1
0
mirror of https://git.FreeBSD.org/src.git synced 2024-12-28 11:57:28 +00:00
freebsd/sys/netinet/sctputil.c
Randall Stewart bff64a4db3 - fixed several places where we did not release INP locks.
- fixed a refcount bug in the new ifa structures.
- use vrf's from default stcb or inp whenever possible.
- Address limits raised to account for a full IP fragmented
  packet (1000 addresses).
- flight size correcting updated to include one message only
  and to handle case where the peer does not cumack the
  next segment aka lists 1/1 in sack blocks..
- Various bad init/init-ack handling could cause a panic
  since we tried to unlock the destroyed mutex. Fixes
  so we properly exit when we need to destroy an assoc.
  (Found by Cisco DevTest team :D)
- name rename in src-addr-selection from pass to sifa.
- route structure typedef'd to allow different platforms
  and updated into sctp_os_bsd file.
- Max retransmissions a chunk can be made added.
Reviewed by:	gnn
2007-04-03 11:15:32 +00:00

5634 lines
151 KiB
C

/*-
* Copyright (c) 2001-2007, Cisco Systems, Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* a) Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* b) Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the distribution.
*
* c) Neither the name of Cisco Systems, Inc. nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
/* $KAME: sctputil.c,v 1.37 2005/03/07 23:26:09 itojun Exp $ */
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <netinet/sctp_os.h>
#include <netinet/sctp_pcb.h>
#include <netinet/sctputil.h>
#include <netinet/sctp_var.h>
#include <netinet/sctp_sysctl.h>
#ifdef INET6
#include <netinet6/sctp6_var.h>
#endif
#include <netinet/sctp_header.h>
#include <netinet/sctp_output.h>
#include <netinet/sctp_uio.h>
#include <netinet/sctp_timer.h>
#include <netinet/sctp_crc32.h>
#include <netinet/sctp_indata.h>/* for sctp_deliver_data() */
#include <netinet/sctp_auth.h>
#include <netinet/sctp_asconf.h>
#define NUMBER_OF_MTU_SIZES 18
#ifdef SCTP_STAT_LOGGING
int global_sctp_cwnd_log_at = 0;
int global_sctp_cwnd_log_rolled = 0;
struct sctp_cwnd_log sctp_clog[SCTP_STAT_LOG_SIZE];
static uint32_t
sctp_get_time_of_event(void)
{
struct timeval now;
uint32_t timeval;
SCTP_GETPTIME_TIMEVAL(&now);
timeval = (now.tv_sec % 0x00000fff);
timeval <<= 20;
timeval |= now.tv_usec & 0xfffff;
return (timeval);
}
void
sctp_clr_stat_log(void)
{
global_sctp_cwnd_log_at = 0;
global_sctp_cwnd_log_rolled = 0;
}
void
sctp_sblog(struct sockbuf *sb,
struct sctp_tcb *stcb, int from, int incr)
{
int sctp_cwnd_log_at;
SCTP_STATLOG_GETREF(sctp_cwnd_log_at);
sctp_clog[sctp_cwnd_log_at].time_event = sctp_get_time_of_event();
sctp_clog[sctp_cwnd_log_at].from = (uint8_t) from;
sctp_clog[sctp_cwnd_log_at].event_type = (uint8_t) SCTP_LOG_EVENT_SB;
sctp_clog[sctp_cwnd_log_at].x.sb.stcb = stcb;
sctp_clog[sctp_cwnd_log_at].x.sb.so_sbcc = sb->sb_cc;
if (stcb)
sctp_clog[sctp_cwnd_log_at].x.sb.stcb_sbcc = stcb->asoc.sb_cc;
else
sctp_clog[sctp_cwnd_log_at].x.sb.stcb_sbcc = 0;
sctp_clog[sctp_cwnd_log_at].x.sb.incr = incr;
}
void
sctp_log_closing(struct sctp_inpcb *inp, struct sctp_tcb *stcb, int16_t loc)
{
int sctp_cwnd_log_at;
SCTP_STATLOG_GETREF(sctp_cwnd_log_at);
sctp_clog[sctp_cwnd_log_at].time_event = sctp_get_time_of_event();
sctp_clog[sctp_cwnd_log_at].from = 0;
sctp_clog[sctp_cwnd_log_at].event_type = (uint8_t) SCTP_LOG_EVENT_CLOSE;
sctp_clog[sctp_cwnd_log_at].x.close.inp = (void *)inp;
sctp_clog[sctp_cwnd_log_at].x.close.sctp_flags = inp->sctp_flags;
if (stcb) {
sctp_clog[sctp_cwnd_log_at].x.close.stcb = (void *)stcb;
sctp_clog[sctp_cwnd_log_at].x.close.state = (uint16_t) stcb->asoc.state;
} else {
sctp_clog[sctp_cwnd_log_at].x.close.stcb = 0;
sctp_clog[sctp_cwnd_log_at].x.close.state = 0;
}
sctp_clog[sctp_cwnd_log_at].x.close.loc = loc;
}
void
rto_logging(struct sctp_nets *net, int from)
{
int sctp_cwnd_log_at;
SCTP_STATLOG_GETREF(sctp_cwnd_log_at);
sctp_clog[sctp_cwnd_log_at].time_event = sctp_get_time_of_event();
sctp_clog[sctp_cwnd_log_at].from = (uint8_t) from;
sctp_clog[sctp_cwnd_log_at].event_type = (uint8_t) SCTP_LOG_EVENT_RTT;
sctp_clog[sctp_cwnd_log_at].x.rto.net = (void *)net;
sctp_clog[sctp_cwnd_log_at].x.rto.rtt = net->prev_rtt;
}
void
sctp_log_strm_del_alt(struct sctp_tcb *stcb, uint32_t tsn, uint16_t sseq, uint16_t stream, int from)
{
int sctp_cwnd_log_at;
SCTP_STATLOG_GETREF(sctp_cwnd_log_at);
sctp_clog[sctp_cwnd_log_at].time_event = sctp_get_time_of_event();
sctp_clog[sctp_cwnd_log_at].from = (uint8_t) from;
sctp_clog[sctp_cwnd_log_at].event_type = (uint8_t) SCTP_LOG_EVENT_STRM;
sctp_clog[sctp_cwnd_log_at].x.strlog.stcb = stcb;
sctp_clog[sctp_cwnd_log_at].x.strlog.n_tsn = tsn;
sctp_clog[sctp_cwnd_log_at].x.strlog.n_sseq = sseq;
sctp_clog[sctp_cwnd_log_at].x.strlog.e_tsn = 0;
sctp_clog[sctp_cwnd_log_at].x.strlog.e_sseq = 0;
sctp_clog[sctp_cwnd_log_at].x.strlog.strm = stream;
}
void
sctp_log_nagle_event(struct sctp_tcb *stcb, int action)
{
int sctp_cwnd_log_at;
SCTP_STATLOG_GETREF(sctp_cwnd_log_at);
sctp_clog[sctp_cwnd_log_at].time_event = sctp_get_time_of_event();
sctp_clog[sctp_cwnd_log_at].from = (uint8_t) action;
sctp_clog[sctp_cwnd_log_at].event_type = (uint8_t) SCTP_LOG_EVENT_NAGLE;
sctp_clog[sctp_cwnd_log_at].x.nagle.stcb = (void *)stcb;
sctp_clog[sctp_cwnd_log_at].x.nagle.total_flight = stcb->asoc.total_flight;
sctp_clog[sctp_cwnd_log_at].x.nagle.total_in_queue = stcb->asoc.total_output_queue_size;
sctp_clog[sctp_cwnd_log_at].x.nagle.count_in_queue = stcb->asoc.chunks_on_out_queue;
sctp_clog[sctp_cwnd_log_at].x.nagle.count_in_flight = stcb->asoc.total_flight_count;
}
void
sctp_log_sack(uint32_t old_cumack, uint32_t cumack, uint32_t tsn, uint16_t gaps, uint16_t dups, int from)
{
int sctp_cwnd_log_at;
SCTP_STATLOG_GETREF(sctp_cwnd_log_at);
sctp_clog[sctp_cwnd_log_at].time_event = sctp_get_time_of_event();
sctp_clog[sctp_cwnd_log_at].from = (uint8_t) from;
sctp_clog[sctp_cwnd_log_at].event_type = (uint8_t) SCTP_LOG_EVENT_SACK;
sctp_clog[sctp_cwnd_log_at].x.sack.cumack = cumack;
sctp_clog[sctp_cwnd_log_at].x.sack.oldcumack = old_cumack;
sctp_clog[sctp_cwnd_log_at].x.sack.tsn = tsn;
sctp_clog[sctp_cwnd_log_at].x.sack.numGaps = gaps;
