mirror of
https://git.FreeBSD.org/src.git
synced 2024-12-26 11:47:31 +00:00
5181 lines
144 KiB
C
5181 lines
144 KiB
C
/*
|
|
* ntp_proto.c - NTP version 4 protocol machinery
|
|
*
|
|
* ATTENTION: Get approval from Harlan on all changes to this file!
|
|
* (Harlan will be discussing these changes with Dave Mills.)
|
|
*
|
|
*/
|
|
#ifdef HAVE_CONFIG_H
|
|
#include <config.h>
|
|
#endif
|
|
|
|
#include "ntpd.h"
|
|
#include "ntp_stdlib.h"
|
|
#include "ntp_unixtime.h"
|
|
#include "ntp_control.h"
|
|
#include "ntp_string.h"
|
|
#include "ntp_leapsec.h"
|
|
#include "refidsmear.h"
|
|
#include "lib_strbuf.h"
|
|
|
|
#include <stdio.h>
|
|
#ifdef HAVE_LIBSCF_H
|
|
#include <libscf.h>
|
|
#endif
|
|
#ifdef HAVE_UNISTD_H
|
|
#include <unistd.h>
|
|
#endif
|
|
|
|
/* [Bug 3031] define automatic broadcastdelay cutoff preset */
|
|
#ifndef BDELAY_DEFAULT
|
|
# define BDELAY_DEFAULT (-0.050)
|
|
#endif
|
|
|
|
/*
|
|
* This macro defines the authentication state. If x is 1 authentication
|
|
* is required; othewise it is optional.
|
|
*/
|
|
#define AUTH(x, y) ((x) ? (y) == AUTH_OK \
|
|
: (y) == AUTH_OK || (y) == AUTH_NONE)
|
|
|
|
typedef enum
|
|
auth_state {
|
|
AUTH_UNKNOWN = -1, /* Unknown */
|
|
AUTH_NONE, /* authentication not required */
|
|
AUTH_OK, /* authentication OK */
|
|
AUTH_ERROR, /* authentication error */
|
|
AUTH_CRYPTO /* crypto_NAK */
|
|
} auth_code;
|
|
|
|
/*
|
|
* Set up Kiss Code values
|
|
*/
|
|
|
|
typedef enum
|
|
kiss_codes {
|
|
NOKISS, /* No Kiss Code */
|
|
RATEKISS, /* Rate limit Kiss Code */
|
|
DENYKISS, /* Deny Kiss */
|
|
RSTRKISS, /* Restricted Kiss */
|
|
XKISS /* Experimental Kiss */
|
|
} kiss_code;
|
|
|
|
typedef enum
|
|
nak_error_codes {
|
|
NONAK, /* No NAK seen */
|
|
INVALIDNAK, /* NAK cannot be used */
|
|
VALIDNAK /* NAK is valid */
|
|
} nak_code;
|
|
|
|
/*
|
|
* traffic shaping parameters
|
|
*/
|
|
#define NTP_IBURST 6 /* packets in iburst */
|
|
#define RESP_DELAY 1 /* refclock burst delay (s) */
|
|
|
|
/*
|
|
* pool soliciting restriction duration (s)
|
|
*/
|
|
#define POOL_SOLICIT_WINDOW 8
|
|
|
|
/*
|
|
* peer_select groups statistics for a peer used by clock_select() and
|
|
* clock_cluster().
|
|
*/
|
|
typedef struct peer_select_tag {
|
|
struct peer * peer;
|
|
double synch; /* sync distance */
|
|
double error; /* jitter */
|
|
double seljit; /* selection jitter */
|
|
} peer_select;
|
|
|
|
/*
|
|
* System variables are declared here. Unless specified otherwise, all
|
|
* times are in seconds.
|
|
*/
|
|
u_char sys_leap; /* system leap indicator, use set_sys_leap() to change this */
|
|
u_char xmt_leap; /* leap indicator sent in client requests, set up by set_sys_leap() */
|
|
u_char sys_stratum; /* system stratum */
|
|
s_char sys_precision; /* local clock precision (log2 s) */
|
|
double sys_rootdelay; /* roundtrip delay to primary source */
|
|
double sys_rootdisp; /* dispersion to primary source */
|
|
u_int32 sys_refid; /* reference id (network byte order) */
|
|
l_fp sys_reftime; /* last update time */
|
|
struct peer *sys_peer; /* current peer */
|
|
|
|
#ifdef LEAP_SMEAR
|
|
struct leap_smear_info leap_smear;
|
|
#endif
|
|
int leap_sec_in_progress;
|
|
|
|
/*
|
|
* Rate controls. Leaky buckets are used to throttle the packet
|
|
* transmission rates in order to protect busy servers such as at NIST
|
|
* and USNO. There is a counter for each association and another for KoD
|
|
* packets. The association counter decrements each second, but not
|
|
* below zero. Each time a packet is sent the counter is incremented by
|
|
* a configurable value representing the average interval between
|
|
* packets. A packet is delayed as long as the counter is greater than
|
|
* zero. Note this does not affect the time value computations.
|
|
*/
|
|
/*
|
|
* Nonspecified system state variables
|
|
*/
|
|
int sys_bclient; /* broadcast client enable */
|
|
double sys_bdelay; /* broadcast client default delay */
|
|
int sys_authenticate; /* requre authentication for config */
|
|
l_fp sys_authdelay; /* authentication delay */
|
|
double sys_offset; /* current local clock offset */
|
|
double sys_mindisp = MINDISPERSE; /* minimum distance (s) */
|
|
double sys_maxdist = MAXDISTANCE; /* selection threshold */
|
|
double sys_jitter; /* system jitter */
|
|
u_long sys_epoch; /* last clock update time */
|
|
static double sys_clockhop; /* clockhop threshold */
|
|
static int leap_vote_ins; /* leap consensus for insert */
|
|
static int leap_vote_del; /* leap consensus for delete */
|
|
keyid_t sys_private; /* private value for session seed */
|
|
int sys_manycastserver; /* respond to manycast client pkts */
|
|
int ntp_mode7; /* respond to ntpdc (mode7) */
|
|
int peer_ntpdate; /* active peers in ntpdate mode */
|
|
int sys_survivors; /* truest of the truechimers */
|
|
char *sys_ident = NULL; /* identity scheme */
|
|
|
|
/*
|
|
* TOS and multicast mapping stuff
|
|
*/
|
|
int sys_floor = 0; /* cluster stratum floor */
|
|
u_char sys_bcpollbstep = 0; /* Broadcast Poll backstep gate */
|
|
int sys_ceiling = STRATUM_UNSPEC - 1; /* cluster stratum ceiling */
|
|
int sys_minsane = 1; /* minimum candidates */
|
|
int sys_minclock = NTP_MINCLOCK; /* minimum candidates */
|
|
int sys_maxclock = NTP_MAXCLOCK; /* maximum candidates */
|
|
int sys_cohort = 0; /* cohort switch */
|
|
int sys_orphan = STRATUM_UNSPEC + 1; /* orphan stratum */
|
|
int sys_orphwait = NTP_ORPHWAIT; /* orphan wait */
|
|
int sys_beacon = BEACON; /* manycast beacon interval */
|
|
u_int sys_ttlmax; /* max ttl mapping vector index */
|
|
u_char sys_ttl[MAX_TTL]; /* ttl mapping vector */
|
|
|
|
/*
|
|
* Statistics counters - first the good, then the bad
|
|
*/
|
|
u_long sys_stattime; /* elapsed time */
|
|
u_long sys_received; /* packets received */
|
|
u_long sys_processed; /* packets for this host */
|
|
u_long sys_newversion; /* current version */
|
|
u_long sys_oldversion; /* old version */
|
|
u_long sys_restricted; /* access denied */
|
|
u_long sys_badlength; /* bad length or format */
|
|
u_long sys_badauth; /* bad authentication */
|
|
u_long sys_declined; /* declined */
|
|
u_long sys_limitrejected; /* rate exceeded */
|
|
u_long sys_kodsent; /* KoD sent */
|
|
|
|
/*
|
|
* Mechanism knobs: how soon do we peer_clear() or unpeer()?
|
|
*
|
|
* The default way is "on-receipt". If this was a packet from a
|
|
* well-behaved source, on-receipt will offer the fastest recovery.
|
|
* If this was from a DoS attack, the default way makes it easier
|
|
* for a bad-guy to DoS us. So look and see what bites you harder
|
|
* and choose according to your environment.
|
|
*/
|
|
int peer_clear_digest_early = 1; /* bad digest (TEST5) and Autokey */
|
|
int unpeer_crypto_early = 1; /* bad crypto (TEST9) */
|
|
int unpeer_crypto_nak_early = 1; /* crypto_NAK (TEST5) */
|
|
int unpeer_digest_early = 1; /* bad digest (TEST5) */
|
|
|
|
int dynamic_interleave = DYNAMIC_INTERLEAVE; /* Bug 2978 mitigation */
|
|
|
|
int kiss_code_check(u_char hisleap, u_char hisstratum, u_char hismode, u_int32 refid);
|
|
nak_code valid_NAK (struct peer *peer, struct recvbuf *rbufp, u_char hismode);
|
|
static double root_distance (struct peer *);
|
|
static void clock_combine (peer_select *, int, int);
|
|
static void peer_xmit (struct peer *);
|
|
static void fast_xmit (struct recvbuf *, int, keyid_t, int);
|
|
static void pool_xmit (struct peer *);
|
|
static void clock_update (struct peer *);
|
|
static void measure_precision(void);
|
|
static double measure_tick_fuzz(void);
|
|
static int local_refid (struct peer *);
|
|
static int peer_unfit (struct peer *);
|
|
#ifdef AUTOKEY
|
|
static int group_test (char *, char *);
|
|
#endif /* AUTOKEY */
|
|
#ifdef WORKER
|
|
void pool_name_resolved (int, int, void *, const char *,
|
|
const char *, const struct addrinfo *,
|
|
const struct addrinfo *);
|
|
#endif /* WORKER */
|
|
|
|
const char * amtoa (int am);
|
|
|
|
|
|
void
|
|
set_sys_leap(
|
|
u_char new_sys_leap
|
|
)
|
|
{
|
|
sys_leap = new_sys_leap;
|
|
xmt_leap = sys_leap;
|
|
|
|
/*
|
|
* Under certain conditions we send faked leap bits to clients, so
|
|
* eventually change xmt_leap below, but never change LEAP_NOTINSYNC.
|
|
*/
|
|
if (xmt_leap != LEAP_NOTINSYNC) {
|
|
if (leap_sec_in_progress) {
|
|
/* always send "not sync" */
|
|
xmt_leap = LEAP_NOTINSYNC;
|
|
}
|
|
#ifdef LEAP_SMEAR
|
|
else {
|
|
/*
|
|
* If leap smear is enabled in general we must
|
|
* never send a leap second warning to clients,
|
|
* so make sure we only send "in sync".
|
|
*/
|
|
if (leap_smear.enabled)
|
|
xmt_leap = LEAP_NOWARNING;
|
|
}
|
|
#endif /* LEAP_SMEAR */
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Kiss Code check
|
|
*/
|
|
int
|
|
kiss_code_check(
|
|
u_char hisleap,
|
|
u_char hisstratum,
|
|
u_char hismode,
|
|
u_int32 refid
|
|
)
|
|
{
|
|
|
|
if ( hismode == MODE_SERVER
|
|
&& hisleap == LEAP_NOTINSYNC
|
|
&& hisstratum == STRATUM_UNSPEC) {
|
|
if(memcmp(&refid,"RATE", 4) == 0) {
|
|
return (RATEKISS);
|
|
} else if(memcmp(&refid,"DENY", 4) == 0) {
|
|
return (DENYKISS);
|
|
} else if(memcmp(&refid,"RSTR", 4) == 0) {
|
|
return (RSTRKISS);
|
|
} else if(memcmp(&refid,"X", 1) == 0) {
|
|
return (XKISS);
|
|
}
|
|
}
|
|
return (NOKISS);
|
|
}
|
|
|
|
|
|
/*
|
|
* Check that NAK is valid
|
|
*/
|
|
nak_code
|
|
valid_NAK(
|
|
struct peer *peer,
|
|
struct recvbuf *rbufp,
|
|
u_char hismode
|
|
)
|
|
{
|
|
int base_packet_length = MIN_V4_PKT_LEN;
|
|
int remainder_size;
|
|
struct pkt * rpkt;
|
|
int keyid;
|
|
l_fp p_org; /* origin timestamp */
|
|
const l_fp * myorg; /* selected peer origin */
|
|
|
|
/*
|
|
* Check to see if there is something beyond the basic packet
|
|
*/
|
|
if (rbufp->recv_length == base_packet_length) {
|
|
return NONAK;
|
|
}
|
|
|
|
remainder_size = rbufp->recv_length - base_packet_length;
|
|
/*
|
|
* Is this a potential NAK?
|
|
*/
|
|
if (remainder_size != 4) {
|
|
return NONAK;
|
|
}
|
|
|
|
/*
|
|
* Only server responses can contain NAK's
|
|
*/
|
|
|
|
if (hismode != MODE_SERVER &&
|
|
hismode != MODE_ACTIVE &&
|
|
hismode != MODE_PASSIVE
|
|
) {
|
|
return INVALIDNAK;
|
|
}
|
|
|
|
/*
|
|
* Make sure that the extra field in the packet is all zeros
|
|
*/
|
|
rpkt = &rbufp->recv_pkt;
|
|
keyid = ntohl(((u_int32 *)rpkt)[base_packet_length / 4]);
|
|
if (keyid != 0) {
|
|
return INVALIDNAK;
|
|
}
|
|
|
|
/*
|
|
* Only valid if peer uses a key
|
|
*/
|
|
if (!peer || !peer->keyid || !(peer->flags & FLAG_SKEY)) {
|
|
return INVALIDNAK;
|
|
}
|
|
|
|
/*
|
|
* The ORIGIN must match, or this cannot be a valid NAK, either.
|
|
*/
|
|
NTOHL_FP(&rpkt->org, &p_org);
|
|
if (peer->flip > 0)
|
|
myorg = &peer->borg;
|
|
else
|
|
myorg = &peer->aorg;
|
|
|
|
if (L_ISZERO(&p_org) ||
|
|
L_ISZERO( myorg) ||
|
|
!L_ISEQU(&p_org, myorg)) {
|
|
return INVALIDNAK;
|
|
}
|
|
|
|
/* If we ever passed all that checks, we should be safe. Well,
|
|
* as safe as we can ever be with an unauthenticated crypto-nak.
|
|
*/
|
|
return VALIDNAK;
|
|
}
|
|
|
|
|
|
/*
|
|
* transmit - transmit procedure called by poll timeout
|
|
*/
|
|
void
|
|
transmit(
|
|
struct peer *peer /* peer structure pointer */
|
|
)
|
|
{
|
|
u_char hpoll;
|
|
|
|
/*
|
|
* The polling state machine. There are two kinds of machines,
|
|
* those that never expect a reply (broadcast and manycast
|
|
* server modes) and those that do (all other modes). The dance
|
|
* is intricate...
|
|
*/
|
|
hpoll = peer->hpoll;
|
|
|
|
/*
|
|
* In broadcast mode the poll interval is never changed from
|
|
* minpoll.
|
|
*/
|
|
if (peer->cast_flags & (MDF_BCAST | MDF_MCAST)) {
|
|
peer->outdate = current_time;
|
|
if (sys_leap != LEAP_NOTINSYNC)
|
|
peer_xmit(peer);
|
|
poll_update(peer, hpoll);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* In manycast mode we start with unity ttl. The ttl is
|
|
* increased by one for each poll until either sys_maxclock
|
|
* servers have been found or the maximum ttl is reached. When
|
|
* sys_maxclock servers are found we stop polling until one or
|
|
* more servers have timed out or until less than sys_minclock
|
|
* associations turn up. In this case additional better servers
|
|
* are dragged in and preempt the existing ones. Once every
|
|
* sys_beacon seconds we are to transmit unconditionally, but
|
|
* this code is not quite right -- peer->unreach counts polls
|
|
* and is being compared with sys_beacon, so the beacons happen
|
|
* every sys_beacon polls.
|
|
*/
|
|
if (peer->cast_flags & MDF_ACAST) {
|
|
peer->outdate = current_time;
|
|
if (peer->unreach > sys_beacon) {
|
|
peer->unreach = 0;
|
|
peer->ttl = 0;
|
|
peer_xmit(peer);
|
|
} else if ( sys_survivors < sys_minclock
|
|
|| peer_associations < sys_maxclock) {
|
|
if (peer->ttl < sys_ttlmax)
|
|
peer->ttl++;
|
|
peer_xmit(peer);
|
|
}
|
|
peer->unreach++;
|
|
poll_update(peer, hpoll);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Pool associations transmit unicast solicitations when there
|
|
* are less than a hard limit of 2 * sys_maxclock associations,
|
|
* and either less than sys_minclock survivors or less than
|
|
* sys_maxclock associations. The hard limit prevents unbounded
|
|
* growth in associations if the system clock or network quality
|
|
* result in survivor count dipping below sys_minclock often.
|
|
* This was observed testing with pool, where sys_maxclock == 12
|
|
* resulted in 60 associations without the hard limit. A
|
|
* similar hard limit on manycastclient ephemeral associations
|
|
* may be appropriate.
|
|
*/
|
|
if (peer->cast_flags & MDF_POOL) {
|
|
peer->outdate = current_time;
|
|
if ( (peer_associations <= 2 * sys_maxclock)
|
|
&& ( peer_associations < sys_maxclock
|
|
|| sys_survivors < sys_minclock))
|
|
pool_xmit(peer);
|
|
poll_update(peer, hpoll);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* In unicast modes the dance is much more intricate. It is
|
|
* designed to back off whenever possible to minimize network
|
|
* traffic.
|
|
*/
|
|
if (peer->burst == 0) {
|
|
u_char oreach;
|
|
|
|
/*
|
|
* Update the reachability status. If not heard for
|
|
* three consecutive polls, stuff infinity in the clock
|
|
* filter.
|
|
*/
|
|
oreach = peer->reach;
|
|
peer->outdate = current_time;
|
|
peer->unreach++;
|
|
peer->reach <<= 1;
|
|
if (!peer->reach) {
|
|
|
|
/*
|
|
* Here the peer is unreachable. If it was
|
|
* previously reachable raise a trap. Send a
|
|
* burst if enabled.
|
|
*/
|
|
clock_filter(peer, 0., 0., MAXDISPERSE);
|
|
if (oreach) {
|
|
peer_unfit(peer);
|
|
report_event(PEVNT_UNREACH, peer, NULL);
|
|
}
|
|
if ( (peer->flags & FLAG_IBURST)
|
|
&& peer->retry == 0)
|
|
peer->retry = NTP_RETRY;
|
|
} else {
|
|
|
|
/*
|
|
* Here the peer is reachable. Send a burst if
|
|
* enabled and the peer is fit. Reset unreach
|
|
* for persistent and ephemeral associations.
|
|
* Unreach is also reset for survivors in
|
|
* clock_select().
|
|
*/
|
|
hpoll = sys_poll;
|
|
if (!(peer->flags & FLAG_PREEMPT))
|
|
peer->unreach = 0;
|
|
if ( (peer->flags & FLAG_BURST)
|
|
&& peer->retry == 0
|
|
&& !peer_unfit(peer))
|
|
peer->retry = NTP_RETRY;
|
|
}
|
|
|
|
/*
|
|
* Watch for timeout. If ephemeral, toss the rascal;
|
|
* otherwise, bump the poll interval. Note the
|
|
* poll_update() routine will clamp it to maxpoll.
|
|
* If preemptible and we have more peers than maxclock,
|
|
* and this peer has the minimum score of preemptibles,
|
|
* demobilize.
|
|
*/
|
|
if (peer->unreach >= NTP_UNREACH) {
|
|
hpoll++;
|
|
/* ephemeral: no FLAG_CONFIG nor FLAG_PREEMPT */
|
|
if (!(peer->flags & (FLAG_CONFIG | FLAG_PREEMPT))) {
|
|
report_event(PEVNT_RESTART, peer, "timeout");
|
|
peer_clear(peer, "TIME");
|
|
unpeer(peer);
|
|
return;
|
|
}
|
|
if ( (peer->flags & FLAG_PREEMPT)
|
|
&& (peer_associations > sys_maxclock)
|
|
&& score_all(peer)) {
|
|
report_event(PEVNT_RESTART, peer, "timeout");
|
|
peer_clear(peer, "TIME");
|
|
unpeer(peer);
|
|
return;
|
|
}
|
|
}
|
|
} else {
|
|
peer->burst--;
|
|
if (peer->burst == 0) {
|
|
|
|
/*
|
|
* If ntpdate mode and the clock has not been
|
|
* set and all peers have completed the burst,
|
|
* we declare a successful failure.
|
|
*/
|
|
if (mode_ntpdate) {
|
|
peer_ntpdate--;
|
|
if (peer_ntpdate == 0) {
|
|
msyslog(LOG_NOTICE,
|
|
"ntpd: no servers found");
|
|
if (!msyslog_term)
|
|
printf(
|
|
"ntpd: no servers found\n");
|
|
exit (0);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (peer->retry > 0)
|
|
peer->retry--;
|
|
|
|
/*
|
|
* Do not transmit if in broadcast client mode.
|
|
*/
|
|
if (peer->hmode != MODE_BCLIENT)
|
|
peer_xmit(peer);
|
|
poll_update(peer, hpoll);
|
|
|
|
return;
|
|
}
|
|
|
|
|
|
const char *
|
|
amtoa(
|
|
int am
|
|
)
|
|
{
|
|
char *bp;
|
|
|
|
switch(am) {
|
|
case AM_ERR: return "AM_ERR";
|
|
case AM_NOMATCH: return "AM_NOMATCH";
|
|
case AM_PROCPKT: return "AM_PROCPKT";
|
|
case AM_BCST: return "AM_BCST";
|
|
case AM_FXMIT: return "AM_FXMIT";
|
|
case AM_MANYCAST: return "AM_MANYCAST";
|
|
case AM_NEWPASS: return "AM_NEWPASS";
|
|
case AM_NEWBCL: return "AM_NEWBCL";
|
|
case AM_POSSBCL: return "AM_POSSBCL";
|
|
default:
|
|
LIB_GETBUF(bp);
|
|
snprintf(bp, LIB_BUFLENGTH, "AM_#%d", am);
|
|
return bp;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* receive - receive procedure called for each packet received
|
|
*/
|
|
void
|
|
receive(
|
|
struct recvbuf *rbufp
|
|
)
|
|
{
|
|
register struct peer *peer; /* peer structure pointer */
|
|
register struct pkt *pkt; /* receive packet pointer */
|
|
u_char hisversion; /* packet version */
|
|
u_char hisleap; /* packet leap indicator */
|
|
u_char hismode; /* packet mode */
|
|
u_char hisstratum; /* packet stratum */
|
|
r4addr r4a; /* address restrictions */
|
|
u_short restrict_mask; /* restrict bits */
|
|
const char *hm_str; /* hismode string */
|
|
const char *am_str; /* association match string */
|
|
int kissCode = NOKISS; /* Kiss Code */
|
|
int has_mac; /* length of MAC field */
|
|
int authlen; /* offset of MAC field */
|
|
auth_code is_authentic = AUTH_UNKNOWN; /* Was AUTH_NONE */
|
|
nak_code crypto_nak_test; /* result of crypto-NAK check */
|
|
int retcode = AM_NOMATCH; /* match code */
|
|
keyid_t skeyid = 0; /* key IDs */
|
|
u_int32 opcode = 0; /* extension field opcode */
|
|
sockaddr_u *dstadr_sin; /* active runway */
|
|
struct peer *peer2; /* aux peer structure pointer */
|
|
endpt *match_ep; /* newpeer() local address */
|
|
l_fp p_org; /* origin timestamp */
|
|
l_fp p_rec; /* receive timestamp */
|
|
l_fp p_xmt; /* transmit timestamp */
|
|
#ifdef AUTOKEY
|
|
char hostname[NTP_MAXSTRLEN + 1];
|
|
char *groupname = NULL;
|
|
struct autokey *ap; /* autokey structure pointer */
|
|
int rval; /* cookie snatcher */
|
|
keyid_t pkeyid = 0, tkeyid = 0; /* key IDs */
|
|
#endif /* AUTOKEY */
|
|
#ifdef HAVE_NTP_SIGND
|
|
static unsigned char zero_key[16];
|
|
#endif /* HAVE_NTP_SIGND */
|
|
|
|
/*
|
|
* Note that there are many places we do not call record_raw_stats().
|
|
*
|
|
* We only want to call it *after* we've sent a response, or perhaps
|
|
* when we've decided to drop a packet.
|
|
*/
|
|
|
|
/*
|
|
* Monitor the packet and get restrictions. Note that the packet
|
|
* length for control and private mode packets must be checked
|
|
* by the service routines. Some restrictions have to be handled
|
|
* later in order to generate a kiss-o'-death packet.
|
|
*/
|
|
/*
|
|
* Bogus port check is before anything, since it probably
|
|
* reveals a clogging attack.
