mirror of
https://git.FreeBSD.org/src.git
synced 2024-12-20 11:11:24 +00:00
d8d015cddc
This is necessary for two reasons: 1) In order to avoid collisions with the use of a BIOs flags set by a consumer or a provider 2) Because GV_BIO_DONE was used to mark a BIO as done, not enough flags was available, so the consumer flags of a BIO had to be misused in order to support enough flags. The new queue makes it possible to recycle the GV_BIO_DONE flag into GV_BIO_GROW. As a consequence, gvinum will now work with any other GEOM class under it or on top of it. - Use bio_pflags for storing internal flags on downgoing BIOs, as the requests appear to come from a consumer of a gvinum volume. Use bio_cflags only for cloned BIOs. - Move gv_post_bio to be used internally for maintenance requests. - Remove some cases where flags where set without need. PR: kern/133604
1049 lines
26 KiB
C
1049 lines
26 KiB
C
/*-
|
|
* Copyright (c) 2004, 2007 Lukas Ertl
|
|
* Copyright (c) 2007, 2009 Ulf Lilleengen
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/bio.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/systm.h>
|
|
|
|
#include <geom/geom.h>
|
|
#include <geom/vinum/geom_vinum_var.h>
|
|
#include <geom/vinum/geom_vinum_raid5.h>
|
|
#include <geom/vinum/geom_vinum.h>
|
|
|
|
static int gv_check_parity(struct gv_plex *, struct bio *,
|
|
struct gv_raid5_packet *);
|
|
static int gv_normal_parity(struct gv_plex *, struct bio *,
|
|
struct gv_raid5_packet *);
|
|
static void gv_plex_flush(struct gv_plex *);
|
|
static int gv_plex_offset(struct gv_plex *, off_t, off_t, off_t *, off_t *,
|
|
int *, int);
|
|
static int gv_plex_normal_request(struct gv_plex *, struct bio *, off_t,
|
|
off_t, caddr_t);
|
|
static void gv_post_bio(struct gv_softc *, struct bio *);
|
|
|
|
void
|
|
gv_plex_start(struct gv_plex *p, struct bio *bp)
|
|
{
|
|
struct bio *cbp;
|
|
struct gv_sd *s;
|
|
struct gv_raid5_packet *wp;
|
|
caddr_t addr;
|
|
off_t bcount, boff, len;
|
|
|
|
bcount = bp->bio_length;
|
|
addr = bp->bio_data;
|
|
boff = bp->bio_offset;
|
|
|
|
/* Walk over the whole length of the request, we might split it up. */
|
|
while (bcount > 0) {
|
|
wp = NULL;
|
|
|
|
/*
|
|
* RAID5 plexes need special treatment, as a single request
|
|
* might involve several read/write sub-requests.
|
|
*/
|
|
if (p->org == GV_PLEX_RAID5) {
|
|
wp = gv_raid5_start(p, bp, addr, boff, bcount);
|
|
if (wp == NULL)
|
|
return;
|
|
|
|
len = wp->length;
|
|
|
|
if (TAILQ_EMPTY(&wp->bits))
|
|
g_free(wp);
|
|
else if (wp->lockbase != -1)
|
|
TAILQ_INSERT_TAIL(&p->packets, wp, list);
|
|
|
|
/*
|
|
* Requests to concatenated and striped plexes go straight
|
|
* through.
|
|
*/
|
|
} else {
|
|
len = gv_plex_normal_request(p, bp, boff, bcount, addr);
|
|
}
|
|
if (len < 0)
|
|
return;
|
|
|
|
bcount -= len;
|
|
addr += len;
|
|
boff += len;
|
|
}
|
|
|
|
/*
|
|
* Fire off all sub-requests. We get the correct consumer (== drive)
|
|
* to send each request to via the subdisk that was stored in
|
|
* cbp->bio_caller1.
|
|
*/
|
|
cbp = bioq_takefirst(p->bqueue);
|
|
while (cbp != NULL) {
|
|
/*
|
|
* RAID5 sub-requests need to come in correct order, otherwise
|
|
* we trip over the parity, as it might be overwritten by
|
|
* another sub-request. We abuse cbp->bio_caller2 to mark
|
|
* potential overlap situations.
|
|
*/
|
|
if (cbp->bio_caller2 != NULL && gv_stripe_active(p, cbp)) {
|
|
/* Park the bio on the waiting queue. */
|
|
cbp->bio_pflags |= GV_BIO_ONHOLD;
|
|
bioq_disksort(p->wqueue, cbp);
|
|
} else {
|
|
s = cbp->bio_caller1;
|
|
g_io_request(cbp, s->drive_sc->consumer);
|
|
}
|
|
cbp = bioq_takefirst(p->bqueue);
|
|
}
|
|
}
|
|
|
|
static int
|
|
gv_plex_offset(struct gv_plex *p, off_t boff, off_t bcount, off_t *real_off,
|
|
off_t *real_len, int *sdno, int growing)
|
|
{
|
|
struct gv_sd *s;
|
|
int i, sdcount;
|
|
off_t len_left, stripeend, stripeno, stripestart;
|
|
|
|
switch (p->org) {
|
|
case GV_PLEX_CONCAT:
|
|
/*
|
|
* Find the subdisk where this request starts. The subdisks in
|
|
* this list must be ordered by plex_offset.
