(sc, AN_INT_EN, 0);
an_cmd(sc, AN_CMD_DISABLE, 0);
for (i = 0; i < AN_TX_RING_CNT; i++)
an_cmd(sc, AN_CMD_DEALLOC_MEM, sc->an_rdata.an_tx_fids[i]);
untimeout(an_stats_update, sc, sc->an_stat_ch);
ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
AN_UNLOCK(sc);
return;
}
static void
an_watchdog(ifp)
struct ifnet *ifp;
{
struct an_softc *sc;
sc = ifp->if_softc;
AN_LOCK(sc);
if (sc->an_gone) {
AN_UNLOCK(sc);
return;
}
printf("an%d: device timeout\n", sc->an_unit);
an_reset(sc);
an_init(sc);
ifp->if_oerrors++;
AN_UNLOCK(sc);
return;
}
void
an_shutdown(dev)
device_t dev;
{
struct an_softc *sc;
sc = device_get_softc(dev);
an_stop(sc);
return;
}
#ifdef ANCACHE
/* Aironet signal strength cache code.
* store signal/noise/quality on per MAC src basis in
* a small fixed cache. The cache wraps if > MAX slots
* used. The cache may be zeroed out to start over.
* Two simple filters exist to reduce computation:
* 1. ip only (literally 0x800) which may be used
* to ignore some packets. It defaults to ip only.
* it could be used to focus on broadcast, non-IP 802.11 beacons.
* 2. multicast/broadcast only. This may be used to
* ignore unicast packets and only cache signal strength
* for multicast/broadcast packets (beacons); e.g., Mobile-IP
* beacons and not unicast traffic.
*
* The cache stores (MAC src(index), IP src (major clue), signal,
* quality, noise)
*
* No apologies for storing IP src here. It's easy and saves much
* trouble elsewhere. The cache is assumed to be INET dependent,
* although it need not be.
*
* Note: the Aironet only has a single byte of signal strength value
* in the rx frame header, and it's not scaled to anything sensible.
* This is kind of lame, but it's all we've got.
*/
#ifdef documentation
int an_sigitems; /* number of cached entries */
struct an_sigcache an_sigcache[MAXANCACHE]; /* array of cache entries */
int an_nextitem; /* index/# of entries */
#endif
/* control variables for cache filtering. Basic idea is
* to reduce cost (e.g., to only Mobile-IP agent beacons
* which are broadcast or multicast). Still you might
* want to measure signal strength anth unicast ping packets
* on a pt. to pt. ant. setup.
*/
/* set true if you want to limit cache items to broadcast/mcast
* only packets (not unicast). Useful for mobile-ip beacons which
* are broadcast/multicast at network layer. Default is all packets
* so ping/unicast anll work say anth pt. to pt. antennae setup.
*/
static int an_cache_mcastonly = 0;
SYSCTL_INT(_machdep, OID_AUTO, an_cache_mcastonly, CTLFLAG_RW,
&an_cache_mcastonly, 0, "");
/* set true if you want to limit cache items to IP packets only
*/
static int an_cache_iponly = 1;
SYSCTL_INT(_machdep, OID_AUTO, an_cache_iponly, CTLFLAG_RW,
&an_cache_iponly, 0, "");
/*
* an_cache_store, per rx packet store signal
* strength in MAC (src) indexed cache.
*/
static void
an_cache_store (sc, eh, m, rx_quality)
struct an_softc *sc;
struct ether_header *eh;
struct mbuf *m;
unsigned short rx_quality;
{
struct ip *ip = 0;
int i;
static int cache_slot = 0; /* use this cache entry */
static int wrapindex = 0; /* next "free" cache entry */
int saanp = 0;
/* filters:
* 1. ip only
* 2. configurable filter to throw out unicast packets,
* keep multicast only.
*/
if ((ntohs(eh->ether_type) == 0x800)) {
saanp = 1;
}
/* filter for ip packets only
*/
if ( an_cache_iponly && !saanp) {
return;
}
/* filter for broadcast/multicast only
*/
if (an_cache_mcastonly && ((eh->ether_dhost[0] & 1) == 0)) {
return;
}
#ifdef SIGDEBUG
printf("an: q value %x (MSB=0x%x, LSB=0x%x) \n",
rx_quality & 0xffff, rx_quality >> 8, rx_quality & 0xff);
#endif
/* find the ip header. we want to store the ip_src
* address.
*/
if (saanp) {
ip = mtod(m, struct ip *);
}
/* do a linear search for a matching MAC address
* in the cache table
* . MAC address is 6 bytes,
* . var w_nextitem holds total number of entries already cached
*/
for (i = 0; i < sc->an_nextitem; i++) {
if (! bcmp(eh->ether_shost , sc->an_sigcache[i].macsrc, 6 )) {
/* Match!,
* so we already have this entry,
* update the data
*/
break;
}
}
/* did we find a matching mac address?