|
|
*/
|
|
sys_received++;
|
|
if (0 == SRCPORT(&rbufp->recv_srcadr)) {
|
|
sys_badlength++;
|
|
return; /* bogus port */
|
|
}
|
|
restrictions(&rbufp->recv_srcadr, &r4a);
|
|
restrict_mask = r4a.rflags;
|
|
|
|
pkt = &rbufp->recv_pkt;
|
|
hisversion = PKT_VERSION(pkt->li_vn_mode);
|
|
hisleap = PKT_LEAP(pkt->li_vn_mode);
|
|
hismode = (int)PKT_MODE(pkt->li_vn_mode);
|
|
hisstratum = PKT_TO_STRATUM(pkt->stratum);
|
|
DPRINTF(2, ("receive: at %ld %s<-%s ippeerlimit %d mode %d iflags %s restrict %s org %#010x.%08x xmt %#010x.%08x\n",
|
|
current_time, stoa(&rbufp->dstadr->sin),
|
|
stoa(&rbufp->recv_srcadr), r4a.ippeerlimit, hismode,
|
|
build_iflags(rbufp->dstadr->flags),
|
|
build_rflags(restrict_mask),
|
|
ntohl(pkt->org.l_ui), ntohl(pkt->org.l_uf),
|
|
ntohl(pkt->xmt.l_ui), ntohl(pkt->xmt.l_uf)));
|
|
|
|
/* See basic mode and broadcast checks, below */
|
|
INSIST(0 != hisstratum);
|
|
|
|
if (restrict_mask & RES_IGNORE) {
|
|
DPRINTF(2, ("receive: drop: RES_IGNORE\n"));
|
|
sys_restricted++;
|
|
return; /* ignore everything */
|
|
}
|
|
if (hismode == MODE_PRIVATE) {
|
|
if (!ntp_mode7 || (restrict_mask & RES_NOQUERY)) {
|
|
DPRINTF(2, ("receive: drop: RES_NOQUERY\n"));
|
|
sys_restricted++;
|
|
return; /* no query private */
|
|
}
|
|
process_private(rbufp, ((restrict_mask &
|
|
RES_NOMODIFY) == 0));
|
|
return;
|
|
}
|
|
if (hismode == MODE_CONTROL) {
|
|
if (restrict_mask & RES_NOQUERY) {
|
|
DPRINTF(2, ("receive: drop: RES_NOQUERY\n"));
|
|
sys_restricted++;
|
|
return; /* no query control */
|
|
}
|
|
process_control(rbufp, restrict_mask);
|
|
return;
|
|
}
|
|
if (restrict_mask & RES_DONTSERVE) {
|
|
DPRINTF(2, ("receive: drop: RES_DONTSERVE\n"));
|
|
sys_restricted++;
|
|
return; /* no time serve */
|
|
}
|
|
|
|
/*
|
|
* This is for testing. If restricted drop ten percent of
|
|
* surviving packets.
|
|
*/
|
|
if (restrict_mask & RES_FLAKE) {
|
|
if ((double)ntp_random() / 0x7fffffff < .1) {
|
|
DPRINTF(2, ("receive: drop: RES_FLAKE\n"));
|
|
sys_restricted++;
|
|
return; /* no flakeway */
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Format Layer Checks
|
|
**
|
|
** Validate the packet format. The packet size, packet header,
|
|
** and any extension field lengths are checked. We identify
|
|
** the beginning of the MAC, to identify the upper limit of
|
|
** of the hash computation.
|
|
**
|
|
** In case of a format layer check violation, the packet is
|
|
** discarded with no further processing.
|
|
*/
|
|
|
|
/*
|
|
* Version check must be after the query packets, since they
|
|
* intentionally use an early version.
|
|
*/
|
|
if (hisversion == NTP_VERSION) {
|
|
sys_newversion++; /* new version */
|
|
} else if ( !(restrict_mask & RES_VERSION)
|
|
&& hisversion >= NTP_OLDVERSION) {
|
|
sys_oldversion++; /* previous version */
|
|
} else {
|
|
DPRINTF(2, ("receive: drop: RES_VERSION\n"));
|
|
sys_badlength++;
|
|
return; /* old version */
|
|
}
|
|
|
|
/*
|
|
* Figure out his mode and validate the packet. This has some
|
|
* legacy raunch that probably should be removed. In very early
|
|
* NTP versions mode 0 was equivalent to what later versions
|
|
* would interpret as client mode.
|
|
*/
|
|
if (hismode == MODE_UNSPEC) {
|
|
if (hisversion == NTP_OLDVERSION) {
|
|
hismode = MODE_CLIENT;
|
|
} else {
|
|
DPRINTF(2, ("receive: drop: MODE_UNSPEC\n"));
|
|
sys_badlength++;
|
|
return; /* invalid mode */
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Parse the extension field if present. We figure out whether
|
|
* an extension field is present by measuring the MAC size. If
|
|
* the number of words following the packet header is 0, no MAC
|
|
* is present and the packet is not authenticated. If 1, the
|
|
* packet is a crypto-NAK; if 3, the packet is authenticated
|
|
* with DES; if 5, the packet is authenticated with MD5; if 6,
|
|
* the packet is authenticated with SHA. If 2 or * 4, the packet
|
|
* is a runt and discarded forthwith. If greater than 6, an
|
|
* extension field is present, so we subtract the length of the
|
|
* field and go around again.
|
|
*
|
|
* Note the above description is lame. We should/could also check
|
|
* the two bytes that make up the EF type and subtype, and then
|
|
* check the two bytes that tell us the EF length. A legacy MAC
|
|
* has a 4 byte keyID, and for conforming symmetric keys its value
|
|
* must be <= 64k, meaning the top two bytes will always be zero.
|
|
* Since the EF Type of 0 is reserved/unused, there's no way a
|
|
* conforming legacy MAC could ever be misinterpreted as an EF.
|
|
*
|
|
* There is more, but this isn't the place to document it.
|
|
*/
|
|
|
|
authlen = LEN_PKT_NOMAC;
|
|
has_mac = rbufp->recv_length - authlen;
|
|
while (has_mac > 0) {
|
|
u_int32 len;
|
|
#ifdef AUTOKEY
|
|
u_int32 hostlen;
|
|
struct exten *ep;
|
|
#endif /*AUTOKEY */
|
|
|
|
if (has_mac % 4 != 0 || has_mac < (int)MIN_MAC_LEN) {
|
|
DPRINTF(2, ("receive: drop: bad post-packet length\n"));
|
|
sys_badlength++;
|
|
return; /* bad length */
|
|
}
|
|
/*
|
|
* This next test is clearly wrong - it needlessly
|
|
* prohibits short EFs (which don't yet exist)
|
|
*/
|
|
if (has_mac <= (int)MAX_MAC_LEN) {
|
|
skeyid = ntohl(((u_int32 *)pkt)[authlen / 4]);
|
|
break;
|
|
|
|
} else {
|
|
opcode = ntohl(((u_int32 *)pkt)[authlen / 4]);
|
|
len = opcode & 0xffff;
|
|
if ( len % 4 != 0
|
|
|| len < 4
|
|
|| (int)len + authlen > rbufp->recv_length) {
|
|
DPRINTF(2, ("receive: drop: bad EF length\n"));
|
|
sys_badlength++;
|
|
return; /* bad length */
|
|
}
|
|
#ifdef AUTOKEY
|
|
/*
|
|
* Extract calling group name for later. If
|
|
* sys_groupname is non-NULL, there must be
|
|
* a group name provided to elicit a response.
|
|
*/
|
|
if ( (opcode & 0x3fff0000) == CRYPTO_ASSOC
|
|
&& sys_groupname != NULL) {
|
|
ep = (struct exten *)&((u_int32 *)pkt)[authlen / 4];
|
|
hostlen = ntohl(ep->vallen);
|
|
if ( hostlen >= sizeof(hostname)
|
|
|| hostlen > len -
|
|
offsetof(struct exten, pkt)) {
|
|
DPRINTF(2, ("receive: drop: bad autokey hostname length\n"));
|
|
sys_badlength++;
|
|
return; /* bad length */
|
|
}
|
|
memcpy(hostname, &ep->pkt, hostlen);
|
|
hostname[hostlen] = '\0';
|
|
groupname = strchr(hostname, '@');
|
|
if (groupname == NULL) {
|
|
DPRINTF(2, ("receive: drop: empty autokey groupname\n"));
|
|
sys_declined++;
|
|
return;
|
|
}
|
|
groupname++;
|
|
}
|
|
#endif /* AUTOKEY */
|
|
authlen += len;
|
|
has_mac -= len;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If has_mac is < 0 we had a malformed packet.
|
|
*/
|
|
if (has_mac < 0) {
|
|
DPRINTF(2, ("receive: drop: post-packet under-read\n"));
|
|
sys_badlength++;
|
|
return; /* bad length */
|
|
}
|
|
|
|
/*
|
|
** Packet Data Verification Layer
|
|
**
|
|
** This layer verifies the packet data content. If
|
|
** authentication is required, a MAC must be present.
|
|
** If a MAC is present, it must validate.
|
|
** Crypto-NAK? Look - a shiny thing!
|
|
**
|
|
** If authentication fails, we're done.
|
|
*/
|
|
|
|
/*
|
|
* If authentication is explicitly required, a MAC must be present.
|
|
*/
|
|
if (restrict_mask & RES_DONTTRUST && has_mac == 0) {
|
|
DPRINTF(2, ("receive: drop: RES_DONTTRUST\n"));
|
|
sys_restricted++;
|
|
return; /* access denied */
|
|
}
|
|
|
|
/*
|
|
* Update the MRU list and finger the cloggers. It can be a
|
|
* little expensive, so turn it off for production use.
|
|
* RES_LIMITED and RES_KOD will be cleared in the returned
|
|
* restrict_mask unless one or both actions are warranted.
|
|
*/
|
|
restrict_mask = ntp_monitor(rbufp, restrict_mask);
|
|
if (restrict_mask & RES_LIMITED) {
|
|
sys_limitrejected++;
|
|
if ( !(restrict_mask & RES_KOD)
|
|
|| MODE_BROADCAST == hismode
|
|
|| MODE_SERVER == hismode) {
|
|
if (MODE_SERVER == hismode) {
|
|
DPRINTF(1, ("Possibly self-induced rate limiting of MODE_SERVER from %s\n",
|
|
stoa(&rbufp->recv_srcadr)));
|
|
} else {
|
|
DPRINTF(2, ("receive: drop: RES_KOD\n"));
|
|
}
|
|
return; /* rate exceeded */
|
|
}
|
|
if (hismode == MODE_CLIENT)
|
|
fast_xmit(rbufp, MODE_SERVER, skeyid,
|
|
restrict_mask);
|
|
else
|
|
fast_xmit(rbufp, MODE_ACTIVE, skeyid,
|
|
restrict_mask);
|
|
return; /* rate exceeded */
|
|
}
|
|
restrict_mask &= ~RES_KOD;
|
|
|
|
/*
|
|
* We have tossed out as many buggy packets as possible early in
|
|
* the game to reduce the exposure to a clogging attack. Now we
|
|
* have to burn some cycles to find the association and
|
|
* authenticate the packet if required. Note that we burn only
|
|
* digest cycles, again to reduce exposure. There may be no
|
|
* matching association and that's okay.
|
|
*
|
|
* More on the autokey mambo. Normally the local interface is
|
|
* found when the association was mobilized with respect to a
|
|
* designated remote address. We assume packets arriving from
|
|
* the remote address arrive via this interface and the local
|
|
* address used to construct the autokey is the unicast address
|
|
* of the interface. However, if the sender is a broadcaster,
|
|
* the interface broadcast address is used instead.
|
|
* Notwithstanding this technobabble, if the sender is a
|
|
* multicaster, the broadcast address is null, so we use the
|
|
* unicast address anyway. Don't ask.
|
|
*/
|
|
|
|
peer = findpeer(rbufp, hismode, &retcode);
|
|
dstadr_sin = &rbufp->dstadr->sin;
|
|
NTOHL_FP(&pkt->org, &p_org);
|
|
NTOHL_FP(&pkt->rec, &p_rec);
|
|
NTOHL_FP(&pkt->xmt, &p_xmt);
|
|
hm_str = modetoa(hismode);
|
|
am_str = amtoa(retcode);
|
|
|
|
/*
|
|
* Authentication is conditioned by three switches:
|
|
*
|
|
* NOPEER (RES_NOPEER) do not mobilize an association unless
|
|
* authenticated
|
|
* NOTRUST (RES_DONTTRUST) do not allow access unless
|
|
* authenticated (implies NOPEER)
|
|
* enable (sys_authenticate) master NOPEER switch, by default
|
|
* on
|
|
*
|
|
* The NOPEER and NOTRUST can be specified on a per-client basis
|
|
* using the restrict command. The enable switch if on implies
|
|
* NOPEER for all clients. There are four outcomes:
|
|
*
|
|
* NONE The packet has no MAC.
|
|
* OK the packet has a MAC and authentication succeeds
|
|
* ERROR the packet has a MAC and authentication fails
|
|
* CRYPTO crypto-NAK. The MAC has four octets only.
|
|
*
|
|
* Note: The AUTH(x, y) macro is used to filter outcomes. If x
|
|
* is zero, acceptable outcomes of y are NONE and OK. If x is
|
|
* one, the only acceptable outcome of y is OK.
|
|
*/
|
|
crypto_nak_test = valid_NAK(peer, rbufp, hismode);
|
|
|
|
/*
|
|
* Drop any invalid crypto-NAKs
|
|
*/
|
|
if (crypto_nak_test == INVALIDNAK) {
|
|
report_event(PEVNT_AUTH, peer, "Invalid_NAK");
|
|
if (0 != peer) {
|
|
peer->badNAK++;
|
|
}
|
|
msyslog(LOG_ERR, "Invalid-NAK error at %ld %s<-%s",
|
|
current_time, stoa(dstadr_sin), stoa(&rbufp->recv_srcadr));
|
|
return;
|
|
}
|
|
|
|
if (has_mac == 0) {
|
|
restrict_mask &= ~RES_MSSNTP;
|
|
is_authentic = AUTH_NONE; /* not required */
|
|
DPRINTF(2, ("receive: at %ld %s<-%s mode %d/%s:%s len %d org %#010x.%08x xmt %#010x.%08x NOMAC\n",
|
|
current_time, stoa(dstadr_sin),
|
|
stoa(&rbufp->recv_srcadr), hismode, hm_str, am_str,
|
|
authlen,
|
|
ntohl(pkt->org.l_ui), ntohl(pkt->org.l_uf),
|
|
ntohl(pkt->xmt.l_ui), ntohl(pkt->xmt.l_uf)));
|
|
} else if (crypto_nak_test == VALIDNAK) {
|
|
restrict_mask &= ~RES_MSSNTP;
|
|
is_authentic = AUTH_CRYPTO; /* crypto-NAK */
|
|
DPRINTF(2, ("receive: at %ld %s<-%s mode %d/%s:%s keyid %08x len %d auth %d org %#010x.%08x xmt %#010x.%08x MAC4\n",
|
|
current_time, stoa(dstadr_sin),
|
|
stoa(&rbufp->recv_srcadr), hismode, hm_str, am_str,
|
|
skeyid, authlen + has_mac, is_authentic,
|
|
ntohl(pkt->org.l_ui), ntohl(pkt->org.l_uf),
|
|
ntohl(pkt->xmt.l_ui), ntohl(pkt->xmt.l_uf)));
|
|
|
|
#ifdef HAVE_NTP_SIGND
|
|
/*
|
|
* If the signature is 20 bytes long, the last 16 of
|
|
* which are zero, then this is a Microsoft client
|
|
* wanting AD-style authentication of the server's
|
|
* reply.
|
|
*
|
|
* This is described in Microsoft's WSPP docs, in MS-SNTP:
|
|
* http://msdn.microsoft.com/en-us/library/cc212930.aspx
|
|
*/
|
|
} else if ( has_mac == MAX_MD5_LEN
|
|
&& (restrict_mask & RES_MSSNTP)
|
|
&& (retcode == AM_FXMIT || retcode == AM_NEWPASS)
|
|
&& (memcmp(zero_key, (char *)pkt + authlen + 4,
|
|
MAX_MD5_LEN - 4) == 0)) {
|
|
is_authentic = AUTH_NONE;
|
|
#endif /* HAVE_NTP_SIGND */
|
|
|
|
} else {
|
|
/*
|
|
* has_mac is not 0
|
|
* Not a VALID_NAK
|
|
* Not an MS-SNTP SIGND packet
|
|
*
|
|
* So there is a MAC here.
|
|
*/
|
|
|
|
restrict_mask &= ~RES_MSSNTP;
|
|
#ifdef AUTOKEY
|
|
/*
|
|
* For autokey modes, generate the session key
|
|
* and install in the key cache. Use the socket
|
|
* broadcast or unicast address as appropriate.
|
|
*/
|
|
if (crypto_flags && skeyid > NTP_MAXKEY) {
|
|
|
|
/*
|
|
* More on the autokey dance (AKD). A cookie is
|
|
* constructed from public and private values.
|
|
* For broadcast packets, the cookie is public
|
|
* (zero). For packets that match no
|
|
* association, the cookie is hashed from the
|
|
* addresses and private value. For server
|
|
* packets, the cookie was previously obtained
|
|
* from the server. For symmetric modes, the
|
|
* cookie was previously constructed using an
|
|
* agreement protocol; however, should PKI be
|
|
* unavailable, we construct a fake agreement as
|
|
* the EXOR of the peer and host cookies.
|
|
*
|
|
* hismode ephemeral persistent
|
|
* =======================================
|
|
* active 0 cookie#
|
|
* passive 0% cookie#
|
|
* client sys cookie 0%
|
|
* server 0% sys cookie
|
|
* broadcast 0 0
|
|
*
|
|
* # if unsync, 0
|
|
* % can't happen
|
|
*/
|
|
if (has_mac < (int)MAX_MD5_LEN) {
|
|
DPRINTF(2, ("receive: drop: MD5 digest too short\n"));
|
|
sys_badauth++;
|
|
return;
|
|
}
|
|
if (hismode == MODE_BROADCAST) {
|
|
|
|
/*
|
|
* For broadcaster, use the interface
|
|
* broadcast address when available;
|
|
* otherwise, use the unicast address
|
|
* found when the association was
|
|
* mobilized. However, if this is from
|
|
* the wildcard interface, game over.
|
|
*/
|
|
if ( crypto_flags
|
|
&& rbufp->dstadr ==
|
|
ANY_INTERFACE_CHOOSE(&rbufp->recv_srcadr)) {
|
|
DPRINTF(2, ("receive: drop: BCAST from wildcard\n"));
|
|
sys_restricted++;
|
|
return; /* no wildcard */
|
|
}
|
|
pkeyid = 0;
|
|
if (!SOCK_UNSPEC(&rbufp->dstadr->bcast))
|
|
dstadr_sin =
|
|
&rbufp->dstadr->bcast;
|
|
} else if (peer == NULL) {
|
|
pkeyid = session_key(
|
|
&rbufp->recv_srcadr, dstadr_sin, 0,
|
|
sys_private, 0);
|
|
} else {
|
|
pkeyid = peer->pcookie;
|
|
}
|
|
|
|
/*
|
|
* The session key includes both the public
|
|
* values and cookie. In case of an extension
|
|
* field, the cookie used for authentication
|
|
* purposes is zero. Note the hash is saved for
|
|
* use later in the autokey mambo.
|
|
*/
|
|
if (authlen > (int)LEN_PKT_NOMAC && pkeyid != 0) {
|
|
session_key(&rbufp->recv_srcadr,
|
|
dstadr_sin, skeyid, 0, 2);
|
|
tkeyid = session_key(
|
|
&rbufp->recv_srcadr, dstadr_sin,
|
|
skeyid, pkeyid, 0);
|
|
} else {
|
|
tkeyid = session_key(
|
|
&rbufp->recv_srcadr, dstadr_sin,
|
|
skeyid, pkeyid, 2);
|
|
}
|
|
|
|
}
|
|
#endif /* AUTOKEY */
|
|
|
|
/*
|
|
* Compute the cryptosum. Note a clogging attack may
|
|
* succeed in bloating the key cache. If an autokey,
|
|
* purge it immediately, since we won't be needing it
|
|
* again. If the packet is authentic, it can mobilize an
|
|
* association. Note that there is no key zero.
|
|
*/
|
|
if (!authdecrypt(skeyid, (u_int32 *)pkt, authlen,
|
|
has_mac))
|
|
is_authentic = AUTH_ERROR;
|
|
else
|
|
is_authentic = AUTH_OK;
|
|
#ifdef AUTOKEY
|
|
if (crypto_flags && skeyid > NTP_MAXKEY)
|
|
authtrust(skeyid, 0);
|
|
#endif /* AUTOKEY */
|
|
DPRINTF(2, ("receive: at %ld %s<-%s mode %d/%s:%s keyid %08x len %d auth %d org %#010x.%08x xmt %#010x.%08x\n",
|
|
current_time, stoa(dstadr_sin),
|
|
stoa(&rbufp->recv_srcadr), hismode, hm_str, am_str,
|
|
skeyid, authlen + has_mac, is_authentic,
|
|
ntohl(pkt->org.l_ui), ntohl(pkt->org.l_uf),
|
|
ntohl(pkt->xmt.l_ui), ntohl(pkt->xmt.l_uf)));
|
|
}
|
|
|
|
|
|
/*
|
|
* Bug 3454:
|
|
*
|
|
* Now come at this from a different perspective:
|
|
* - If we expect a MAC and it's not there, we drop it.
|
|
* - If we expect one keyID and get another, we drop it.
|
|
* - If we have a MAC ahd it hasn't been validated yet, try.
|
|
* - if the provided MAC doesn't validate, we drop it.
|
|
*
|
|
* There might be more to this.
|
|
*/
|
|
if (0 != peer && 0 != peer->keyid) {
|
|
/* Should we msyslog() any of these? */
|
|
|
|
/*
|
|
* This should catch:
|
|
* - no keyID where one is expected,
|
|
* - different keyID than what we expect.
|
|
*/
|
|
if (peer->keyid != skeyid) {
|
|
DPRINTF(2, ("receive: drop: Wanted keyID %d, got %d from %s\n",
|
|
peer->keyid, skeyid,
|
|
stoa(&rbufp->recv_srcadr)));
|
|
sys_restricted++;
|
|
return; /* drop: access denied */
|
|
}
|
|
|
|
/*
|
|
* if has_mac != 0 ...
|
|
* - If it has not yet been validated, do so.
|
|
* (under what circumstances might that happen?)
|
|
* - if missing or bad MAC, log and drop.
|
|
*/
|
|
if (0 != has_mac) {
|
|
if (is_authentic == AUTH_UNKNOWN) {
|
|
/* How can this happen? */
|
|
DPRINTF(2, ("receive: 3454 check: AUTH_UNKNOWN from %s\n",
|
|
stoa(&rbufp->recv_srcadr)));
|
|
if (!authdecrypt(skeyid, (u_int32 *)pkt, authlen,
|
|
has_mac)) {
|
|
/* MAC invalid or not found */
|
|
is_authentic = AUTH_ERROR;
|
|
} else {
|
|
is_authentic = AUTH_OK;
|
|
}
|
|
}
|
|
if (is_authentic != AUTH_OK) {
|
|
DPRINTF(2, ("receive: drop: missing or bad MAC from %s\n",
|
|
stoa(&rbufp->recv_srcadr)));
|
|
sys_restricted++;
|
|
return; /* drop: access denied */
|
|
}
|
|
}
|
|
}
|
|
/**/
|
|
|
|
/*
|
|
** On-Wire Protocol Layer
|
|
**
|
|
** Verify protocol operations consistent with the on-wire protocol.
|
|
** The protocol discards bogus and duplicate packets as well as
|
|
** minimizes disruptions doe to protocol restarts and dropped
|
|
** packets. The operations are controlled by two timestamps:
|
|
** the transmit timestamp saved in the client state variables,
|
|
** and the origin timestamp in the server packet header. The
|
|
** comparison of these two timestamps is called the loopback test.
|
|
** The transmit timestamp functions as a nonce to verify that the
|
|
** response corresponds to the original request. The transmit
|
|
** timestamp also serves to discard replays of the most recent
|
|
** packet. Upon failure of either test, the packet is discarded
|
|
** with no further action.
|
|
*/
|
|
|
|
/*
|
|
* The association matching rules are implemented by a set of
|
|
* routines and an association table. A packet matching an
|
|
* association is processed by the peer process for that
|
|
* association. If there are no errors, an ephemeral association
|
|
* is mobilized: a broadcast packet mobilizes a broadcast client
|
|
* aassociation; a manycast server packet mobilizes a manycast
|
|
* client association; a symmetric active packet mobilizes a
|
|
* symmetric passive association.
|
|
*/
|
|
switch (retcode) {
|
|
|
|
/*
|
|
* This is a client mode packet not matching any association. If
|
|
* an ordinary client, simply toss a server mode packet back
|
|
* over the fence. If a manycast client, we have to work a
|
|
* little harder.
|
|
*
|
|
* There are cases here where we do not call record_raw_stats().
|
|
*/
|
|
case AM_FXMIT:
|
|
|
|
/*
|
|
* If authentication OK, send a server reply; otherwise,
|
|
* send a crypto-NAK.
|
|
*/
|
|
if (!(rbufp->dstadr->flags & INT_MCASTOPEN)) {
|
|
/* HMS: would be nice to log FAST_XMIT|BADAUTH|RESTRICTED */
|
|
record_raw_stats(&rbufp->recv_srcadr,
|
|
&rbufp->dstadr->sin,
|
|
&p_org, &p_rec, &p_xmt, &rbufp->recv_time,
|
|
PKT_LEAP(pkt->li_vn_mode),
|
|
PKT_VERSION(pkt->li_vn_mode),
|
|
PKT_MODE(pkt->li_vn_mode),
|
|
PKT_TO_STRATUM(pkt->stratum),
|
|
pkt->ppoll,
|
|
pkt->precision,
|
|
FPTOD(NTOHS_FP(pkt->rootdelay)),
|
|
FPTOD(NTOHS_FP(pkt->rootdisp)),
|
|
pkt->refid,
|
|
rbufp->recv_length - MIN_V4_PKT_LEN, (u_char *)&pkt->exten);
|
|
|
|
if (AUTH(restrict_mask & RES_DONTTRUST,
|
|
is_authentic)) {
|
|
fast_xmit(rbufp, MODE_SERVER, skeyid,
|
|
restrict_mask);
|
|
} else if (is_authentic == AUTH_ERROR) {
|
|
fast_xmit(rbufp, MODE_SERVER, 0,
|
|
restrict_mask);
|
|
sys_badauth++;
|
|
} else {
|
|
DPRINTF(2, ("receive: AM_FXMIT drop: !mcast restricted\n"));
|
|
sys_restricted++;
|
|
}
|
|
|
|
return; /* hooray */
|
|
}
|
|
|
|
/*
|
|
* This must be manycast. Do not respond if not
|
|
* configured as a manycast server.
|
|
*/
|
|
if (!sys_manycastserver) {
|
|
DPRINTF(2, ("receive: AM_FXMIT drop: Not manycastserver\n"));
|
|
sys_restricted++;
|
|
return; /* not enabled */
|
|
}
|
|
|
|
#ifdef AUTOKEY
|
|
/*
|
|
* Do not respond if not the same group.