|
|
*/
|
|
i = 0;
|
|
LIST_FOREACH(s, &p->subdisks, in_plex) {
|
|
if (s->plex_offset <= boff &&
|
|
s->plex_offset + s->size > boff) {
|
|
*sdno = i;
|
|
break;
|
|
}
|
|
i++;
|
|
}
|
|
if (s == NULL || s->drive_sc == NULL)
|
|
return (GV_ERR_NOTFOUND);
|
|
|
|
/* Calculate corresponding offsets on disk. */
|
|
*real_off = boff - s->plex_offset;
|
|
len_left = s->size - (*real_off);
|
|
KASSERT(len_left >= 0, ("gv_plex_offset: len_left < 0"));
|
|
*real_len = (bcount > len_left) ? len_left : bcount;
|
|
break;
|
|
|
|
case GV_PLEX_STRIPED:
|
|
/* The number of the stripe where the request starts. */
|
|
stripeno = boff / p->stripesize;
|
|
KASSERT(stripeno >= 0, ("gv_plex_offset: stripeno < 0"));
|
|
|
|
/* Take growing subdisks into account when calculating. */
|
|
sdcount = gv_sdcount(p, (boff >= p->synced));
|
|
|
|
if (!(boff + bcount <= p->synced) &&
|
|
(p->flags & GV_PLEX_GROWING) &&
|
|
!growing)
|
|
return (GV_ERR_ISBUSY);
|
|
*sdno = stripeno % sdcount;
|
|
|
|
KASSERT(sdno >= 0, ("gv_plex_offset: sdno < 0"));
|
|
stripestart = (stripeno / sdcount) *
|
|
p->stripesize;
|
|
KASSERT(stripestart >= 0, ("gv_plex_offset: stripestart < 0"));
|
|
stripeend = stripestart + p->stripesize;
|
|
*real_off = boff - (stripeno * p->stripesize) +
|
|
stripestart;
|
|
len_left = stripeend - *real_off;
|
|
KASSERT(len_left >= 0, ("gv_plex_offset: len_left < 0"));
|
|
|
|
*real_len = (bcount <= len_left) ? bcount : len_left;
|
|
break;
|
|
|
|
default:
|
|
return (GV_ERR_PLEXORG);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Prepare a normal plex request.
|
|
*/
|
|
static int
|
|
gv_plex_normal_request(struct gv_plex *p, struct bio *bp, off_t boff,
|
|
off_t bcount, caddr_t addr)
|
|
{
|
|
struct gv_sd *s;
|
|
struct bio *cbp;
|
|
off_t real_len, real_off;
|
|
int i, err, sdno;
|
|
|
|
s = NULL;
|
|
sdno = -1;
|
|
real_len = real_off = 0;
|
|
|
|
err = ENXIO;
|
|
|
|
if (p == NULL || LIST_EMPTY(&p->subdisks))
|
|
goto bad;
|
|
|
|
err = gv_plex_offset(p, boff, bcount, &real_off,
|
|
&real_len, &sdno, (bp->bio_pflags & GV_BIO_GROW));
|
|
/* If the request was blocked, put it into wait. */
|
|
if (err == GV_ERR_ISBUSY) {
|
|
bioq_disksort(p->rqueue, bp);
|
|
return (-1); /* "Fail", and delay request. */
|
|
}
|
|
if (err) {
|
|
err = ENXIO;
|
|
goto bad;
|
|
}
|
|
err = ENXIO;
|
|
|
|
/* Find the right subdisk. */
|
|
i = 0;
|
|
LIST_FOREACH(s, &p->subdisks, in_plex) {
|
|
if (i == sdno)
|
|
break;
|
|
i++;
|
|
}
|
|
|
|
/* Subdisk not found. */
|
|
if (s == NULL || s->drive_sc == NULL)
|
|
goto bad;
|
|
|
|
/* Now check if we can handle the request on this subdisk. */
|
|
switch (s->state) {
|
|
case GV_SD_UP:
|
|
/* If the subdisk is up, just continue. */
|
|
break;
|
|
case GV_SD_DOWN:
|
|
if (bp->bio_pflags & GV_BIO_INTERNAL)
|
|
G_VINUM_DEBUG(0, "subdisk must be in the stale state in"
|
|
" order to perform administrative requests");
|
|
goto bad;
|
|
case GV_SD_STALE:
|
|
if (!(bp->bio_pflags & GV_BIO_SYNCREQ)) {
|
|
G_VINUM_DEBUG(0, "subdisk stale, unable to perform "
|
|
"regular requests");
|
|
goto bad;
|
|
}
|
|
|
|
G_VINUM_DEBUG(1, "sd %s is initializing", s->name);
|
|
gv_set_sd_state(s, GV_SD_INITIALIZING, GV_SETSTATE_FORCE);
|
|
break;
|
|
case GV_SD_INITIALIZING:
|
|
if (bp->bio_cmd == BIO_READ)
|
|
goto bad;
|
|
break;
|
|
default:
|
|
/* All other subdisk states mean it's not accessible. */
|
|
goto bad;
|
|
}
|
|
|
|
/* Clone the bio and adjust the offsets and sizes. */
|
|
cbp = g_clone_bio(bp);
|
|
if (cbp == NULL) {
|
|
err = ENOMEM;
|
|
goto bad;
|
|
}
|
|
cbp->bio_offset = real_off + s->drive_offset;
|
|
cbp->bio_length = real_len;
|
|
cbp->bio_data = addr;
|
|
cbp->bio_done = gv_done;
|
|
cbp->bio_caller1 = s;
|
|
|
|
/* Store the sub-requests now and let others issue them. */
|
|
bioq_insert_tail(p->bqueue, cbp);
|
|
return (real_len);
|
|
bad:
|
|
G_VINUM_LOGREQ(0, bp, "plex request failed.");
|
|
/* Building the sub-request failed. If internal BIO, do not deliver. */
|
|
if (bp->bio_pflags & GV_BIO_INTERNAL) {
|
|
if (bp->bio_pflags & GV_BIO_MALLOC)
|
|
g_free(bp->bio_data);
|
|
g_destroy_bio(bp);
|
|
p->flags &= ~(GV_PLEX_SYNCING | GV_PLEX_REBUILDING |
|
|
GV_PLEX_GROWING);
|
|
return (-1);
|
|
}
|
|
g_io_deliver(bp, err);
|
|
return (-1);
|
|
}
|
|
|
|
/*
|
|
* Handle a completed request to a striped or concatenated plex.