sctp_clog[sctp_cwnd_log_at].x.sack.numDups = dups;
}
void
sctp_log_map(uint32_t map, uint32_t cum, uint32_t high, int from)
{
int sctp_cwnd_log_at;
SCTP_STATLOG_GETREF(sctp_cwnd_log_at);
sctp_clog[sctp_cwnd_log_at].time_event = sctp_get_time_of_event();
sctp_clog[sctp_cwnd_log_at].from = (uint8_t) from;
sctp_clog[sctp_cwnd_log_at].event_type = (uint8_t) SCTP_LOG_EVENT_MAP;
sctp_clog[sctp_cwnd_log_at].x.map.base = map;
sctp_clog[sctp_cwnd_log_at].x.map.cum = cum;
sctp_clog[sctp_cwnd_log_at].x.map.high = high;
}
void
sctp_log_fr(uint32_t biggest_tsn, uint32_t biggest_new_tsn, uint32_t tsn,
int from)
{
int sctp_cwnd_log_at;
SCTP_STATLOG_GETREF(sctp_cwnd_log_at);
sctp_clog[sctp_cwnd_log_at].time_event = sctp_get_time_of_event();
sctp_clog[sctp_cwnd_log_at].from = (uint8_t) from;
sctp_clog[sctp_cwnd_log_at].event_type = (uint8_t) SCTP_LOG_EVENT_FR;
sctp_clog[sctp_cwnd_log_at].x.fr.largest_tsn = biggest_tsn;
sctp_clog[sctp_cwnd_log_at].x.fr.largest_new_tsn = biggest_new_tsn;
sctp_clog[sctp_cwnd_log_at].x.fr.tsn = tsn;
}
void
sctp_log_mb(struct mbuf *m, int from)
{
int sctp_cwnd_log_at;
SCTP_STATLOG_GETREF(sctp_cwnd_log_at);
sctp_clog[sctp_cwnd_log_at].time_event = sctp_get_time_of_event();
sctp_clog[sctp_cwnd_log_at].from = (uint8_t) from;
sctp_clog[sctp_cwnd_log_at].event_type = (uint8_t) SCTP_LOG_EVENT_MBUF;
sctp_clog[sctp_cwnd_log_at].x.mb.mp = m;
sctp_clog[sctp_cwnd_log_at].x.mb.mbuf_flags = (uint8_t) (SCTP_BUF_GET_FLAGS(m));
sctp_clog[sctp_cwnd_log_at].x.mb.size = (uint16_t) (SCTP_BUF_LEN(m));
sctp_clog[sctp_cwnd_log_at].x.mb.data = SCTP_BUF_AT(m, 0);
if (SCTP_BUF_IS_EXTENDED(m)) {
sctp_clog[sctp_cwnd_log_at].x.mb.ext = SCTP_BUF_EXTEND_BASE(m);
sctp_clog[sctp_cwnd_log_at].x.mb.refcnt = (uint8_t) (SCTP_BUF_EXTEND_REFCNT(m));
} else {
sctp_clog[sctp_cwnd_log_at].x.mb.ext = 0;
sctp_clog[sctp_cwnd_log_at].x.mb.refcnt = 0;
}
}
void
sctp_log_strm_del(struct sctp_queued_to_read *control, struct sctp_queued_to_read *poschk,
int from)
{
int sctp_cwnd_log_at;
if (control == NULL) {
printf("Gak log of NULL?\n");
return;
}
SCTP_STATLOG_GETREF(sctp_cwnd_log_at);
sctp_clog[sctp_cwnd_log_at].time_event = sctp_get_time_of_event();
sctp_clog[sctp_cwnd_log_at].from = (uint8_t) from;
sctp_clog[sctp_cwnd_log_at].event_type = (uint8_t) SCTP_LOG_EVENT_STRM;
sctp_clog[sctp_cwnd_log_at].x.strlog.stcb = control->stcb;
sctp_clog[sctp_cwnd_log_at].x.strlog.n_tsn = control->sinfo_tsn;
sctp_clog[sctp_cwnd_log_at].x.strlog.n_sseq = control->sinfo_ssn;
sctp_clog[sctp_cwnd_log_at].x.strlog.strm = control->sinfo_stream;
if (poschk != NULL) {
sctp_clog[sctp_cwnd_log_at].x.strlog.e_tsn = poschk->sinfo_tsn;
sctp_clog[sctp_cwnd_log_at].x.strlog.e_sseq = poschk->sinfo_ssn;
} else {
sctp_clog[sctp_cwnd_log_at].x.strlog.e_tsn = 0;
sctp_clog[sctp_cwnd_log_at].x.strlog.e_sseq = 0;
}
}
void
sctp_log_cwnd(struct sctp_tcb *stcb, struct sctp_nets *net, int augment, uint8_t from)
{
int sctp_cwnd_log_at;
SCTP_STATLOG_GETREF(sctp_cwnd_log_at);
sctp_clog[sctp_cwnd_log_at].time_event = sctp_get_time_of_event();
sctp_clog[sctp_cwnd_log_at].from = (uint8_t) from;
sctp_clog[sctp_cwnd_log_at].event_type = (uint8_t) SCTP_LOG_EVENT_CWND;
sctp_clog[sctp_cwnd_log_at].x.cwnd.net = net;
if (stcb->asoc.send_queue_cnt > 255)
sctp_clog[sctp_cwnd_log_at].x.cwnd.cnt_in_send = 255;
else
sctp_clog[sctp_cwnd_log_at].x.cwnd.cnt_in_send = stcb->asoc.send_queue_cnt;
if (stcb->asoc.stream_queue_cnt > 255)
sctp_clog[sctp_cwnd_log_at].x.cwnd.cnt_in_str = 255;
else
sctp_clog[sctp_cwnd_log_at].x.cwnd.cnt_in_str = stcb->asoc.stream_queue_cnt;
if (net) {
sctp_clog[sctp_cwnd_log_at].x.cwnd.cwnd_new_value = net->cwnd;
sctp_clog[sctp_cwnd_log_at].x.cwnd.inflight = net->flight_size;
sctp_clog[sctp_cwnd_log_at].x.cwnd.pseudo_cumack = net->pseudo_cumack;
sctp_clog[sctp_cwnd_log_at].x.cwnd.meets_pseudo_cumack = net->new_pseudo_cumack;
sctp_clog[sctp_cwnd_log_at].x.cwnd.need_new_pseudo_cumack = net->find_pseudo_cumack;
}
if (SCTP_CWNDLOG_PRESEND == from) {
sctp_clog[sctp_cwnd_log_at].x.cwnd.meets_pseudo_cumack = stcb->asoc.peers_rwnd;
}
sctp_clog[sctp_cwnd_log_at].x.cwnd.cwnd_augment = augment;
}
void
sctp_log_lock(struct sctp_inpcb *inp, struct sctp_tcb *stcb, uint8_t from)
{
int sctp_cwnd_log_at;
SCTP_STATLOG_GETREF(sctp_cwnd_log_at);
sctp_clog[sctp_cwnd_log_at].time_event = sctp_get_time_of_event();
sctp_clog[sctp_cwnd_log_at].from = (uint8_t) from;
sctp_clog[sctp_cwnd_log_at].event_type = (uint8_t) SCTP_LOG_LOCK_EVENT;
if (inp) {
sctp_clog[sctp_cwnd_log_at].x.lock.sock = (void *)inp->sctp_socket;
} else {
sctp_clog[sctp_cwnd_log_at].x.lock.sock = (void *)NULL;
}
sctp_clog[sctp_cwnd_log_at].x.lock.inp = (void *)inp;
if (stcb) {
sctp_clog[sctp_cwnd_log_at].x.lock.tcb_lock = mtx_owned(&stcb->tcb_mtx);
} else {
sctp_clog[sctp_cwnd_log_at].x.lock.tcb_lock = SCTP_LOCK_UNKNOWN;
}
if (inp) {
sctp_clog[sctp_cwnd_log_at].x.lock.inp_lock = mtx_owned(&inp->inp_mtx);
sctp_clog[sctp_cwnd_log_at].x.lock.create_lock = mtx_owned(&inp->inp_create_mtx);
} else {
sctp_clog[sctp_cwnd_log_at].x.lock.inp_lock = SCTP_LOCK_UNKNOWN;
sctp_clog[sctp_cwnd_log_at].x.lock.create_lock = SCTP_LOCK_UNKNOWN;
}
sctp_clog[sctp_cwnd_log_at].x.lock.info_lock = mtx_owned(&sctppcbinfo.ipi_ep_mtx);
if (inp->sctp_socket) {
sctp_clog[sctp_cwnd_log_at].x.lock.sock_lock = mtx_owned(&(inp->sctp_socket->so_rcv.sb_mtx));
sctp_clog[sctp_cwnd_log_at].x.lock.sockrcvbuf_lock = mtx_owned(&(inp->sctp_socket->so_rcv.sb_mtx));
sctp_clog[sctp_cwnd_log_at].x.lock.socksndbuf_lock = mtx_owned(&(inp->sctp_socket->so_snd.sb_mtx));
} else {
sctp_clog[sctp_cwnd_log_at].x.lock.sock_lock = SCTP_LOCK_UNKNOWN;
sctp_clog[sctp_cwnd_log_at].x.lock.sockrcvbuf_lock = SCTP_LOCK_UNKNOWN;
sctp_clog[sctp_cwnd_log_at].x.lock.socksndbuf_lock = SCTP_LOCK_UNKNOWN;
}
}
void
sctp_log_maxburst(struct sctp_tcb *stcb, struct sctp_nets *net, int error, int burst, uint8_t from)
{
int sctp_cwnd_log_at;
SCTP_STATLOG_GETREF(sctp_cwnd_log_at);
sctp_clog[sctp_cwnd_log_at].time_event = sctp_get_time_of_event();
sctp_clog[sctp_cwnd_log_at].from = (uint8_t) from;
sctp_clog[sctp_cwnd_log_at].event_type = (uint8_t) SCTP_LOG_EVENT_MAXBURST;
sctp_clog[sctp_cwnd_log_at].x.cwnd.net = net;