|
|
*/
|
|
if (group_test(groupname, NULL)) {
|
|
DPRINTF(2, ("receive: AM_FXMIT drop: empty groupname\n"));
|
|
sys_declined++;
|
|
return;
|
|
}
|
|
#endif /* AUTOKEY */
|
|
|
|
/*
|
|
* Do not respond if we are not synchronized or our
|
|
* stratum is greater than the manycaster or the
|
|
* manycaster has already synchronized to us.
|
|
*/
|
|
if ( sys_leap == LEAP_NOTINSYNC
|
|
|| sys_stratum >= hisstratum
|
|
|| (!sys_cohort && sys_stratum == hisstratum + 1)
|
|
|| rbufp->dstadr->addr_refid == pkt->refid) {
|
|
DPRINTF(2, ("receive: AM_FXMIT drop: LEAP_NOTINSYNC || stratum || loop\n"));
|
|
sys_declined++;
|
|
return; /* no help */
|
|
}
|
|
|
|
/*
|
|
* Respond only if authentication succeeds. Don't do a
|
|
* crypto-NAK, as that would not be useful.
|
|
*/
|
|
if (AUTH(restrict_mask & RES_DONTTRUST, is_authentic)) {
|
|
record_raw_stats(&rbufp->recv_srcadr,
|
|
&rbufp->dstadr->sin,
|
|
&p_org, &p_rec, &p_xmt, &rbufp->recv_time,
|
|
PKT_LEAP(pkt->li_vn_mode),
|
|
PKT_VERSION(pkt->li_vn_mode),
|
|
PKT_MODE(pkt->li_vn_mode),
|
|
PKT_TO_STRATUM(pkt->stratum),
|
|
pkt->ppoll,
|
|
pkt->precision,
|
|
FPTOD(NTOHS_FP(pkt->rootdelay)),
|
|
FPTOD(NTOHS_FP(pkt->rootdisp)),
|
|
pkt->refid,
|
|
rbufp->recv_length - MIN_V4_PKT_LEN, (u_char *)&pkt->exten);
|
|
|
|
fast_xmit(rbufp, MODE_SERVER, skeyid,
|
|
restrict_mask);
|
|
}
|
|
return; /* hooray */
|
|
|
|
/*
|
|
* This is a server mode packet returned in response to a client
|
|
* mode packet sent to a multicast group address (for
|
|
* manycastclient) or to a unicast address (for pool). The
|
|
* origin timestamp is a good nonce to reliably associate the
|
|
* reply with what was sent. If there is no match, that's
|
|
* curious and could be an intruder attempting to clog, so we
|
|
* just ignore it.
|
|
*
|
|
* If the packet is authentic and the manycastclient or pool
|
|
* association is found, we mobilize a client association and
|
|
* copy pertinent variables from the manycastclient or pool
|
|
* association to the new client association. If not, just
|
|
* ignore the packet.
|
|
*
|
|
* There is an implosion hazard at the manycast client, since
|
|
* the manycast servers send the server packet immediately. If
|
|
* the guy is already here, don't fire up a duplicate.
|
|
*
|
|
* There are cases here where we do not call record_raw_stats().
|
|
*/
|
|
case AM_MANYCAST:
|
|
|
|
#ifdef AUTOKEY
|
|
/*
|
|
* Do not respond if not the same group.
|
|
*/
|
|
if (group_test(groupname, NULL)) {
|
|
DPRINTF(2, ("receive: AM_MANYCAST drop: empty groupname\n"));
|
|
sys_declined++;
|
|
return;
|
|
}
|
|
#endif /* AUTOKEY */
|
|
if ((peer2 = findmanycastpeer(rbufp)) == NULL) {
|
|
DPRINTF(2, ("receive: AM_MANYCAST drop: No manycast peer\n"));
|
|
sys_restricted++;
|
|
return; /* not enabled */
|
|
}
|
|
if (!AUTH( (!(peer2->cast_flags & MDF_POOL)
|
|
&& sys_authenticate)
|
|
|| (restrict_mask & (RES_NOPEER |
|
|
RES_DONTTRUST)), is_authentic)
|
|
/* MC: RES_NOEPEER? */
|
|
) {
|
|
DPRINTF(2, ("receive: AM_MANYCAST drop: bad auth || (NOPEER|DONTTRUST)\n"));
|
|
sys_restricted++;
|
|
return; /* access denied */
|
|
}
|
|
|
|
/*
|
|
* Do not respond if unsynchronized or stratum is below
|
|
* the floor or at or above the ceiling.
|
|
*/
|
|
if ( hisleap == LEAP_NOTINSYNC
|
|
|| hisstratum < sys_floor
|
|
|| hisstratum >= sys_ceiling) {
|
|
DPRINTF(2, ("receive: AM_MANYCAST drop: unsync/stratum\n"));
|
|
sys_declined++;
|
|
return; /* no help */
|
|
}
|
|
peer = newpeer(&rbufp->recv_srcadr, NULL, rbufp->dstadr,
|
|
r4a.ippeerlimit, MODE_CLIENT, hisversion,
|
|
peer2->minpoll, peer2->maxpoll,
|
|
FLAG_PREEMPT | (FLAG_IBURST & peer2->flags),
|
|
MDF_UCAST | MDF_UCLNT, 0, skeyid, sys_ident);
|
|
if (NULL == peer) {
|
|
DPRINTF(2, ("receive: AM_MANYCAST drop: duplicate\n"));
|
|
sys_declined++;
|
|
return; /* ignore duplicate */
|
|
}
|
|
|
|
/*
|
|
* After each ephemeral pool association is spun,
|
|
* accelerate the next poll for the pool solicitor so
|
|
* the pool will fill promptly.
|
|
*/
|
|
if (peer2->cast_flags & MDF_POOL)
|
|
peer2->nextdate = current_time + 1;
|
|
|
|
/*
|
|
* Further processing of the solicitation response would
|
|
* simply detect its origin timestamp as bogus for the
|
|
* brand-new association (it matches the prototype
|
|
* association) and tinker with peer->nextdate delaying
|
|
* first sync.
|
|
*/
|
|
return; /* solicitation response handled */
|
|
|
|
/*
|
|
* This is the first packet received from a broadcast server. If
|
|
* the packet is authentic and we are enabled as broadcast
|
|
* client, mobilize a broadcast client association. We don't
|
|
* kiss any frogs here.
|
|
*
|
|
* There are cases here where we do not call record_raw_stats().
|
|
*/
|
|
case AM_NEWBCL:
|
|
|
|
#ifdef AUTOKEY
|
|
/*
|
|
* Do not respond if not the same group.
|
|
*/
|
|
if (group_test(groupname, sys_ident)) {
|
|
DPRINTF(2, ("receive: AM_NEWBCL drop: groupname mismatch\n"));
|
|
sys_declined++;
|
|
return;
|
|
}
|
|
#endif /* AUTOKEY */
|
|
if (sys_bclient == 0) {
|
|
DPRINTF(2, ("receive: AM_NEWBCL drop: not a bclient\n"));
|
|
sys_restricted++;
|
|
return; /* not enabled */
|
|
}
|
|
if (!AUTH(sys_authenticate | (restrict_mask &
|
|
(RES_NOPEER | RES_DONTTRUST)), is_authentic)
|
|
/* NEWBCL: RES_NOEPEER? */
|
|
) {
|
|
DPRINTF(2, ("receive: AM_NEWBCL drop: AUTH failed\n"));
|
|
sys_restricted++;
|
|
return; /* access denied */
|
|
}
|
|
|
|
/*
|
|
* Do not respond if unsynchronized or stratum is below
|
|
* the floor or at or above the ceiling.
|
|
*/
|
|
if ( hisleap == LEAP_NOTINSYNC
|
|
|| hisstratum < sys_floor
|
|
|| hisstratum >= sys_ceiling) {
|
|
DPRINTF(2, ("receive: AM_NEWBCL drop: Unsync or bad stratum\n"));
|
|
sys_declined++;
|
|
return; /* no help */
|
|
}
|
|
|
|
#ifdef AUTOKEY
|
|
/*
|
|
* Do not respond if Autokey and the opcode is not a
|
|
* CRYPTO_ASSOC response with association ID.
|
|
*/
|
|
if ( crypto_flags && skeyid > NTP_MAXKEY
|
|
&& (opcode & 0xffff0000) != (CRYPTO_ASSOC | CRYPTO_RESP)) {
|
|
DPRINTF(2, ("receive: AM_NEWBCL drop: Autokey but not CRYPTO_ASSOC\n"));
|
|
sys_declined++;
|
|
return; /* protocol error */
|
|
}
|
|
#endif /* AUTOKEY */
|
|
|
|
/*
|
|
* Broadcasts received via a multicast address may
|
|
* arrive after a unicast volley has begun
|
|
* with the same remote address. newpeer() will not
|
|
* find duplicate associations on other local endpoints
|
|
* if a non-NULL endpoint is supplied. multicastclient
|
|
* ephemeral associations are unique across all local
|
|
* endpoints.
|
|
*/
|
|
if (!(INT_MCASTOPEN & rbufp->dstadr->flags))
|
|
match_ep = rbufp->dstadr;
|
|
else
|
|
match_ep = NULL;
|
|
|
|
/*
|
|
* Determine whether to execute the initial volley.
|
|
*/
|
|
if (sys_bdelay > 0.0) {
|
|
#ifdef AUTOKEY
|
|
/*
|
|
* If a two-way exchange is not possible,
|
|
* neither is Autokey.
|
|
*/
|
|
if (crypto_flags && skeyid > NTP_MAXKEY) {
|
|
sys_restricted++;
|
|
DPRINTF(2, ("receive: AM_NEWBCL drop: Autokey but not 2-way\n"));
|
|
return; /* no autokey */
|
|
}
|
|
#endif /* AUTOKEY */
|
|
|
|
/*
|
|
* Do not execute the volley. Start out in
|
|
* broadcast client mode.
|
|
*/
|
|
peer = newpeer(&rbufp->recv_srcadr, NULL, match_ep,
|
|
r4a.ippeerlimit, MODE_BCLIENT, hisversion,
|
|
pkt->ppoll, pkt->ppoll,
|
|
FLAG_PREEMPT, MDF_BCLNT, 0, skeyid, sys_ident);
|
|
if (NULL == peer) {
|
|
DPRINTF(2, ("receive: AM_NEWBCL drop: duplicate\n"));
|
|
sys_restricted++;
|
|
return; /* ignore duplicate */
|
|
|
|
} else {
|
|
peer->delay = sys_bdelay;
|
|
peer->bxmt = p_xmt;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Execute the initial volley in order to calibrate the
|
|
* propagation delay and run the Autokey protocol.
|
|
*
|
|
* Note that the minpoll is taken from the broadcast
|
|
* packet, normally 6 (64 s) and that the poll interval
|
|
* is fixed at this value.
|
|
*/
|
|
peer = newpeer(&rbufp->recv_srcadr, NULL, match_ep,
|
|
r4a.ippeerlimit, MODE_CLIENT, hisversion,
|
|
pkt->ppoll, pkt->ppoll,
|
|
FLAG_BC_VOL | FLAG_IBURST | FLAG_PREEMPT, MDF_BCLNT,
|
|
0, skeyid, sys_ident);
|
|
if (NULL == peer) {
|
|
DPRINTF(2, ("receive: AM_NEWBCL drop: empty newpeer() failed\n"));
|
|
sys_restricted++;
|
|
return; /* ignore duplicate */
|
|
}
|
|
peer->bxmt = p_xmt;
|
|
#ifdef AUTOKEY
|
|
if (skeyid > NTP_MAXKEY)
|
|
crypto_recv(peer, rbufp);
|
|
#endif /* AUTOKEY */
|
|
|
|
return; /* hooray */
|
|
|
|
/*
|
|
* This is the first packet received from a symmetric active
|
|
* peer. If the packet is authentic, the first he sent, and
|
|
* RES_NOEPEER is not enabled, mobilize a passive association
|
|
* If not, kiss the frog.
|
|
*
|
|
* There are cases here where we do not call record_raw_stats().
|
|
*/
|
|
case AM_NEWPASS:
|
|
|
|
#ifdef AUTOKEY
|
|
/*
|
|
* Do not respond if not the same group.
|
|
*/
|
|
if (group_test(groupname, sys_ident)) {
|
|
DPRINTF(2, ("receive: AM_NEWPASS drop: Autokey group mismatch\n"));
|
|
sys_declined++;
|
|
return;
|
|
}
|
|
#endif /* AUTOKEY */
|
|
if (!AUTH(sys_authenticate | (restrict_mask &
|
|
(RES_NOPEER | RES_DONTTRUST)), is_authentic)
|
|
) {
|
|
if (0 == (restrict_mask & RES_NOEPEER)) {
|
|
/*
|
|
* If authenticated but cannot mobilize an
|
|
* association, send a symmetric passive
|
|
* response without mobilizing an association.
|
|
* This is for drat broken Windows clients. See
|
|
* Microsoft KB 875424 for preferred workaround.
|
|
*/
|
|
if (AUTH(restrict_mask & RES_DONTTRUST,
|
|
is_authentic)) {
|
|
fast_xmit(rbufp, MODE_PASSIVE, skeyid,
|
|
restrict_mask);
|
|
return; /* hooray */
|
|
}
|
|
if (is_authentic == AUTH_ERROR) {
|
|
fast_xmit(rbufp, MODE_ACTIVE, 0,
|
|
restrict_mask);
|
|
sys_restricted++;
|
|
return;
|
|
}
|
|
}
|
|
/* [Bug 2941]
|
|
* If we got here, the packet isn't part of an
|
|
* existing association, either isn't correctly
|
|
* authenticated or it is but we are refusing
|
|
* ephemeral peer requests, and it didn't meet
|
|
* either of the previous two special cases so we
|
|
* should just drop it on the floor. For example,
|
|
* crypto-NAKs (is_authentic == AUTH_CRYPTO)
|
|
* will make it this far. This is just
|
|
* debug-printed and not logged to avoid log
|
|
* flooding.
|
|
*/
|
|
DPRINTF(2, ("receive: at %ld refusing to mobilize passive association"
|
|
" with unknown peer %s mode %d/%s:%s keyid %08x len %d auth %d\n",
|
|
current_time, stoa(&rbufp->recv_srcadr),
|
|
hismode, hm_str, am_str, skeyid,
|
|
(authlen + has_mac), is_authentic));
|
|
sys_declined++;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Do not respond if synchronized and if stratum is
|
|
* below the floor or at or above the ceiling. Note,
|
|
* this allows an unsynchronized peer to synchronize to
|
|
* us. It would be very strange if he did and then was
|
|
* nipped, but that could only happen if we were
|
|
* operating at the top end of the range. It also means
|
|
* we will spin an ephemeral association in response to
|
|
* MODE_ACTIVE KoDs, which will time out eventually.
|
|
*/
|
|
if ( hisleap != LEAP_NOTINSYNC
|
|
&& (hisstratum < sys_floor || hisstratum >= sys_ceiling)) {
|
|
DPRINTF(2, ("receive: AM_NEWPASS drop: Autokey group mismatch\n"));
|
|
sys_declined++;
|
|
return; /* no help */
|
|
}
|
|
|
|
/*
|
|
* The message is correctly authenticated and allowed.
|
|
* Mobilize a symmetric passive association, if we won't
|
|
* exceed the ippeerlimit.
|
|
*/
|
|
if ((peer = newpeer(&rbufp->recv_srcadr, NULL, rbufp->dstadr,
|
|
r4a.ippeerlimit, MODE_PASSIVE, hisversion,
|
|
pkt->ppoll, NTP_MAXDPOLL, 0, MDF_UCAST, 0,
|
|
skeyid, sys_ident)) == NULL) {
|
|
DPRINTF(2, ("receive: AM_NEWPASS drop: newpeer() failed\n"));
|
|
sys_declined++;
|
|
return; /* ignore duplicate */
|
|
}
|
|
break;
|
|
|
|
|
|
/*
|
|
* Process regular packet. Nothing special.
|
|
*
|
|
* There are cases here where we do not call record_raw_stats().
|
|
*/
|
|
case AM_PROCPKT:
|
|
|
|
#ifdef AUTOKEY
|
|
/*
|
|
* Do not respond if not the same group.
|
|
*/
|
|
if (group_test(groupname, peer->ident)) {
|
|
DPRINTF(2, ("receive: AM_PROCPKT drop: Autokey group mismatch\n"));
|
|
sys_declined++;
|
|
return;
|
|
}
|
|
#endif /* AUTOKEY */
|
|
|
|
if (MODE_BROADCAST == hismode) {
|
|
int bail = 0;
|
|
l_fp tdiff;
|
|
u_long deadband;
|
|
|
|
DPRINTF(2, ("receive: PROCPKT/BROADCAST: prev pkt %ld seconds ago, ppoll: %d, %d secs\n",
|
|
(current_time - peer->timelastrec),
|
|
peer->ppoll, (1 << peer->ppoll)
|
|
));
|
|
/* Things we can check:
|
|
*
|
|
* Did the poll interval change?
|
|
* Is the poll interval in the packet in-range?
|
|
* Did this packet arrive too soon?
|
|
* Is the timestamp in this packet monotonic
|
|
* with respect to the previous packet?
|
|
*/
|
|
|
|
/* This is noteworthy, not error-worthy */
|
|
if (pkt->ppoll != peer->ppoll) {
|
|
msyslog(LOG_INFO, "receive: broadcast poll from %s changed from %u to %u",
|
|
stoa(&rbufp->recv_srcadr),
|
|
peer->ppoll, pkt->ppoll);
|
|
}
|
|
|
|
/* This is error-worthy */
|
|
if (pkt->ppoll < peer->minpoll ||
|
|
pkt->ppoll > peer->maxpoll ) {
|
|
msyslog(LOG_INFO, "receive: broadcast poll of %u from %s is out-of-range (%d to %d)!",
|
|
pkt->ppoll, stoa(&rbufp->recv_srcadr),
|
|
peer->minpoll, peer->maxpoll);
|
|
++bail;
|
|
}
|
|
|
|
/* too early? worth an error, too!
|
|
*
|
|
* [Bug 3113] Ensure that at least one poll
|
|
* interval has elapsed since the last **clean**
|
|
* packet was received. We limit the check to
|
|
* **clean** packets to prevent replayed packets
|
|
* and incorrectly authenticated packets, which
|
|
* we'll discard, from being used to create a
|
|
* denial of service condition.
|
|
*/
|
|
deadband = (1u << pkt->ppoll);
|
|
if (FLAG_BC_VOL & peer->flags)
|
|
deadband -= 3; /* allow greater fuzz after volley */
|
|
if ((current_time - peer->timereceived) < deadband) {
|
|
msyslog(LOG_INFO, "receive: broadcast packet from %s arrived after %lu, not %lu seconds!",
|
|
stoa(&rbufp->recv_srcadr),
|
|
(current_time - peer->timereceived),
|
|
deadband);
|
|
++bail;
|
|
}
|
|
|
|
/* Alert if time from the server is non-monotonic.
|
|
*
|
|
* [Bug 3114] is about Broadcast mode replay DoS.
|
|
*
|
|
* Broadcast mode *assumes* a trusted network.
|
|
* Even so, it's nice to be robust in the face
|
|
* of attacks.
|
|
*
|
|
* If we get an authenticated broadcast packet
|
|
* with an "earlier" timestamp, it means one of
|
|
* two things:
|
|
*
|
|
* - the broadcast server had a backward step.
|
|
*
|
|
* - somebody is trying a replay attack.
|
|
*
|
|
* deadband: By default, we assume the broadcast
|
|
* network is trustable, so we take our accepted
|
|
* broadcast packets as we receive them. But
|
|
* some folks might want to take additional poll
|
|
* delays before believing a backward step.
|
|
*/
|
|
if (sys_bcpollbstep) {
|
|
/* pkt->ppoll or peer->ppoll ? */
|
|
deadband = (1u << pkt->ppoll)
|
|
* sys_bcpollbstep + 2;
|
|
} else {
|
|
deadband = 0;
|
|
}
|
|
|
|
if (L_ISZERO(&peer->bxmt)) {
|
|
tdiff.l_ui = tdiff.l_uf = 0;
|
|
} else {
|
|
tdiff = p_xmt;
|
|
L_SUB(&tdiff, &peer->bxmt);
|
|
}
|
|
if (tdiff.l_i < 0 &&
|
|
(current_time - peer->timereceived) < deadband)
|
|
{
|
|
msyslog(LOG_INFO, "receive: broadcast packet from %s contains non-monotonic timestamp: %#010x.%08x -> %#010x.%08x",
|
|
stoa(&rbufp->recv_srcadr),
|
|
peer->bxmt.l_ui, peer->bxmt.l_uf,
|
|
p_xmt.l_ui, p_xmt.l_uf
|
|
);
|
|
++bail;
|
|
}
|
|
|
|
if (bail) {
|
|
DPRINTF(2, ("receive: AM_PROCPKT drop: bail\n"));
|
|
peer->timelastrec = current_time;
|
|
sys_declined++;
|
|
return;
|
|
}
|
|
}
|
|
|
|
break;
|
|
|
|
/*
|
|
* A passive packet matches a passive association. This is
|
|
* usually the result of reconfiguring a client on the fly. As
|
|
* this association might be legitimate and this packet an
|
|
* attempt to deny service, just ignore it.
|
|
*/
|
|
case AM_ERR:
|
|
DPRINTF(2, ("receive: AM_ERR drop.\n"));
|
|
sys_declined++;
|
|
return;
|
|
|
|
/*
|
|
* For everything else there is the bit bucket.
|
|
*/
|
|
default:
|
|
DPRINTF(2, ("receive: default drop.\n"));
|
|
sys_declined++;
|
|
return;
|
|
}
|
|
|
|
#ifdef AUTOKEY
|
|
/*
|
|
* If the association is configured for Autokey, the packet must
|
|
* have a public key ID; if not, the packet must have a
|
|
* symmetric key ID.
|
|
*/
|
|
if ( is_authentic != AUTH_CRYPTO
|
|
&& ( ((peer->flags & FLAG_SKEY) && skeyid <= NTP_MAXKEY)
|
|
|| (!(peer->flags & FLAG_SKEY) && skeyid > NTP_MAXKEY))) {
|
|
DPRINTF(2, ("receive: drop: Autokey but wrong/bad auth\n"));
|
|
sys_badauth++;
|
|
return;
|
|
}
|
|
#endif /* AUTOKEY */
|
|
|
|
peer->received++;
|
|
peer->flash &= ~PKT_TEST_MASK;
|
|
if (peer->flags & FLAG_XBOGUS) {
|
|
peer->flags &= ~FLAG_XBOGUS;
|
|
peer->flash |= TEST3;
|
|
}
|
|
|
|
/*
|
|
* Next comes a rigorous schedule of timestamp checking. If the
|
|
* transmit timestamp is zero, the server has not initialized in
|
|
* interleaved modes or is horribly broken.
|
|
*
|
|
* A KoD packet we pay attention to cannot have a 0 transmit
|
|
* timestamp.
|
|
*/
|
|
|
|
kissCode = kiss_code_check(hisleap, hisstratum, hismode, pkt->refid);
|
|
|
|
if (L_ISZERO(&p_xmt)) {
|
|
peer->flash |= TEST3; /* unsynch */
|
|
if (kissCode != NOKISS) { /* KoD packet */
|
|
peer->bogusorg++; /* for TEST2 or TEST3 */
|
|
msyslog(LOG_INFO,
|
|
"receive: Unexpected zero transmit timestamp in KoD from %s",
|
|
ntoa(&peer->srcadr));
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If the transmit timestamp duplicates our previous one, the
|
|
* packet is a replay. This prevents the bad guys from replaying
|
|
* the most recent packet, authenticated or not.
|
|
*/
|
|
} else if (L_ISEQU(&peer->xmt, &p_xmt)) {
|
|
DPRINTF(2, ("receive: drop: Duplicate xmit\n"));
|
|
peer->flash |= TEST1; /* duplicate */
|
|
peer->oldpkt++;
|
|
return;
|
|
|
|
/*
|
|
* If this is a broadcast mode packet, make sure hisstratum
|
|
* is appropriate. Don't do anything else here - we wait to
|
|
* see if this is an interleave broadcast packet until after
|
|
* we've validated the MAC that SHOULD be provided.
|
|
*
|
|
* hisstratum cannot be 0 - see assertion above.
|
|
* If hisstratum is 15, then we'll advertise as UNSPEC but
|
|
* at least we'll be able to sync with the broadcast server.
|
|
*/
|
|
} else if (hismode == MODE_BROADCAST) {
|
|
/* 0 is unexpected too, and impossible */
|
|
if (STRATUM_UNSPEC <= hisstratum) {
|
|
/* Is this a ++sys_declined or ??? */
|
|
msyslog(LOG_INFO,
|
|
"receive: Unexpected stratum (%d) in broadcast from %s",
|
|
hisstratum, ntoa(&peer->srcadr));
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Basic KoD validation checking:
|
|
*
|
|
* KoD packets are a mixed-blessing. Forged KoD packets
|
|
* are DoS attacks. There are rare situations where we might
|
|
* get a valid KoD response, though. Since KoD packets are
|
|
* a special case that complicate the checks we do next, we
|
|
* handle the basic KoD checks here.
|
|
*
|
|
* Note that we expect the incoming KoD packet to have its
|
|
* (nonzero) org, rec, and xmt timestamps set to the xmt timestamp
|
|
* that we have previously sent out. Watch interleave mode.