|
|
*/
|
|
void
|
|
gv_plex_normal_done(struct gv_plex *p, struct bio *bp)
|
|
{
|
|
struct bio *pbp;
|
|
|
|
pbp = bp->bio_parent;
|
|
if (pbp->bio_error == 0)
|
|
pbp->bio_error = bp->bio_error;
|
|
g_destroy_bio(bp);
|
|
pbp->bio_inbed++;
|
|
if (pbp->bio_children == pbp->bio_inbed) {
|
|
/* Just set it to length since multiple plexes will
|
|
* screw things up. */
|
|
pbp->bio_completed = pbp->bio_length;
|
|
if (pbp->bio_pflags & GV_BIO_SYNCREQ)
|
|
gv_sync_complete(p, pbp);
|
|
else if (pbp->bio_pflags & GV_BIO_GROW)
|
|
gv_grow_complete(p, pbp);
|
|
else
|
|
g_io_deliver(pbp, pbp->bio_error);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Handle a completed request to a RAID-5 plex.
|
|
*/
|
|
void
|
|
gv_plex_raid5_done(struct gv_plex *p, struct bio *bp)
|
|
{
|
|
struct gv_softc *sc;
|
|
struct bio *cbp, *pbp;
|
|
struct gv_bioq *bq, *bq2;
|
|
struct gv_raid5_packet *wp;
|
|
off_t completed;
|
|
int i;
|
|
|
|
completed = 0;
|
|
sc = p->vinumconf;
|
|
wp = bp->bio_caller2;
|
|
|
|
switch (bp->bio_parent->bio_cmd) {
|
|
case BIO_READ:
|
|
if (wp == NULL) {
|
|
completed = bp->bio_completed;
|
|
break;
|
|
}
|
|
|
|
TAILQ_FOREACH_SAFE(bq, &wp->bits, queue, bq2) {
|
|
if (bq->bp != bp)
|
|
continue;
|
|
TAILQ_REMOVE(&wp->bits, bq, queue);
|
|
g_free(bq);
|
|
for (i = 0; i < wp->length; i++)
|
|
wp->data[i] ^= bp->bio_data[i];
|
|
break;
|
|
}
|
|
if (TAILQ_EMPTY(&wp->bits)) {
|
|
completed = wp->length;
|
|
if (wp->lockbase != -1) {
|
|
TAILQ_REMOVE(&p->packets, wp, list);
|
|
/* Bring the waiting bios back into the game. */
|
|
pbp = bioq_takefirst(p->wqueue);
|
|
while (pbp != NULL) {
|
|
gv_post_bio(sc, pbp);
|
|
pbp = bioq_takefirst(p->wqueue);
|
|
}
|
|
}
|
|
g_free(wp);
|
|
}
|
|
|
|
break;
|
|
|
|
case BIO_WRITE:
|
|
/* XXX can this ever happen? */
|
|
if (wp == NULL) {
|
|
completed = bp->bio_completed;
|
|
break;
|
|
}
|
|
|
|
/* Check if we need to handle parity data. */
|
|
TAILQ_FOREACH_SAFE(bq, &wp->bits, queue, bq2) {
|
|
if (bq->bp != bp)
|
|
continue;
|
|
TAILQ_REMOVE(&wp->bits, bq, queue);
|
|
g_free(bq);
|
|
cbp = wp->parity;
|
|
if (cbp != NULL) {
|
|
for (i = 0; i < wp->length; i++)
|
|
cbp->bio_data[i] ^= bp->bio_data[i];
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Handle parity data. */
|
|
if (TAILQ_EMPTY(&wp->bits)) {
|
|
if (bp->bio_parent->bio_pflags & GV_BIO_CHECK)
|
|
i = gv_check_parity(p, bp, wp);
|
|
else
|
|
i = gv_normal_parity(p, bp, wp);
|
|
|
|
/* All of our sub-requests have finished. */
|
|
if (i) {
|
|
completed = wp->length;
|
|
TAILQ_REMOVE(&p->packets, wp, list);
|
|
/* Bring the waiting bios back into the game. */
|
|
pbp = bioq_takefirst(p->wqueue);
|
|
while (pbp != NULL) {
|
|
gv_post_bio(sc, pbp);
|
|
pbp = bioq_takefirst(p->wqueue);
|
|
}
|
|
g_free(wp);
|
|
}
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
pbp = bp->bio_parent;
|
|
if (pbp->bio_error == 0)
|
|
pbp->bio_error = bp->bio_error;
|
|
pbp->bio_completed += completed;
|
|
|
|
/* When the original request is finished, we deliver it. */
|
|
pbp->bio_inbed++;
|
|
if (pbp->bio_inbed == pbp->bio_children) {
|
|
/* Hand it over for checking or delivery. */
|
|
if (pbp->bio_cmd == BIO_WRITE &&