sctp_clog[sctp_cwnd_log_at].x.cwnd.cwnd_new_value = error;
sctp_clog[sctp_cwnd_log_at].x.cwnd.inflight = net->flight_size;
sctp_clog[sctp_cwnd_log_at].x.cwnd.cwnd_augment = burst;
if (stcb->asoc.send_queue_cnt > 255)
sctp_clog[sctp_cwnd_log_at].x.cwnd.cnt_in_send = 255;
else
sctp_clog[sctp_cwnd_log_at].x.cwnd.cnt_in_send = stcb->asoc.send_queue_cnt;
if (stcb->asoc.stream_queue_cnt > 255)
sctp_clog[sctp_cwnd_log_at].x.cwnd.cnt_in_str = 255;
else
sctp_clog[sctp_cwnd_log_at].x.cwnd.cnt_in_str = stcb->asoc.stream_queue_cnt;
}
void
sctp_log_rwnd(uint8_t from, uint32_t peers_rwnd, uint32_t snd_size, uint32_t overhead)
{
int sctp_cwnd_log_at;
SCTP_STATLOG_GETREF(sctp_cwnd_log_at);
sctp_clog[sctp_cwnd_log_at].time_event = sctp_get_time_of_event();
sctp_clog[sctp_cwnd_log_at].from = (uint8_t) from;
sctp_clog[sctp_cwnd_log_at].event_type = (uint8_t) SCTP_LOG_EVENT_RWND;
sctp_clog[sctp_cwnd_log_at].x.rwnd.rwnd = peers_rwnd;
sctp_clog[sctp_cwnd_log_at].x.rwnd.send_size = snd_size;
sctp_clog[sctp_cwnd_log_at].x.rwnd.overhead = overhead;
sctp_clog[sctp_cwnd_log_at].x.rwnd.new_rwnd = 0;
}
void
sctp_log_rwnd_set(uint8_t from, uint32_t peers_rwnd, uint32_t flight_size, uint32_t overhead, uint32_t a_rwndval)
{
int sctp_cwnd_log_at;
SCTP_STATLOG_GETREF(sctp_cwnd_log_at);
sctp_clog[sctp_cwnd_log_at].time_event = sctp_get_time_of_event();
sctp_clog[sctp_cwnd_log_at].from = (uint8_t) from;
sctp_clog[sctp_cwnd_log_at].event_type = (uint8_t) SCTP_LOG_EVENT_RWND;
sctp_clog[sctp_cwnd_log_at].x.rwnd.rwnd = peers_rwnd;
sctp_clog[sctp_cwnd_log_at].x.rwnd.send_size = flight_size;
sctp_clog[sctp_cwnd_log_at].x.rwnd.overhead = overhead;
sctp_clog[sctp_cwnd_log_at].x.rwnd.new_rwnd = a_rwndval;
}
void
sctp_log_mbcnt(uint8_t from, uint32_t total_oq, uint32_t book, uint32_t total_mbcnt_q, uint32_t mbcnt)
{
int sctp_cwnd_log_at;
SCTP_STATLOG_GETREF(sctp_cwnd_log_at);
sctp_clog[sctp_cwnd_log_at].time_event = sctp_get_time_of_event();
sctp_clog[sctp_cwnd_log_at].from = (uint8_t) from;
sctp_clog[sctp_cwnd_log_at].event_type = (uint8_t) SCTP_LOG_EVENT_MBCNT;
sctp_clog[sctp_cwnd_log_at].x.mbcnt.total_queue_size = total_oq;
sctp_clog[sctp_cwnd_log_at].x.mbcnt.size_change = book;
sctp_clog[sctp_cwnd_log_at].x.mbcnt.total_queue_mb_size = total_mbcnt_q;
sctp_clog[sctp_cwnd_log_at].x.mbcnt.mbcnt_change = mbcnt;
}
void
sctp_misc_ints(uint8_t from, uint32_t a, uint32_t b, uint32_t c, uint32_t d)
{
int sctp_cwnd_log_at;
SCTP_STATLOG_GETREF(sctp_cwnd_log_at);
sctp_clog[sctp_cwnd_log_at].time_event = sctp_get_time_of_event();
sctp_clog[sctp_cwnd_log_at].from = (uint8_t) from;
sctp_clog[sctp_cwnd_log_at].event_type = (uint8_t) SCTP_LOG_MISC_EVENT;
sctp_clog[sctp_cwnd_log_at].x.misc.log1 = a;
sctp_clog[sctp_cwnd_log_at].x.misc.log2 = b;
sctp_clog[sctp_cwnd_log_at].x.misc.log3 = c;
sctp_clog[sctp_cwnd_log_at].x.misc.log4 = d;
}
void
sctp_wakeup_log(struct sctp_tcb *stcb, uint32_t cumtsn, uint32_t wake_cnt, int from)
{
int sctp_cwnd_log_at;
SCTP_STATLOG_GETREF(sctp_cwnd_log_at);
sctp_clog[sctp_cwnd_log_at].time_event = sctp_get_time_of_event();
sctp_clog[sctp_cwnd_log_at].from = (uint8_t) from;
sctp_clog[sctp_cwnd_log_at].event_type = (uint8_t) SCTP_LOG_EVENT_WAKE;
sctp_clog[sctp_cwnd_log_at].x.wake.stcb = (void *)stcb;
sctp_clog[sctp_cwnd_log_at].x.wake.wake_cnt = wake_cnt;
sctp_clog[sctp_cwnd_log_at].x.wake.flight = stcb->asoc.total_flight_count;
sctp_clog[sctp_cwnd_log_at].x.wake.send_q = stcb->asoc.send_queue_cnt;
sctp_clog[sctp_cwnd_log_at].x.wake.sent_q = stcb->asoc.sent_queue_cnt;
if (stcb->asoc.stream_queue_cnt < 0xff)
sctp_clog[sctp_cwnd_log_at].x.wake.stream_qcnt = (uint8_t) stcb->asoc.stream_queue_cnt;
else
sctp_clog[sctp_cwnd_log_at].x.wake.stream_qcnt = 0xff;
if (stcb->asoc.chunks_on_out_queue < 0xff)
sctp_clog[sctp_cwnd_log_at].x.wake.chunks_on_oque = (uint8_t) stcb->asoc.chunks_on_out_queue;
else
sctp_clog[sctp_cwnd_log_at].x.wake.chunks_on_oque = 0xff;
sctp_clog[sctp_cwnd_log_at].x.wake.sctpflags = 0;
/* set in the defered mode stuff */
if (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_DONT_WAKE)
sctp_clog[sctp_cwnd_log_at].x.wake.sctpflags |= 1;
if (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_WAKEOUTPUT)
sctp_clog[sctp_cwnd_log_at].x.wake.sctpflags |= 2;
if (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_WAKEINPUT)
sctp_clog[sctp_cwnd_log_at].x.wake.sctpflags |= 4;
/* what about the sb */
if (stcb->sctp_socket) {
struct socket *so = stcb->sctp_socket;
sctp_clog[sctp_cwnd_log_at].x.wake.sbflags = (uint8_t) ((so->so_snd.sb_flags & 0x00ff));
} else {
sctp_clog[sctp_cwnd_log_at].x.wake.sbflags = 0xff;
}
}
void
sctp_log_block(uint8_t from, struct socket *so, struct sctp_association *asoc, int sendlen)
{
int sctp_cwnd_log_at;
SCTP_STATLOG_GETREF(sctp_cwnd_log_at);
sctp_clog[sctp_cwnd_log_at].from = (uint8_t) from;
sctp_clog[sctp_cwnd_log_at].time_event = sctp_get_time_of_event();
sctp_clog[sctp_cwnd_log_at].event_type = (uint8_t) SCTP_LOG_EVENT_BLOCK;
sctp_clog[sctp_cwnd_log_at].x.blk.onsb = asoc->total_output_queue_size;
sctp_clog[sctp_cwnd_log_at].x.blk.send_sent_qcnt = (uint16_t) (asoc->send_queue_cnt + asoc->sent_queue_cnt);
sctp_clog[sctp_cwnd_log_at].x.blk.peer_rwnd = asoc->peers_rwnd;
sctp_clog[sctp_cwnd_log_at].x.blk.stream_qcnt = (uint16_t) asoc->stream_queue_cnt;
sctp_clog[sctp_cwnd_log_at].x.blk.chunks_on_oque = (uint16_t) asoc->chunks_on_out_queue;
sctp_clog[sctp_cwnd_log_at].x.blk.flight_size = (uint16_t) (asoc->total_flight / 1024);
sctp_clog[sctp_cwnd_log_at].x.blk.sndlen = sendlen;
}
int
sctp_fill_stat_log(void *optval, size_t *optsize)
{
int sctp_cwnd_log_at;
struct sctp_cwnd_log_req *req;
size_t size_limit;
int num, i, at, cnt_out = 0;
if (*optsize < sizeof(struct sctp_cwnd_log_req)) {
return (EINVAL);
}
size_limit = (*optsize - sizeof(struct sctp_cwnd_log_req));
if (size_limit < sizeof(struct sctp_cwnd_log)) {
return (EINVAL);
}
sctp_cwnd_log_at = global_sctp_cwnd_log_at;
req = (struct sctp_cwnd_log_req *)optval;
num = size_limit / sizeof(struct sctp_cwnd_log);
if (global_sctp_cwnd_log_rolled) {
req->num_in_log = SCTP_STAT_LOG_SIZE;
} else {
req->num_in_log = sctp_cwnd_log_at;
/*
* if the log has not rolled, we don't let you have old
* data.
