1
0
mirror of https://git.FreeBSD.org/src.git synced 2025-01-03 12:35:02 +00:00
freebsd/sys/dev/aic7xxx/aic7xxx_inline.h
Scott Long 7628acd8ee Up until now, the free SCB pool received only a small initial allocation,
and new SCBs were allocated on demand later if needed.  This has two
problems.  First, allocating SCBs involves allocating contiguous memory,
and if memory is exhausted then the VM will try to page out to satisfy
the request, leading to recursion and deadlock.  The second problem is
that it can cause lock order reversals due to parts of the VM still being
under Giant.

Fix the problem be allocating the full pool at driver attach, when it is
safe to do so.
2007-04-19 18:53:52 +00:00

651 lines
19 KiB
C

/*-
* Inline routines shareable across OS platforms.
*
* Copyright (c) 1994-2001 Justin T. Gibbs.
* Copyright (c) 2000-2001 Adaptec Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer,
* without modification.
* 2. Redistributions in binary form must reproduce at minimum a disclaimer
* substantially similar to the "NO WARRANTY" disclaimer below
* ("Disclaimer") and any redistribution must be conditioned upon
* including a substantially similar Disclaimer requirement for further
* binary redistribution.
* 3. Neither the names of the above-listed copyright holders nor the names
* of any contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* Alternatively, this software may be distributed under the terms of the
* GNU General Public License ("GPL") version 2 as published by the Free
* Software Foundation.
*
* NO WARRANTY
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGES.
*
* $Id: //depot/aic7xxx/aic7xxx/aic7xxx_inline.h#47 $
*
* $FreeBSD$
*/
#ifndef _AIC7XXX_INLINE_H_
#define _AIC7XXX_INLINE_H_
/************************* Sequencer Execution Control ************************/
static __inline void ahc_pause_bug_fix(struct ahc_softc *ahc);
static __inline int ahc_is_paused(struct ahc_softc *ahc);
static __inline void ahc_pause(struct ahc_softc *ahc);
static __inline void ahc_unpause(struct ahc_softc *ahc);
/*
* Work around any chip bugs related to halting sequencer execution.
* On Ultra2 controllers, we must clear the CIOBUS stretch signal by
* reading a register that will set this signal and deassert it.
* Without this workaround, if the chip is paused, by an interrupt or
* manual pause while accessing scb ram, accesses to certain registers
* will hang the system (infinite pci retries).
*/
static __inline void
ahc_pause_bug_fix(struct ahc_softc *ahc)
{
if ((ahc->features & AHC_ULTRA2) != 0)
(void)ahc_inb(ahc, CCSCBCTL);
}
/*
* Determine whether the sequencer has halted code execution.
* Returns non-zero status if the sequencer is stopped.
*/
static __inline int
ahc_is_paused(struct ahc_softc *ahc)
{
return ((ahc_inb(ahc, HCNTRL) & PAUSE) != 0);
}
/*
* Request that the sequencer stop and wait, indefinitely, for it
* to stop. The sequencer will only acknowledge that it is paused
* once it has reached an instruction boundary and PAUSEDIS is
* cleared in the SEQCTL register. The sequencer may use PAUSEDIS
* for critical sections.
*/
static __inline void
ahc_pause(struct ahc_softc *ahc)
{
ahc_outb(ahc, HCNTRL, ahc->pause);
/*
* Since the sequencer can disable pausing in a critical section, we
* must loop until it actually stops.
*/
while (ahc_is_paused(ahc) == 0)
;
ahc_pause_bug_fix(ahc);
}
/*
* Allow the sequencer to continue program execution.
* We check here to ensure that no additional interrupt
* sources that would cause the sequencer to halt have been
* asserted. If, for example, a SCSI bus reset is detected
* while we are fielding a different, pausing, interrupt type,
* we don't want to release the sequencer before going back
* into our interrupt handler and dealing with this new
* condition.