|
|
(pbp->bio_pflags & GV_BIO_CHECK)) {
|
|
gv_parity_complete(p, pbp);
|
|
} else if (pbp->bio_cmd == BIO_WRITE &&
|
|
(pbp->bio_pflags & GV_BIO_REBUILD)) {
|
|
gv_rebuild_complete(p, pbp);
|
|
} else if (pbp->bio_pflags & GV_BIO_INIT) {
|
|
gv_init_complete(p, pbp);
|
|
} else if (pbp->bio_pflags & GV_BIO_SYNCREQ) {
|
|
gv_sync_complete(p, pbp);
|
|
} else if (pbp->bio_pflags & GV_BIO_GROW) {
|
|
gv_grow_complete(p, pbp);
|
|
} else {
|
|
g_io_deliver(pbp, pbp->bio_error);
|
|
}
|
|
}
|
|
|
|
/* Clean up what we allocated. */
|
|
if (bp->bio_cflags & GV_BIO_MALLOC)
|
|
g_free(bp->bio_data);
|
|
g_destroy_bio(bp);
|
|
}
|
|
|
|
static int
|
|
gv_check_parity(struct gv_plex *p, struct bio *bp, struct gv_raid5_packet *wp)
|
|
{
|
|
struct bio *pbp;
|
|
struct gv_sd *s;
|
|
int err, finished, i;
|
|
|
|
err = 0;
|
|
finished = 1;
|
|
|
|
if (wp->waiting != NULL) {
|
|
pbp = wp->waiting;
|
|
wp->waiting = NULL;
|
|
s = pbp->bio_caller1;
|
|
g_io_request(pbp, s->drive_sc->consumer);
|
|
finished = 0;
|
|
|
|
} else if (wp->parity != NULL) {
|
|
pbp = wp->parity;
|
|
wp->parity = NULL;
|
|
|
|
/* Check if the parity is correct. */
|
|
for (i = 0; i < wp->length; i++) {
|
|
if (bp->bio_data[i] != pbp->bio_data[i]) {
|
|
err = 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* The parity is not correct... */
|
|
if (err) {
|
|
bp->bio_parent->bio_error = EAGAIN;
|
|
|
|
/* ... but we rebuild it. */
|
|
if (bp->bio_parent->bio_pflags & GV_BIO_PARITY) {
|
|
s = pbp->bio_caller1;
|
|
g_io_request(pbp, s->drive_sc->consumer);
|
|
finished = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Clean up the BIO we would have used for rebuilding the
|
|
* parity.
|
|
*/
|
|
if (finished) {
|
|
bp->bio_parent->bio_inbed++;
|
|
g_destroy_bio(pbp);
|
|
}
|
|
|
|
}
|
|
|
|
return (finished);
|
|
}
|
|
|
|
static int
|
|
gv_normal_parity(struct gv_plex *p, struct bio *bp, struct gv_raid5_packet *wp)
|
|
{
|
|
struct bio *cbp, *pbp;
|
|
struct gv_sd *s;
|
|
int finished, i;
|
|
|
|
finished = 1;
|
|
|
|
if (wp->waiting != NULL) {
|
|
pbp = wp->waiting;
|
|
wp->waiting = NULL;
|
|
cbp = wp->parity;
|
|
for (i = 0; i < wp->length; i++)
|
|
cbp->bio_data[i] ^= pbp->bio_data[i];
|
|
s = pbp->bio_caller1;
|
|
g_io_request(pbp, s->drive_sc->consumer);
|
|
finished = 0;
|
|
|
|
} else if (wp->parity != NULL) {
|
|
cbp = wp->parity;
|
|
wp->parity = NULL;
|
|
s = cbp->bio_caller1;
|
|
g_io_request(cbp, s->drive_sc->consumer);
|
|
finished = 0;
|
|
}
|
|
|
|
return (finished);
|
|
}
|
|
|
|
/* Flush the queue with delayed requests. */
|
|
static void
|
|
gv_plex_flush(struct gv_plex *p)
|
|
{
|
|
struct gv_softc *sc;
|
|
struct bio *bp;
|
|
|
|
sc = p->vinumconf;
|
|
bp = bioq_takefirst(p->rqueue);
|
|
while (bp != NULL) {
|
|
gv_plex_start(p, bp);
|
|
bp = bioq_takefirst(p->rqueue);
|
|
}
|
|
}
|
|
|
|
static void
|
|
gv_post_bio(struct gv_softc *sc, struct bio *bp)
|
|
{
|
|
|
|
KASSERT(sc != NULL, ("NULL sc"));
|
|
KASSERT(bp != NULL, ("NULL bp"));
|
|
mtx_lock(&sc->bqueue_mtx);
|
|
bioq_disksort(sc->bqueue_down, bp);
|
|
wakeup(sc);
|
|
mtx_unlock(&sc->bqueue_mtx);
|
|
}
|
|
|
|
int
|
|
gv_sync_request(struct gv_plex *from, struct gv_plex *to, off_t offset,