|
|
*/
|
|
} else if (kissCode != NOKISS) {
|
|
DEBUG_INSIST(!L_ISZERO(&p_xmt));
|
|
if ( L_ISZERO(&p_org) /* We checked p_xmt above */
|
|
|| L_ISZERO(&p_rec)) {
|
|
peer->bogusorg++;
|
|
msyslog(LOG_INFO,
|
|
"receive: KoD packet from %s has a zero org or rec timestamp. Ignoring.",
|
|
ntoa(&peer->srcadr));
|
|
return;
|
|
}
|
|
|
|
if ( !L_ISEQU(&p_xmt, &p_org)
|
|
|| !L_ISEQU(&p_xmt, &p_rec)) {
|
|
peer->bogusorg++;
|
|
msyslog(LOG_INFO,
|
|
"receive: KoD packet from %s has inconsistent xmt/org/rec timestamps. Ignoring.",
|
|
ntoa(&peer->srcadr));
|
|
return;
|
|
}
|
|
|
|
/* Be conservative */
|
|
if (peer->flip == 0 && !L_ISEQU(&p_org, &peer->aorg)) {
|
|
peer->bogusorg++;
|
|
msyslog(LOG_INFO,
|
|
"receive: flip 0 KoD origin timestamp %#010x.%08x from %s does not match %#010x.%08x - ignoring.",
|
|
p_org.l_ui, p_org.l_uf,
|
|
ntoa(&peer->srcadr),
|
|
peer->aorg.l_ui, peer->aorg.l_uf);
|
|
return;
|
|
} else if (peer->flip == 1 && !L_ISEQU(&p_org, &peer->borg)) {
|
|
peer->bogusorg++;
|
|
msyslog(LOG_INFO,
|
|
"receive: flip 1 KoD origin timestamp %#010x.%08x from %s does not match interleave %#010x.%08x - ignoring.",
|
|
p_org.l_ui, p_org.l_uf,
|
|
ntoa(&peer->srcadr),
|
|
peer->borg.l_ui, peer->borg.l_uf);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Basic mode checks:
|
|
*
|
|
* If there is no origin timestamp, it's either an initial packet
|
|
* or we've already received a response to our query. Of course,
|
|
* should 'aorg' be all-zero because this really was the original
|
|
* transmit timestamp, we'll ignore this reply. There is a window
|
|
* of one nanosecond once every 136 years' time where this is
|
|
* possible. We currently ignore this situation, as a completely
|
|
* zero timestamp is (quietly?) disallowed.
|
|
*
|
|
* Otherwise, check for bogus packet in basic mode.
|
|
* If it is bogus, switch to interleaved mode and resynchronize,
|
|
* but only after confirming the packet is not bogus in
|
|
* symmetric interleaved mode.
|
|
*
|
|
* This could also mean somebody is forging packets claiming to
|
|
* be from us, attempting to cause our server to KoD us.
|
|
*
|
|
* We have earlier asserted that hisstratum cannot be 0.
|
|
* If hisstratum is STRATUM_UNSPEC, it means he's not sync'd.
|
|
*/
|
|
} else if (peer->flip == 0) {
|
|
if (0) {
|
|
} else if (L_ISZERO(&p_org)) {
|
|
const char *action;
|
|
|
|
#ifdef BUG3361
|
|
msyslog(LOG_INFO,
|
|
"receive: BUG 3361: Clearing peer->aorg ");
|
|
L_CLR(&peer->aorg);
|
|
#endif
|
|
/**/
|
|
switch (hismode) {
|
|
/* We allow 0org for: */
|
|
case UCHAR_MAX:
|
|
action = "Allow";
|
|
break;
|
|
/* We disallow 0org for: */
|
|
case MODE_UNSPEC:
|
|
case MODE_ACTIVE:
|
|
case MODE_PASSIVE:
|
|
case MODE_CLIENT:
|
|
case MODE_SERVER:
|
|
case MODE_BROADCAST:
|
|
action = "Drop";
|
|
peer->bogusorg++;
|
|
peer->flash |= TEST2; /* bogus */
|
|
break;
|
|
default:
|
|
action = ""; /* for cranky compilers / MSVC */
|
|
INSIST(!"receive(): impossible hismode");
|
|
break;
|
|
}
|
|
/**/
|
|
msyslog(LOG_INFO,
|
|
"receive: %s 0 origin timestamp from %s@%s xmt %#010x.%08x",
|
|
action, hm_str, ntoa(&peer->srcadr),
|
|
ntohl(pkt->xmt.l_ui), ntohl(pkt->xmt.l_uf));
|
|
} else if (!L_ISEQU(&p_org, &peer->aorg)) {
|
|
/* are there cases here where we should bail? */
|
|
/* Should we set TEST2 if we decide to try xleave? */
|
|
peer->bogusorg++;
|
|
peer->flash |= TEST2; /* bogus */
|
|
msyslog(LOG_INFO,
|
|
"receive: Unexpected origin timestamp %#010x.%08x does not match aorg %#010x.%08x from %s@%s xmt %#010x.%08x",
|
|
ntohl(pkt->org.l_ui), ntohl(pkt->org.l_uf),
|
|
peer->aorg.l_ui, peer->aorg.l_uf,
|
|
hm_str, ntoa(&peer->srcadr),
|
|
ntohl(pkt->xmt.l_ui), ntohl(pkt->xmt.l_uf));
|
|
if ( !L_ISZERO(&peer->dst)
|
|
&& L_ISEQU(&p_org, &peer->dst)) {
|
|
/* Might be the start of an interleave */
|
|
if (dynamic_interleave) {
|
|
peer->flip = 1;
|
|
report_event(PEVNT_XLEAVE, peer, NULL);
|
|
} else {
|
|
msyslog(LOG_INFO,
|
|
"receive: Dynamic interleave from %s@%s denied",
|
|
hm_str, ntoa(&peer->srcadr));
|
|
}
|
|
}
|
|
} else {
|
|
L_CLR(&peer->aorg);
|
|
}
|
|
|
|
/*
|
|
* Check for valid nonzero timestamp fields.
|
|
*/
|
|
} else if ( L_ISZERO(&p_org)
|
|
|| L_ISZERO(&p_rec)
|
|
|| L_ISZERO(&peer->dst)) {
|
|
peer->flash |= TEST3; /* unsynch */
|
|
|
|
/*
|
|
* Check for bogus packet in interleaved symmetric mode. This
|
|
* can happen if a packet is lost, duplicated or crossed. If
|
|
* found, flip and resynchronize.
|
|
*/
|
|
} else if ( !L_ISZERO(&peer->dst)
|
|
&& !L_ISEQU(&p_org, &peer->dst)) {
|
|
DPRINTF(2, ("receive: drop: Bogus packet in interleaved symmetric mode\n"));
|
|
peer->bogusorg++;
|
|
peer->flags |= FLAG_XBOGUS;
|
|
peer->flash |= TEST2; /* bogus */
|
|
#ifdef BUG3453
|
|
return; /* Bogus packet, we are done */
|
|
#endif
|
|
}
|
|
|
|
/**/
|
|
|
|
/*
|
|
* If this is a crypto_NAK, the server cannot authenticate a
|
|
* client packet. The server might have just changed keys. Clear
|
|
* the association and restart the protocol.
|
|
*/
|
|
if (crypto_nak_test == VALIDNAK) {
|
|
report_event(PEVNT_AUTH, peer, "crypto_NAK");
|
|
peer->flash |= TEST5; /* bad auth */
|
|
peer->badauth++;
|
|
if (peer->flags & FLAG_PREEMPT) {
|
|
if (unpeer_crypto_nak_early) {
|
|
unpeer(peer);
|
|
}
|
|
DPRINTF(2, ("receive: drop: PREEMPT crypto_NAK\n"));
|
|
return;
|
|
}
|
|
#ifdef AUTOKEY
|
|
if (peer->crypto) {
|
|
peer_clear(peer, "AUTH");
|
|
}
|
|
#endif /* AUTOKEY */
|
|
DPRINTF(2, ("receive: drop: crypto_NAK\n"));
|
|
return;
|
|
|
|
/*
|
|
* If the digest fails or it's missing for authenticated
|
|
* associations, the client cannot authenticate a server
|
|
* reply to a client packet previously sent. The loopback check
|
|
* is designed to avoid a bait-and-switch attack, which was
|
|
* possible in past versions. If symmetric modes, return a
|
|
* crypto-NAK. The peer should restart the protocol.
|
|
*/
|
|
} else if (!AUTH(peer->keyid || has_mac ||
|
|
(restrict_mask & RES_DONTTRUST), is_authentic)) {
|
|
|
|
if (peer->flash & PKT_TEST_MASK) {
|
|
msyslog(LOG_INFO,
|
|
"receive: Bad auth in packet with bad timestamps from %s denied - spoof?",
|
|
ntoa(&peer->srcadr));
|
|
return;
|
|
}
|
|
|
|
report_event(PEVNT_AUTH, peer, "digest");
|
|
peer->flash |= TEST5; /* bad auth */
|
|
peer->badauth++;
|
|
if ( has_mac
|
|
&& ( hismode == MODE_ACTIVE
|
|
|| hismode == MODE_PASSIVE))
|
|
fast_xmit(rbufp, MODE_ACTIVE, 0, restrict_mask);
|
|
if (peer->flags & FLAG_PREEMPT) {
|
|
if (unpeer_digest_early) {
|
|
unpeer(peer);
|
|
}
|
|
}
|
|
#ifdef AUTOKEY
|
|
else if (peer_clear_digest_early && peer->crypto) {
|
|
peer_clear(peer, "AUTH");
|
|
}
|
|
#endif /* AUTOKEY */
|
|
DPRINTF(2, ("receive: drop: Bad or missing AUTH\n"));
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* For broadcast packets:
|
|
*
|
|
* HMS: This next line never made much sense to me, even
|
|
* when it was up higher:
|
|
* If an initial volley, bail out now and let the
|
|
* client do its stuff.
|
|
*
|
|
* If the packet has not failed authentication, then
|
|
* - if the origin timestamp is nonzero this is an
|
|
* interleaved broadcast, so restart the protocol.
|
|
* - else, this is not an interleaved broadcast packet.
|
|
*/
|
|
if (hismode == MODE_BROADCAST) {
|
|
if ( is_authentic == AUTH_OK
|
|
|| is_authentic == AUTH_NONE) {
|
|
if (!L_ISZERO(&p_org)) {
|
|
if (!(peer->flags & FLAG_XB)) {
|
|
msyslog(LOG_INFO,
|
|
"receive: Broadcast server at %s is in interleave mode",
|
|
ntoa(&peer->srcadr));
|
|
peer->flags |= FLAG_XB;
|
|
peer->aorg = p_xmt;
|
|
peer->borg = rbufp->recv_time;
|
|
report_event(PEVNT_XLEAVE, peer, NULL);
|
|
return;
|
|
}
|
|
} else if (peer->flags & FLAG_XB) {
|
|
msyslog(LOG_INFO,
|
|
"receive: Broadcast server at %s is no longer in interleave mode",
|
|
ntoa(&peer->srcadr));
|
|
peer->flags &= ~FLAG_XB;
|
|
}
|
|
} else {
|
|
msyslog(LOG_INFO,
|
|
"receive: Bad broadcast auth (%d) from %s",
|
|
is_authentic, ntoa(&peer->srcadr));
|
|
}
|
|
|
|
/*
|
|
* Now that we know the packet is correctly authenticated,
|
|
* update peer->bxmt.
|
|
*/
|
|
peer->bxmt = p_xmt;
|
|
}
|
|
|
|
|
|
/*
|
|
** Update the state variables.
|
|
*/
|
|
if (peer->flip == 0) {
|
|
if (hismode != MODE_BROADCAST)
|
|
peer->rec = p_xmt;
|
|
peer->dst = rbufp->recv_time;
|
|
}
|
|
peer->xmt = p_xmt;
|
|
|
|
/*
|
|
* Set the peer ppoll to the maximum of the packet ppoll and the
|
|
* peer minpoll. If a kiss-o'-death, set the peer minpoll to
|
|
* this maximum and advance the headway to give the sender some
|
|
* headroom. Very intricate.
|
|
*/
|
|
|
|
/*
|
|
* Check for any kiss codes. Note this is only used when a server
|
|
* responds to a packet request.
|
|
*/
|
|
|
|
/*
|
|
* Check to see if this is a RATE Kiss Code
|
|
* Currently this kiss code will accept whatever poll
|
|
* rate that the server sends
|
|
*/
|
|
peer->ppoll = max(peer->minpoll, pkt->ppoll);
|
|
if (kissCode == RATEKISS) {
|
|
peer->selbroken++; /* Increment the KoD count */
|
|
report_event(PEVNT_RATE, peer, NULL);
|
|
if (pkt->ppoll > peer->minpoll)
|
|
peer->minpoll = peer->ppoll;
|
|
peer->burst = peer->retry = 0;
|
|
peer->throttle = (NTP_SHIFT + 1) * (1 << peer->minpoll);
|
|
poll_update(peer, pkt->ppoll);
|
|
return; /* kiss-o'-death */
|
|
}
|
|
if (kissCode != NOKISS) {
|
|
peer->selbroken++; /* Increment the KoD count */
|
|
return; /* Drop any other kiss code packets */
|
|
}
|
|
|
|
|
|
/*
|
|
* XXX
|
|
*/
|
|
|
|
|
|
/*
|
|
* If:
|
|
* - this is a *cast (uni-, broad-, or m-) server packet
|
|
* - and it's symmetric-key authenticated
|
|
* then see if the sender's IP is trusted for this keyid.
|
|
* If it is, great - nothing special to do here.
|
|
* Otherwise, we should report and bail.
|
|
*
|
|
* Autokey-authenticated packets are accepted.
|
|
*/
|
|
|
|
switch (hismode) {
|
|
case MODE_SERVER: /* server mode */
|
|
case MODE_BROADCAST: /* broadcast mode */
|
|
case MODE_ACTIVE: /* symmetric active mode */
|
|
case MODE_PASSIVE: /* symmetric passive mode */
|
|
if ( is_authentic == AUTH_OK
|
|
&& skeyid
|
|
&& skeyid <= NTP_MAXKEY
|
|
&& !authistrustedip(skeyid, &peer->srcadr)) {
|
|
report_event(PEVNT_AUTH, peer, "authIP");
|
|
peer->badauth++;
|
|
return;
|
|
}
|
|
break;
|
|
|
|
case MODE_CLIENT: /* client mode */
|
|
#if 0 /* At this point, MODE_CONTROL is overloaded by MODE_BCLIENT */
|
|
case MODE_CONTROL: /* control mode */
|
|
#endif
|
|
case MODE_PRIVATE: /* private mode */
|
|
case MODE_BCLIENT: /* broadcast client mode */
|
|
break;
|
|
|
|
case MODE_UNSPEC: /* unspecified (old version) */
|
|
default:
|
|
msyslog(LOG_INFO,
|
|
"receive: Unexpected mode (%d) in packet from %s",
|
|
hismode, ntoa(&peer->srcadr));
|
|
break;
|
|
}
|
|
|
|
|
|
/*
|
|
* That was hard and I am sweaty, but the packet is squeaky
|
|
* clean. Get on with real work.
|
|
*/
|
|
peer->timereceived = current_time;
|
|
peer->timelastrec = current_time;
|
|
if (is_authentic == AUTH_OK)
|
|
peer->flags |= FLAG_AUTHENTIC;
|
|
else
|
|
peer->flags &= ~FLAG_AUTHENTIC;
|
|
|
|
#ifdef AUTOKEY
|
|
/*
|
|
* More autokey dance. The rules of the cha-cha are as follows:
|
|
*
|
|
* 1. If there is no key or the key is not auto, do nothing.
|
|
*
|
|
* 2. If this packet is in response to the one just previously
|
|
* sent or from a broadcast server, do the extension fields.
|
|
* Otherwise, assume bogosity and bail out.
|
|
*
|
|
* 3. If an extension field contains a verified signature, it is
|
|
* self-authenticated and we sit the dance.
|
|
*
|
|
* 4. If this is a server reply, check only to see that the
|
|
* transmitted key ID matches the received key ID.
|
|
*
|
|
* 5. Check to see that one or more hashes of the current key ID
|
|
* matches the previous key ID or ultimate original key ID
|
|
* obtained from the broadcaster or symmetric peer. If no
|
|
* match, sit the dance and call for new autokey values.
|
|
*
|
|
* In case of crypto error, fire the orchestra, stop dancing and
|
|
* restart the protocol.
|
|
*/
|
|
if (peer->flags & FLAG_SKEY) {
|
|
/*
|
|
* Decrement remaining autokey hashes. This isn't
|
|
* perfect if a packet is lost, but results in no harm.
|
|
*/
|
|
ap = (struct autokey *)peer->recval.ptr;
|
|
if (ap != NULL) {
|
|
if (ap->seq > 0)
|
|
ap->seq--;
|
|
}
|
|
peer->flash |= TEST8;
|
|
rval = crypto_recv(peer, rbufp);
|
|
if (rval == XEVNT_OK) {
|
|
peer->unreach = 0;
|
|
} else {
|
|
if (rval == XEVNT_ERR) {
|
|
report_event(PEVNT_RESTART, peer,
|
|
"crypto error");
|
|
peer_clear(peer, "CRYP");
|
|
peer->flash |= TEST9; /* bad crypt */
|
|
if (peer->flags & FLAG_PREEMPT) {
|
|
if (unpeer_crypto_early) {
|
|
unpeer(peer);
|
|
}
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If server mode, verify the receive key ID matches
|
|
* the transmit key ID.
|
|
*/
|
|
if (hismode == MODE_SERVER) {
|
|
if (skeyid == peer->keyid)
|
|
peer->flash &= ~TEST8;
|
|
|
|
/*
|
|
* If an extension field is present, verify only that it
|
|
* has been correctly signed. We don't need a sequence
|
|
* check here, but the sequence continues.
|
|
*/
|
|
} else if (!(peer->flash & TEST8)) {
|
|
peer->pkeyid = skeyid;
|
|
|
|
/*
|
|
* Now the fun part. Here, skeyid is the current ID in
|
|
* the packet, pkeyid is the ID in the last packet and
|
|
* tkeyid is the hash of skeyid. If the autokey values
|
|
* have not been received, this is an automatic error.
|
|
* If so, check that the tkeyid matches pkeyid. If not,
|
|
* hash tkeyid and try again. If the number of hashes
|
|
* exceeds the number remaining in the sequence, declare
|
|
* a successful failure and refresh the autokey values.
|
|
*/
|
|
} else if (ap != NULL) {
|
|
int i;
|
|
|
|
for (i = 0; ; i++) {
|
|
if ( tkeyid == peer->pkeyid
|
|
|| tkeyid == ap->key) {
|
|
peer->flash &= ~TEST8;
|
|
peer->pkeyid = skeyid;
|
|
ap->seq -= i;
|
|
break;
|
|
}
|
|
if (i > ap->seq) {
|
|
peer->crypto &=
|
|
~CRYPTO_FLAG_AUTO;
|
|
break;
|
|
}
|
|
tkeyid = session_key(
|
|
&rbufp->recv_srcadr, dstadr_sin,
|
|
tkeyid, pkeyid, 0);
|
|
}
|
|
if (peer->flash & TEST8)
|
|
report_event(PEVNT_AUTH, peer, "keylist");
|
|
}
|
|
if (!(peer->crypto & CRYPTO_FLAG_PROV)) /* test 9 */
|
|
peer->flash |= TEST8; /* bad autokey */
|
|
|
|
/*
|
|
* The maximum lifetime of the protocol is about one
|
|
* week before restarting the Autokey protocol to
|
|
* refresh certificates and leapseconds values.
|
|
*/
|
|
if (current_time > peer->refresh) {
|
|
report_event(PEVNT_RESTART, peer,
|
|
"crypto refresh");
|
|
peer_clear(peer, "TIME");
|
|
return;
|
|
}
|
|
}
|
|
#endif /* AUTOKEY */
|
|
|
|
/*
|
|
* The dance is complete and the flash bits have been lit. Toss
|
|
* the packet over the fence for processing, which may light up
|
|
* more flashers.
|
|
*/
|
|
process_packet(peer, pkt, rbufp->recv_length);
|
|
|
|
/*
|
|
* In interleaved mode update the state variables. Also adjust the
|
|
* transmit phase to avoid crossover.
|
|
*/
|
|
if (peer->flip != 0) {
|
|
peer->rec = p_rec;
|
|
peer->dst = rbufp->recv_time;
|
|
if (peer->nextdate - current_time < (1U << min(peer->ppoll,
|
|
peer->hpoll)) / 2)
|
|
peer->nextdate++;
|
|
else
|
|
peer->nextdate--;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* process_packet - Packet Procedure, a la Section 3.4.4 of RFC-1305
|
|
* Or almost, at least. If we're in here we have a reasonable
|
|
* expectation that we will be having a long term
|
|
* relationship with this host.
|
|
*/
|
|
void
|
|
process_packet(
|
|
register struct peer *peer,
|
|
register struct pkt *pkt,
|
|
u_int len
|
|
)
|
|
{
|
|
double t34, t21;
|
|
double p_offset, p_del, p_disp;
|
|
l_fp p_rec, p_xmt, p_org, p_reftime, ci;
|
|
u_char pmode, pleap, pversion, pstratum;
|
|
char statstr[NTP_MAXSTRLEN];
|
|
#ifdef ASSYM
|
|
int itemp;
|
|
double etemp, ftemp, td;
|
|
#endif /* ASSYM */
|
|
|
|
#if 0
|
|
sys_processed++;
|
|
peer->processed++;
|
|
#endif
|
|
p_del = FPTOD(NTOHS_FP(pkt->rootdelay));
|
|
p_offset = 0;
|
|
p_disp = FPTOD(NTOHS_FP(pkt->rootdisp));
|
|
NTOHL_FP(&pkt->reftime, &p_reftime);
|
|
NTOHL_FP(&pkt->org, &p_org);
|
|
NTOHL_FP(&pkt->rec, &p_rec);
|
|
NTOHL_FP(&pkt->xmt, &p_xmt);
|
|
pmode = PKT_MODE(pkt->li_vn_mode);
|
|
pleap = PKT_LEAP(pkt->li_vn_mode);
|
|
pversion = PKT_VERSION(pkt->li_vn_mode);
|
|
pstratum = PKT_TO_STRATUM(pkt->stratum);
|
|
|
|
/**/
|
|
|
|
/**/
|
|
|
|
/*
|
|
* Verify the server is synchronized; that is, the leap bits,
|
|
* stratum and root distance are valid.
|
|
*/
|
|
if ( pleap == LEAP_NOTINSYNC /* test 6 */
|
|
|| pstratum < sys_floor || pstratum >= sys_ceiling)
|
|
peer->flash |= TEST6; /* bad synch or strat */
|
|
if (p_del / 2 + p_disp >= MAXDISPERSE) /* test 7 */
|
|
peer->flash |= TEST7; /* bad header */
|
|
|
|
/*
|
|
* If any tests fail at this point, the packet is discarded.
|
|
* Note that some flashers may have already been set in the
|
|
* receive() routine.
|
|
*/
|
|
if (peer->flash & PKT_TEST_MASK) {
|
|
peer->seldisptoolarge++;
|
|
DPRINTF(1, ("packet: flash header %04x\n",
|
|
peer->flash));
|
|
return;
|
|
}
|
|
|
|
/**/
|
|
|
|
#if 1
|
|
sys_processed++;
|
|
peer->processed++;
|
|
#endif
|
|
|
|
/*
|
|
* Capture the header values in the client/peer association..
|
|
*/
|
|
record_raw_stats(&peer->srcadr,
|
|
peer->dstadr ? &peer->dstadr->sin : NULL,
|
|
&p_org, &p_rec, &p_xmt, &peer->dst,
|
|
pleap, pversion, pmode, pstratum, pkt->ppoll, pkt->precision,
|
|
p_del, p_disp, pkt->refid,
|
|
len - MIN_V4_PKT_LEN, (u_char *)&pkt->exten);
|
|
peer->leap = pleap;
|
|
peer->stratum = min(pstratum, STRATUM_UNSPEC);
|
|
peer->pmode = pmode;
|
|
peer->precision = pkt->precision;
|
|
peer->rootdelay = p_del;
|
|
peer->rootdisp = p_disp;
|
|
peer->refid = pkt->refid; /* network byte order */
|
|
peer->reftime = p_reftime;
|
|
|
|
/*
|
|
* First, if either burst mode is armed, enable the burst.
|
|
* Compute the headway for the next packet and delay if
|
|
* necessary to avoid exceeding the threshold.
|
|
*/
|
|
if (peer->retry > 0) {
|
|
peer->retry = 0;
|
|
if (peer->reach)
|
|
peer->burst = min(1 << (peer->hpoll -
|
|
peer->minpoll), NTP_SHIFT) - 1;
|
|
else
|
|
peer->burst = NTP_IBURST - 1;
|
|
if (peer->burst > 0)
|
|
peer->nextdate = current_time;
|
|
}
|
|
poll_update(peer, peer->hpoll);
|
|
|
|
/**/
|
|
|
|
/*
|
|
* If the peer was previously unreachable, raise a trap. In any
|
|
* case, mark it reachable.
|
|
*/
|
|
if (!peer->reach) {
|
|
report_event(PEVNT_REACH, peer, NULL);
|
|
peer->timereachable = current_time;
|
|
}
|
|
peer->reach |= 1;
|
|
|
|
/*
|
|
* For a client/server association, calculate the clock offset,
|
|
* roundtrip delay and dispersion. The equations are reordered
|
|
* from the spec for more efficient use of temporaries. For a
|
|
* broadcast association, offset the last measurement by the
|
|
* computed delay during the client/server volley. Note the
|
|
* computation of dispersion includes the system precision plus
|
|
* that due to the frequency error since the origin time.
|
|
*
|
|
* It is very important to respect the hazards of overflow. The
|
|
* only permitted operation on raw timestamps is subtraction,
|
|
* where the result is a signed quantity spanning from 68 years
|
|
* in the past to 68 years in the future. To avoid loss of
|
|
* precision, these calculations are done using 64-bit integer
|
|
* arithmetic. However, the offset and delay calculations are
|
|
* sums and differences of these first-order differences, which
|
|
* if done using 64-bit integer arithmetic, would be valid over
|
|
* only half that span. Since the typical first-order
|
|
* differences are usually very small, they are converted to 64-
|
|
* bit doubles and all remaining calculations done in floating-
|
|
* double arithmetic. This preserves the accuracy while
|
|
* retaining the 68-year span.
|
|
*
|
|
* There are three interleaving schemes, basic, interleaved
|
|
* symmetric and interleaved broadcast. The timestamps are
|
|
* idioscyncratically different. See the onwire briefing/white
|
|
* paper at www.eecis.udel.edu/~mills for details.