* if yes, then overwrite a previously existing cache entry
*/
if (i < sc->an_nextitem ) {
cache_slot = i;
}
/* else, have a new address entry,so
* add this new entry,
* if table full, then we need to replace LRU entry
*/
else {
/* check for space in cache table
* note: an_nextitem also holds number of entries
* added in the cache table
*/
if ( sc->an_nextitem < MAXANCACHE ) {
cache_slot = sc->an_nextitem;
sc->an_nextitem++;
sc->an_sigitems = sc->an_nextitem;
}
/* no space found, so simply wrap anth wrap index
* and "zap" the next entry
*/
else {
if (wrapindex == MAXANCACHE) {
wrapindex = 0;
}
cache_slot = wrapindex++;
}
}
/* invariant: cache_slot now points at some slot
* in cache.
*/
if (cache_slot < 0 || cache_slot >= MAXANCACHE) {
log(LOG_ERR, "an_cache_store, bad index: %d of "
"[0..%d], gross cache error\n",
cache_slot, MAXANCACHE);
return;
}
/* store items in cache
* .ip source address
* .mac src
* .signal, etc.
*/
if (saanp) {
sc->an_sigcache[cache_slot].ipsrc = ip->ip_src.s_addr;
}
bcopy( eh->ether_shost, sc->an_sigcache[cache_slot].macsrc, 6);
sc->an_sigcache[cache_slot].signal = rx_quality;
return;
}
#endif
static int
an_media_change(ifp)
struct ifnet *ifp;
{
struct an_softc *sc = ifp->if_softc;
int otype = sc->an_config.an_opmode;
int orate = sc->an_tx_rate;
if ((sc->an_ifmedia.ifm_cur->ifm_media & IFM_IEEE80211_ADHOC) != 0)
sc->an_config.an_opmode = AN_OPMODE_IBSS_ADHOC;
else
sc->an_config.an_opmode = AN_OPMODE_INFRASTRUCTURE_STATION;
switch (IFM_SUBTYPE(sc->an_ifmedia.ifm_cur->ifm_media)) {
case IFM_IEEE80211_DS1:
sc->an_tx_rate = AN_RATE_1MBPS;
break;
case IFM_IEEE80211_DS2:
sc->an_tx_rate = AN_RATE_2MBPS;
break;
case IFM_IEEE80211_DS5:
sc->an_tx_rate = AN_RATE_5_5MBPS;
break;
case IFM_IEEE80211_DS11:
sc->an_tx_rate = AN_RATE_11MBPS;
break;
case IFM_AUTO:
sc->an_tx_rate = 0;
break;
}
if (otype != sc->an_config.an_opmode ||
orate != sc->an_tx_rate)
an_init(sc);
return(0);
}
static void
an_media_status(ifp, imr)
struct ifnet *ifp;
struct ifmediareq *imr;
{
struct an_ltv_status status;
struct an_softc *sc = ifp->if_softc;
status.an_len = sizeof(status);
status.an_type = AN_RID_STATUS;
if (an_read_record(sc, (struct an_ltv_gen *)&status)) {
/* If the status read fails, just lie. */
imr->ifm_active = sc->an_ifmedia.ifm_cur->ifm_media;
imr->ifm_status = IFM_AVALID|IFM_ACTIVE;
}
if (sc->an_tx_rate == 0) {
imr->ifm_active = IFM_IEEE80211|IFM_AUTO;
if (sc->an_config.an_opmode == AN_OPMODE_IBSS_ADHOC)
imr->ifm_active |= IFM_IEEE80211_ADHOC;
switch (status.an_current_tx_rate) {
case AN_RATE_1MBPS:
imr->ifm_active |= IFM_IEEE80211_DS1;
break;
case AN_RATE_2MBPS:
imr->ifm_active |= IFM_IEEE80211_DS2;
break;
case AN_RATE_5_5MBPS:
imr->ifm_active |= IFM_IEEE80211_DS5;
break;
case AN_RATE_11MBPS:
imr->ifm_active |= IFM_IEEE80211_DS11;
break;
}
} else {
imr->ifm_active = sc->an_ifmedia.ifm_cur->ifm_media;
}
imr->ifm_status = IFM_AVALID;
if (sc->an_config.an_opmode == AN_OPMODE_IBSS_ADHOC)
imr->ifm_status |= IFM_ACTIVE;
else if (status.an_opmode & AN_STATUS_OPMODE_ASSOCIATED)
imr->ifm_status |= IFM_ACTIVE;
}