*/
static __inline void
ahc_unpause(struct ahc_softc *ahc)
{
if ((ahc_inb(ahc, INTSTAT) & (SCSIINT | SEQINT | BRKADRINT)) == 0)
ahc_outb(ahc, HCNTRL, ahc->unpause);
}
/*********************** Untagged Transaction Routines ************************/
static __inline void ahc_freeze_untagged_queues(struct ahc_softc *ahc);
static __inline void ahc_release_untagged_queues(struct ahc_softc *ahc);
/*
* Block our completion routine from starting the next untagged
* transaction for this target or target lun.
*/
static __inline void
ahc_freeze_untagged_queues(struct ahc_softc *ahc)
{
if ((ahc->flags & AHC_SCB_BTT) == 0)
ahc->untagged_queue_lock++;
}
/*
* Allow the next untagged transaction for this target or target lun
* to be executed. We use a counting semaphore to allow the lock
* to be acquired recursively. Once the count drops to zero, the
* transaction queues will be run.
*/
static __inline void
ahc_release_untagged_queues(struct ahc_softc *ahc)
{
if ((ahc->flags & AHC_SCB_BTT) == 0) {
ahc->untagged_queue_lock--;
if (ahc->untagged_queue_lock == 0)
ahc_run_untagged_queues(ahc);
}
}
/************************** Memory mapping routines ***************************/
static __inline struct ahc_dma_seg *
ahc_sg_bus_to_virt(struct scb *scb,
uint32_t sg_busaddr);
static __inline uint32_t
ahc_sg_virt_to_bus(struct scb *scb,
struct ahc_dma_seg *sg);
static __inline uint32_t
ahc_hscb_busaddr(struct ahc_softc *ahc, u_int index);
static __inline void ahc_sync_scb(struct ahc_softc *ahc,
struct scb *scb, int op);
static __inline void ahc_sync_sglist(struct ahc_softc *ahc,
struct scb *scb, int op);
static __inline uint32_t
ahc_targetcmd_offset(struct ahc_softc *ahc,
u_int index);
static __inline struct ahc_dma_seg *
ahc_sg_bus_to_virt(struct scb *scb, uint32_t sg_busaddr)
{
int sg_index;
sg_index = (sg_busaddr - scb->sg_list_phys)/sizeof(struct ahc_dma_seg);
/* sg_list_phys points to entry 1, not 0 */
sg_index++;
return (&scb->sg_list[sg_index]);
}
static __inline uint32_t
ahc_sg_virt_to_bus(struct scb *scb, struct ahc_dma_seg *sg)
{
int sg_index;
/* sg_list_phys points to entry 1, not 0 */
sg_index = sg - &scb->sg_list[1];
return (scb->sg_list_phys + (sg_index * sizeof(*scb->sg_list)));
}
static __inline uint32_t
ahc_hscb_busaddr(struct ahc_softc *ahc, u_int index)
{
return (ahc->scb_data->hscb_busaddr
+ (sizeof(struct hardware_scb) * index));
}
static __inline void
ahc_sync_scb(struct ahc_softc *ahc, struct scb *scb, int op)
{
aic_dmamap_sync(ahc, ahc->scb_data->hscb_dmat,
ahc->scb_data->hscb_dmamap,
/*offset*/(scb->hscb - ahc->hscbs) * sizeof(*scb->hscb),
/*len*/sizeof(*scb->hscb), op);
}
static __inline void
ahc_sync_sglist(struct ahc_softc *ahc, struct scb *scb, int op)