|
|
*
|
|
* Interleaved symmetric mode
|
|
* t1 = peer->aorg/borg, t2 = peer->rec, t3 = p_xmt,
|
|
* t4 = peer->dst
|
|
*/
|
|
if (peer->flip != 0) {
|
|
ci = p_xmt; /* t3 - t4 */
|
|
L_SUB(&ci, &peer->dst);
|
|
LFPTOD(&ci, t34);
|
|
ci = p_rec; /* t2 - t1 */
|
|
if (peer->flip > 0)
|
|
L_SUB(&ci, &peer->borg);
|
|
else
|
|
L_SUB(&ci, &peer->aorg);
|
|
LFPTOD(&ci, t21);
|
|
p_del = t21 - t34;
|
|
p_offset = (t21 + t34) / 2.;
|
|
if (p_del < 0 || p_del > 1.) {
|
|
snprintf(statstr, sizeof(statstr),
|
|
"t21 %.6f t34 %.6f", t21, t34);
|
|
report_event(PEVNT_XERR, peer, statstr);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Broadcast modes
|
|
*/
|
|
} else if (peer->pmode == MODE_BROADCAST) {
|
|
|
|
/*
|
|
* Interleaved broadcast mode. Use interleaved timestamps.
|
|
* t1 = peer->borg, t2 = p_org, t3 = p_org, t4 = aorg
|
|
*/
|
|
if (peer->flags & FLAG_XB) {
|
|
ci = p_org; /* delay */
|
|
L_SUB(&ci, &peer->aorg);
|
|
LFPTOD(&ci, t34);
|
|
ci = p_org; /* t2 - t1 */
|
|
L_SUB(&ci, &peer->borg);
|
|
LFPTOD(&ci, t21);
|
|
peer->aorg = p_xmt;
|
|
peer->borg = peer->dst;
|
|
if (t34 < 0 || t34 > 1.) {
|
|
/* drop all if in the initial volley */
|
|
if (FLAG_BC_VOL & peer->flags)
|
|
goto bcc_init_volley_fail;
|
|
snprintf(statstr, sizeof(statstr),
|
|
"offset %.6f delay %.6f", t21, t34);
|
|
report_event(PEVNT_XERR, peer, statstr);
|
|
return;
|
|
}
|
|
p_offset = t21;
|
|
peer->xleave = t34;
|
|
|
|
/*
|
|
* Basic broadcast - use direct timestamps.
|
|
* t3 = p_xmt, t4 = peer->dst
|
|
*/
|
|
} else {
|
|
ci = p_xmt; /* t3 - t4 */
|
|
L_SUB(&ci, &peer->dst);
|
|
LFPTOD(&ci, t34);
|
|
p_offset = t34;
|
|
}
|
|
|
|
/*
|
|
* When calibration is complete and the clock is
|
|
* synchronized, the bias is calculated as the difference
|
|
* between the unicast timestamp and the broadcast
|
|
* timestamp. This works for both basic and interleaved
|
|
* modes.
|
|
* [Bug 3031] Don't keep this peer when the delay
|
|
* calculation gives reason to suspect clock steps.
|
|
* This is assumed for delays > 50ms.
|
|
*/
|
|
if (FLAG_BC_VOL & peer->flags) {
|
|
peer->flags &= ~FLAG_BC_VOL;
|
|
peer->delay = fabs(peer->offset - p_offset) * 2;
|
|
DPRINTF(2, ("broadcast volley: initial delay=%.6f\n",
|
|
peer->delay));
|
|
if (peer->delay > fabs(sys_bdelay)) {
|
|
bcc_init_volley_fail:
|
|
DPRINTF(2, ("%s", "broadcast volley: initial delay exceeds limit\n"));
|
|
unpeer(peer);
|
|
return;
|
|
}
|
|
}
|
|
peer->nextdate = current_time + (1u << peer->ppoll) - 2u;
|
|
p_del = peer->delay;
|
|
p_offset += p_del / 2;
|
|
|
|
|
|
/*
|
|
* Basic mode, otherwise known as the old fashioned way.
|
|
*
|
|
* t1 = p_org, t2 = p_rec, t3 = p_xmt, t4 = peer->dst
|
|
*/
|
|
} else {
|
|
ci = p_xmt; /* t3 - t4 */
|
|
L_SUB(&ci, &peer->dst);
|
|
LFPTOD(&ci, t34);
|
|
ci = p_rec; /* t2 - t1 */
|
|
L_SUB(&ci, &p_org);
|
|
LFPTOD(&ci, t21);
|
|
p_del = fabs(t21 - t34);
|
|
p_offset = (t21 + t34) / 2.;
|
|
}
|
|
p_del = max(p_del, LOGTOD(sys_precision));
|
|
p_disp = LOGTOD(sys_precision) + LOGTOD(peer->precision) +
|
|
clock_phi * p_del;
|
|
|
|
#if ASSYM
|
|
/*
|
|
* This code calculates the outbound and inbound data rates by
|
|
* measuring the differences between timestamps at different
|
|
* packet lengths. This is helpful in cases of large asymmetric
|
|
* delays commonly experienced on deep space communication
|
|
* links.
|
|
*/
|
|
if (peer->t21_last > 0 && peer->t34_bytes > 0) {
|
|
itemp = peer->t21_bytes - peer->t21_last;
|
|
if (itemp > 25) {
|
|
etemp = t21 - peer->t21;
|
|
if (fabs(etemp) > 1e-6) {
|
|
ftemp = itemp / etemp;
|
|
if (ftemp > 1000.)
|
|
peer->r21 = ftemp;
|
|
}
|
|
}
|
|
itemp = len - peer->t34_bytes;
|
|
if (itemp > 25) {
|
|
etemp = -t34 - peer->t34;
|
|
if (fabs(etemp) > 1e-6) {
|
|
ftemp = itemp / etemp;
|
|
if (ftemp > 1000.)
|
|
peer->r34 = ftemp;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The following section compensates for different data rates on
|
|
* the outbound (d21) and inbound (t34) directions. To do this,
|
|
* it finds t such that r21 * t - r34 * (d - t) = 0, where d is
|
|
* the roundtrip delay. Then it calculates the correction as a
|
|
* fraction of d.
|
|
*/
|
|
peer->t21 = t21;
|
|
peer->t21_last = peer->t21_bytes;
|
|
peer->t34 = -t34;
|
|
peer->t34_bytes = len;
|
|
DPRINTF(2, ("packet: t21 %.9lf %d t34 %.9lf %d\n", peer->t21,
|
|
peer->t21_bytes, peer->t34, peer->t34_bytes));
|
|
if (peer->r21 > 0 && peer->r34 > 0 && p_del > 0) {
|
|
if (peer->pmode != MODE_BROADCAST)
|
|
td = (peer->r34 / (peer->r21 + peer->r34) -
|
|
.5) * p_del;
|
|
else
|
|
td = 0;
|
|
|
|
/*
|
|
* Unfortunately, in many cases the errors are
|
|
* unacceptable, so for the present the rates are not
|
|
* used. In future, we might find conditions where the
|
|
* calculations are useful, so this should be considered
|
|
* a work in progress.
|
|
*/
|
|
t21 -= td;
|
|
t34 -= td;
|
|
DPRINTF(2, ("packet: del %.6lf r21 %.1lf r34 %.1lf %.6lf\n",
|
|
p_del, peer->r21 / 1e3, peer->r34 / 1e3,
|
|
td));
|
|
}
|
|
#endif /* ASSYM */
|
|
|
|
/*
|
|
* That was awesome. Now hand off to the clock filter.
|
|
*/
|
|
clock_filter(peer, p_offset + peer->bias, p_del, p_disp);
|
|
|
|
/*
|
|
* If we are in broadcast calibrate mode, return to broadcast
|
|
* client mode when the client is fit and the autokey dance is
|
|
* complete.
|
|
*/
|
|
if ( (FLAG_BC_VOL & peer->flags)
|
|
&& MODE_CLIENT == peer->hmode
|
|
&& !(TEST11 & peer_unfit(peer))) { /* distance exceeded */
|
|
#ifdef AUTOKEY
|
|
if (peer->flags & FLAG_SKEY) {
|
|
if (!(~peer->crypto & CRYPTO_FLAG_ALL))
|
|
peer->hmode = MODE_BCLIENT;
|
|
} else {
|
|
peer->hmode = MODE_BCLIENT;
|
|
}
|
|
#else /* !AUTOKEY follows */
|
|
peer->hmode = MODE_BCLIENT;
|
|
#endif /* !AUTOKEY */
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* clock_update - Called at system process update intervals.
|
|
*/
|
|
static void
|
|
clock_update(
|
|
struct peer *peer /* peer structure pointer */
|
|
)
|
|
{
|
|
double dtemp;
|
|
l_fp now;
|
|
#ifdef HAVE_LIBSCF_H
|
|
char *fmri;
|
|
#endif /* HAVE_LIBSCF_H */
|
|
|
|
/*
|
|
* Update the system state variables. We do this very carefully,
|
|
* as the poll interval might need to be clamped differently.
|
|
*/
|
|
sys_peer = peer;
|
|
sys_epoch = peer->epoch;
|
|
if (sys_poll < peer->minpoll)
|
|
sys_poll = peer->minpoll;
|
|
if (sys_poll > peer->maxpoll)
|
|
sys_poll = peer->maxpoll;
|
|
poll_update(peer, sys_poll);
|
|
sys_stratum = min(peer->stratum + 1, STRATUM_UNSPEC);
|
|
if ( peer->stratum == STRATUM_REFCLOCK
|
|
|| peer->stratum == STRATUM_UNSPEC)
|
|
sys_refid = peer->refid;
|
|
else
|
|
sys_refid = addr2refid(&peer->srcadr);
|
|
/*
|
|
* Root Dispersion (E) is defined (in RFC 5905) as:
|
|
*
|
|
* E = p.epsilon_r + p.epsilon + p.psi + PHI*(s.t - p.t) + |THETA|
|
|
*
|
|
* where:
|
|
* p.epsilon_r is the PollProc's root dispersion
|
|
* p.epsilon is the PollProc's dispersion
|
|
* p.psi is the PollProc's jitter
|
|
* THETA is the combined offset
|
|
*
|
|
* NB: Think Hard about where these numbers come from and
|
|
* what they mean. When did peer->update happen? Has anything
|
|
* interesting happened since then? What values are the most
|
|
* defensible? Why?
|
|
*
|
|
* DLM thinks this equation is probably the best of all worse choices.
|
|
*/
|
|
dtemp = peer->rootdisp
|
|
+ peer->disp
|
|
+ sys_jitter
|
|
+ clock_phi * (current_time - peer->update)
|
|
+ fabs(sys_offset);
|
|
|
|
if (dtemp > sys_mindisp)
|
|
sys_rootdisp = dtemp;
|
|
else
|
|
sys_rootdisp = sys_mindisp;
|
|
sys_rootdelay = peer->delay + peer->rootdelay;
|
|
sys_reftime = peer->dst;
|
|
|
|
DPRINTF(1, ("clock_update: at %lu sample %lu associd %d\n",
|
|
current_time, peer->epoch, peer->associd));
|
|
|
|
/*
|
|
* Comes now the moment of truth. Crank the clock discipline and
|
|
* see what comes out.
|
|
*/
|
|
switch (local_clock(peer, sys_offset)) {
|
|
|
|
/*
|
|
* Clock exceeds panic threshold. Life as we know it ends.
|
|
*/
|
|
case -1:
|
|
#ifdef HAVE_LIBSCF_H
|
|
/*
|
|
* For Solaris enter the maintenance mode.
|
|
*/
|
|
if ((fmri = getenv("SMF_FMRI")) != NULL) {
|
|
if (smf_maintain_instance(fmri, 0) < 0) {
|
|
printf("smf_maintain_instance: %s\n",
|
|
scf_strerror(scf_error()));
|
|
exit(1);
|
|
}
|
|
/*
|
|
* Sleep until SMF kills us.
|
|
*/
|
|
for (;;)
|
|
pause();
|
|
}
|
|
#endif /* HAVE_LIBSCF_H */
|
|
exit (-1);
|
|
/* not reached */
|
|
|
|
/*
|
|
* Clock was stepped. Flush all time values of all peers.
|
|
*/
|
|
case 2:
|
|
clear_all();
|
|
set_sys_leap(LEAP_NOTINSYNC);
|
|
sys_stratum = STRATUM_UNSPEC;
|
|
memcpy(&sys_refid, "STEP", 4);
|
|
sys_rootdelay = 0;
|
|
sys_rootdisp = 0;
|
|
L_CLR(&sys_reftime);
|
|
sys_jitter = LOGTOD(sys_precision);
|
|
leapsec_reset_frame();
|
|
break;
|
|
|
|
/*
|
|
* Clock was slewed. Handle the leapsecond stuff.
|
|
*/
|
|
case 1:
|
|
|
|
/*
|
|
* If this is the first time the clock is set, reset the
|
|
* leap bits. If crypto, the timer will goose the setup
|
|
* process.
|
|
*/
|
|
if (sys_leap == LEAP_NOTINSYNC) {
|
|
set_sys_leap(LEAP_NOWARNING);
|
|
#ifdef AUTOKEY
|
|
if (crypto_flags)
|
|
crypto_update();
|
|
#endif /* AUTOKEY */
|
|
/*
|
|
* If our parent process is waiting for the
|
|
* first clock sync, send them home satisfied.
|
|
*/
|
|
#ifdef HAVE_WORKING_FORK
|
|
if (waitsync_fd_to_close != -1) {
|
|
close(waitsync_fd_to_close);
|
|
waitsync_fd_to_close = -1;
|
|
DPRINTF(1, ("notified parent --wait-sync is done\n"));
|
|
}
|
|
#endif /* HAVE_WORKING_FORK */
|
|
|
|
}
|
|
|
|
/*
|
|
* If there is no leap second pending and the number of
|
|
* survivor leap bits is greater than half the number of
|
|
* survivors, try to schedule a leap for the end of the
|
|
* current month. (This only works if no leap second for
|
|
* that range is in the table, so doing this more than
|
|
* once is mostly harmless.)
|
|
*/
|
|
if (leapsec == LSPROX_NOWARN) {
|
|
if ( leap_vote_ins > leap_vote_del
|
|
&& leap_vote_ins > sys_survivors / 2) {
|
|
get_systime(&now);
|
|
leapsec_add_dyn(TRUE, now.l_ui, NULL);
|
|
}
|
|
if ( leap_vote_del > leap_vote_ins
|
|
&& leap_vote_del > sys_survivors / 2) {
|
|
get_systime(&now);
|
|
leapsec_add_dyn(FALSE, now.l_ui, NULL);
|
|
}
|
|
}
|
|
break;
|
|
|
|
/*
|
|
* Popcorn spike or step threshold exceeded. Pretend it never
|
|
* happened.
|
|
*/
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* poll_update - update peer poll interval
|
|
*/
|
|
void
|
|
poll_update(
|
|
struct peer *peer, /* peer structure pointer */
|
|
u_char mpoll
|
|
)
|
|
{
|
|
u_long next, utemp;
|
|
u_char hpoll;
|
|
|
|
/*
|
|
* This routine figures out when the next poll should be sent.
|
|
* That turns out to be wickedly complicated. One problem is
|
|
* that sometimes the time for the next poll is in the past when
|
|
* the poll interval is reduced. We watch out for races here
|
|
* between the receive process and the poll process.
|
|
*
|
|
* Clamp the poll interval between minpoll and maxpoll.
|
|
*/
|
|
hpoll = max(min(peer->maxpoll, mpoll), peer->minpoll);
|
|
|
|
#ifdef AUTOKEY
|
|
/*
|
|
* If during the crypto protocol the poll interval has changed,
|
|
* the lifetimes in the key list are probably bogus. Purge the
|
|
* the key list and regenerate it later.
|
|
*/
|
|
if ((peer->flags & FLAG_SKEY) && hpoll != peer->hpoll)
|
|
key_expire(peer);
|
|
#endif /* AUTOKEY */
|
|
peer->hpoll = hpoll;
|
|
|
|
/*
|
|
* There are three variables important for poll scheduling, the
|
|
* current time (current_time), next scheduled time (nextdate)
|
|
* and the earliest time (utemp). The earliest time is 2 s
|
|
* seconds, but could be more due to rate management. When
|
|
* sending in a burst, use the earliest time. When not in a
|
|
* burst but with a reply pending, send at the earliest time
|
|
* unless the next scheduled time has not advanced. This can
|
|
* only happen if multiple replies are pending in the same
|
|
* response interval. Otherwise, send at the later of the next
|
|
* scheduled time and the earliest time.
|
|
*
|
|
* Now we figure out if there is an override. If a burst is in
|
|
* progress and we get called from the receive process, just
|
|
* slink away. If called from the poll process, delay 1 s for a
|
|
* reference clock, otherwise 2 s.
|
|
*/
|
|
utemp = current_time + max(peer->throttle - (NTP_SHIFT - 1) *
|
|
(1 << peer->minpoll), ntp_minpkt);
|
|
if (peer->burst > 0) {
|
|
if (peer->nextdate > current_time)
|
|
return;
|
|
#ifdef REFCLOCK
|
|
else if (peer->flags & FLAG_REFCLOCK)
|
|
peer->nextdate = current_time + RESP_DELAY;
|
|
#endif /* REFCLOCK */
|
|
else
|
|
peer->nextdate = utemp;
|
|
|
|
#ifdef AUTOKEY
|
|
/*
|
|
* If a burst is not in progress and a crypto response message
|
|
* is pending, delay 2 s, but only if this is a new interval.
|
|
*/
|
|
} else if (peer->cmmd != NULL) {
|
|
if (peer->nextdate > current_time) {
|
|
if (peer->nextdate + ntp_minpkt != utemp)
|
|
peer->nextdate = utemp;
|
|
} else {
|
|
peer->nextdate = utemp;
|
|
}
|
|
#endif /* AUTOKEY */
|
|
|
|
/*
|
|
* The ordinary case. If a retry, use minpoll; if unreachable,
|
|
* use host poll; otherwise, use the minimum of host and peer
|
|
* polls; In other words, oversampling is okay but
|
|
* understampling is evil. Use the maximum of this value and the
|
|
* headway. If the average headway is greater than the headway
|
|
* threshold, increase the headway by the minimum interval.
|
|
*/
|
|
} else {
|
|
if (peer->retry > 0)
|
|
hpoll = peer->minpoll;
|
|
else if (!(peer->reach))
|
|
hpoll = peer->hpoll;
|
|
else
|
|
hpoll = min(peer->ppoll, peer->hpoll);
|
|
#ifdef REFCLOCK
|
|
if (peer->flags & FLAG_REFCLOCK)
|
|
next = 1 << hpoll;
|
|
else
|
|
#endif /* REFCLOCK */
|
|
next = ((0x1000UL | (ntp_random() & 0x0ff)) <<
|
|
hpoll) >> 12;
|
|
next += peer->outdate;
|
|
if (next > utemp)
|
|
peer->nextdate = next;
|
|
else
|
|
peer->nextdate = utemp;
|
|
if (peer->throttle > (1 << peer->minpoll))
|
|
peer->nextdate += ntp_minpkt;
|
|
}
|
|
DPRINTF(2, ("poll_update: at %lu %s poll %d burst %d retry %d head %d early %lu next %lu\n",
|
|
current_time, ntoa(&peer->srcadr), peer->hpoll,
|
|
peer->burst, peer->retry, peer->throttle,
|
|
utemp - current_time, peer->nextdate -
|
|
current_time));
|
|
}
|
|
|
|
|
|
/*
|
|
* peer_clear - clear peer filter registers. See Section 3.4.8 of the
|
|
* spec.
|
|
*/
|
|
void
|
|
peer_clear(
|
|
struct peer *peer, /* peer structure */
|
|
const char *ident /* tally lights */
|
|
)
|
|
{
|
|
u_char u;
|
|
l_fp bxmt = peer->bxmt; /* bcast clients retain this! */
|
|
|
|
#ifdef AUTOKEY
|
|
/*
|
|
* If cryptographic credentials have been acquired, toss them to
|
|
* Valhalla. Note that autokeys are ephemeral, in that they are
|
|
* tossed immediately upon use. Therefore, the keylist can be
|
|
* purged anytime without needing to preserve random keys. Note
|
|
* that, if the peer is purged, the cryptographic variables are
|
|
* purged, too. This makes it much harder to sneak in some
|
|
* unauthenticated data in the clock filter.
|
|
*/
|
|
key_expire(peer);
|
|
if (peer->iffval != NULL)
|
|
BN_free(peer->iffval);
|
|
value_free(&peer->cookval);
|
|
value_free(&peer->recval);
|
|
value_free(&peer->encrypt);
|
|
value_free(&peer->sndval);
|
|
if (peer->cmmd != NULL)
|
|
free(peer->cmmd);
|
|
if (peer->subject != NULL)
|
|
free(peer->subject);
|
|
if (peer->issuer != NULL)
|
|
free(peer->issuer);
|
|
#endif /* AUTOKEY */
|
|
|
|
/*
|
|
* Clear all values, including the optional crypto values above.
|
|
*/
|
|
memset(CLEAR_TO_ZERO(peer), 0, LEN_CLEAR_TO_ZERO(peer));
|
|
peer->ppoll = peer->maxpoll;
|
|
peer->hpoll = peer->minpoll;
|
|
peer->disp = MAXDISPERSE;
|
|
peer->flash = peer_unfit(peer);
|
|
peer->jitter = LOGTOD(sys_precision);
|
|
|
|
/* Don't throw away our broadcast replay protection */
|
|
if (peer->hmode == MODE_BCLIENT)
|
|
peer->bxmt = bxmt;
|
|
|
|
/*
|
|
* If interleave mode, initialize the alternate origin switch.
|
|
*/
|
|
if (peer->flags & FLAG_XLEAVE)
|
|
peer->flip = 1;
|
|
for (u = 0; u < NTP_SHIFT; u++) {
|
|
peer->filter_order[u] = u;
|
|
peer->filter_disp[u] = MAXDISPERSE;
|
|
}
|
|
#ifdef REFCLOCK
|
|
if (!(peer->flags & FLAG_REFCLOCK)) {
|
|
#endif
|
|
peer->leap = LEAP_NOTINSYNC;
|
|
peer->stratum = STRATUM_UNSPEC;
|
|
memcpy(&peer->refid, ident, 4);
|
|
#ifdef REFCLOCK
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* During initialization use the association count to spread out
|
|
* the polls at one-second intervals. Passive associations'
|
|
* first poll is delayed by the "discard minimum" to avoid rate
|
|
* limiting. Other post-startup new or cleared associations
|
|
* randomize the first poll over the minimum poll interval to
|
|
* avoid implosion.
|
|
*/
|
|
peer->nextdate = peer->update = peer->outdate = current_time;
|
|
if (initializing) {
|
|
peer->nextdate += peer_associations;
|
|
} else if (MODE_PASSIVE == peer->hmode) {
|
|
peer->nextdate += ntp_minpkt;
|
|
} else {
|
|
peer->nextdate += ntp_random() % peer->minpoll;
|
|
}
|
|
#ifdef AUTOKEY
|
|
peer->refresh = current_time + (1 << NTP_REFRESH);
|
|
#endif /* AUTOKEY */
|
|
DPRINTF(1, ("peer_clear: at %ld next %ld associd %d refid %s\n",
|
|
current_time, peer->nextdate, peer->associd,
|
|
ident));
|
|
}
|
|
|
|
|
|
/*
|
|
* clock_filter - add incoming clock sample to filter register and run
|
|
* the filter procedure to find the best sample.
|
|
*/
|
|
void
|
|
clock_filter(
|
|
struct peer *peer, /* peer structure pointer */
|
|
double sample_offset, /* clock offset */
|
|
double sample_delay, /* roundtrip delay */
|
|
double sample_disp /* dispersion */
|
|
)
|
|
{
|
|
double dst[NTP_SHIFT]; /* distance vector */
|
|
int ord[NTP_SHIFT]; /* index vector */
|
|
int i, j, k, m;
|
|
double dtemp, etemp;
|
|
char tbuf[80];
|
|
|
|
/*
|
|
* A sample consists of the offset, delay, dispersion and epoch
|
|
* of arrival. The offset and delay are determined by the on-
|
|
* wire protocol. The dispersion grows from the last outbound
|
|
* packet to the arrival of this one increased by the sum of the
|
|
* peer precision and the system precision as required by the
|
|
* error budget. First, shift the new arrival into the shift
|
|
* register discarding the oldest one.
|
|
*/
|
|
j = peer->filter_nextpt;
|
|
peer->filter_offset[j] = sample_offset;
|
|
peer->filter_delay[j] = sample_delay;
|
|
peer->filter_disp[j] = sample_disp;
|
|
peer->filter_epoch[j] = current_time;
|
|
j = (j + 1) % NTP_SHIFT;
|
|
peer->filter_nextpt = j;
|
|
|
|
/*
|
|
* Update dispersions since the last update and at the same
|
|
* time initialize the distance and index lists. Since samples
|
|
* become increasingly uncorrelated beyond the Allan intercept,
|
|
* only under exceptional cases will an older sample be used.
|
|
* Therefore, the distance list uses a compound metric. If the
|
|
* dispersion is greater than the maximum dispersion, clamp the
|
|
* distance at that value. If the time since the last update is
|
|
* less than the Allan intercept use the delay; otherwise, use
|
|
* the sum of the delay and dispersion.
|
|
*/
|
|
dtemp = clock_phi * (current_time - peer->update);
|
|
peer->update = current_time;
|
|
for (i = NTP_SHIFT - 1; i >= 0; i--) {
|
|
if (i != 0)
|
|
peer->filter_disp[j] += dtemp;
|
|
if (peer->filter_disp[j] >= MAXDISPERSE) {
|
|
peer->filter_disp[j] = MAXDISPERSE;
|
|
dst[i] = MAXDISPERSE;
|
|
} else if (peer->update - peer->filter_epoch[j] >
|
|
(u_long)ULOGTOD(allan_xpt)) {
|
|
dst[i] = peer->filter_delay[j] +
|
|
peer->filter_disp[j];
|
|
} else {
|
|
dst[i] = peer->filter_delay[j];
|
|
}
|
|
ord[i] = j;
|
|
j = (j + 1) % NTP_SHIFT;
|
|
}
|
|
|
|
/*
|
|
* If the clock has stabilized, sort the samples by distance.