|
|
off_t length, int type, caddr_t data)
|
|
{
|
|
struct gv_softc *sc;
|
|
struct bio *bp;
|
|
|
|
KASSERT(from != NULL, ("NULL from"));
|
|
KASSERT(to != NULL, ("NULL to"));
|
|
sc = from->vinumconf;
|
|
KASSERT(sc != NULL, ("NULL sc"));
|
|
|
|
bp = g_new_bio();
|
|
if (bp == NULL) {
|
|
G_VINUM_DEBUG(0, "sync from '%s' failed at offset "
|
|
" %jd; out of memory", from->name, offset);
|
|
return (ENOMEM);
|
|
}
|
|
bp->bio_length = length;
|
|
bp->bio_done = gv_done;
|
|
bp->bio_pflags |= GV_BIO_SYNCREQ;
|
|
bp->bio_offset = offset;
|
|
bp->bio_caller1 = from;
|
|
bp->bio_caller2 = to;
|
|
bp->bio_cmd = type;
|
|
if (data == NULL)
|
|
data = g_malloc(length, M_WAITOK);
|
|
bp->bio_pflags |= GV_BIO_MALLOC; /* Free on the next run. */
|
|
bp->bio_data = data;
|
|
|
|
/* Send down next. */
|
|
gv_post_bio(sc, bp);
|
|
//gv_plex_start(from, bp);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Handle a finished plex sync bio.
|
|
*/
|
|
int
|
|
gv_sync_complete(struct gv_plex *to, struct bio *bp)
|
|
{
|
|
struct gv_plex *from, *p;
|
|
struct gv_sd *s;
|
|
struct gv_volume *v;
|
|
struct gv_softc *sc;
|
|
off_t offset;
|
|
int err;
|
|
|
|
g_topology_assert_not();
|
|
|
|
err = 0;
|
|
KASSERT(to != NULL, ("NULL to"));
|
|
KASSERT(bp != NULL, ("NULL bp"));
|
|
from = bp->bio_caller2;
|
|
KASSERT(from != NULL, ("NULL from"));
|
|
v = to->vol_sc;
|
|
KASSERT(v != NULL, ("NULL v"));
|
|
sc = v->vinumconf;
|
|
KASSERT(sc != NULL, ("NULL sc"));
|
|
|
|
/* If it was a read, write it. */
|
|
if (bp->bio_cmd == BIO_READ) {
|
|
err = gv_sync_request(from, to, bp->bio_offset, bp->bio_length,
|
|
BIO_WRITE, bp->bio_data);
|
|
/* If it was a write, read the next one. */
|
|
} else if (bp->bio_cmd == BIO_WRITE) {
|
|
if (bp->bio_pflags & GV_BIO_MALLOC)
|
|
g_free(bp->bio_data);
|
|
to->synced += bp->bio_length;
|
|
/* If we're finished, clean up. */
|
|
if (bp->bio_offset + bp->bio_length >= from->size) {
|
|
G_VINUM_DEBUG(1, "syncing of %s from %s completed",
|
|
to->name, from->name);
|
|
/* Update our state. */
|
|
LIST_FOREACH(s, &to->subdisks, in_plex)
|
|
gv_set_sd_state(s, GV_SD_UP, 0);
|
|
gv_update_plex_state(to);
|
|
to->flags &= ~GV_PLEX_SYNCING;
|
|
to->synced = 0;
|
|
gv_post_event(sc, GV_EVENT_SAVE_CONFIG, sc, NULL, 0, 0);
|
|
} else {
|
|
offset = bp->bio_offset + bp->bio_length;
|
|
err = gv_sync_request(from, to, offset,
|
|
MIN(bp->bio_length, from->size - offset),
|
|
BIO_READ, NULL);
|
|
}
|
|
}
|
|
g_destroy_bio(bp);
|
|
/* Clean up if there was an error. */
|
|
if (err) {
|
|
to->flags &= ~GV_PLEX_SYNCING;
|
|
G_VINUM_DEBUG(0, "error syncing plexes: error code %d", err);
|
|
}
|
|
|
|
/* Check if all plexes are synced, and lower refcounts. */
|
|
g_topology_lock();
|
|
LIST_FOREACH(p, &v->plexes, in_volume) {
|
|
if (p->flags & GV_PLEX_SYNCING) {
|
|
g_topology_unlock();
|
|
return (-1);
|
|
}
|
|
}
|
|
/* If we came here, all plexes are synced, and we're free. */
|
|
gv_access(v->provider, -1, -1, 0);
|
|
g_topology_unlock();
|
|
G_VINUM_DEBUG(1, "plex sync completed");
|
|
gv_volume_flush(v);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Create a new bio struct for the next grow request.