{
if (scb->sg_count == 0)
return;
aic_dmamap_sync(ahc, ahc->scb_data->sg_dmat, scb->sg_map->sg_dmamap,
/*offset*/(scb->sg_list - scb->sg_map->sg_vaddr)
* sizeof(struct ahc_dma_seg),
/*len*/sizeof(struct ahc_dma_seg) * scb->sg_count, op);
}
static __inline uint32_t
ahc_targetcmd_offset(struct ahc_softc *ahc, u_int index)
{
return (((uint8_t *)&ahc->targetcmds[index]) - ahc->qoutfifo);
}
/******************************** Debugging ***********************************/
static __inline char *ahc_name(struct ahc_softc *ahc);
static __inline char *
ahc_name(struct ahc_softc *ahc)
{
return (ahc->name);
}
/*********************** Miscelaneous Support Functions ***********************/
static __inline void ahc_update_residual(struct ahc_softc *ahc,
struct scb *scb);
static __inline struct ahc_initiator_tinfo *
ahc_fetch_transinfo(struct ahc_softc *ahc,
char channel, u_int our_id,
u_int remote_id,
struct ahc_tmode_tstate **tstate);
static __inline uint16_t
ahc_inw(struct ahc_softc *ahc, u_int port);
static __inline void ahc_outw(struct ahc_softc *ahc, u_int port,
u_int value);
static __inline uint32_t
ahc_inl(struct ahc_softc *ahc, u_int port);
static __inline void ahc_outl(struct ahc_softc *ahc, u_int port,
uint32_t value);
static __inline uint64_t
ahc_inq(struct ahc_softc *ahc, u_int port);
static __inline void ahc_outq(struct ahc_softc *ahc, u_int port,
uint64_t value);
static __inline struct scb*
ahc_get_scb(struct ahc_softc *ahc);
static __inline void ahc_free_scb(struct ahc_softc *ahc, struct scb *scb);
static __inline void ahc_swap_with_next_hscb(struct ahc_softc *ahc,
struct scb *scb);
static __inline void ahc_queue_scb(struct ahc_softc *ahc, struct scb *scb);
static __inline struct scsi_sense_data *
ahc_get_sense_buf(struct ahc_softc *ahc,
struct scb *scb);
static __inline uint32_t
ahc_get_sense_bufaddr(struct ahc_softc *ahc,
struct scb *scb);
/*
* Determine whether the sequencer reported a residual
* for this SCB/transaction.
*/
static __inline void
ahc_update_residual(struct ahc_softc *ahc, struct scb *scb)
{
uint32_t sgptr;
sgptr = aic_le32toh(scb->hscb->sgptr);
if ((sgptr & SG_RESID_VALID) != 0)
ahc_calc_residual(ahc, scb);
}
/*
* Return pointers to the transfer negotiation information
* for the specified our_id/remote_id pair.
*/
static __inline struct ahc_initiator_tinfo *
ahc_fetch_transinfo(struct ahc_softc *ahc, char channel, u_int our_id,
u_int remote_id, struct ahc_tmode_tstate **tstate)
{
/*
* Transfer data structures are stored from the perspective
* of the target role. Since the parameters for a connection
* in the initiator role to a given target are the same as
* when the roles are reversed, we pretend we are the target.