*/
if (req->end_at > sctp_cwnd_log_at) {
req->end_at = sctp_cwnd_log_at;
}
}
if ((num < SCTP_STAT_LOG_SIZE) &&
((global_sctp_cwnd_log_rolled) || (sctp_cwnd_log_at > num))) {
/* we can't return all of it */
if (((req->start_at == 0) && (req->end_at == 0)) ||
(req->start_at >= SCTP_STAT_LOG_SIZE) ||
(req->end_at >= SCTP_STAT_LOG_SIZE)) {
/* No user request or user is wacked. */
req->num_ret = num;
req->end_at = sctp_cwnd_log_at - 1;
if ((sctp_cwnd_log_at - num) < 0) {
int cc;
cc = num - sctp_cwnd_log_at;
req->start_at = SCTP_STAT_LOG_SIZE - cc;
} else {
req->start_at = sctp_cwnd_log_at - num;
}
} else {
/* a user request */
int cc;
if (req->start_at > req->end_at) {
cc = (SCTP_STAT_LOG_SIZE - req->start_at) +
(req->end_at + 1);
} else {
cc = (req->end_at - req->start_at) + 1;
}
if (cc < num) {
num = cc;
}
req->num_ret = num;
}
} else {
/* We can return all of it */
req->start_at = 0;
req->end_at = sctp_cwnd_log_at - 1;
req->num_ret = sctp_cwnd_log_at;
}
#ifdef INVARIANTS
if (req->num_ret > num) {
panic("Bad statlog get?");
}
#endif
for (i = 0, at = req->start_at; i < req->num_ret; i++) {
req->log[i] = sctp_clog[at];
cnt_out++;
at++;
if (at >= SCTP_STAT_LOG_SIZE)
at = 0;
}
*optsize = (cnt_out * sizeof(struct sctp_cwnd_log)) + sizeof(struct sctp_cwnd_log_req);
return (0);
}
#endif
#ifdef SCTP_AUDITING_ENABLED
uint8_t sctp_audit_data[SCTP_AUDIT_SIZE][2];
static int sctp_audit_indx = 0;
static
void
sctp_print_audit_report(void)
{
int i;
int cnt;
cnt = 0;
for (i = sctp_audit_indx; i < SCTP_AUDIT_SIZE; i++) {
if ((sctp_audit_data[i][0] == 0xe0) &&
(sctp_audit_data[i][1] == 0x01)) {
cnt = 0;
printf("\n");
} else if (sctp_audit_data[i][0] == 0xf0) {
cnt = 0;
printf("\n");
} else if ((sctp_audit_data[i][0] == 0xc0) &&
(sctp_audit_data[i][1] == 0x01)) {
printf("\n");
cnt = 0;
}
printf("%2.2x%2.2x ", (uint32_t) sctp_audit_data[i][0],
(uint32_t) sctp_audit_data[i][1]);
cnt++;
if ((cnt % 14) == 0)
printf("\n");
}
for (i = 0; i < sctp_audit_indx; i++) {
if ((sctp_audit_data[i][0] == 0xe0) &&
(sctp_audit_data[i][1] == 0x01)) {
cnt = 0;
printf("\n");
} else if (sctp_audit_data[i][0] == 0xf0) {
cnt = 0;
printf("\n");
} else if ((sctp_audit_data[i][0] == 0xc0) &&
(sctp_audit_data[i][1] == 0x01)) {
printf("\n");
cnt = 0;
}
printf("%2.2x%2.2x ", (uint32_t) sctp_audit_data[i][0],
(uint32_t) sctp_audit_data[i][1]);
cnt++;
if ((cnt % 14) == 0)
printf("\n");
}
printf("\n");
}
void
sctp_auditing(int from, struct sctp_inpcb *inp, struct sctp_tcb *stcb,
struct sctp_nets *net)
{
int resend_cnt, tot_out, rep, tot_book_cnt;
struct sctp_nets *lnet;
struct sctp_tmit_chunk *chk;
sctp_audit_data[sctp_audit_indx][0] = 0xAA;
sctp_audit_data[sctp_audit_indx][1] = 0x000000ff & from;
sctp_audit_indx++;
if (sctp_audit_indx >= SCTP_AUDIT_SIZE) {
sctp_audit_indx = 0;
}
if (inp == NULL) {
sctp_audit_data[sctp_audit_indx][0] = 0xAF;
sctp_audit_data[sctp_audit_indx][1] = 0x01;
sctp_audit_indx++;
if (sctp_audit_indx >= SCTP_AUDIT_SIZE) {
sctp_audit_indx = 0;
}
return;
}
if (stcb == NULL) {
sctp_audit_data[sctp_audit_indx][0] = 0xAF;
sctp_audit_data[sctp_audit_indx][1] = 0x02;
sctp_audit_indx++;
if (sctp_audit_indx >= SCTP_AUDIT_SIZE) {
sctp_audit_indx = 0;
}
return;
}
sctp_audit_data[sctp_audit_indx][0] = 0xA1;
sctp_audit_data[sctp_audit_indx][1] =
(0x000000ff & stcb->asoc.sent_queue_retran_cnt);
sctp_audit_indx++;
if (sctp_audit_indx >= SCTP_AUDIT_SIZE) {
sctp_audit_indx = 0;
}
rep = 0;
tot_book_cnt = 0;
resend_cnt = tot_out = 0;
TAILQ_FOREACH(chk, &stcb->asoc.sent_queue, sctp_next) {
if (chk->sent == SCTP_DATAGRAM_RESEND) {
resend_cnt++;
} else if (chk->sent < SCTP_DATAGRAM_RESEND) {
tot_out += chk->book_size;
tot_book_cnt++;
}
}
if (resend_cnt != stcb->asoc.sent_queue_retran_cnt) {
sctp_audit_data[sctp_audit_indx][0] = 0xAF;
sctp_audit_data[sctp_audit_indx][1] = 0xA1;
sctp_audit_indx++;
if (sctp_audit_indx >= SCTP_AUDIT_SIZE) {
sctp_audit_indx = 0;
}
printf("resend_cnt:%d asoc-tot:%d\n",
resend_cnt, stcb->asoc.sent_queue_retran_cnt);
rep = 1;
stcb->asoc.sent_queue_retran_cnt = resend_cnt;
sctp_audit_data[sctp_audit_indx][0] = 0xA2;
sctp_audit_data[sctp_audit_indx][1] =
(0x000000ff & stcb->asoc.sent_queue_retran_cnt);
sctp_audit_indx++;
if (sctp_audit_indx >= SCTP_AUDIT_SIZE) {
sctp_audit_indx = 0;
}
}
if (tot_out != stcb->asoc.total_flight) {
sctp_audit_data[sctp_audit_indx][0] = 0xAF;
sctp_audit_data[sctp_audit_indx][1] = 0xA2;
sctp_audit_indx++;
if (sctp_audit_indx >= SCTP_AUDIT_SIZE) {
sctp_audit_indx = 0;
}
rep = 1;
printf("tot_flt:%d asoc_tot:%d\n", tot_out,
(int)stcb->asoc.total_flight);
stcb->asoc.total_flight = tot_out;
}
if (tot_book_cnt != stcb->asoc.total_flight_count) {
sctp_audit_data[sctp_audit_indx][0] = 0xAF;
sctp_audit_data[sctp_audit_indx][1] = 0xA5;
sctp_audit_indx++;
if (sctp_audit_indx >= SCTP_AUDIT_SIZE) {
sctp_audit_indx = 0;
}
rep = 1;
printf("tot_flt_book:%d\n", tot_book);
stcb->asoc.total_flight_count = tot_book_cnt;
}
tot_out = 0;
TAILQ_FOREACH(lnet, &stcb->asoc.nets, sctp_next) {
tot_out += lnet->flight_size;
}
if (tot_out != stcb->asoc.total_flight) {
sctp_audit_data[sctp_audit_indx][0] = 0xAF;
sctp_audit_data[sctp_audit_indx][1] = 0xA3;
sctp_audit_indx++;
if (sctp_audit_indx >= SCTP_AUDIT_SIZE) {
sctp_audit_indx = 0;
}
rep = 1;
printf("real flight:%d net total was %d\n",
stcb->asoc.total_flight, tot_out);
/* now corrective action */
TAILQ_FOREACH(lnet, &stcb->asoc.nets, sctp_next) {
tot_out = 0;
TAILQ_FOREACH(chk, &stcb->asoc.sent_queue, sctp_next) {
if ((chk->whoTo == lnet) &&
(chk->sent < SCTP_DATAGRAM_RESEND)) {
tot_out += chk->book_size;
}
}
if (lnet->flight_size != tot_out) {
printf("net:%x flight was %d corrected to %d\n",
(uint32_t) lnet, lnet->flight_size, tot_out);
lnet->flight_size = tot_out;
}
}
}
if (rep) {
sctp_print_audit_report();
}
}
void
sctp_audit_log(uint8_t ev, uint8_t fd)
{
sctp_audit_data[sctp_audit_indx][0] = ev;
sctp_audit_data[sctp_audit_indx][1] = fd;
sctp_audit_indx++;
if (sctp_audit_indx >= SCTP_AUDIT_SIZE) {
sctp_audit_indx = 0;
}
}
#endif
/*
* a list of sizes based on typical mtu's, used only if next hop size not
* returned.
*/
static int sctp_mtu_sizes[] = {
68,
296,
508,
512,
544,
576,
1006,
1492,
1500,
1536,
2002,
2048,
4352,
4464,
8166,
17914,
32000,
65535
};
void
sctp_stop_timers_for_shutdown(struct sctp_tcb *stcb)
{
struct sctp_association *asoc;
struct sctp_nets *net;
asoc = &stcb->asoc;
SCTP_OS_TIMER_STOP(&asoc->hb_timer.timer);
SCTP_OS_TIMER_STOP(&asoc->dack_timer.timer);
SCTP_OS_TIMER_STOP(&asoc->strreset_timer.timer);
SCTP_OS_TIMER_STOP(&asoc->asconf_timer.timer);
SCTP_OS_TIMER_STOP(&asoc->autoclose_timer.timer);
SCTP_OS_TIMER_STOP(&asoc->delayed_event_timer.timer);
TAILQ_FOREACH(net, &asoc->nets, sctp_next) {
SCTP_OS_TIMER_STOP(&net->fr_timer.timer);
SCTP_OS_TIMER_STOP(&net->pmtu_timer.timer);
}
}
int
find_next_best_mtu(int totsz)
{
int i, perfer;
/*
* if we are in here we must find the next best fit based on the
* size of the dg that failed to be sent.
*/
perfer = 0;
for (i = 0; i < NUMBER_OF_MTU_SIZES; i++) {
if (totsz < sctp_mtu_sizes[i]) {
perfer = i - 1;
if (perfer < 0)
perfer = 0;
break;
}
}
return (sctp_mtu_sizes[perfer]);
}
void
sctp_fill_random_store(struct sctp_pcb *m)
{
/*
* Here we use the MD5/SHA-1 to hash with our good randomNumbers and
* our counter. The result becomes our good random numbers and we
* then setup to give these out. Note that we do no locking to
* protect this. This is ok, since if competing folks call this we
* will get more gobbled gook in the random store whic is what we
* want. There is a danger that two guys will use the same random
* numbers, but thats ok too since that is random as well :->
*/
m->store_at = 0;
sctp_hmac(SCTP_HMAC, (uint8_t *) m->random_numbers,
sizeof(m->random_numbers), (uint8_t *) & m->random_counter,
sizeof(m->random_counter), (uint8_t *) m->random_store);
m->random_counter++;
}
uint32_t
sctp_select_initial_TSN(struct sctp_pcb *m)
{
/*
* A true implementation should use random selection process to get
* the initial stream sequence number, using RFC1750 as a good
* guideline
*/
uint32_t x, *xp;
uint8_t *p;
if (m->initial_sequence_debug != 0) {
uint32_t ret;
ret = m->initial_sequence_debug;
m->initial_sequence_debug++;
return (ret);
}
if ((m->store_at + sizeof(u_long)) > SCTP_SIGNATURE_SIZE) {
/* Refill the random store */
sctp_fill_random_store(m);
}
p = &m->random_store[(int)m->store_at];
xp = (uint32_t *) p;
x = *xp;
m->store_at += sizeof(uint32_t);
return (x);
}
uint32_t
sctp_select_a_tag(struct sctp_inpcb *m)
{
u_long x, not_done;
struct timeval now;
SCTP_GETTIME_TIMEVAL(&now);
not_done = 1;
while (not_done) {
x = sctp_select_initial_TSN(&m->sctp_ep);
if (x == 0) {
/* we never use 0 */
continue;
}
if (sctp_is_vtag_good(m, x, &now)) {
not_done = 0;
}
}
return (x);
}
int
sctp_init_asoc(struct sctp_inpcb *m, struct sctp_association *asoc,
int for_a_init, uint32_t override_tag, uint32_t vrf_id)
{
/*
* Anything set to zero is taken care of by the allocation routine's
* bzero
*/
/*
* Up front select what scoping to apply on addresses I tell my peer
* Not sure what to do with these right now, we will need to come up
* with a way to set them. We may need to pass them through from the
* caller in the sctp_aloc_assoc() function.