|
|
*/
|
|
if (freq_cnt == 0) {
|
|
for (i = 1; i < NTP_SHIFT; i++) {
|
|
for (j = 0; j < i; j++) {
|
|
if (dst[j] > dst[i]) {
|
|
k = ord[j];
|
|
ord[j] = ord[i];
|
|
ord[i] = k;
|
|
etemp = dst[j];
|
|
dst[j] = dst[i];
|
|
dst[i] = etemp;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Copy the index list to the association structure so ntpq
|
|
* can see it later. Prune the distance list to leave only
|
|
* samples less than the maximum dispersion, which disfavors
|
|
* uncorrelated samples older than the Allan intercept. To
|
|
* further improve the jitter estimate, of the remainder leave
|
|
* only samples less than the maximum distance, but keep at
|
|
* least two samples for jitter calculation.
|
|
*/
|
|
m = 0;
|
|
for (i = 0; i < NTP_SHIFT; i++) {
|
|
peer->filter_order[i] = (u_char) ord[i];
|
|
if ( dst[i] >= MAXDISPERSE
|
|
|| (m >= 2 && dst[i] >= sys_maxdist))
|
|
continue;
|
|
m++;
|
|
}
|
|
|
|
/*
|
|
* Compute the dispersion and jitter. The dispersion is weighted
|
|
* exponentially by NTP_FWEIGHT (0.5) so it is normalized close
|
|
* to 1.0. The jitter is the RMS differences relative to the
|
|
* lowest delay sample.
|
|
*/
|
|
peer->disp = peer->jitter = 0;
|
|
k = ord[0];
|
|
for (i = NTP_SHIFT - 1; i >= 0; i--) {
|
|
j = ord[i];
|
|
peer->disp = NTP_FWEIGHT * (peer->disp +
|
|
peer->filter_disp[j]);
|
|
if (i < m)
|
|
peer->jitter += DIFF(peer->filter_offset[j],
|
|
peer->filter_offset[k]);
|
|
}
|
|
|
|
/*
|
|
* If no acceptable samples remain in the shift register,
|
|
* quietly tiptoe home leaving only the dispersion. Otherwise,
|
|
* save the offset, delay and jitter. Note the jitter must not
|
|
* be less than the precision.
|
|
*/
|
|
if (m == 0) {
|
|
clock_select();
|
|
return;
|
|
}
|
|
etemp = fabs(peer->offset - peer->filter_offset[k]);
|
|
peer->offset = peer->filter_offset[k];
|
|
peer->delay = peer->filter_delay[k];
|
|
if (m > 1)
|
|
peer->jitter /= m - 1;
|
|
peer->jitter = max(SQRT(peer->jitter), LOGTOD(sys_precision));
|
|
|
|
/*
|
|
* If the the new sample and the current sample are both valid
|
|
* and the difference between their offsets exceeds CLOCK_SGATE
|
|
* (3) times the jitter and the interval between them is less
|
|
* than twice the host poll interval, consider the new sample
|
|
* a popcorn spike and ignore it.
|
|
*/
|
|
if ( peer->disp < sys_maxdist
|
|
&& peer->filter_disp[k] < sys_maxdist
|
|
&& etemp > CLOCK_SGATE * peer->jitter
|
|
&& peer->filter_epoch[k] - peer->epoch
|
|
< 2. * ULOGTOD(peer->hpoll)) {
|
|
snprintf(tbuf, sizeof(tbuf), "%.6f s", etemp);
|
|
report_event(PEVNT_POPCORN, peer, tbuf);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* A new minimum sample is useful only if it is later than the
|
|
* last one used. In this design the maximum lifetime of any
|
|
* sample is not greater than eight times the poll interval, so
|
|
* the maximum interval between minimum samples is eight
|
|
* packets.
|
|
*/
|
|
if (peer->filter_epoch[k] <= peer->epoch) {
|
|
DPRINTF(2, ("clock_filter: old sample %lu\n", current_time -
|
|
peer->filter_epoch[k]));
|
|
return;
|
|
}
|
|
peer->epoch = peer->filter_epoch[k];
|
|
|
|
/*
|
|
* The mitigated sample statistics are saved for later
|
|
* processing. If not synchronized or not in a burst, tickle the
|
|
* clock select algorithm.
|
|
*/
|
|
record_peer_stats(&peer->srcadr, ctlpeerstatus(peer),
|
|
peer->offset, peer->delay, peer->disp, peer->jitter);
|
|
DPRINTF(1, ("clock_filter: n %d off %.6f del %.6f dsp %.6f jit %.6f\n",
|
|
m, peer->offset, peer->delay, peer->disp,
|
|
peer->jitter));
|
|
if (peer->burst == 0 || sys_leap == LEAP_NOTINSYNC)
|
|
clock_select();
|
|
}
|
|
|
|
|
|
/*
|
|
* clock_select - find the pick-of-the-litter clock
|
|
*
|
|
* LOCKCLOCK: (1) If the local clock is the prefer peer, it will always
|
|
* be enabled, even if declared falseticker, (2) only the prefer peer
|
|
* can be selected as the system peer, (3) if the external source is
|
|
* down, the system leap bits are set to 11 and the stratum set to
|
|
* infinity.
|
|
*/
|
|
void
|
|
clock_select(void)
|
|
{
|
|
struct peer *peer;
|
|
int i, j, k, n;
|
|
int nlist, nl2;
|
|
int allow;
|
|
int speer;
|
|
double d, e, f, g;
|
|
double high, low;
|
|
double speermet;
|
|
double orphmet = 2.0 * U_INT32_MAX; /* 2x is greater than */
|
|
struct endpoint endp;
|
|
struct peer *osys_peer;
|
|
struct peer *sys_prefer = NULL; /* prefer peer */
|
|
struct peer *typesystem = NULL;
|
|
struct peer *typeorphan = NULL;
|
|
#ifdef REFCLOCK
|
|
struct peer *typeacts = NULL;
|
|
struct peer *typelocal = NULL;
|
|
struct peer *typepps = NULL;
|
|
#endif /* REFCLOCK */
|
|
static struct endpoint *endpoint = NULL;
|
|
static int *indx = NULL;
|
|
static peer_select *peers = NULL;
|
|
static u_int endpoint_size = 0;
|
|
static u_int peers_size = 0;
|
|
static u_int indx_size = 0;
|
|
size_t octets;
|
|
|
|
/*
|
|
* Initialize and create endpoint, index and peer lists big
|
|
* enough to handle all associations.
|
|
*/
|
|
osys_peer = sys_peer;
|
|
sys_survivors = 0;
|
|
#ifdef LOCKCLOCK
|
|
set_sys_leap(LEAP_NOTINSYNC);
|
|
sys_stratum = STRATUM_UNSPEC;
|
|
memcpy(&sys_refid, "DOWN", 4);
|
|
#endif /* LOCKCLOCK */
|
|
|
|
/*
|
|
* Allocate dynamic space depending on the number of
|
|
* associations.
|
|
*/
|
|
nlist = 1;
|
|
for (peer = peer_list; peer != NULL; peer = peer->p_link)
|
|
nlist++;
|
|
endpoint_size = ALIGNED_SIZE(nlist * 2 * sizeof(*endpoint));
|
|
peers_size = ALIGNED_SIZE(nlist * sizeof(*peers));
|
|
indx_size = ALIGNED_SIZE(nlist * 2 * sizeof(*indx));
|
|
octets = endpoint_size + peers_size + indx_size;
|
|
endpoint = erealloc(endpoint, octets);
|
|
peers = INC_ALIGNED_PTR(endpoint, endpoint_size);
|
|
indx = INC_ALIGNED_PTR(peers, peers_size);
|
|
|
|
/*
|
|
* Initially, we populate the island with all the rifraff peers
|
|
* that happen to be lying around. Those with seriously
|
|
* defective clocks are immediately booted off the island. Then,
|
|
* the falsetickers are culled and put to sea. The truechimers
|
|
* remaining are subject to repeated rounds where the most
|
|
* unpopular at each round is kicked off. When the population
|
|
* has dwindled to sys_minclock, the survivors split a million
|
|
* bucks and collectively crank the chimes.
|
|
*/
|
|
nlist = nl2 = 0; /* none yet */
|
|
for (peer = peer_list; peer != NULL; peer = peer->p_link) {
|
|
peer->new_status = CTL_PST_SEL_REJECT;
|
|
|
|
/*
|
|
* Leave the island immediately if the peer is
|
|
* unfit to synchronize.
|
|
*/
|
|
if (peer_unfit(peer)) {
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* If this peer is an orphan parent, elect the
|
|
* one with the lowest metric defined as the
|
|
* IPv4 address or the first 64 bits of the
|
|
* hashed IPv6 address. To ensure convergence
|
|
* on the same selected orphan, consider as
|
|
* well that this system may have the lowest
|
|
* metric and be the orphan parent. If this
|
|
* system wins, sys_peer will be NULL to trigger
|
|
* orphan mode in timer().
|
|
*/
|
|
if (peer->stratum == sys_orphan) {
|
|
u_int32 localmet;
|
|
u_int32 peermet;
|
|
|
|
if (peer->dstadr != NULL)
|
|
localmet = ntohl(peer->dstadr->addr_refid);
|
|
else
|
|
localmet = U_INT32_MAX;
|
|
peermet = ntohl(addr2refid(&peer->srcadr));
|
|
if (peermet < localmet && peermet < orphmet) {
|
|
typeorphan = peer;
|
|
orphmet = peermet;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* If this peer could have the orphan parent
|
|
* as a synchronization ancestor, exclude it
|
|
* from selection to avoid forming a
|
|
* synchronization loop within the orphan mesh,
|
|
* triggering stratum climb to infinity
|
|
* instability. Peers at stratum higher than
|
|
* the orphan stratum could have the orphan
|
|
* parent in ancestry so are excluded.
|
|
* See http://bugs.ntp.org/2050
|
|
*/
|
|
if (peer->stratum > sys_orphan) {
|
|
continue;
|
|
}
|
|
#ifdef REFCLOCK
|
|
/*
|
|
* The following are special cases. We deal
|
|
* with them later.
|
|
*/
|
|
if (!(peer->flags & FLAG_PREFER)) {
|
|
switch (peer->refclktype) {
|
|
case REFCLK_LOCALCLOCK:
|
|
if ( current_time > orphwait
|
|
&& typelocal == NULL)
|
|
typelocal = peer;
|
|
continue;
|
|
|
|
case REFCLK_ACTS:
|
|
if ( current_time > orphwait
|
|
&& typeacts == NULL)
|
|
typeacts = peer;
|
|
continue;
|
|
}
|
|
}
|
|
#endif /* REFCLOCK */
|
|
|
|
/*
|
|
* If we get this far, the peer can stay on the
|
|
* island, but does not yet have the immunity
|
|
* idol.
|
|
*/
|
|
peer->new_status = CTL_PST_SEL_SANE;
|
|
f = root_distance(peer);
|
|
peers[nlist].peer = peer;
|
|
peers[nlist].error = peer->jitter;
|
|
peers[nlist].synch = f;
|
|
nlist++;
|
|
|
|
/*
|
|
* Insert each interval endpoint on the unsorted
|
|
* endpoint[] list.
|
|
*/
|
|
e = peer->offset;
|
|
endpoint[nl2].type = -1; /* lower end */
|
|
endpoint[nl2].val = e - f;
|
|
nl2++;
|
|
endpoint[nl2].type = 1; /* upper end */
|
|
endpoint[nl2].val = e + f;
|
|
nl2++;
|
|
}
|
|
/*
|
|
* Construct sorted indx[] of endpoint[] indexes ordered by
|
|
* offset.
|
|
*/
|
|
for (i = 0; i < nl2; i++)
|
|
indx[i] = i;
|
|
for (i = 0; i < nl2; i++) {
|
|
endp = endpoint[indx[i]];
|
|
e = endp.val;
|
|
k = i;
|
|
for (j = i + 1; j < nl2; j++) {
|
|
endp = endpoint[indx[j]];
|
|
if (endp.val < e) {
|
|
e = endp.val;
|
|
k = j;
|
|
}
|
|
}
|
|
if (k != i) {
|
|
j = indx[k];
|
|
indx[k] = indx[i];
|
|
indx[i] = j;
|
|
}
|
|
}
|
|
for (i = 0; i < nl2; i++)
|
|
DPRINTF(3, ("select: endpoint %2d %.6f\n",
|
|
endpoint[indx[i]].type, endpoint[indx[i]].val));
|
|
|
|
/*
|
|
* This is the actual algorithm that cleaves the truechimers
|
|
* from the falsetickers. The original algorithm was described
|
|
* in Keith Marzullo's dissertation, but has been modified for
|
|
* better accuracy.
|
|
*
|
|
* Briefly put, we first assume there are no falsetickers, then
|
|
* scan the candidate list first from the low end upwards and
|
|
* then from the high end downwards. The scans stop when the
|
|
* number of intersections equals the number of candidates less
|
|
* the number of falsetickers. If this doesn't happen for a
|
|
* given number of falsetickers, we bump the number of
|
|
* falsetickers and try again. If the number of falsetickers
|
|
* becomes equal to or greater than half the number of
|
|
* candidates, the Albanians have won the Byzantine wars and
|
|
* correct synchronization is not possible.
|
|
*
|
|
* Here, nlist is the number of candidates and allow is the
|
|
* number of falsetickers. Upon exit, the truechimers are the
|
|
* survivors with offsets not less than low and not greater than
|
|
* high. There may be none of them.
|
|
*/
|
|
low = 1e9;
|
|
high = -1e9;
|
|
for (allow = 0; 2 * allow < nlist; allow++) {
|
|
|
|
/*
|
|
* Bound the interval (low, high) as the smallest
|
|
* interval containing points from the most sources.
|
|
*/
|
|
n = 0;
|
|
for (i = 0; i < nl2; i++) {
|
|
low = endpoint[indx[i]].val;
|
|
n -= endpoint[indx[i]].type;
|
|
if (n >= nlist - allow)
|
|
break;
|
|
}
|
|
n = 0;
|
|
for (j = nl2 - 1; j >= 0; j--) {
|
|
high = endpoint[indx[j]].val;
|
|
n += endpoint[indx[j]].type;
|
|
if (n >= nlist - allow)
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* If an interval containing truechimers is found, stop.
|
|
* If not, increase the number of falsetickers and go
|
|
* around again.
|
|
*/
|
|
if (high > low)
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Clustering algorithm. Whittle candidate list of falsetickers,
|
|
* who leave the island immediately. The TRUE peer is always a
|
|
* truechimer. We must leave at least one peer to collect the
|
|
* million bucks.
|
|
*
|
|
* We assert the correct time is contained in the interval, but
|
|
* the best offset estimate for the interval might not be
|
|
* contained in the interval. For this purpose, a truechimer is
|
|
* defined as the midpoint of an interval that overlaps the
|
|
* intersection interval.
|
|
*/
|
|
j = 0;
|
|
for (i = 0; i < nlist; i++) {
|
|
double h;
|
|
|
|
peer = peers[i].peer;
|
|
h = peers[i].synch;
|
|
if (( high <= low
|
|
|| peer->offset + h < low
|
|
|| peer->offset - h > high
|
|
) && !(peer->flags & FLAG_TRUE))
|
|
continue;
|
|
|
|
#ifdef REFCLOCK
|
|
/*
|
|
* Eligible PPS peers must survive the intersection
|
|
* algorithm. Use the first one found, but don't
|
|
* include any of them in the cluster population.
|
|
*/
|
|
if (peer->flags & FLAG_PPS) {
|
|
if (typepps == NULL)
|
|
typepps = peer;
|
|
if (!(peer->flags & FLAG_TSTAMP_PPS))
|
|
continue;
|
|
}
|
|
#endif /* REFCLOCK */
|
|
|
|
if (j != i)
|
|
peers[j] = peers[i];
|
|
j++;
|
|
}
|
|
nlist = j;
|
|
|
|
/*
|
|
* If no survivors remain at this point, check if the modem
|
|
* driver, local driver or orphan parent in that order. If so,
|
|
* nominate the first one found as the only survivor.
|
|
* Otherwise, give up and leave the island to the rats.
|
|
*/
|
|
if (nlist == 0) {
|
|
peers[0].error = 0;
|
|
peers[0].synch = sys_mindisp;
|
|
#ifdef REFCLOCK
|
|
if (typeacts != NULL) {
|
|
peers[0].peer = typeacts;
|
|
nlist = 1;
|
|
} else if (typelocal != NULL) {
|
|
peers[0].peer = typelocal;
|
|
nlist = 1;
|
|
} else
|
|
#endif /* REFCLOCK */
|
|
if (typeorphan != NULL) {
|
|
peers[0].peer = typeorphan;
|
|
nlist = 1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Mark the candidates at this point as truechimers.
|
|
*/
|
|
for (i = 0; i < nlist; i++) {
|
|
peers[i].peer->new_status = CTL_PST_SEL_SELCAND;
|
|
DPRINTF(2, ("select: survivor %s %f\n",
|
|
stoa(&peers[i].peer->srcadr), peers[i].synch));
|
|
}
|
|
|
|
/*
|
|
* Now, vote outliers off the island by select jitter weighted
|
|
* by root distance. Continue voting as long as there are more
|
|
* than sys_minclock survivors and the select jitter of the peer
|
|
* with the worst metric is greater than the minimum peer
|
|
* jitter. Stop if we are about to discard a TRUE or PREFER
|
|
* peer, who of course have the immunity idol.
|
|
*/
|
|
while (1) {
|
|
d = 1e9;
|
|
e = -1e9;
|
|
g = 0;
|
|
k = 0;
|
|
for (i = 0; i < nlist; i++) {
|
|
if (peers[i].error < d)
|
|
d = peers[i].error;
|
|
peers[i].seljit = 0;
|
|
if (nlist > 1) {
|
|
f = 0;
|
|
for (j = 0; j < nlist; j++)
|
|
f += DIFF(peers[j].peer->offset,
|
|
peers[i].peer->offset);
|
|
peers[i].seljit = SQRT(f / (nlist - 1));
|
|
}
|
|
if (peers[i].seljit * peers[i].synch > e) {
|
|
g = peers[i].seljit;
|
|
e = peers[i].seljit * peers[i].synch;
|
|
k = i;
|
|
}
|
|
}
|
|
g = max(g, LOGTOD(sys_precision));
|
|
if ( nlist <= max(1, sys_minclock)
|
|
|| g <= d
|
|
|| ((FLAG_TRUE | FLAG_PREFER) & peers[k].peer->flags))
|
|
break;
|
|
|
|
DPRINTF(3, ("select: drop %s seljit %.6f jit %.6f\n",
|
|
ntoa(&peers[k].peer->srcadr), g, d));
|
|
if (nlist > sys_maxclock)
|
|
peers[k].peer->new_status = CTL_PST_SEL_EXCESS;
|
|
for (j = k + 1; j < nlist; j++)
|
|
peers[j - 1] = peers[j];
|
|
nlist--;
|
|
}
|
|
|
|
/*
|
|
* What remains is a list usually not greater than sys_minclock
|
|
* peers. Note that unsynchronized peers cannot survive this
|
|
* far. Count and mark these survivors.
|
|
*
|
|
* While at it, count the number of leap warning bits found.
|
|
* This will be used later to vote the system leap warning bit.
|
|
* If a leap warning bit is found on a reference clock, the vote
|
|
* is always won.
|
|
*
|
|
* Choose the system peer using a hybrid metric composed of the
|
|
* selection jitter scaled by the root distance augmented by
|
|
* stratum scaled by sys_mindisp (.001 by default). The goal of
|
|
* the small stratum factor is to avoid clockhop between a
|
|
* reference clock and a network peer which has a refclock and
|
|
* is using an older ntpd, which does not floor sys_rootdisp at
|
|
* sys_mindisp.
|
|
*
|
|
* In contrast, ntpd 4.2.6 and earlier used stratum primarily
|
|
* in selecting the system peer, using a weight of 1 second of
|
|
* additional root distance per stratum. This heavy bias is no
|
|
* longer appropriate, as the scaled root distance provides a
|
|
* more rational metric carrying the cumulative error budget.
|
|
*/
|
|
e = 1e9;
|
|
speer = 0;
|
|
leap_vote_ins = 0;
|
|
leap_vote_del = 0;
|
|
for (i = 0; i < nlist; i++) {
|
|
peer = peers[i].peer;
|
|
peer->unreach = 0;
|
|
peer->new_status = CTL_PST_SEL_SYNCCAND;
|
|
sys_survivors++;
|
|
if (peer->leap == LEAP_ADDSECOND) {
|
|
if (peer->flags & FLAG_REFCLOCK)
|
|
leap_vote_ins = nlist;
|
|
else if (leap_vote_ins < nlist)
|
|
leap_vote_ins++;
|
|
}
|
|
if (peer->leap == LEAP_DELSECOND) {
|
|
if (peer->flags & FLAG_REFCLOCK)
|
|
leap_vote_del = nlist;
|
|
else if (leap_vote_del < nlist)
|
|
leap_vote_del++;
|
|
}
|
|
if (peer->flags & FLAG_PREFER)
|
|
sys_prefer = peer;
|
|
speermet = peers[i].seljit * peers[i].synch +
|
|
peer->stratum * sys_mindisp;
|
|
if (speermet < e) {
|
|
e = speermet;
|
|
speer = i;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Unless there are at least sys_misane survivors, leave the
|
|
* building dark. Otherwise, do a clockhop dance. Ordinarily,
|
|
* use the selected survivor speer. However, if the current
|
|
* system peer is not speer, stay with the current system peer
|
|
* as long as it doesn't get too old or too ugly.
|
|
*/
|
|
if (nlist > 0 && nlist >= sys_minsane) {
|
|
double x;
|
|
|
|
typesystem = peers[speer].peer;
|
|
if (osys_peer == NULL || osys_peer == typesystem) {
|
|
sys_clockhop = 0;
|
|
} else if ((x = fabs(typesystem->offset -
|
|
osys_peer->offset)) < sys_mindisp) {
|
|
if (sys_clockhop == 0)
|
|
sys_clockhop = sys_mindisp;
|
|
else
|
|
sys_clockhop *= .5;
|
|
DPRINTF(1, ("select: clockhop %d %.6f %.6f\n",
|
|
j, x, sys_clockhop));
|
|
if (fabs(x) < sys_clockhop)
|
|
typesystem = osys_peer;
|
|
else
|
|
sys_clockhop = 0;
|
|
} else {
|
|
sys_clockhop = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Mitigation rules of the game. We have the pick of the
|
|
* litter in typesystem if any survivors are left. If
|
|
* there is a prefer peer, use its offset and jitter.
|
|
* Otherwise, use the combined offset and jitter of all kitters.
|
|
*/
|
|
if (typesystem != NULL) {
|
|
if (sys_prefer == NULL) {
|
|
typesystem->new_status = CTL_PST_SEL_SYSPEER;
|
|
clock_combine(peers, sys_survivors, speer);
|
|
} else {
|
|
typesystem = sys_prefer;
|
|
sys_clockhop = 0;
|
|
typesystem->new_status = CTL_PST_SEL_SYSPEER;
|
|
sys_offset = typesystem->offset;
|
|
sys_jitter = typesystem->jitter;
|
|
}
|
|
DPRINTF(1, ("select: combine offset %.9f jitter %.9f\n",
|
|
sys_offset, sys_jitter));
|
|
}
|
|
#ifdef REFCLOCK
|
|
/*
|
|
* If a PPS driver is lit and the combined offset is less than
|
|
* 0.4 s, select the driver as the PPS peer and use its offset
|
|
* and jitter. However, if this is the atom driver, use it only
|
|
* if there is a prefer peer or there are no survivors and none
|
|
* are required.
|
|
*/
|
|
if ( typepps != NULL
|
|
&& fabs(sys_offset) < 0.4
|
|
&& ( typepps->refclktype != REFCLK_ATOM_PPS
|
|
|| ( typepps->refclktype == REFCLK_ATOM_PPS
|
|
&& ( sys_prefer != NULL
|
|
|| (typesystem == NULL && sys_minsane == 0))))) {
|
|
typesystem = typepps;
|
|
sys_clockhop = 0;
|
|
typesystem->new_status = CTL_PST_SEL_PPS;
|
|
sys_offset = typesystem->offset;
|
|
sys_jitter = typesystem->jitter;
|
|
DPRINTF(1, ("select: pps offset %.9f jitter %.9f\n",
|
|
sys_offset, sys_jitter));
|
|
}
|
|
#endif /* REFCLOCK */
|
|
|
|
/*
|
|
* If there are no survivors at this point, there is no
|
|
* system peer. If so and this is an old update, keep the
|
|
* current statistics, but do not update the clock.
|
|
*/
|
|
if (typesystem == NULL) {
|
|
if (osys_peer != NULL) {
|
|
if (sys_orphwait > 0)
|
|
orphwait = current_time + sys_orphwait;
|
|
report_event(EVNT_NOPEER, NULL, NULL);
|
|
}
|
|
sys_peer = NULL;
|
|
for (peer = peer_list; peer != NULL; peer = peer->p_link)
|
|
peer->status = peer->new_status;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Do not use old data, as this may mess up the clock discipline
|
|
* stability.
|
|
*/
|
|
if (typesystem->epoch <= sys_epoch)
|
|
return;
|
|
|
|
/*
|
|
* We have found the alpha male. Wind the clock.
|
|
*/
|
|
if (osys_peer != typesystem)
|
|
report_event(PEVNT_NEWPEER, typesystem, NULL);
|
|
for (peer = peer_list; peer != NULL; peer = peer->p_link)
|
|
peer->status = peer->new_status;
|
|
clock_update(typesystem);
|
|
}
|
|
|
|
|
|
static void
|
|
clock_combine(
|
|
peer_select * peers, /* survivor list */
|
|
int npeers, /* number of survivors */
|
|
int syspeer /* index of sys.peer */
|
|
)
|
|
{
|
|
int i;
|
|
double x, y, z, w;
|
|
|
|
y = z = w = 0;
|
|
for (i = 0; i < npeers; i++) {
|
|
x = 1. / peers[i].synch;
|
|
y += x;
|
|
z += x * peers[i].peer->offset;
|
|
w += x * DIFF(peers[i].peer->offset,
|
|
peers[syspeer].peer->offset);
|
|
}
|
|
sys_offset = z / y;
|
|
sys_jitter = SQRT(w / y + SQUARE(peers[syspeer].seljit));
|
|
}
|
|
|
|
|
|
/*
|
|
* root_distance - compute synchronization distance from peer to root
|
|
*/
|
|
static double
|
|
root_distance(
|
|
struct peer *peer /* peer structure pointer */
|
|
)
|
|
{
|
|
double dtemp;
|
|
|
|
/*
|
|
* Root Distance (LAMBDA) is defined as:
|
|
* (delta + DELTA)/2 + epsilon + EPSILON + D
|
|
*
|
|
* where:
|
|
* delta is the round-trip delay
|
|
* DELTA is the root delay
|
|
* epsilon is the peer dispersion
|
|
* + (15 usec each second)
|
|
* EPSILON is the root dispersion
|
|
* D is sys_jitter
|
|
*
|
|
* NB: Think hard about why we are using these values, and what
|
|
* the alternatives are, and the various pros/cons.