*/
if (channel == 'B')
our_id += 8;
*tstate = ahc->enabled_targets[our_id];
return (&(*tstate)->transinfo[remote_id]);
}
static __inline uint16_t
ahc_inw(struct ahc_softc *ahc, u_int port)
{
return ((ahc_inb(ahc, port+1) << 8) | ahc_inb(ahc, port));
}
static __inline void
ahc_outw(struct ahc_softc *ahc, u_int port, u_int value)
{
ahc_outb(ahc, port, value & 0xFF);
ahc_outb(ahc, port+1, (value >> 8) & 0xFF);
}
static __inline uint32_t
ahc_inl(struct ahc_softc *ahc, u_int port)
{
return ((ahc_inb(ahc, port))
| (ahc_inb(ahc, port+1) << 8)
| (ahc_inb(ahc, port+2) << 16)
| (ahc_inb(ahc, port+3) << 24));
}
static __inline void
ahc_outl(struct ahc_softc *ahc, u_int port, uint32_t value)
{
ahc_outb(ahc, port, (value) & 0xFF);
ahc_outb(ahc, port+1, ((value) >> 8) & 0xFF);
ahc_outb(ahc, port+2, ((value) >> 16) & 0xFF);
ahc_outb(ahc, port+3, ((value) >> 24) & 0xFF);
}
static __inline uint64_t
ahc_inq(struct ahc_softc *ahc, u_int port)
{
return ((ahc_inb(ahc, port))
| (ahc_inb(ahc, port+1) << 8)
| (ahc_inb(ahc, port+2) << 16)
| (ahc_inb(ahc, port+3) << 24)
| (((uint64_t)ahc_inb(ahc, port+4)) << 32)
| (((uint64_t)ahc_inb(ahc, port+5)) << 40)
| (((uint64_t)ahc_inb(ahc, port+6)) << 48)
| (((uint64_t)ahc_inb(ahc, port+7)) << 56));
}
static __inline void
ahc_outq(struct ahc_softc *ahc, u_int port, uint64_t value)
{
ahc_outb(ahc, port, value & 0xFF);
ahc_outb(ahc, port+1, (value >> 8) & 0xFF);
ahc_outb(ahc, port+2, (value >> 16) & 0xFF);
ahc_outb(ahc, port+3, (value >> 24) & 0xFF);
ahc_outb(ahc, port+4, (value >> 32) & 0xFF);
ahc_outb(ahc, port+5, (value >> 40) & 0xFF);
ahc_outb(ahc, port+6, (value >> 48) & 0xFF);
ahc_outb(ahc, port+7, (value >> 56) & 0xFF);
}
/*
* Get a free scb. If there are none, see if we can allocate a new SCB.
*/
static __inline struct scb *
ahc_get_scb(struct ahc_softc *ahc)
{
struct scb *scb;
if ((scb = SLIST_FIRST(&ahc->scb_data->free_scbs)) == NULL) {
if (ahc_alloc_scbs(ahc) == 0)
return (NULL);
scb = SLIST_FIRST(&ahc->scb_data->free_scbs);
if (scb == NULL)
return (NULL);
}
SLIST_REMOVE_HEAD(&ahc->scb_data->free_scbs, links.sle);
return (scb);
}
/*
* Return an SCB resource to the free list.
*/
static __inline void
ahc_free_scb(struct ahc_softc *ahc, struct scb *scb)
{
struct hardware_scb *hscb;
hscb = scb->hscb;
/* Clean up for the next user */
ahc->scb_data->scbindex[hscb->tag] = NULL;
scb->flags = SCB_FLAG_NONE;
hscb->control = 0;
SLIST_INSERT_HEAD(&ahc->scb_data->free_scbs, scb, links.sle);
/* Notify the OSM that a resource is now available. */
aic_platform_scb_free(ahc, scb);
}
static __inline struct scb *
ahc_lookup_scb(struct ahc_softc *ahc, u_int tag)
{
struct scb* scb;
scb = ahc->scb_data->scbindex[tag];
if (scb != NULL)
ahc_sync_scb(ahc, scb,
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
return (scb);
}
static __inline void
ahc_swap_with_next_hscb(struct ahc_softc *ahc, struct scb *scb)
{
struct hardware_scb *q_hscb;
u_int saved_tag;
/*
* Our queuing method is a bit tricky. The card
* knows in advance which HSCB to download, and we
* can't disappoint it. To achieve this, the next
* SCB to download is saved off in ahc->next_queued_scb.
* When we are called to queue "an arbitrary scb",
* we copy the contents of the incoming HSCB to the one
* the sequencer knows about, swap HSCB pointers and
* finally assign the SCB to the tag indexed location
* in the scb_array. This makes sure that we can still
* locate the correct SCB by SCB_TAG.