*/
int i;
/* init all variables to a known value. */
asoc->state = SCTP_STATE_INUSE;
asoc->max_burst = m->sctp_ep.max_burst;
asoc->heart_beat_delay = TICKS_TO_MSEC(m->sctp_ep.sctp_timeoutticks[SCTP_TIMER_HEARTBEAT]);
asoc->cookie_life = m->sctp_ep.def_cookie_life;
asoc->sctp_cmt_on_off = (uint8_t) sctp_cmt_on_off;
#ifdef INET
asoc->default_tos = m->ip_inp.inp.inp_ip_tos;
#else
asoc->default_tos = 0;
#endif
#ifdef INET6
asoc->default_flowlabel = ((struct in6pcb *)m)->in6p_flowinfo;
#else
asoc->default_flowlabel = 0;
#endif
if (override_tag) {
struct timeval now;
SCTP_GETTIME_TIMEVAL(&now);
if (sctp_is_vtag_good(m, override_tag, &now)) {
asoc->my_vtag = override_tag;
} else {
return (ENOMEM);
}
} else {
asoc->my_vtag = sctp_select_a_tag(m);
}
/* Get the nonce tags */
asoc->my_vtag_nonce = sctp_select_a_tag(m);
asoc->peer_vtag_nonce = sctp_select_a_tag(m);
asoc->vrf_id = vrf_id;
if (sctp_is_feature_on(m, SCTP_PCB_FLAGS_DONOT_HEARTBEAT))
asoc->hb_is_disabled = 1;
else
asoc->hb_is_disabled = 0;
asoc->refcnt = 0;
asoc->assoc_up_sent = 0;
asoc->assoc_id = asoc->my_vtag;
asoc->asconf_seq_out = asoc->str_reset_seq_out = asoc->init_seq_number = asoc->sending_seq =
sctp_select_initial_TSN(&m->sctp_ep);
/* we are optimisitic here */
asoc->peer_supports_pktdrop = 1;
asoc->sent_queue_retran_cnt = 0;
/* for CMT */
asoc->last_net_data_came_from = NULL;
/* This will need to be adjusted */
asoc->last_cwr_tsn = asoc->init_seq_number - 1;
asoc->last_acked_seq = asoc->init_seq_number - 1;
asoc->advanced_peer_ack_point = asoc->last_acked_seq;
asoc->asconf_seq_in = asoc->last_acked_seq;
/* here we are different, we hold the next one we expect */
asoc->str_reset_seq_in = asoc->last_acked_seq + 1;
asoc->initial_init_rto_max = m->sctp_ep.initial_init_rto_max;
asoc->initial_rto = m->sctp_ep.initial_rto;
asoc->max_init_times = m->sctp_ep.max_init_times;
asoc->max_send_times = m->sctp_ep.max_send_times;
asoc->def_net_failure = m->sctp_ep.def_net_failure;
asoc->free_chunk_cnt = 0;
asoc->iam_blocking = 0;
/* ECN Nonce initialization */
asoc->context = m->sctp_context;
asoc->def_send = m->def_send;
asoc->ecn_nonce_allowed = 0;
asoc->receiver_nonce_sum = 1;
asoc->nonce_sum_expect_base = 1;
asoc->nonce_sum_check = 1;
asoc->nonce_resync_tsn = 0;
asoc->nonce_wait_for_ecne = 0;
asoc->nonce_wait_tsn = 0;
asoc->delayed_ack = TICKS_TO_MSEC(m->sctp_ep.sctp_timeoutticks[SCTP_TIMER_RECV]);
asoc->sack_freq = m->sctp_ep.sctp_sack_freq;
asoc->pr_sctp_cnt = 0;
asoc->total_output_queue_size = 0;
if (m->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) {
struct in6pcb *inp6;
/* Its a V6 socket */
inp6 = (struct in6pcb *)m;
asoc->ipv6_addr_legal = 1;
/* Now look at the binding flag to see if V4 will be legal */
if (SCTP_IPV6_V6ONLY(inp6) == 0) {
asoc->ipv4_addr_legal = 1;
} else {
/* V4 addresses are NOT legal on the association */
asoc->ipv4_addr_legal = 0;
}
} else {
/* Its a V4 socket, no - V6 */
asoc->ipv4_addr_legal = 1;
asoc->ipv6_addr_legal = 0;
}
asoc->my_rwnd = max(SCTP_SB_LIMIT_RCV(m->sctp_socket), SCTP_MINIMAL_RWND);
asoc->peers_rwnd = SCTP_SB_LIMIT_RCV(m->sctp_socket);
asoc->smallest_mtu = m->sctp_frag_point;
asoc->minrto = m->sctp_ep.sctp_minrto;
asoc->maxrto = m->sctp_ep.sctp_maxrto;
asoc->locked_on_sending = NULL;
asoc->stream_locked_on = 0;
asoc->ecn_echo_cnt_onq = 0;
asoc->stream_locked = 0;
asoc->send_sack = 1;
LIST_INIT(&asoc->sctp_restricted_addrs);
TAILQ_INIT(&asoc->nets);
TAILQ_INIT(&asoc->pending_reply_queue);
asoc->last_asconf_ack_sent = NULL;
/* Setup to fill the hb random cache at first HB */
asoc->hb_random_idx = 4;
asoc->sctp_autoclose_ticks = m->sctp_ep.auto_close_time;
/*
* Now the stream parameters, here we allocate space for all streams
* that we request by default.
*/
asoc->streamoutcnt = asoc->pre_open_streams =
m->sctp_ep.pre_open_stream_count;
SCTP_MALLOC(asoc->strmout, struct sctp_stream_out *,
asoc->streamoutcnt * sizeof(struct sctp_stream_out),
"StreamsOut");
if (asoc->strmout == NULL) {
/* big trouble no memory */
return (ENOMEM);
}
for (i = 0; i < asoc->streamoutcnt; i++) {
/*
* inbound side must be set to 0xffff, also NOTE when we get
* the INIT-ACK back (for INIT sender) we MUST reduce the
* count (streamoutcnt) but first check if we sent to any of
* the upper streams that were dropped (if some were). Those
* that were dropped must be notified to the upper layer as
* failed to send.