|
|
*/
|
|
int
|
|
gv_grow_request(struct gv_plex *p, off_t offset, off_t length, int type,
|
|
caddr_t data)
|
|
{
|
|
struct gv_softc *sc;
|
|
struct bio *bp;
|
|
|
|
KASSERT(p != NULL, ("gv_grow_request: NULL p"));
|
|
sc = p->vinumconf;
|
|
KASSERT(sc != NULL, ("gv_grow_request: NULL sc"));
|
|
|
|
bp = g_new_bio();
|
|
if (bp == NULL) {
|
|
G_VINUM_DEBUG(0, "grow of %s failed creating bio: "
|
|
"out of memory", p->name);
|
|
return (ENOMEM);
|
|
}
|
|
|
|
bp->bio_cmd = type;
|
|
bp->bio_done = gv_done;
|
|
bp->bio_error = 0;
|
|
bp->bio_caller1 = p;
|
|
bp->bio_offset = offset;
|
|
bp->bio_length = length;
|
|
bp->bio_pflags |= GV_BIO_GROW;
|
|
if (data == NULL)
|
|
data = g_malloc(length, M_WAITOK);
|
|
bp->bio_pflags |= GV_BIO_MALLOC;
|
|
bp->bio_data = data;
|
|
|
|
gv_post_bio(sc, bp);
|
|
//gv_plex_start(p, bp);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Finish handling of a bio to a growing plex.
|
|
*/
|
|
void
|
|
gv_grow_complete(struct gv_plex *p, struct bio *bp)
|
|
{
|
|
struct gv_softc *sc;
|
|
struct gv_sd *s;
|
|
struct gv_volume *v;
|
|
off_t origsize, offset;
|
|
int sdcount, err;
|
|
|
|
v = p->vol_sc;
|
|
KASSERT(v != NULL, ("gv_grow_complete: NULL v"));
|
|
sc = v->vinumconf;
|
|
KASSERT(sc != NULL, ("gv_grow_complete: NULL sc"));
|
|
err = 0;
|
|
|
|
/* If it was a read, write it. */
|
|
if (bp->bio_cmd == BIO_READ) {
|
|
p->synced += bp->bio_length;
|
|
err = gv_grow_request(p, bp->bio_offset, bp->bio_length,
|
|
BIO_WRITE, bp->bio_data);
|
|
/* If it was a write, read next. */
|
|
} else if (bp->bio_cmd == BIO_WRITE) {
|
|
if (bp->bio_pflags & GV_BIO_MALLOC)
|
|
g_free(bp->bio_data);
|
|
|
|
/* Find the real size of the plex. */
|
|
sdcount = gv_sdcount(p, 1);
|
|
s = LIST_FIRST(&p->subdisks);
|
|
KASSERT(s != NULL, ("NULL s"));
|
|
origsize = (s->size * (sdcount - 1));
|
|
if (bp->bio_offset + bp->bio_length >= origsize) {
|
|
G_VINUM_DEBUG(1, "growing of %s completed", p->name);
|
|
p->flags &= ~GV_PLEX_GROWING;
|
|
LIST_FOREACH(s, &p->subdisks, in_plex) {
|
|
s->flags &= ~GV_SD_GROW;
|
|
gv_set_sd_state(s, GV_SD_UP, 0);
|
|
}
|
|
p->size = gv_plex_size(p);
|
|
gv_update_vol_size(v, gv_vol_size(v));
|
|
gv_set_plex_state(p, GV_PLEX_UP, 0);
|
|
g_topology_lock();
|
|
gv_access(v->provider, -1, -1, 0);
|
|
g_topology_unlock();
|
|
p->synced = 0;
|
|
gv_post_event(sc, GV_EVENT_SAVE_CONFIG, sc, NULL, 0, 0);
|
|
/* Issue delayed requests. */
|
|
gv_plex_flush(p);
|
|
} else {
|
|
offset = bp->bio_offset + bp->bio_length;
|
|
err = gv_grow_request(p, offset,
|
|
MIN(bp->bio_length, origsize - offset),
|
|
BIO_READ, NULL);
|
|
}
|
|
}
|
|
g_destroy_bio(bp);
|
|
|
|
if (err) {
|
|
p->flags &= ~GV_PLEX_GROWING;
|
|
G_VINUM_DEBUG(0, "error growing plex: error code %d", err);
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Create an initialization BIO and send it off to the consumer. Assume that
|
|
* we're given initialization data as parameter.