*/
q_hscb = ahc->next_queued_scb->hscb;
saved_tag = q_hscb->tag;
memcpy(q_hscb, scb->hscb, sizeof(*scb->hscb));
if ((scb->flags & SCB_CDB32_PTR) != 0) {
q_hscb->shared_data.cdb_ptr =
aic_htole32(ahc_hscb_busaddr(ahc, q_hscb->tag)
+ offsetof(struct hardware_scb, cdb32));
}
q_hscb->tag = saved_tag;
q_hscb->next = scb->hscb->tag;
/* Now swap HSCB pointers. */
ahc->next_queued_scb->hscb = scb->hscb;
scb->hscb = q_hscb;
/* Now define the mapping from tag to SCB in the scbindex */
ahc->scb_data->scbindex[scb->hscb->tag] = scb;
}
/*
* Tell the sequencer about a new transaction to execute.
*/
static __inline void
ahc_queue_scb(struct ahc_softc *ahc, struct scb *scb)
{
ahc_swap_with_next_hscb(ahc, scb);
if (scb->hscb->tag == SCB_LIST_NULL
|| scb->hscb->next == SCB_LIST_NULL)
panic("Attempt to queue invalid SCB tag %x:%x\n",
scb->hscb->tag, scb->hscb->next);
/*
* Setup data "oddness".
*/
scb->hscb->lun &= LID;
if (aic_get_transfer_length(scb) & 0x1)
scb->hscb->lun |= SCB_XFERLEN_ODD;
/*
* Keep a history of SCBs we've downloaded in the qinfifo.
*/
ahc->qinfifo[ahc->qinfifonext++] = scb->hscb->tag;
/*
* Make sure our data is consistent from the
* perspective of the adapter.
*/
ahc_sync_scb(ahc, scb, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
/* Tell the adapter about the newly queued SCB */
if ((ahc->features & AHC_QUEUE_REGS) != 0) {
ahc_outb(ahc, HNSCB_QOFF, ahc->qinfifonext);
} else {
if ((ahc->features & AHC_AUTOPAUSE) == 0)
ahc_pause(ahc);
ahc_outb(ahc, KERNEL_QINPOS, ahc->qinfifonext);
if ((ahc->features & AHC_AUTOPAUSE) == 0)
ahc_unpause(ahc);
}
}
static __inline struct scsi_sense_data *
ahc_get_sense_buf(struct ahc_softc *ahc, struct scb *scb)
{
int offset;
offset = scb - ahc->scb_data->scbarray;
return (&ahc->scb_data->sense[offset]);
}
static __inline uint32_t
ahc_get_sense_bufaddr(struct ahc_softc *ahc, struct scb *scb)
{
int offset;
offset = scb - ahc->scb_data->scbarray;
return (ahc->scb_data->sense_busaddr
+ (offset * sizeof(struct scsi_sense_data)));
}
/************************** Interrupt Processing ******************************/
static __inline void ahc_sync_qoutfifo(struct ahc_softc *ahc, int op);
static __inline void ahc_sync_tqinfifo(struct ahc_softc *ahc, int op);
static __inline u_int ahc_check_cmdcmpltqueues(struct ahc_softc *ahc);
static __inline int ahc_intr(struct ahc_softc *ahc);
static __inline void
ahc_sync_qoutfifo(struct ahc_softc *ahc, int op)
{
aic_dmamap_sync(ahc, ahc->shared_data_dmat, ahc->shared_data_dmamap,
/*offset*/0, /*len*/256, op);
}
static __inline void
ahc_sync_tqinfifo(struct ahc_softc *ahc, int op)
{
#ifdef AHC_TARGET_MODE
if ((ahc->flags & AHC_TARGETROLE) != 0) {
aic_dmamap_sync(ahc, ahc->shared_data_dmat,
ahc->shared_data_dmamap,
ahc_targetcmd_offset(ahc, 0),
sizeof(struct target_cmd) * AHC_TMODE_CMDS,
op);
}
#endif
}
/*
* See if the firmware has posted any completed commands
* into our in-core command complete fifos.