*/
asoc->strmout[i].next_sequence_sent = 0x0;
TAILQ_INIT(&asoc->strmout[i].outqueue);
asoc->strmout[i].stream_no = i;
asoc->strmout[i].last_msg_incomplete = 0;
asoc->strmout[i].next_spoke.tqe_next = 0;
asoc->strmout[i].next_spoke.tqe_prev = 0;
}
/* Now the mapping array */
asoc->mapping_array_size = SCTP_INITIAL_MAPPING_ARRAY;
SCTP_MALLOC(asoc->mapping_array, uint8_t *, asoc->mapping_array_size,
"MappingArray");
if (asoc->mapping_array == NULL) {
SCTP_FREE(asoc->strmout);
return (ENOMEM);
}
memset(asoc->mapping_array, 0, asoc->mapping_array_size);
/* Now the init of the other outqueues */
TAILQ_INIT(&asoc->free_chunks);
TAILQ_INIT(&asoc->free_strmoq);
TAILQ_INIT(&asoc->out_wheel);
TAILQ_INIT(&asoc->control_send_queue);
TAILQ_INIT(&asoc->send_queue);
TAILQ_INIT(&asoc->sent_queue);
TAILQ_INIT(&asoc->reasmqueue);
TAILQ_INIT(&asoc->resetHead);
asoc->max_inbound_streams = m->sctp_ep.max_open_streams_intome;
TAILQ_INIT(&asoc->asconf_queue);
/* authentication fields */
asoc->authinfo.random = NULL;
asoc->authinfo.assoc_key = NULL;
asoc->authinfo.assoc_keyid = 0;
asoc->authinfo.recv_key = NULL;
asoc->authinfo.recv_keyid = 0;
LIST_INIT(&asoc->shared_keys);
asoc->marked_retrans = 0;
asoc->timoinit = 0;
asoc->timodata = 0;
asoc->timosack = 0;
asoc->timoshutdown = 0;
asoc->timoheartbeat = 0;
asoc->timocookie = 0;
asoc->timoshutdownack = 0;
SCTP_GETTIME_TIMEVAL(&asoc->start_time);
SCTP_GETTIME_TIMEVAL(&asoc->discontinuity_time);
return (0);
}
int
sctp_expand_mapping_array(struct sctp_association *asoc)
{
/* mapping array needs to grow */
uint8_t *new_array;
uint16_t new_size;
new_size = asoc->mapping_array_size + SCTP_MAPPING_ARRAY_INCR;
SCTP_MALLOC(new_array, uint8_t *, new_size, "MappingArray");
if (new_array == NULL) {
/* can't get more, forget it */
printf("No memory for expansion of SCTP mapping array %d\n",
new_size);
return (-1);
}
memset(new_array, 0, new_size);
memcpy(new_array, asoc->mapping_array, asoc->mapping_array_size);
SCTP_FREE(asoc->mapping_array);
asoc->mapping_array = new_array;
asoc->mapping_array_size = new_size;
return (0);
}
#if defined(SCTP_USE_THREAD_BASED_ITERATOR)
static void
sctp_iterator_work(struct sctp_iterator *it)
{
int iteration_count = 0;
int inp_skip = 0;
SCTP_ITERATOR_LOCK();
if (it->inp)
SCTP_INP_DECR_REF(it->inp);
if (it->inp == NULL) {
/* iterator is complete */
done_with_iterator:
SCTP_ITERATOR_UNLOCK();
if (it->function_atend != NULL) {
(*it->function_atend) (it->pointer, it->val);
}
SCTP_FREE(it);
return;
}
select_a_new_ep:
SCTP_INP_WLOCK(it->inp);
while (((it->pcb_flags) &&
((it->inp->sctp_flags & it->pcb_flags) != it->pcb_flags)) ||
((it->pcb_features) &&
((it->inp->sctp_features & it->pcb_features) != it->pcb_features))) {
/* endpoint flags or features don't match, so keep looking */
if (it->iterator_flags & SCTP_ITERATOR_DO_SINGLE_INP) {
SCTP_INP_WUNLOCK(it->inp);
goto done_with_iterator;
}
SCTP_INP_WUNLOCK(it->inp);
it->inp = LIST_NEXT(it->inp, sctp_list);
if (it->inp == NULL) {
goto done_with_iterator;
}
SCTP_INP_WLOCK(it->inp);
}
/* mark the current iterator on the endpoint */
it->inp->inp_starting_point_for_iterator = it;
SCTP_INP_WUNLOCK(it->inp);
SCTP_INP_RLOCK(it->inp);
/* now go through each assoc which is in the desired state */
if (it->done_current_ep == 0) {
if (it->function_inp != NULL)
inp_skip = (*it->function_inp) (it->inp, it->pointer, it->val);
it->done_current_ep = 1;
}
if (it->stcb == NULL) {
/* run the per instance function */
it->stcb = LIST_FIRST(&it->inp->sctp_asoc_list);
}
if ((inp_skip) || it->stcb == NULL) {
if (it->function_inp_end != NULL) {
inp_skip = (*it->function_inp_end) (it->inp,
it->pointer,
it->val);
}
SCTP_INP_RUNLOCK(it->inp);
goto no_stcb;
}
if ((it->stcb) &&
(it->stcb->asoc.stcb_starting_point_for_iterator == it)) {
it->stcb->asoc.stcb_starting_point_for_iterator = NULL;
}
while (it->stcb) {
SCTP_TCB_LOCK(it->stcb);
if (it->asoc_state && ((it->stcb->asoc.state & it->asoc_state) != it->asoc_state)) {
/* not in the right state... keep looking */
SCTP_TCB_UNLOCK(it->stcb);
goto next_assoc;
}
/* mark the current iterator on the assoc */
it->stcb->asoc.stcb_starting_point_for_iterator = it;
/* see if we have limited out the iterator loop */
iteration_count++;
if (iteration_count > SCTP_ITERATOR_MAX_AT_ONCE) {
/* Pause to let others grab the lock */
atomic_add_int(&it->stcb->asoc.refcnt, 1);
SCTP_TCB_UNLOCK(it->stcb);
SCTP_INP_RUNLOCK(it->inp);
SCTP_ITERATOR_UNLOCK();
SCTP_ITERATOR_LOCK();
SCTP_INP_RLOCK(it->inp);
SCTP_TCB_LOCK(it->stcb);
atomic_add_int(&it->stcb->asoc.refcnt, -1);
iteration_count = 0;
}
/* run function on this one */
(*it->function_assoc) (it->inp, it->stcb, it->pointer, it->val);
/*
* we lie here, it really needs to have its own type but
* first I must verify that this won't effect things :-0
*/
if (it->no_chunk_output == 0)
sctp_chunk_output(it->inp, it->stcb, SCTP_OUTPUT_FROM_T3);
SCTP_TCB_UNLOCK(it->stcb);
next_assoc:
it->stcb = LIST_NEXT(it->stcb, sctp_tcblist);
if (it->stcb == NULL) {
/* Run last function */
if (it->function_inp_end != NULL) {
inp_skip = (*it->function_inp_end) (it->inp,
it->pointer,
it->val);
}
}
}
SCTP_INP_RUNLOCK(it->inp);
no_stcb:
/* done with all assocs on this endpoint, move on to next endpoint */
it->done_current_ep = 0;
SCTP_INP_WLOCK(it->inp);
it->inp->inp_starting_point_for_iterator = NULL;
SCTP_INP_WUNLOCK(it->inp);
if (it->iterator_flags & SCTP_ITERATOR_DO_SINGLE_INP) {
it->inp = NULL;
} else {
SCTP_INP_INFO_RLOCK();
it->inp = LIST_NEXT(it->inp, sctp_list);
SCTP_INP_INFO_RUNLOCK();
}
if (it->inp == NULL) {
goto done_with_iterator;
}
goto select_a_new_ep;
}
void
sctp_iterator_worker(void)
{
struct sctp_iterator *it = NULL;
/* This function is called with the WQ lock in place */
sctppcbinfo.iterator_running = 1;
again:
it = TAILQ_FIRST(&sctppcbinfo.iteratorhead);
while (it) {
/* now lets work on this one */
TAILQ_REMOVE(&sctppcbinfo.iteratorhead, it, sctp_nxt_itr);
SCTP_IPI_ITERATOR_WQ_UNLOCK();
sctp_iterator_work(it);
SCTP_IPI_ITERATOR_WQ_LOCK();
it = TAILQ_FIRST(&sctppcbinfo.iteratorhead);
}
if (TAILQ_FIRST(&sctppcbinfo.iteratorhead)) {
goto again;
}
sctppcbinfo.iterator_running = 0;
return;
}
#endif
static void
sctp_handle_addr_wq(void)
{
/* deal with the ADDR wq from the rtsock calls */
struct sctp_laddr *wi;
struct sctp_asconf_iterator *asc;
SCTP_MALLOC(asc, struct sctp_asconf_iterator *,
sizeof(struct sctp_asconf_iterator), "SCTP_ASCONF_ITERATOR");
if (asc == NULL) {
/* Try later, no memory */
sctp_timer_start(SCTP_TIMER_TYPE_ADDR_WQ,
(struct sctp_inpcb *)NULL,
(struct sctp_tcb *)NULL,
(struct sctp_nets *)NULL);
return;
}
LIST_INIT(&asc->list_of_work);
asc->cnt = 0;
SCTP_IPI_ITERATOR_WQ_LOCK();
wi = LIST_FIRST(&sctppcbinfo.addr_wq);
while (wi != NULL) {
LIST_REMOVE(wi, sctp_nxt_addr);
LIST_INSERT_HEAD(&asc->list_of_work, wi, sctp_nxt_addr);
asc->cnt++;
wi = LIST_FIRST(&sctppcbinfo.addr_wq);
}
SCTP_IPI_ITERATOR_WQ_UNLOCK();
if (asc->cnt == 0) {
SCTP_FREE(asc);
} else {
sctp_initiate_iterator(sctp_iterator_ep,
sctp_iterator_stcb,
NULL, /* No ep end for boundall */
SCTP_PCB_FLAGS_BOUNDALL,
SCTP_PCB_ANY_FEATURES,
SCTP_ASOC_ANY_STATE, (void *)asc, 0,
sctp_iterator_end, NULL, 0);
}
}
void
sctp_timeout_handler(void *t)
{
struct sctp_inpcb *inp;
struct sctp_tcb *stcb;
struct sctp_nets *net;
struct sctp_timer *tmr;
int did_output;
struct sctp_iterator *it = NULL;
tmr = (struct sctp_timer *)t;
inp = (struct sctp_inpcb *)tmr->ep;
stcb = (struct sctp_tcb *)tmr->tcb;
net = (struct sctp_nets *)tmr->net;
did_output = 1;
#ifdef SCTP_AUDITING_ENABLED
sctp_audit_log(0xF0, (uint8_t) tmr->type);
sctp_auditing(3, inp, stcb, net);
#endif
/* sanity checks... */
if (tmr->self != (void *)tmr) {
/*
* printf("Stale SCTP timer fired (%p), ignoring...\n",
* tmr);
*/
return;
}
tmr->stopped_from = 0xa001;
if (!SCTP_IS_TIMER_TYPE_VALID(tmr->type)) {
/*
* printf("SCTP timer fired with invalid type: 0x%x\n",
* tmr->type);
*/
return;
}
tmr->stopped_from = 0xa002;
if ((tmr->type != SCTP_TIMER_TYPE_ADDR_WQ) && (inp == NULL)) {
return;
}
/* if this is an iterator timeout, get the struct and clear inp */
tmr->stopped_from = 0xa003;
if (tmr->type == SCTP_TIMER_TYPE_ITERATOR) {
it = (struct sctp_iterator *)inp;
inp = NULL;
}
if (inp) {
SCTP_INP_INCR_REF(inp);
if ((inp->sctp_socket == 0) &&
((tmr->type != SCTP_TIMER_TYPE_INPKILL) &&
(tmr->type != SCTP_TIMER_TYPE_SHUTDOWN) &&
(tmr->type != SCTP_TIMER_TYPE_SHUTDOWNACK) &&
(tmr->type != SCTP_TIMER_TYPE_SHUTDOWNGUARD) &&
(tmr->type != SCTP_TIMER_TYPE_ASOCKILL))
) {
SCTP_INP_DECR_REF(inp);
return;
}
}
tmr->stopped_from = 0xa004;
if (stcb) {
if (stcb->asoc.state == 0) {
if (inp) {
SCTP_INP_DECR_REF(inp);
}
return;
}
}
tmr->stopped_from = 0xa005;
#ifdef SCTP_DEBUG
if (sctp_debug_on & SCTP_DEBUG_TIMER1) {
printf("Timer type %d goes off\n", tmr->type);
}
#endif /* SCTP_DEBUG */
if (!SCTP_OS_TIMER_ACTIVE(&tmr->timer)) {
if (inp) {
SCTP_INP_DECR_REF(inp);
}
return;
}
tmr->stopped_from = 0xa006;
if (stcb) {
atomic_add_int(&stcb->asoc.refcnt, 1);
SCTP_TCB_LOCK(stcb);
atomic_add_int(&stcb->asoc.refcnt, -1);
}
/* record in stopped what t-o occured */
tmr->stopped_from = tmr->type;
/* mark as being serviced now */
if (SCTP_OS_TIMER_PENDING(&tmr->timer)) {
/*
* Callout has been rescheduled.