|
|
*/
|
|
void
|
|
gv_init_request(struct gv_sd *s, off_t start, caddr_t data, off_t length)
|
|
{
|
|
struct gv_drive *d;
|
|
struct g_consumer *cp;
|
|
struct bio *bp, *cbp;
|
|
|
|
KASSERT(s != NULL, ("gv_init_request: NULL s"));
|
|
d = s->drive_sc;
|
|
KASSERT(d != NULL, ("gv_init_request: NULL d"));
|
|
cp = d->consumer;
|
|
KASSERT(cp != NULL, ("gv_init_request: NULL cp"));
|
|
|
|
bp = g_new_bio();
|
|
if (bp == NULL) {
|
|
G_VINUM_DEBUG(0, "subdisk '%s' init: write failed at offset %jd"
|
|
" (drive offset %jd); out of memory", s->name,
|
|
(intmax_t)s->initialized, (intmax_t)start);
|
|
return; /* XXX: Error codes. */
|
|
}
|
|
bp->bio_cmd = BIO_WRITE;
|
|
bp->bio_data = data;
|
|
bp->bio_done = gv_done;
|
|
bp->bio_error = 0;
|
|
bp->bio_length = length;
|
|
bp->bio_pflags |= GV_BIO_INIT;
|
|
bp->bio_offset = start;
|
|
bp->bio_caller1 = s;
|
|
|
|
/* Then ofcourse, we have to clone it. */
|
|
cbp = g_clone_bio(bp);
|
|
if (cbp == NULL) {
|
|
G_VINUM_DEBUG(0, "subdisk '%s' init: write failed at offset %jd"
|
|
" (drive offset %jd); out of memory", s->name,
|
|
(intmax_t)s->initialized, (intmax_t)start);
|
|
return; /* XXX: Error codes. */
|
|
}
|
|
cbp->bio_done = gv_done;
|
|
cbp->bio_caller1 = s;
|
|
/* Send it off to the consumer. */
|
|
g_io_request(cbp, cp);
|
|
}
|
|
|
|
/*
|
|
* Handle a finished initialization BIO.
|
|
*/
|
|
void
|
|
gv_init_complete(struct gv_plex *p, struct bio *bp)
|
|
{
|
|
struct gv_softc *sc;
|
|
struct gv_drive *d;
|
|
struct g_consumer *cp;
|
|
struct gv_sd *s;
|
|
off_t start, length;
|
|
caddr_t data;
|
|
int error;
|
|
|
|
s = bp->bio_caller1;
|
|
start = bp->bio_offset;
|
|
length = bp->bio_length;
|
|
error = bp->bio_error;
|
|
data = bp->bio_data;
|
|
|
|
KASSERT(s != NULL, ("gv_init_complete: NULL s"));
|
|
d = s->drive_sc;
|
|
KASSERT(d != NULL, ("gv_init_complete: NULL d"));
|
|
cp = d->consumer;
|
|
KASSERT(cp != NULL, ("gv_init_complete: NULL cp"));
|
|
sc = p->vinumconf;
|
|
KASSERT(sc != NULL, ("gv_init_complete: NULL sc"));
|
|
|
|
g_destroy_bio(bp);
|
|
|
|
/*
|
|
* First we need to find out if it was okay, and abort if it's not.
|
|
* Then we need to free previous buffers, find out the correct subdisk,
|
|
* as well as getting the correct starting point and length of the BIO.
|
|
*/
|
|
if (start >= s->drive_offset + s->size) {
|
|
/* Free the data we initialized. */
|
|
if (data != NULL)
|
|
g_free(data);
|
|
g_topology_assert_not();
|
|
g_topology_lock();
|
|
g_access(cp, 0, -1, 0);
|
|
g_topology_unlock();
|
|
if (error) {
|
|
gv_set_sd_state(s, GV_SD_STALE, GV_SETSTATE_FORCE |
|
|
GV_SETSTATE_CONFIG);
|
|
} else {
|
|
gv_set_sd_state(s, GV_SD_UP, GV_SETSTATE_CONFIG);
|
|
s->initialized = 0;
|
|
gv_post_event(sc, GV_EVENT_SAVE_CONFIG, sc, NULL, 0, 0);
|
|
G_VINUM_DEBUG(1, "subdisk '%s' init: finished "
|
|
"successfully", s->name);
|
|
}
|
|
return;
|
|
}
|
|
s->initialized += length;
|
|
start += length;
|
|
gv_init_request(s, start, data, length);
|
|
}
|
|
|
|
/*
|
|
* Create a new bio struct for the next parity rebuild. Used both by internal
|
|
* rebuild of degraded plexes as well as user initiated rebuilds/checks.
|
|
*/
|
|
void
|
|
gv_parity_request(struct gv_plex *p, int flags, off_t offset)
|
|
{
|
|
struct gv_softc *sc;
|
|
struct bio *bp;
|
|
|
|
KASSERT(p != NULL, ("gv_parity_request: NULL p"));
|
|
sc = p->vinumconf;
|
|
KASSERT(sc != NULL, ("gv_parity_request: NULL sc"));
|
|
|
|
bp = g_new_bio();
|
|
if (bp == NULL) {
|
|
G_VINUM_DEBUG(0, "rebuild of %s failed creating bio: "
|
|
"out of memory", p->name);
|
|
return;
|
|
}
|
|
|
|
bp->bio_cmd = BIO_WRITE;
|
|
bp->bio_done = gv_done;
|
|
bp->bio_error = 0;
|
|
bp->bio_length = p->stripesize;
|
|
bp->bio_caller1 = p;
|
|
|
|
/*
|
|
* Check if it's a rebuild of a degraded plex or a user request of
|
|
* parity rebuild.
|
|
*/
|
|
if (flags & GV_BIO_REBUILD)
|
|
bp->bio_data = g_malloc(GV_DFLT_SYNCSIZE, M_WAITOK);
|
|
else if (flags & GV_BIO_CHECK)
|
|
bp->bio_data = g_malloc(p->stripesize, M_WAITOK | M_ZERO);
|
|
else {
|
|
G_VINUM_DEBUG(0, "invalid flags given in rebuild");
|
|
return;
|
|
}
|
|
|
|
bp->bio_pflags = flags;
|
|
bp->bio_pflags |= GV_BIO_MALLOC;
|
|
|
|
/* We still have more parity to build. */
|
|
bp->bio_offset = offset;
|
|
gv_post_bio(sc, bp);
|
|
//gv_plex_start(p, bp); /* Send it down to the plex. */
|
|
}
|
|
|
|
/*
|
|
* Handle a finished parity write.