*/
#define AHC_RUN_QOUTFIFO 0x1
#define AHC_RUN_TQINFIFO 0x2
static __inline u_int
ahc_check_cmdcmpltqueues(struct ahc_softc *ahc)
{
u_int retval;
retval = 0;
aic_dmamap_sync(ahc, ahc->shared_data_dmat, ahc->shared_data_dmamap,
/*offset*/ahc->qoutfifonext, /*len*/1,
BUS_DMASYNC_POSTREAD);
if (ahc->qoutfifo[ahc->qoutfifonext] != SCB_LIST_NULL)
retval |= AHC_RUN_QOUTFIFO;
#ifdef AHC_TARGET_MODE
if ((ahc->flags & AHC_TARGETROLE) != 0
&& (ahc->flags & AHC_TQINFIFO_BLOCKED) == 0) {
aic_dmamap_sync(ahc, ahc->shared_data_dmat,
ahc->shared_data_dmamap,
ahc_targetcmd_offset(ahc, ahc->tqinfifofnext),
/*len*/sizeof(struct target_cmd),
BUS_DMASYNC_POSTREAD);
if (ahc->targetcmds[ahc->tqinfifonext].cmd_valid != 0)
retval |= AHC_RUN_TQINFIFO;
}
#endif
return (retval);
}
/*
* Catch an interrupt from the adapter
*/
static __inline int
ahc_intr(struct ahc_softc *ahc)
{
u_int intstat;
if ((ahc->pause & INTEN) == 0) {
/*
* Our interrupt is not enabled on the chip
* and may be disabled for re-entrancy reasons,
* so just return. This is likely just a shared
* interrupt.
*/
return (0);
}
/*
* Instead of directly reading the interrupt status register,
* infer the cause of the interrupt by checking our in-core
* completion queues. This avoids a costly PCI bus read in
* most cases.
*/
if ((ahc->flags & (AHC_ALL_INTERRUPTS|AHC_EDGE_INTERRUPT)) == 0
&& (ahc_check_cmdcmpltqueues(ahc) != 0))
intstat = CMDCMPLT;
else {
intstat = ahc_inb(ahc, INTSTAT);
}
if ((intstat & INT_PEND) == 0) {
#if AIC_PCI_CONFIG > 0
if (ahc->unsolicited_ints > 500) {
ahc->unsolicited_ints = 0;
if ((ahc->chip & AHC_PCI) != 0
&& (ahc_inb(ahc, ERROR) & PCIERRSTAT) != 0)
ahc->bus_intr(ahc);
}
#endif
ahc->unsolicited_ints++;
return (0);
}
ahc->unsolicited_ints = 0;
if (intstat & CMDCMPLT) {
ahc_outb(ahc, CLRINT, CLRCMDINT);
/*
* Ensure that the chip sees that we've cleared
* this interrupt before we walk the output fifo.
* Otherwise, we may, due to posted bus writes,
* clear the interrupt after we finish the scan,
* and after the sequencer has added new entries
* and asserted the interrupt again.
*/
ahc_flush_device_writes(ahc);
ahc_run_qoutfifo(ahc);
#ifdef AHC_TARGET_MODE
if ((ahc->flags & AHC_TARGETROLE) != 0)
ahc_run_tqinfifo(ahc, /*paused*/FALSE);
#endif
}
/*
* Handle statuses that may invalidate our cached
* copy of INTSTAT separately.
*/
if (intstat == 0xFF && (ahc->features & AHC_REMOVABLE) != 0) {
/* Hot eject. Do nothing */
} else if (intstat & BRKADRINT) {
ahc_handle_brkadrint(ahc);
} else if ((intstat & (SEQINT|SCSIINT)) != 0) {
ahc_pause_bug_fix(ahc);
if ((intstat & SEQINT) != 0)
ahc_handle_seqint(ahc, intstat);
if ((intstat & SCSIINT) != 0)
ahc_handle_scsiint(ahc, intstat);
}
return (1);
}
#endif /* _AIC7XXX_INLINE_H_ */