|
|
*
|
|
* DLM thinks these are probably the best choices from any of the
|
|
* other worse choices.
|
|
*/
|
|
dtemp = (peer->delay + peer->rootdelay) / 2
|
|
+ peer->disp
|
|
+ clock_phi * (current_time - peer->update)
|
|
+ peer->rootdisp
|
|
+ peer->jitter;
|
|
/*
|
|
* Careful squeak here. The value returned must be greater than
|
|
* the minimum root dispersion in order to avoid clockhop with
|
|
* highly precise reference clocks. Note that the root distance
|
|
* cannot exceed the sys_maxdist, as this is the cutoff by the
|
|
* selection algorithm.
|
|
*/
|
|
if (dtemp < sys_mindisp)
|
|
dtemp = sys_mindisp;
|
|
return (dtemp);
|
|
}
|
|
|
|
|
|
/*
|
|
* peer_xmit - send packet for persistent association.
|
|
*/
|
|
static void
|
|
peer_xmit(
|
|
struct peer *peer /* peer structure pointer */
|
|
)
|
|
{
|
|
struct pkt xpkt; /* transmit packet */
|
|
size_t sendlen, authlen;
|
|
keyid_t xkeyid = 0; /* transmit key ID */
|
|
l_fp xmt_tx, xmt_ty;
|
|
|
|
if (!peer->dstadr) /* drop peers without interface */
|
|
return;
|
|
|
|
xpkt.li_vn_mode = PKT_LI_VN_MODE(sys_leap, peer->version,
|
|
peer->hmode);
|
|
xpkt.stratum = STRATUM_TO_PKT(sys_stratum);
|
|
xpkt.ppoll = peer->hpoll;
|
|
xpkt.precision = sys_precision;
|
|
xpkt.refid = sys_refid;
|
|
xpkt.rootdelay = HTONS_FP(DTOFP(sys_rootdelay));
|
|
xpkt.rootdisp = HTONS_FP(DTOUFP(sys_rootdisp));
|
|
HTONL_FP(&sys_reftime, &xpkt.reftime);
|
|
HTONL_FP(&peer->rec, &xpkt.org);
|
|
HTONL_FP(&peer->dst, &xpkt.rec);
|
|
|
|
/*
|
|
* If the received packet contains a MAC, the transmitted packet
|
|
* is authenticated and contains a MAC. If not, the transmitted
|
|
* packet is not authenticated.
|
|
*
|
|
* It is most important when autokey is in use that the local
|
|
* interface IP address be known before the first packet is
|
|
* sent. Otherwise, it is not possible to compute a correct MAC
|
|
* the recipient will accept. Thus, the I/O semantics have to do
|
|
* a little more work. In particular, the wildcard interface
|
|
* might not be usable.
|
|
*/
|
|
sendlen = LEN_PKT_NOMAC;
|
|
if (
|
|
#ifdef AUTOKEY
|
|
!(peer->flags & FLAG_SKEY) &&
|
|
#endif /* !AUTOKEY */
|
|
peer->keyid == 0) {
|
|
|
|
/*
|
|
* Transmit a-priori timestamps
|
|
*/
|
|
get_systime(&xmt_tx);
|
|
if (peer->flip == 0) { /* basic mode */
|
|
peer->aorg = xmt_tx;
|
|
HTONL_FP(&xmt_tx, &xpkt.xmt);
|
|
} else { /* interleaved modes */
|
|
if (peer->hmode == MODE_BROADCAST) { /* bcst */
|
|
HTONL_FP(&xmt_tx, &xpkt.xmt);
|
|
if (peer->flip > 0)
|
|
HTONL_FP(&peer->borg,
|
|
&xpkt.org);
|
|
else
|
|
HTONL_FP(&peer->aorg,
|
|
&xpkt.org);
|
|
} else { /* symmetric */
|
|
if (peer->flip > 0)
|
|
HTONL_FP(&peer->borg,
|
|
&xpkt.xmt);
|
|
else
|
|
HTONL_FP(&peer->aorg,
|
|
&xpkt.xmt);
|
|
}
|
|
}
|
|
peer->t21_bytes = sendlen;
|
|
sendpkt(&peer->srcadr, peer->dstadr,
|
|
sys_ttl[(peer->ttl >= sys_ttlmax) ? sys_ttlmax : peer->ttl],
|
|
&xpkt, sendlen);
|
|
peer->sent++;
|
|
peer->throttle += (1 << peer->minpoll) - 2;
|
|
|
|
/*
|
|
* Capture a-posteriori timestamps
|
|
*/
|
|
get_systime(&xmt_ty);
|
|
if (peer->flip != 0) { /* interleaved modes */
|
|
if (peer->flip > 0)
|
|
peer->aorg = xmt_ty;
|
|
else
|
|
peer->borg = xmt_ty;
|
|
peer->flip = -peer->flip;
|
|
}
|
|
L_SUB(&xmt_ty, &xmt_tx);
|
|
LFPTOD(&xmt_ty, peer->xleave);
|
|
DPRINTF(1, ("peer_xmit: at %ld %s->%s mode %d len %zu xmt %#010x.%08x\n",
|
|
current_time,
|
|
peer->dstadr ? stoa(&peer->dstadr->sin) : "-",
|
|
stoa(&peer->srcadr), peer->hmode, sendlen,
|
|
xmt_tx.l_ui, xmt_tx.l_uf));
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Authentication is enabled, so the transmitted packet must be
|
|
* authenticated. If autokey is enabled, fuss with the various
|
|
* modes; otherwise, symmetric key cryptography is used.
|
|
*/
|
|
#ifdef AUTOKEY
|
|
if (peer->flags & FLAG_SKEY) {
|
|
struct exten *exten; /* extension field */
|
|
|
|
/*
|
|
* The Public Key Dance (PKD): Cryptographic credentials
|
|
* are contained in extension fields, each including a
|
|
* 4-octet length/code word followed by a 4-octet
|
|
* association ID and optional additional data. Optional
|
|
* data includes a 4-octet data length field followed by
|
|
* the data itself. Request messages are sent from a
|
|
* configured association; response messages can be sent
|
|
* from a configured association or can take the fast
|
|
* path without ever matching an association. Response
|
|
* messages have the same code as the request, but have
|
|
* a response bit and possibly an error bit set. In this
|
|
* implementation, a message may contain no more than
|
|
* one command and one or more responses.
|
|
*
|
|
* Cryptographic session keys include both a public and
|
|
* a private componet. Request and response messages
|
|
* using extension fields are always sent with the
|
|
* private component set to zero. Packets without
|
|
* extension fields indlude the private component when
|
|
* the session key is generated.
|
|
*/
|
|
while (1) {
|
|
|
|
/*
|
|
* Allocate and initialize a keylist if not
|
|
* already done. Then, use the list in inverse
|
|
* order, discarding keys once used. Keep the
|
|
* latest key around until the next one, so
|
|
* clients can use client/server packets to
|
|
* compute propagation delay.
|
|
*
|
|
* Note that once a key is used from the list,
|
|
* it is retained in the key cache until the
|
|
* next key is used. This is to allow a client
|
|
* to retrieve the encrypted session key
|
|
* identifier to verify authenticity.
|
|
*
|
|
* If for some reason a key is no longer in the
|
|
* key cache, a birthday has happened or the key
|
|
* has expired, so the pseudo-random sequence is
|
|
* broken. In that case, purge the keylist and
|
|
* regenerate it.
|
|
*/
|
|
if (peer->keynumber == 0)
|
|
make_keylist(peer, peer->dstadr);
|
|
else
|
|
peer->keynumber--;
|
|
xkeyid = peer->keylist[peer->keynumber];
|
|
if (authistrusted(xkeyid))
|
|
break;
|
|
else
|
|
key_expire(peer);
|
|
}
|
|
peer->keyid = xkeyid;
|
|
exten = NULL;
|
|
switch (peer->hmode) {
|
|
|
|
/*
|
|
* In broadcast server mode the autokey values are
|
|
* required by the broadcast clients. Push them when a
|
|
* new keylist is generated; otherwise, push the
|
|
* association message so the client can request them at
|
|
* other times.
|
|
*/
|
|
case MODE_BROADCAST:
|
|
if (peer->flags & FLAG_ASSOC)
|
|
exten = crypto_args(peer, CRYPTO_AUTO |
|
|
CRYPTO_RESP, peer->associd, NULL);
|
|
else
|
|
exten = crypto_args(peer, CRYPTO_ASSOC |
|
|
CRYPTO_RESP, peer->associd, NULL);
|
|
break;
|
|
|
|
/*
|
|
* In symmetric modes the parameter, certificate,
|
|
* identity, cookie and autokey exchanges are
|
|
* required. The leapsecond exchange is optional. But, a
|
|
* peer will not believe the other peer until the other
|
|
* peer has synchronized, so the certificate exchange
|
|
* might loop until then. If a peer finds a broken
|
|
* autokey sequence, it uses the autokey exchange to
|
|
* retrieve the autokey values. In any case, if a new
|
|
* keylist is generated, the autokey values are pushed.
|
|
*/
|
|
case MODE_ACTIVE:
|
|
case MODE_PASSIVE:
|
|
|
|
/*
|
|
* Parameter, certificate and identity.
|
|
*/
|
|
if (!peer->crypto)
|
|
exten = crypto_args(peer, CRYPTO_ASSOC,
|
|
peer->associd, hostval.ptr);
|
|
else if (!(peer->crypto & CRYPTO_FLAG_CERT))
|
|
exten = crypto_args(peer, CRYPTO_CERT,
|
|
peer->associd, peer->issuer);
|
|
else if (!(peer->crypto & CRYPTO_FLAG_VRFY))
|
|
exten = crypto_args(peer,
|
|
crypto_ident(peer), peer->associd,
|
|
NULL);
|
|
|
|
/*
|
|
* Cookie and autokey. We request the cookie
|
|
* only when the this peer and the other peer
|
|
* are synchronized. But, this peer needs the
|
|
* autokey values when the cookie is zero. Any
|
|
* time we regenerate the key list, we offer the
|
|
* autokey values without being asked. If for
|
|
* some reason either peer finds a broken
|
|
* autokey sequence, the autokey exchange is
|
|
* used to retrieve the autokey values.
|
|
*/
|
|
else if ( sys_leap != LEAP_NOTINSYNC
|
|
&& peer->leap != LEAP_NOTINSYNC
|
|
&& !(peer->crypto & CRYPTO_FLAG_COOK))
|
|
exten = crypto_args(peer, CRYPTO_COOK,
|
|
peer->associd, NULL);
|
|
else if (!(peer->crypto & CRYPTO_FLAG_AUTO))
|
|
exten = crypto_args(peer, CRYPTO_AUTO,
|
|
peer->associd, NULL);
|
|
else if ( peer->flags & FLAG_ASSOC
|
|
&& peer->crypto & CRYPTO_FLAG_SIGN)
|
|
exten = crypto_args(peer, CRYPTO_AUTO |
|
|
CRYPTO_RESP, peer->assoc, NULL);
|
|
|
|
/*
|
|
* Wait for clock sync, then sign the
|
|
* certificate and retrieve the leapsecond
|
|
* values.
|
|
*/
|
|
else if (sys_leap == LEAP_NOTINSYNC)
|
|
break;
|
|
|
|
else if (!(peer->crypto & CRYPTO_FLAG_SIGN))
|
|
exten = crypto_args(peer, CRYPTO_SIGN,
|
|
peer->associd, hostval.ptr);
|
|
else if (!(peer->crypto & CRYPTO_FLAG_LEAP))
|
|
exten = crypto_args(peer, CRYPTO_LEAP,
|
|
peer->associd, NULL);
|
|
break;
|
|
|
|
/*
|
|
* In client mode the parameter, certificate, identity,
|
|
* cookie and sign exchanges are required. The
|
|
* leapsecond exchange is optional. If broadcast client
|
|
* mode the same exchanges are required, except that the
|
|
* autokey exchange is substitutes for the cookie
|
|
* exchange, since the cookie is always zero. If the
|
|
* broadcast client finds a broken autokey sequence, it
|
|
* uses the autokey exchange to retrieve the autokey
|
|
* values.
|
|
*/
|
|
case MODE_CLIENT:
|
|
|
|
/*
|
|
* Parameter, certificate and identity.
|
|
*/
|
|
if (!peer->crypto)
|
|
exten = crypto_args(peer, CRYPTO_ASSOC,
|
|
peer->associd, hostval.ptr);
|
|
else if (!(peer->crypto & CRYPTO_FLAG_CERT))
|
|
exten = crypto_args(peer, CRYPTO_CERT,
|
|
peer->associd, peer->issuer);
|
|
else if (!(peer->crypto & CRYPTO_FLAG_VRFY))
|
|
exten = crypto_args(peer,
|
|
crypto_ident(peer), peer->associd,
|
|
NULL);
|
|
|
|
/*
|
|
* Cookie and autokey. These are requests, but
|
|
* we use the peer association ID with autokey
|
|
* rather than our own.
|
|
*/
|
|
else if (!(peer->crypto & CRYPTO_FLAG_COOK))
|
|
exten = crypto_args(peer, CRYPTO_COOK,
|
|
peer->associd, NULL);
|
|
else if (!(peer->crypto & CRYPTO_FLAG_AUTO))
|
|
exten = crypto_args(peer, CRYPTO_AUTO,
|
|
peer->assoc, NULL);
|
|
|
|
/*
|
|
* Wait for clock sync, then sign the
|
|
* certificate and retrieve the leapsecond
|
|
* values.
|
|
*/
|
|
else if (sys_leap == LEAP_NOTINSYNC)
|
|
break;
|
|
|
|
else if (!(peer->crypto & CRYPTO_FLAG_SIGN))
|
|
exten = crypto_args(peer, CRYPTO_SIGN,
|
|
peer->associd, hostval.ptr);
|
|
else if (!(peer->crypto & CRYPTO_FLAG_LEAP))
|
|
exten = crypto_args(peer, CRYPTO_LEAP,
|
|
peer->associd, NULL);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Add a queued extension field if present. This is
|
|
* always a request message, so the reply ID is already
|
|
* in the message. If an error occurs, the error bit is
|
|
* lit in the response.
|
|
*/
|
|
if (peer->cmmd != NULL) {
|
|
u_int32 temp32;
|
|
|
|
temp32 = CRYPTO_RESP;
|
|
peer->cmmd->opcode |= htonl(temp32);
|
|
sendlen += crypto_xmit(peer, &xpkt, NULL,
|
|
sendlen, peer->cmmd, 0);
|
|
free(peer->cmmd);
|
|
peer->cmmd = NULL;
|
|
}
|
|
|
|
/*
|
|
* Add an extension field created above. All but the
|
|
* autokey response message are request messages.
|
|
*/
|
|
if (exten != NULL) {
|
|
if (exten->opcode != 0)
|
|
sendlen += crypto_xmit(peer, &xpkt,
|
|
NULL, sendlen, exten, 0);
|
|
free(exten);
|
|
}
|
|
|
|
/*
|
|
* Calculate the next session key. Since extension
|
|
* fields are present, the cookie value is zero.
|
|
*/
|
|
if (sendlen > (int)LEN_PKT_NOMAC) {
|
|
session_key(&peer->dstadr->sin, &peer->srcadr,
|
|
xkeyid, 0, 2);
|
|
}
|
|
}
|
|
#endif /* AUTOKEY */
|
|
|
|
/*
|
|
* Transmit a-priori timestamps
|
|
*/
|
|
get_systime(&xmt_tx);
|
|
if (peer->flip == 0) { /* basic mode */
|
|
peer->aorg = xmt_tx;
|
|
HTONL_FP(&xmt_tx, &xpkt.xmt);
|
|
} else { /* interleaved modes */
|
|
if (peer->hmode == MODE_BROADCAST) { /* bcst */
|
|
HTONL_FP(&xmt_tx, &xpkt.xmt);
|
|
if (peer->flip > 0)
|
|
HTONL_FP(&peer->borg, &xpkt.org);
|
|
else
|
|
HTONL_FP(&peer->aorg, &xpkt.org);
|
|
} else { /* symmetric */
|
|
if (peer->flip > 0)
|
|
HTONL_FP(&peer->borg, &xpkt.xmt);
|
|
else
|
|
HTONL_FP(&peer->aorg, &xpkt.xmt);
|
|
}
|
|
}
|
|
xkeyid = peer->keyid;
|
|
authlen = authencrypt(xkeyid, (u_int32 *)&xpkt, sendlen);
|
|
if (authlen == 0) {
|
|
report_event(PEVNT_AUTH, peer, "no key");
|
|
peer->flash |= TEST5; /* auth error */
|
|
peer->badauth++;
|
|
return;
|
|
}
|
|
sendlen += authlen;
|
|
#ifdef AUTOKEY
|
|
if (xkeyid > NTP_MAXKEY)
|
|
authtrust(xkeyid, 0);
|
|
#endif /* AUTOKEY */
|
|
if (sendlen > sizeof(xpkt)) {
|
|
msyslog(LOG_ERR, "peer_xmit: buffer overflow %zu", sendlen);
|
|
exit (-1);
|
|
}
|
|
peer->t21_bytes = sendlen;
|
|
sendpkt(&peer->srcadr, peer->dstadr,
|
|
sys_ttl[(peer->ttl >= sys_ttlmax) ? sys_ttlmax : peer->ttl],
|
|
&xpkt, sendlen);
|
|
peer->sent++;
|
|
peer->throttle += (1 << peer->minpoll) - 2;
|
|
|
|
/*
|
|
* Capture a-posteriori timestamps
|
|
*/
|
|
get_systime(&xmt_ty);
|
|
if (peer->flip != 0) { /* interleaved modes */
|
|
if (peer->flip > 0)
|
|
peer->aorg = xmt_ty;
|
|
else
|
|
peer->borg = xmt_ty;
|
|
peer->flip = -peer->flip;
|
|
}
|
|
L_SUB(&xmt_ty, &xmt_tx);
|
|
LFPTOD(&xmt_ty, peer->xleave);
|
|
#ifdef AUTOKEY
|
|
DPRINTF(1, ("peer_xmit: at %ld %s->%s mode %d keyid %08x len %zu index %d\n",
|
|
current_time, latoa(peer->dstadr),
|
|
ntoa(&peer->srcadr), peer->hmode, xkeyid, sendlen,
|
|
peer->keynumber));
|
|
#else /* !AUTOKEY follows */
|
|
DPRINTF(1, ("peer_xmit: at %ld %s->%s mode %d keyid %08x len %zu\n",
|
|
current_time, peer->dstadr ?
|
|
ntoa(&peer->dstadr->sin) : "-",
|
|
ntoa(&peer->srcadr), peer->hmode, xkeyid, sendlen));
|
|
#endif /* !AUTOKEY */
|
|
|
|
return;
|
|
}
|
|
|
|
|
|
#ifdef LEAP_SMEAR
|
|
|
|
static void
|
|
leap_smear_add_offs(
|
|
l_fp *t,
|
|
l_fp *t_recv
|
|
)
|
|
{
|
|
|
|
L_ADD(t, &leap_smear.offset);
|
|
|
|
/*
|
|
** XXX: Should the smear be added to the root dispersion?
|
|
*/
|
|
|
|
return;
|
|
}
|
|
|
|
#endif /* LEAP_SMEAR */
|
|
|
|
|
|
/*
|
|
* fast_xmit - Send packet for nonpersistent association. Note that
|
|
* neither the source or destination can be a broadcast address.
|
|
*/
|
|
static void
|
|
fast_xmit(
|
|
struct recvbuf *rbufp, /* receive packet pointer */
|
|
int xmode, /* receive mode */
|
|
keyid_t xkeyid, /* transmit key ID */
|
|
int flags /* restrict mask */
|
|
)
|
|
{
|
|
struct pkt xpkt; /* transmit packet structure */
|
|
struct pkt *rpkt; /* receive packet structure */
|
|
l_fp xmt_tx, xmt_ty;
|
|
size_t sendlen;
|
|
#ifdef AUTOKEY
|
|
u_int32 temp32;
|
|
#endif
|
|
|
|
/*
|
|
* Initialize transmit packet header fields from the receive
|
|
* buffer provided. We leave the fields intact as received, but
|
|
* set the peer poll at the maximum of the receive peer poll and
|
|
* the system minimum poll (ntp_minpoll). This is for KoD rate
|
|
* control and not strictly specification compliant, but doesn't
|
|
* break anything.
|
|
*
|
|
* If the gazinta was from a multicast address, the gazoutta
|
|
* must go out another way.
|
|
*/
|
|
rpkt = &rbufp->recv_pkt;
|
|
if (rbufp->dstadr->flags & INT_MCASTOPEN)
|
|
rbufp->dstadr = findinterface(&rbufp->recv_srcadr);
|
|
|
|
/*
|
|
* If this is a kiss-o'-death (KoD) packet, show leap
|
|
* unsynchronized, stratum zero, reference ID the four-character
|
|
* kiss code and system root delay. Note we don't reveal the
|
|
* local time, so these packets can't be used for
|
|
* synchronization.
|
|
*/
|
|
if (flags & RES_KOD) {
|
|
sys_kodsent++;
|
|
xpkt.li_vn_mode = PKT_LI_VN_MODE(LEAP_NOTINSYNC,
|
|
PKT_VERSION(rpkt->li_vn_mode), xmode);
|
|
xpkt.stratum = STRATUM_PKT_UNSPEC;
|
|
xpkt.ppoll = max(rpkt->ppoll, ntp_minpoll);
|
|
xpkt.precision = rpkt->precision;
|
|
memcpy(&xpkt.refid, "RATE", 4);
|
|
xpkt.rootdelay = rpkt->rootdelay;
|
|
xpkt.rootdisp = rpkt->rootdisp;
|
|
xpkt.reftime = rpkt->reftime;
|
|
xpkt.org = rpkt->xmt;
|
|
xpkt.rec = rpkt->xmt;
|
|
xpkt.xmt = rpkt->xmt;
|
|
|
|
/*
|
|
* This is a normal packet. Use the system variables.
|
|
*/
|
|
} else {
|
|
#ifdef LEAP_SMEAR
|
|
/*
|
|
* Make copies of the variables which can be affected by smearing.
|
|
*/
|
|
l_fp this_ref_time;
|
|
l_fp this_recv_time;
|
|
#endif
|
|
|
|
/*
|
|
* If we are inside the leap smear interval we add the current smear offset to
|
|
* the packet receive time, to the packet transmit time, and eventually to the
|
|
* reftime to make sure the reftime isn't later than the transmit/receive times.
|
|
*/
|
|
xpkt.li_vn_mode = PKT_LI_VN_MODE(xmt_leap,
|
|
PKT_VERSION(rpkt->li_vn_mode), xmode);
|
|
|
|
xpkt.stratum = STRATUM_TO_PKT(sys_stratum);
|
|
xpkt.ppoll = max(rpkt->ppoll, ntp_minpoll);
|
|
xpkt.precision = sys_precision;
|
|
xpkt.refid = sys_refid;
|
|
xpkt.rootdelay = HTONS_FP(DTOFP(sys_rootdelay));
|
|
xpkt.rootdisp = HTONS_FP(DTOUFP(sys_rootdisp));
|
|
|
|
#ifdef LEAP_SMEAR
|
|
this_ref_time = sys_reftime;
|
|
if (leap_smear.in_progress) {
|
|
leap_smear_add_offs(&this_ref_time, NULL);
|
|
xpkt.refid = convertLFPToRefID(leap_smear.offset);
|
|
DPRINTF(2, ("fast_xmit: leap_smear.in_progress: refid %8x, smear %s\n",
|
|
ntohl(xpkt.refid),
|
|
lfptoa(&leap_smear.offset, 8)
|
|
));
|
|
}
|
|
HTONL_FP(&this_ref_time, &xpkt.reftime);
|
|
#else
|
|
HTONL_FP(&sys_reftime, &xpkt.reftime);
|
|
#endif
|
|
|
|
xpkt.org = rpkt->xmt;
|
|
|
|
#ifdef LEAP_SMEAR
|
|
this_recv_time = rbufp->recv_time;
|
|
if (leap_smear.in_progress)
|
|
leap_smear_add_offs(&this_recv_time, NULL);
|
|
HTONL_FP(&this_recv_time, &xpkt.rec);
|
|
#else
|
|
HTONL_FP(&rbufp->recv_time, &xpkt.rec);
|
|
#endif
|
|
|
|
get_systime(&xmt_tx);
|
|
#ifdef LEAP_SMEAR
|
|
if (leap_smear.in_progress)
|
|
leap_smear_add_offs(&xmt_tx, &this_recv_time);
|
|
#endif
|
|
HTONL_FP(&xmt_tx, &xpkt.xmt);
|
|
}
|
|
|
|
#ifdef HAVE_NTP_SIGND
|
|
if (flags & RES_MSSNTP) {
|
|
send_via_ntp_signd(rbufp, xmode, xkeyid, flags, &xpkt);
|
|
return;
|
|
}
|
|
#endif /* HAVE_NTP_SIGND */
|
|
|
|
/*
|
|
* If the received packet contains a MAC, the transmitted packet
|
|
* is authenticated and contains a MAC. If not, the transmitted
|
|
* packet is not authenticated.
|
|
*/
|
|
sendlen = LEN_PKT_NOMAC;
|
|
if (rbufp->recv_length == sendlen) {
|
|
sendpkt(&rbufp->recv_srcadr, rbufp->dstadr, 0, &xpkt,
|
|
sendlen);
|
|
DPRINTF(1, ("fast_xmit: at %ld %s->%s mode %d len %lu\n",
|
|
current_time, stoa(&rbufp->dstadr->sin),
|
|
stoa(&rbufp->recv_srcadr), xmode,
|
|
(u_long)sendlen));
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* The received packet contains a MAC, so the transmitted packet
|
|
* must be authenticated. For symmetric key cryptography, use
|
|
* the predefined and trusted symmetric keys to generate the
|
|
* cryptosum. For autokey cryptography, use the server private
|
|
* value to generate the cookie, which is unique for every
|
|
* source-destination-key ID combination.