*/
goto get_out;
}
if (!SCTP_OS_TIMER_ACTIVE(&tmr->timer)) {
/*
* Not active, so no action.
*/
goto get_out;
}
SCTP_OS_TIMER_DEACTIVATE(&tmr->timer);
/* call the handler for the appropriate timer type */
switch (tmr->type) {
case SCTP_TIMER_TYPE_ADDR_WQ:
sctp_handle_addr_wq();
break;
case SCTP_TIMER_TYPE_ITERATOR:
SCTP_STAT_INCR(sctps_timoiterator);
sctp_iterator_timer(it);
break;
case SCTP_TIMER_TYPE_SEND:
SCTP_STAT_INCR(sctps_timodata);
stcb->asoc.timodata++;
stcb->asoc.num_send_timers_up--;
if (stcb->asoc.num_send_timers_up < 0) {
stcb->asoc.num_send_timers_up = 0;
}
if (sctp_t3rxt_timer(inp, stcb, net)) {
/* no need to unlock on tcb its gone */
goto out_decr;
}
#ifdef SCTP_AUDITING_ENABLED
sctp_auditing(4, inp, stcb, net);
#endif
sctp_chunk_output(inp, stcb, SCTP_OUTPUT_FROM_T3);
if ((stcb->asoc.num_send_timers_up == 0) &&
(stcb->asoc.sent_queue_cnt > 0)
) {
struct sctp_tmit_chunk *chk;
/*
* safeguard. If there on some on the sent queue
* somewhere but no timers running something is
* wrong... so we start a timer on the first chunk
* on the send queue on whatever net it is sent to.
*/
chk = TAILQ_FIRST(&stcb->asoc.sent_queue);
sctp_timer_start(SCTP_TIMER_TYPE_SEND, inp, stcb,
chk->whoTo);
}
break;
case SCTP_TIMER_TYPE_INIT:
SCTP_STAT_INCR(sctps_timoinit);
stcb->asoc.timoinit++;
if (sctp_t1init_timer(inp, stcb, net)) {
/* no need to unlock on tcb its gone */
goto out_decr;
}
/* We do output but not here */
did_output = 0;
break;
case SCTP_TIMER_TYPE_RECV:
SCTP_STAT_INCR(sctps_timosack);
stcb->asoc.timosack++;
sctp_send_sack(stcb);
#ifdef SCTP_AUDITING_ENABLED
sctp_auditing(4, inp, stcb, net);
#endif
sctp_chunk_output(inp, stcb, SCTP_OUTPUT_FROM_SACK_TMR);
break;
case SCTP_TIMER_TYPE_SHUTDOWN:
if (sctp_shutdown_timer(inp, stcb, net)) {
/* no need to unlock on tcb its gone */
goto out_decr;
}
SCTP_STAT_INCR(sctps_timoshutdown);
stcb->asoc.timoshutdown++;
#ifdef SCTP_AUDITING_ENABLED
sctp_auditing(4, inp, stcb, net);
#endif
sctp_chunk_output(inp, stcb, SCTP_OUTPUT_FROM_SHUT_TMR);
break;
case SCTP_TIMER_TYPE_HEARTBEAT:
{
struct sctp_nets *net;
int cnt_of_unconf = 0;
SCTP_STAT_INCR(sctps_timoheartbeat);
stcb->asoc.timoheartbeat++;
TAILQ_FOREACH(net, &stcb->asoc.nets, sctp_next) {
if ((net->dest_state & SCTP_ADDR_UNCONFIRMED) &&
(net->dest_state & SCTP_ADDR_REACHABLE)) {
cnt_of_unconf++;
}
}
if (cnt_of_unconf == 0) {
if (sctp_heartbeat_timer(inp, stcb, net, cnt_of_unconf)) {
/* no need to unlock on tcb its gone */
goto out_decr;
}
}
#ifdef SCTP_AUDITING_ENABLED
sctp_auditing(4, inp, stcb, net);
#endif
sctp_timer_start(SCTP_TIMER_TYPE_HEARTBEAT, stcb->sctp_ep,
stcb, net);
sctp_chunk_output(inp, stcb, SCTP_OUTPUT_FROM_HB_TMR);
}
break;
case SCTP_TIMER_TYPE_COOKIE:
if (sctp_cookie_timer(inp, stcb, net)) {
/* no need to unlock on tcb its gone */
goto out_decr;
}
SCTP_STAT_INCR(sctps_timocookie);
stcb->asoc.timocookie++;
#ifdef SCTP_AUDITING_ENABLED
sctp_auditing(4, inp, stcb, net);
#endif
/*
* We consider T3 and Cookie timer pretty much the same with
* respect to where from in chunk_output.
*/
sctp_chunk_output(inp, stcb, SCTP_OUTPUT_FROM_T3);
break;
case SCTP_TIMER_TYPE_NEWCOOKIE:
{
struct timeval tv;
int i, secret;
SCTP_STAT_INCR(sctps_timosecret);
SCTP_GETTIME_TIMEVAL(&tv);
SCTP_INP_WLOCK(inp);
inp->sctp_ep.time_of_secret_change = tv.tv_sec;
inp->sctp_ep.last_secret_number =
inp->sctp_ep.current_secret_number;
inp->sctp_ep.current_secret_number++;
if (inp->sctp_ep.current_secret_number >=
SCTP_HOW_MANY_SECRETS) {
inp->sctp_ep.current_secret_number = 0;
}
secret = (int)inp->sctp_ep.current_secret_number;
for (i = 0; i < SCTP_NUMBER_OF_SECRETS; i++) {
inp->sctp_ep.secret_key[secret][i] =
sctp_select_initial_TSN(&inp->sctp_ep);
}
SCTP_INP_WUNLOCK(inp);
sctp_timer_start(SCTP_TIMER_TYPE_NEWCOOKIE, inp, stcb, net);
}
did_output = 0;
break;
case SCTP_TIMER_TYPE_PATHMTURAISE:
SCTP_STAT_INCR(sctps_timopathmtu);
sctp_pathmtu_timer(inp, stcb, net);
did_output = 0;
break;
case SCTP_TIMER_TYPE_SHUTDOWNACK:
if (sctp_shutdownack_timer(inp, stcb, net)) {
/* no need to unlock on tcb its gone */
goto out_decr;
}
SCTP_STAT_INCR(sctps_timoshutdownack);
stcb->asoc.timoshutdownack++;
#ifdef SCTP_AUDITING_ENABLED
sctp_auditing(4, inp, stcb, net);
#endif
sctp_chunk_output(inp, stcb, SCTP_OUTPUT_FROM_SHUT_ACK_TMR);
break;
case SCTP_TIMER_TYPE_SHUTDOWNGUARD:
SCTP_STAT_INCR(sctps_timoshutdownguard);
sctp_abort_an_association(inp, stcb,
SCTP_SHUTDOWN_GUARD_EXPIRES, NULL);
/* no need to unlock on tcb its gone */
goto out_decr;
break;
case SCTP_TIMER_TYPE_STRRESET:
if (sctp_strreset_timer(inp, stcb, net)) {
/* no need to unlock on tcb its gone */
goto out_decr;
}
SCTP_STAT_INCR(sctps_timostrmrst);
sctp_chunk_output(inp, stcb, SCTP_OUTPUT_FROM_STRRST_TMR);
break;
case SCTP_TIMER_TYPE_EARLYFR:
/* Need to do FR of things for net */
SCTP_STAT_INCR(sctps_timoearlyfr);
sctp_early_fr_timer(inp, stcb, net);
break;
case SCTP_TIMER_TYPE_ASCONF:
if (sctp_asconf_timer(inp, stcb, net)) {
/* no need to unlock on tcb its gone */
goto out_decr;
}
SCTP_STAT_INCR(sctps_timoasconf);
#ifdef SCTP_AUDITING_ENABLED
sctp_auditing(4, inp, stcb, net);
#endif
sctp_chunk_output(inp, stcb, SCTP_OUTPUT_FROM_ASCONF_TMR);
break;
case SCTP_TIMER_TYPE_AUTOCLOSE:
SCTP_STAT_INCR(sctps_timoautoclose);
sctp_autoclose_timer(inp, stcb, net);
sctp_chunk_output(inp, stcb, SCTP_OUTPUT_FROM_AUTOCLOSE_TMR);
did_output = 0;
break;
case SCTP_TIMER_TYPE_ASOCKILL:
SCTP_STAT_INCR(sctps_timoassockill);
/* Can we free it yet? */
SCTP_INP_DECR_REF(inp);
sctp_timer_stop(SCTP_TIMER_TYPE_ASOCKILL, inp, stcb, NULL, SCTP_FROM_SCTPUTIL + SCTP_LOC_1);
sctp_free_assoc(inp, stcb, SCTP_NORMAL_PROC, SCTP_FROM_SCTPUTIL + SCTP_LOC_2);
/*
* free asoc, always unlocks (or destroy's) so prevent
* duplicate unlock or unlock of a free mtx :-0
*/
stcb = NULL;
goto out_no_decr;
break;
case SCTP_TIMER_TYPE_INPKILL:
SCTP_STAT_INCR(sctps_timoinpkill);
/*
* special case, take away our increment since WE are the
* killer
*/
SCTP_INP_DECR_REF(inp);
sctp_timer_stop(SCTP_TIMER_TYPE_INPKILL, inp, NULL, NULL, SCTP_FROM_SCTPUTIL + SCTP_LOC_3);
sctp_inpcb_free(inp, 1, 0);
goto out_no_decr;
break;
default:
#ifdef SCTP_DEBUG
if (sctp_debug_on & SCTP_DEBUG_TIMER1) {
printf("sctp_timeout_handler:unknown timer %d\n",
tmr->type);
}
#endif /* SCTP_DEBUG */
break;
};
#ifdef SCTP_AUDITING_ENABLED
sctp_audit_log(0xF1, (uint8_t) tmr->type);
if (inp)
sctp_auditing(5, inp, stcb, net);
#endif
if ((did_output) && stcb) {
/*
* Now we need to clean up the control chunk chain if an
* ECNE is on it. It must be marked as UNSENT again so next
* call will continue to send it until such time that we get
* a CWR, to remove it. It is, however, less likely that we
* will find a ecn echo on the chain though.