|
|
*/
|
|
void
|
|
gv_parity_complete(struct gv_plex *p, struct bio *bp)
|
|
{
|
|
struct gv_softc *sc;
|
|
int error, flags;
|
|
|
|
error = bp->bio_error;
|
|
flags = bp->bio_pflags;
|
|
flags &= ~GV_BIO_MALLOC;
|
|
|
|
sc = p->vinumconf;
|
|
KASSERT(sc != NULL, ("gv_parity_complete: NULL sc"));
|
|
|
|
/* Clean up what we allocated. */
|
|
if (bp->bio_pflags & GV_BIO_MALLOC)
|
|
g_free(bp->bio_data);
|
|
g_destroy_bio(bp);
|
|
|
|
if (error == EAGAIN) {
|
|
G_VINUM_DEBUG(0, "parity incorrect at offset 0x%jx",
|
|
(intmax_t)p->synced);
|
|
}
|
|
|
|
/* Any error is fatal, except EAGAIN when we're rebuilding. */
|
|
if (error && !(error == EAGAIN && (flags & GV_BIO_PARITY))) {
|
|
/* Make sure we don't have the lock. */
|
|
g_topology_assert_not();
|
|
g_topology_lock();
|
|
gv_access(p->vol_sc->provider, -1, -1, 0);
|
|
g_topology_unlock();
|
|
G_VINUM_DEBUG(0, "parity check on %s failed at 0x%jx "
|
|
"errno %d", p->name, (intmax_t)p->synced, error);
|
|
return;
|
|
} else {
|
|
p->synced += p->stripesize;
|
|
}
|
|
|
|
if (p->synced >= p->size) {
|
|
/* Make sure we don't have the lock. */
|
|
g_topology_assert_not();
|
|
g_topology_lock();
|
|
gv_access(p->vol_sc->provider, -1, -1, 0);
|
|
g_topology_unlock();
|
|
/* We're finished. */
|
|
G_VINUM_DEBUG(1, "parity operation on %s finished", p->name);
|
|
p->synced = 0;
|
|
gv_post_event(sc, GV_EVENT_SAVE_CONFIG, sc, NULL, 0, 0);
|
|
return;
|
|
}
|
|
|
|
/* Send down next. It will determine if we need to itself. */
|
|
gv_parity_request(p, flags, p->synced);
|
|
}
|
|
|
|
/*
|
|
* Handle a finished plex rebuild bio.
|
|
*/
|
|
void
|
|
gv_rebuild_complete(struct gv_plex *p, struct bio *bp)
|
|
{
|
|
struct gv_softc *sc;
|
|
struct gv_sd *s;
|
|
int error, flags;
|
|
off_t offset;
|
|
|
|
error = bp->bio_error;
|
|
flags = bp->bio_pflags;
|
|
offset = bp->bio_offset;
|
|
flags &= ~GV_BIO_MALLOC;
|
|
sc = p->vinumconf;
|
|
KASSERT(sc != NULL, ("gv_rebuild_complete: NULL sc"));
|
|
|
|
/* Clean up what we allocated. */
|
|
if (bp->bio_pflags & GV_BIO_MALLOC)
|
|
g_free(bp->bio_data);
|
|
g_destroy_bio(bp);
|
|
|
|
if (error) {
|
|
g_topology_assert_not();
|
|
g_topology_lock();
|
|
gv_access(p->vol_sc->provider, -1, -1, 0);
|
|
g_topology_unlock();
|
|
|
|
G_VINUM_DEBUG(0, "rebuild of %s failed at offset %jd errno: %d",
|
|
p->name, (intmax_t)offset, error);
|
|
p->flags &= ~GV_PLEX_REBUILDING;
|
|
p->synced = 0;
|
|
gv_plex_flush(p); /* Flush out remaining rebuild BIOs. */
|
|
return;
|
|
}
|
|
|
|
offset += (p->stripesize * (gv_sdcount(p, 1) - 1));
|
|
if (offset >= p->size) {
|
|
/* We're finished. */
|
|
g_topology_assert_not();
|
|
g_topology_lock();
|
|
gv_access(p->vol_sc->provider, -1, -1, 0);
|
|
g_topology_unlock();
|
|
|
|
G_VINUM_DEBUG(1, "rebuild of %s finished", p->name);
|
|
gv_save_config(p->vinumconf);
|
|
p->flags &= ~GV_PLEX_REBUILDING;
|
|
p->synced = 0;
|
|
/* Try to up all subdisks. */
|
|
LIST_FOREACH(s, &p->subdisks, in_plex)
|
|
gv_update_sd_state(s);
|
|
gv_post_event(sc, GV_EVENT_SAVE_CONFIG, sc, NULL, 0, 0);
|
|
gv_plex_flush(p); /* Flush out remaining rebuild BIOs. */
|
|
return;
|
|
}
|
|
|
|
/* Send down next. It will determine if we need to itself. */
|
|
gv_parity_request(p, flags, offset);
|
|
}
|