|
|
*/
|
|
#ifdef AUTOKEY
|
|
if (xkeyid > NTP_MAXKEY) {
|
|
keyid_t cookie;
|
|
|
|
/*
|
|
* The only way to get here is a reply to a legitimate
|
|
* client request message, so the mode must be
|
|
* MODE_SERVER. If an extension field is present, there
|
|
* can be only one and that must be a command. Do what
|
|
* needs, but with private value of zero so the poor
|
|
* jerk can decode it. If no extension field is present,
|
|
* use the cookie to generate the session key.
|
|
*/
|
|
cookie = session_key(&rbufp->recv_srcadr,
|
|
&rbufp->dstadr->sin, 0, sys_private, 0);
|
|
if ((size_t)rbufp->recv_length > sendlen + MAX_MAC_LEN) {
|
|
session_key(&rbufp->dstadr->sin,
|
|
&rbufp->recv_srcadr, xkeyid, 0, 2);
|
|
temp32 = CRYPTO_RESP;
|
|
rpkt->exten[0] |= htonl(temp32);
|
|
sendlen += crypto_xmit(NULL, &xpkt, rbufp,
|
|
sendlen, (struct exten *)rpkt->exten,
|
|
cookie);
|
|
} else {
|
|
session_key(&rbufp->dstadr->sin,
|
|
&rbufp->recv_srcadr, xkeyid, cookie, 2);
|
|
}
|
|
}
|
|
#endif /* AUTOKEY */
|
|
get_systime(&xmt_tx);
|
|
sendlen += authencrypt(xkeyid, (u_int32 *)&xpkt, sendlen);
|
|
#ifdef AUTOKEY
|
|
if (xkeyid > NTP_MAXKEY)
|
|
authtrust(xkeyid, 0);
|
|
#endif /* AUTOKEY */
|
|
sendpkt(&rbufp->recv_srcadr, rbufp->dstadr, 0, &xpkt, sendlen);
|
|
get_systime(&xmt_ty);
|
|
L_SUB(&xmt_ty, &xmt_tx);
|
|
sys_authdelay = xmt_ty;
|
|
DPRINTF(1, ("fast_xmit: at %ld %s->%s mode %d keyid %08x len %lu\n",
|
|
current_time, ntoa(&rbufp->dstadr->sin),
|
|
ntoa(&rbufp->recv_srcadr), xmode, xkeyid,
|
|
(u_long)sendlen));
|
|
}
|
|
|
|
|
|
/*
|
|
* pool_xmit - resolve hostname or send unicast solicitation for pool.
|
|
*/
|
|
static void
|
|
pool_xmit(
|
|
struct peer *pool /* pool solicitor association */
|
|
)
|
|
{
|
|
#ifdef WORKER
|
|
struct pkt xpkt; /* transmit packet structure */
|
|
struct addrinfo hints;
|
|
int rc;
|
|
struct interface * lcladr;
|
|
sockaddr_u * rmtadr;
|
|
r4addr r4a;
|
|
int restrict_mask;
|
|
struct peer * p;
|
|
l_fp xmt_tx;
|
|
|
|
if (NULL == pool->ai) {
|
|
if (pool->addrs != NULL) {
|
|
/* free() is used with copy_addrinfo_list() */
|
|
free(pool->addrs);
|
|
pool->addrs = NULL;
|
|
}
|
|
ZERO(hints);
|
|
hints.ai_family = AF(&pool->srcadr);
|
|
hints.ai_socktype = SOCK_DGRAM;
|
|
hints.ai_protocol = IPPROTO_UDP;
|
|
/* ignore getaddrinfo_sometime() errors, we will retry */
|
|
rc = getaddrinfo_sometime(
|
|
pool->hostname,
|
|
"ntp",
|
|
&hints,
|
|
0, /* no retry */
|
|
&pool_name_resolved,
|
|
(void *)(intptr_t)pool->associd);
|
|
if (!rc)
|
|
DPRINTF(1, ("pool DNS lookup %s started\n",
|
|
pool->hostname));
|
|
else
|
|
msyslog(LOG_ERR,
|
|
"unable to start pool DNS %s: %m",
|
|
pool->hostname);
|
|
return;
|
|
}
|
|
|
|
do {
|
|
/* copy_addrinfo_list ai_addr points to a sockaddr_u */
|
|
rmtadr = (sockaddr_u *)(void *)pool->ai->ai_addr;
|
|
pool->ai = pool->ai->ai_next;
|
|
p = findexistingpeer(rmtadr, NULL, NULL, MODE_CLIENT, 0, NULL);
|
|
} while (p != NULL && pool->ai != NULL);
|
|
if (p != NULL)
|
|
return; /* out of addresses, re-query DNS next poll */
|
|
restrictions(rmtadr, &r4a);
|
|
restrict_mask = r4a.rflags;
|
|
if (RES_FLAGS & restrict_mask)
|
|
restrict_source(rmtadr, 0,
|
|
current_time + POOL_SOLICIT_WINDOW + 1);
|
|
lcladr = findinterface(rmtadr);
|
|
memset(&xpkt, 0, sizeof(xpkt));
|
|
xpkt.li_vn_mode = PKT_LI_VN_MODE(sys_leap, pool->version,
|
|
MODE_CLIENT);
|
|
xpkt.stratum = STRATUM_TO_PKT(sys_stratum);
|
|
xpkt.ppoll = pool->hpoll;
|
|
xpkt.precision = sys_precision;
|
|
xpkt.refid = sys_refid;
|
|
xpkt.rootdelay = HTONS_FP(DTOFP(sys_rootdelay));
|
|
xpkt.rootdisp = HTONS_FP(DTOUFP(sys_rootdisp));
|
|
HTONL_FP(&sys_reftime, &xpkt.reftime);
|
|
get_systime(&xmt_tx);
|
|
pool->aorg = xmt_tx;
|
|
HTONL_FP(&xmt_tx, &xpkt.xmt);
|
|
sendpkt(rmtadr, lcladr,
|
|
sys_ttl[(pool->ttl >= sys_ttlmax) ? sys_ttlmax : pool->ttl],
|
|
&xpkt, LEN_PKT_NOMAC);
|
|
pool->sent++;
|
|
pool->throttle += (1 << pool->minpoll) - 2;
|
|
DPRINTF(1, ("pool_xmit: at %ld %s->%s pool\n",
|
|
current_time, latoa(lcladr), stoa(rmtadr)));
|
|
msyslog(LOG_INFO, "Soliciting pool server %s", stoa(rmtadr));
|
|
#endif /* WORKER */
|
|
}
|
|
|
|
|
|
#ifdef AUTOKEY
|
|
/*
|
|
* group_test - test if this is the same group
|
|
*
|
|
* host assoc return action
|
|
* none none 0 mobilize *
|
|
* none group 0 mobilize *
|
|
* group none 0 mobilize *
|
|
* group group 1 mobilize
|
|
* group different 1 ignore
|
|
* * ignore if notrust
|
|
*/
|
|
int
|
|
group_test(
|
|
char *grp,
|
|
char *ident
|
|
)
|
|
{
|
|
if (grp == NULL)
|
|
return (0);
|
|
|
|
if (strcmp(grp, sys_groupname) == 0)
|
|
return (0);
|
|
|
|
if (ident == NULL)
|
|
return (1);
|
|
|
|
if (strcmp(grp, ident) == 0)
|
|
return (0);
|
|
|
|
return (1);
|
|
}
|
|
#endif /* AUTOKEY */
|
|
|
|
|
|
#ifdef WORKER
|
|
void
|
|
pool_name_resolved(
|
|
int rescode,
|
|
int gai_errno,
|
|
void * context,
|
|
const char * name,
|
|
const char * service,
|
|
const struct addrinfo * hints,
|
|
const struct addrinfo * res
|
|
)
|
|
{
|
|
struct peer * pool; /* pool solicitor association */
|
|
associd_t assoc;
|
|
|
|
if (rescode) {
|
|
msyslog(LOG_ERR,
|
|
"error resolving pool %s: %s (%d)",
|
|
name, gai_strerror(rescode), rescode);
|
|
return;
|
|
}
|
|
|
|
assoc = (associd_t)(intptr_t)context;
|
|
pool = findpeerbyassoc(assoc);
|
|
if (NULL == pool) {
|
|
msyslog(LOG_ERR,
|
|
"Could not find assoc %u for pool DNS %s",
|
|
assoc, name);
|
|
return;
|
|
}
|
|
DPRINTF(1, ("pool DNS %s completed\n", name));
|
|
pool->addrs = copy_addrinfo_list(res);
|
|
pool->ai = pool->addrs;
|
|
pool_xmit(pool);
|
|
|
|
}
|
|
#endif /* WORKER */
|
|
|
|
|
|
#ifdef AUTOKEY
|
|
/*
|
|
* key_expire - purge the key list
|
|
*/
|
|
void
|
|
key_expire(
|
|
struct peer *peer /* peer structure pointer */
|
|
)
|
|
{
|
|
int i;
|
|
|
|
if (peer->keylist != NULL) {
|
|
for (i = 0; i <= peer->keynumber; i++)
|
|
authtrust(peer->keylist[i], 0);
|
|
free(peer->keylist);
|
|
peer->keylist = NULL;
|
|
}
|
|
value_free(&peer->sndval);
|
|
peer->keynumber = 0;
|
|
peer->flags &= ~FLAG_ASSOC;
|
|
DPRINTF(1, ("key_expire: at %lu associd %d\n", current_time,
|
|
peer->associd));
|
|
}
|
|
#endif /* AUTOKEY */
|
|
|
|
|
|
/*
|
|
* local_refid(peer) - check peer refid to avoid selecting peers
|
|
* currently synced to this ntpd.
|
|
*/
|
|
static int
|
|
local_refid(
|
|
struct peer * p
|
|
)
|
|
{
|
|
endpt * unicast_ep;
|
|
|
|
if (p->dstadr != NULL && !(INT_MCASTIF & p->dstadr->flags))
|
|
unicast_ep = p->dstadr;
|
|
else
|
|
unicast_ep = findinterface(&p->srcadr);
|
|
|
|
if (unicast_ep != NULL && p->refid == unicast_ep->addr_refid)
|
|
return TRUE;
|
|
else
|
|
return FALSE;
|
|
}
|
|
|
|
|
|
/*
|
|
* Determine if the peer is unfit for synchronization
|
|
*
|
|
* A peer is unfit for synchronization if
|
|
* > TEST10 bad leap or stratum below floor or at or above ceiling
|
|
* > TEST11 root distance exceeded for remote peer
|
|
* > TEST12 a direct or indirect synchronization loop would form
|
|
* > TEST13 unreachable or noselect
|
|
*/
|
|
int /* FALSE if fit, TRUE if unfit */
|
|
peer_unfit(
|
|
struct peer *peer /* peer structure pointer */
|
|
)
|
|
{
|
|
int rval = 0;
|
|
|
|
/*
|
|
* A stratum error occurs if (1) the server has never been
|
|
* synchronized, (2) the server stratum is below the floor or
|
|
* greater than or equal to the ceiling.
|
|
*/
|
|
if ( peer->leap == LEAP_NOTINSYNC
|
|
|| peer->stratum < sys_floor
|
|
|| peer->stratum >= sys_ceiling) {
|
|
rval |= TEST10; /* bad synch or stratum */
|
|
}
|
|
|
|
/*
|
|
* A distance error for a remote peer occurs if the root
|
|
* distance is greater than or equal to the distance threshold
|
|
* plus the increment due to one host poll interval.
|
|
*/
|
|
if ( !(peer->flags & FLAG_REFCLOCK)
|
|
&& root_distance(peer) >= sys_maxdist
|
|
+ clock_phi * ULOGTOD(peer->hpoll)) {
|
|
rval |= TEST11; /* distance exceeded */
|
|
}
|
|
|
|
/*
|
|
* A loop error occurs if the remote peer is synchronized to the
|
|
* local peer or if the remote peer is synchronized to the same
|
|
* server as the local peer but only if the remote peer is
|
|
* neither a reference clock nor an orphan.
|
|
*/
|
|
if (peer->stratum > 1 && local_refid(peer)) {
|
|
rval |= TEST12; /* synchronization loop */
|
|
}
|
|
|
|
/*
|
|
* An unreachable error occurs if the server is unreachable or
|
|
* the noselect bit is set.
|
|
*/
|
|
if (!peer->reach || (peer->flags & FLAG_NOSELECT)) {
|
|
rval |= TEST13; /* unreachable */
|
|
}
|
|
|
|
peer->flash &= ~PEER_TEST_MASK;
|
|
peer->flash |= rval;
|
|
return (rval);
|
|
}
|
|
|
|
|
|
/*
|
|
* Find the precision of this particular machine
|
|
*/
|
|
#define MINSTEP 20e-9 /* minimum clock increment (s) */
|
|
#define MAXSTEP 1 /* maximum clock increment (s) */
|
|
#define MINCHANGES 12 /* minimum number of step samples */
|
|
#define MAXLOOPS ((int)(1. / MINSTEP)) /* avoid infinite loop */
|
|
|
|
/*
|
|
* This routine measures the system precision defined as the minimum of
|
|
* a sequence of differences between successive readings of the system
|
|
* clock. However, if a difference is less than MINSTEP, the clock has
|
|
* been read more than once during a clock tick and the difference is
|
|
* ignored. We set MINSTEP greater than zero in case something happens
|
|
* like a cache miss, and to tolerate underlying system clocks which
|
|
* ensure each reading is strictly greater than prior readings while
|
|
* using an underlying stepping (not interpolated) clock.
|
|
*
|
|
* sys_tick and sys_precision represent the time to read the clock for
|
|
* systems with high-precision clocks, and the tick interval or step
|
|
* size for lower-precision stepping clocks.
|
|
*
|
|
* This routine also measures the time to read the clock on stepping
|
|
* system clocks by counting the number of readings between changes of
|
|
* the underlying clock. With either type of clock, the minimum time
|
|
* to read the clock is saved as sys_fuzz, and used to ensure the
|
|
* get_systime() readings always increase and are fuzzed below sys_fuzz.
|
|
*/
|
|
void
|
|
measure_precision(void)
|
|
{
|
|
/*
|
|
* With sys_fuzz set to zero, get_systime() fuzzing of low bits
|
|
* is effectively disabled. trunc_os_clock is FALSE to disable
|
|
* get_ostime() simulation of a low-precision system clock.
|
|
*/
|
|
set_sys_fuzz(0.);
|
|
trunc_os_clock = FALSE;
|
|
measured_tick = measure_tick_fuzz();
|
|
set_sys_tick_precision(measured_tick);
|
|
msyslog(LOG_INFO, "proto: precision = %.3f usec (%d)",
|
|
sys_tick * 1e6, sys_precision);
|
|
if (sys_fuzz < sys_tick) {
|
|
msyslog(LOG_NOTICE, "proto: fuzz beneath %.3f usec",
|
|
sys_fuzz * 1e6);
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* measure_tick_fuzz()
|
|
*
|
|
* measures the minimum time to read the clock (stored in sys_fuzz)
|
|
* and returns the tick, the larger of the minimum increment observed
|
|
* between successive clock readings and the time to read the clock.
|
|
*/
|
|
double
|
|
measure_tick_fuzz(void)
|
|
{
|
|
l_fp minstep; /* MINSTEP as l_fp */
|
|
l_fp val; /* current seconds fraction */
|
|
l_fp last; /* last seconds fraction */
|
|
l_fp ldiff; /* val - last */
|
|
double tick; /* computed tick value */
|
|
double diff;
|
|
long repeats;
|
|
long max_repeats;
|
|
int changes;
|
|
int i; /* log2 precision */
|
|
|
|
tick = MAXSTEP;
|
|
max_repeats = 0;
|
|
repeats = 0;
|
|
changes = 0;
|
|
DTOLFP(MINSTEP, &minstep);
|
|
get_systime(&last);
|
|
for (i = 0; i < MAXLOOPS && changes < MINCHANGES; i++) {
|
|
get_systime(&val);
|
|
ldiff = val;
|
|
L_SUB(&ldiff, &last);
|
|
last = val;
|
|
if (L_ISGT(&ldiff, &minstep)) {
|
|
max_repeats = max(repeats, max_repeats);
|
|
repeats = 0;
|
|
changes++;
|
|
LFPTOD(&ldiff, diff);
|
|
tick = min(diff, tick);
|
|
} else {
|
|
repeats++;
|
|
}
|
|
}
|
|
if (changes < MINCHANGES) {
|
|
msyslog(LOG_ERR, "Fatal error: precision could not be measured (MINSTEP too large?)");
|
|
exit(1);
|
|
}
|
|
|
|
if (0 == max_repeats) {
|
|
set_sys_fuzz(tick);
|
|
} else {
|
|
set_sys_fuzz(tick / max_repeats);
|
|
}
|
|
|
|
return tick;
|
|
}
|
|
|
|
|
|
void
|
|
set_sys_tick_precision(
|
|
double tick
|
|
)
|
|
{
|
|
int i;
|
|
|
|
if (tick > 1.) {
|
|
msyslog(LOG_ERR,
|
|
"unsupported tick %.3f > 1s ignored", tick);
|
|
return;
|
|
}
|
|
if (tick < measured_tick) {
|
|
msyslog(LOG_ERR,
|
|
"proto: tick %.3f less than measured tick %.3f, ignored",
|
|
tick, measured_tick);
|
|
return;
|
|
} else if (tick > measured_tick) {
|
|
trunc_os_clock = TRUE;
|
|
msyslog(LOG_NOTICE,
|
|
"proto: truncating system clock to multiples of %.9f",
|
|
tick);
|
|
}
|
|
sys_tick = tick;
|
|
|
|
/*
|
|
* Find the nearest power of two.
|
|
*/
|
|
for (i = 0; tick <= 1; i--)
|
|
tick *= 2;
|
|
if (tick - 1 > 1 - tick / 2)
|
|
i++;
|
|
|
|
sys_precision = (s_char)i;
|
|
}
|
|
|
|
|
|
/*
|
|
* init_proto - initialize the protocol module's data
|
|
*/
|
|
void
|
|
init_proto(void)
|
|
{
|
|
l_fp dummy;
|
|
int i;
|
|
|
|
/*
|
|
* Fill in the sys_* stuff. Default is don't listen to
|
|
* broadcasting, require authentication.
|
|
*/
|
|
set_sys_leap(LEAP_NOTINSYNC);
|
|
sys_stratum = STRATUM_UNSPEC;
|
|
memcpy(&sys_refid, "INIT", 4);
|
|
sys_peer = NULL;
|
|
sys_rootdelay = 0;
|
|
sys_rootdisp = 0;
|
|
L_CLR(&sys_reftime);
|
|
sys_jitter = 0;
|
|
measure_precision();
|
|
get_systime(&dummy);
|
|
sys_survivors = 0;
|
|
sys_manycastserver = 0;
|
|
sys_bclient = 0;
|
|
sys_bdelay = BDELAY_DEFAULT; /*[Bug 3031] delay cutoff */
|
|
sys_authenticate = 1;
|
|
sys_stattime = current_time;
|
|
orphwait = current_time + sys_orphwait;
|
|
proto_clr_stats();
|
|
for (i = 0; i < MAX_TTL; ++i)
|
|
sys_ttl[i] = (u_char)((i * 256) / MAX_TTL);
|
|
sys_ttlmax = (MAX_TTL - 1);
|
|
hardpps_enable = 0;
|
|
stats_control = 1;
|
|
}
|
|
|
|
|
|
/*
|
|
* proto_config - configure the protocol module
|
|
*/
|
|
void
|
|
proto_config(
|
|
int item,
|
|
u_long value,
|
|
double dvalue,
|
|
sockaddr_u *svalue
|
|
)
|
|
{
|
|
/*
|
|
* Figure out what he wants to change, then do it
|
|
*/
|
|
DPRINTF(2, ("proto_config: code %d value %lu dvalue %lf\n",
|
|
item, value, dvalue));
|
|
|
|
switch (item) {
|
|
|
|
/*
|
|
* enable and disable commands - arguments are Boolean.
|
|
*/
|
|
case PROTO_AUTHENTICATE: /* authentication (auth) */
|
|
sys_authenticate = value;
|
|
break;
|
|
|
|
case PROTO_BROADCLIENT: /* broadcast client (bclient) */
|
|
sys_bclient = (int)value;
|
|
if (sys_bclient == 0)
|
|
io_unsetbclient();
|
|
else
|
|
io_setbclient();
|
|
break;
|
|
|
|
#ifdef REFCLOCK
|
|
case PROTO_CAL: /* refclock calibrate (calibrate) */
|
|
cal_enable = value;
|
|
break;
|
|
#endif /* REFCLOCK */
|
|
|
|
case PROTO_KERNEL: /* kernel discipline (kernel) */
|
|
select_loop(value);
|
|
break;
|
|
|
|
case PROTO_MONITOR: /* monitoring (monitor) */
|
|
if (value)
|
|
mon_start(MON_ON);
|
|
else {
|
|
mon_stop(MON_ON);
|
|
if (mon_enabled)
|
|
msyslog(LOG_WARNING,
|
|
"restrict: 'monitor' cannot be disabled while 'limited' is enabled");
|
|
}
|
|
break;
|
|
|
|
case PROTO_NTP: /* NTP discipline (ntp) */
|
|
ntp_enable = value;
|
|
break;
|
|
|
|
case PROTO_MODE7: /* mode7 management (ntpdc) */
|
|
ntp_mode7 = value;
|
|
break;
|
|
|
|
case PROTO_PPS: /* PPS discipline (pps) */
|
|
hardpps_enable = value;
|
|
break;
|
|
|
|
case PROTO_FILEGEN: /* statistics (stats) */
|
|
stats_control = value;
|
|
break;
|
|
|
|
/*
|
|
* tos command - arguments are double, sometimes cast to int
|
|
*/
|
|
|
|
case PROTO_BCPOLLBSTEP: /* Broadcast Poll Backstep gate (bcpollbstep) */
|
|
sys_bcpollbstep = (u_char)dvalue;
|
|
break;
|
|
|
|
case PROTO_BEACON: /* manycast beacon (beacon) */
|
|
sys_beacon = (int)dvalue;
|
|
break;
|
|
|
|
case PROTO_BROADDELAY: /* default broadcast delay (bdelay) */
|
|
sys_bdelay = (dvalue ? dvalue : BDELAY_DEFAULT);
|
|
break;
|
|
|
|
case PROTO_CEILING: /* stratum ceiling (ceiling) */
|
|
sys_ceiling = (int)dvalue;
|
|
break;
|
|
|
|
case PROTO_COHORT: /* cohort switch (cohort) */
|
|
sys_cohort = (int)dvalue;
|
|
break;
|
|
|
|
case PROTO_FLOOR: /* stratum floor (floor) */
|
|
sys_floor = (int)dvalue;
|
|
break;
|
|
|
|
case PROTO_MAXCLOCK: /* maximum candidates (maxclock) */
|
|
sys_maxclock = (int)dvalue;
|
|
break;
|
|
|
|
case PROTO_MAXDIST: /* select threshold (maxdist) */
|
|
sys_maxdist = dvalue;
|
|
break;
|
|
|
|
case PROTO_CALLDELAY: /* modem call delay (mdelay) */
|
|
break; /* NOT USED */
|
|
|
|
case PROTO_MINCLOCK: /* minimum candidates (minclock) */
|
|
sys_minclock = (int)dvalue;
|
|
break;
|
|
|
|
case PROTO_MINDISP: /* minimum distance (mindist) */
|
|
sys_mindisp = dvalue;
|
|
break;
|
|
|
|
case PROTO_MINSANE: /* minimum survivors (minsane) */
|
|
sys_minsane = (int)dvalue;
|
|
break;
|
|
|
|
case PROTO_ORPHAN: /* orphan stratum (orphan) */
|
|
sys_orphan = (int)dvalue;
|
|
break;
|
|
|
|
case PROTO_ORPHWAIT: /* orphan wait (orphwait) */
|
|
orphwait -= sys_orphwait;
|
|
sys_orphwait = (int)dvalue;
|
|
orphwait += sys_orphwait;
|
|
break;
|
|
|
|
/*
|
|
* Miscellaneous commands
|
|
*/
|
|
case PROTO_MULTICAST_ADD: /* add group address */
|
|
if (svalue != NULL)
|
|
io_multicast_add(svalue);
|
|
sys_bclient = 1;
|
|
break;
|
|
|
|
case PROTO_MULTICAST_DEL: /* delete group address */
|
|
if (svalue != NULL)
|
|
io_multicast_del(svalue);
|
|
break;
|
|
|
|
/*
|
|
* Peer_clear Early policy choices
|
|
*/
|
|
|
|
case PROTO_PCEDIGEST: /* Digest */
|
|
peer_clear_digest_early = value;
|
|
break;
|
|
|
|
/*
|
|
* Unpeer Early policy choices
|
|
*/
|
|
|
|
case PROTO_UECRYPTO: /* Crypto */
|
|
unpeer_crypto_early = value;
|
|
break;
|
|
|
|
case PROTO_UECRYPTONAK: /* Crypto_NAK */
|
|
unpeer_crypto_nak_early = value;
|
|
break;
|
|
|
|
case PROTO_UEDIGEST: /* Digest */
|
|
unpeer_digest_early = value;
|
|
break;
|
|
|
|
default:
|
|
msyslog(LOG_NOTICE,
|
|
"proto: unsupported option %d", item);
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* proto_clr_stats - clear protocol stat counters
|
|
*/
|
|
void
|
|
proto_clr_stats(void)
|
|
{
|
|
sys_stattime = current_time;
|
|
sys_received = 0;
|
|
sys_processed = 0;
|
|
sys_newversion = 0;
|
|
sys_oldversion = 0;
|
|
sys_declined = 0;
|
|
sys_restricted = 0;
|
|
sys_badlength = 0;
|
|
sys_badauth = 0;
|
|
sys_limitrejected = 0;
|
|
sys_kodsent = 0;
|
|
sys_lamport = 0;
|
|
sys_tsrounding = 0;
|
|
}
|