*/
sctp_fix_ecn_echo(&stcb->asoc);
}
get_out:
if (stcb) {
SCTP_TCB_UNLOCK(stcb);
}
out_decr:
if (inp) {
SCTP_INP_DECR_REF(inp);
}
out_no_decr:
#ifdef SCTP_DEBUG
if (sctp_debug_on & SCTP_DEBUG_TIMER1) {
printf("Timer now complete (type %d)\n", tmr->type);
}
#endif /* SCTP_DEBUG */
if (inp) {
}
}
int
sctp_timer_start(int t_type, struct sctp_inpcb *inp, struct sctp_tcb *stcb,
struct sctp_nets *net)
{
int to_ticks;
struct sctp_timer *tmr;
if ((t_type != SCTP_TIMER_TYPE_ADDR_WQ) && (inp == NULL))
return (EFAULT);
to_ticks = 0;
tmr = NULL;
if (stcb) {
SCTP_TCB_LOCK_ASSERT(stcb);
}
switch (t_type) {
case SCTP_TIMER_TYPE_ADDR_WQ:
/* Only 1 tick away :-) */
tmr = &sctppcbinfo.addr_wq_timer;
to_ticks = SCTP_ADDRESS_TICK_DELAY;
break;
case SCTP_TIMER_TYPE_ITERATOR:
{
struct sctp_iterator *it;
it = (struct sctp_iterator *)inp;
tmr = &it->tmr;
to_ticks = SCTP_ITERATOR_TICKS;
}
break;
case SCTP_TIMER_TYPE_SEND:
/* Here we use the RTO timer */
{
int rto_val;
if ((stcb == NULL) || (net == NULL)) {
return (EFAULT);
}
tmr = &net->rxt_timer;
if (net->RTO == 0) {
rto_val = stcb->asoc.initial_rto;
} else {
rto_val = net->RTO;
}
to_ticks = MSEC_TO_TICKS(rto_val);
}
break;
case SCTP_TIMER_TYPE_INIT:
/*
* Here we use the INIT timer default usually about 1
* minute.
*/
if ((stcb == NULL) || (net == NULL)) {
return (EFAULT);
}
tmr = &net->rxt_timer;
if (net->RTO == 0) {
to_ticks = MSEC_TO_TICKS(stcb->asoc.initial_rto);
} else {
to_ticks = MSEC_TO_TICKS(net->RTO);
}
break;
case SCTP_TIMER_TYPE_RECV:
/*
* Here we use the Delayed-Ack timer value from the inp
* ususually about 200ms.
*/
if (stcb == NULL) {
return (EFAULT);
}
tmr = &stcb->asoc.dack_timer;
to_ticks = MSEC_TO_TICKS(stcb->asoc.delayed_ack);
break;
case SCTP_TIMER_TYPE_SHUTDOWN:
/* Here we use the RTO of the destination. */
if ((stcb == NULL) || (net == NULL)) {
return (EFAULT);
}
if (net->RTO == 0) {
to_ticks = MSEC_TO_TICKS(stcb->asoc.initial_rto);
} else {
to_ticks = MSEC_TO_TICKS(net->RTO);
}
tmr = &net->rxt_timer;
break;
case SCTP_TIMER_TYPE_HEARTBEAT:
/*
* the net is used here so that we can add in the RTO. Even
* though we use a different timer. We also add the HB timer
* PLUS a random jitter.
*/
if (stcb == NULL) {
return (EFAULT);
} {
uint32_t rndval;
uint8_t this_random;
int cnt_of_unconf = 0;
struct sctp_nets *lnet;
TAILQ_FOREACH(lnet, &stcb->asoc.nets, sctp_next) {
if ((lnet->dest_state & SCTP_ADDR_UNCONFIRMED) &&
(lnet->dest_state & SCTP_ADDR_REACHABLE)) {
cnt_of_unconf++;
}
}
if (cnt_of_unconf) {
lnet = NULL;
sctp_heartbeat_timer(inp, stcb, lnet, cnt_of_unconf);
}
if (stcb->asoc.hb_random_idx > 3) {
rndval = sctp_select_initial_TSN(&inp->sctp_ep);
memcpy(stcb->asoc.hb_random_values, &rndval,
sizeof(stcb->asoc.hb_random_values));
stcb->asoc.hb_random_idx = 0;
}
this_random = stcb->asoc.hb_random_values[stcb->asoc.hb_random_idx];
stcb->asoc.hb_random_idx++;
stcb->asoc.hb_ect_randombit = 0;
/*
* this_random will be 0 - 256 ms RTO is in ms.
*/
if ((stcb->asoc.hb_is_disabled) &&
(cnt_of_unconf == 0)) {
return (0);
}
if (net) {
struct sctp_nets *lnet;
int delay;
delay = stcb->asoc.heart_beat_delay;
TAILQ_FOREACH(lnet, &stcb->asoc.nets, sctp_next) {
if ((lnet->dest_state & SCTP_ADDR_UNCONFIRMED) &&
((lnet->dest_state & SCTP_ADDR_OUT_OF_SCOPE) == 0) &&
(lnet->dest_state & SCTP_ADDR_REACHABLE)) {
delay = 0;
}
}
if (net->RTO == 0) {
/* Never been checked */
to_ticks = this_random + stcb->asoc.initial_rto + delay;
} else {
/* set rto_val to the ms */
to_ticks = delay + net->RTO + this_random;
}
} else {
if (cnt_of_unconf) {
to_ticks = this_random + stcb->asoc.initial_rto;
} else {
to_ticks = stcb->asoc.heart_beat_delay + this_random + stcb->asoc.initial_rto;
}
}
/*
* Now we must convert the to_ticks that are now in
* ms to ticks.
*/
to_ticks = MSEC_TO_TICKS(to_ticks);
tmr = &stcb->asoc.hb_timer;
}
break;
case SCTP_TIMER_TYPE_COOKIE:
/*
* Here we can use the RTO timer from the network since one
* RTT was compelete. If a retran happened then we will be
* using the RTO initial value.
*/
if ((stcb == NULL) || (net == NULL)) {
return (EFAULT);
}
if (net->RTO == 0) {
to_ticks = MSEC_TO_TICKS(stcb->asoc.initial_rto);
} else {
to_ticks = MSEC_TO_TICKS(net->RTO);
}
tmr = &net->rxt_timer;
break;
case SCTP_TIMER_TYPE_NEWCOOKIE:
/*
* nothing needed but the endpoint here ususually about 60
* minutes.
*/
tmr = &inp->sctp_ep.signature_change;
to_ticks = inp->sctp_ep.sctp_timeoutticks[SCTP_TIMER_SIGNATURE];
break;
case SCTP_TIMER_TYPE_ASOCKILL:
if (stcb == NULL) {
return (EFAULT);
}
tmr = &stcb->asoc.strreset_timer;
to_ticks = MSEC_TO_TICKS(SCTP_ASOC_KILL_TIMEOUT);
break;
case SCTP_TIMER_TYPE_INPKILL:
/*
* The inp is setup to die. We re-use the signature_chage
* timer since that has stopped and we are in the GONE
* state.
*/
tmr = &inp->sctp_ep.signature_change;
to_ticks = MSEC_TO_TICKS(SCTP_INP_KILL_TIMEOUT);
break;
case SCTP_TIMER_TYPE_PATHMTURAISE:
/*
* Here we use the value found in the EP for PMTU ususually
* about 10 minutes.
*/
if (stcb == NULL) {
return (EFAULT);
}
if (net == NULL) {
return (EFAULT);
}
to_ticks = inp->sctp_ep.sctp_timeoutticks[SCTP_TIMER_PMTU];
tmr = &net->pmtu_timer;
break;
case SCTP_TIMER_TYPE_SHUTDOWNACK:
/* Here we use the RTO of the destination */
if ((stcb == NULL) || (net == NULL)) {
return (EFAULT);
}
if (net->RTO == 0) {
to_ticks = MSEC_TO_TICKS(stcb->asoc.initial_rto);
} else {
to_ticks = MSEC_TO_TICKS(net->RTO);
}
tmr = &net->rxt_timer;
break;
case SCTP_TIMER_TYPE_SHUTDOWNGUARD:
/*
* Here we use the endpoints shutdown guard timer usually
* about 3 minutes.
*/
if (stcb == NULL) {
return (EFAULT);
}
to_ticks = inp->sctp_ep.sctp_timeoutticks[SCTP_TIMER_MAXSHUTDOWN];
tmr = &stcb->asoc.shut_guard_timer;
break;
case SCTP_TIMER_TYPE_STRRESET:
/*
* Here the timer comes from the inp but its value is from
* the RTO.
*/
if ((stcb == NULL) || (net == NULL)) {
return (EFAULT);
}
if (net->RTO == 0) {
to_ticks = MSEC_TO_TICKS(stcb->asoc.initial_rto);
} else {
to_ticks = MSEC_TO_TICKS(net->RTO);
}
tmr = &stcb->asoc.strreset_timer;
break;
case SCTP_TIMER_TYPE_EARLYFR:
{
unsigned int msec;
if ((stcb == NULL) || (net == NULL)) {
return (EFAULT);
}
if (net->flight_size > net->cwnd) {
/* no need to start */
return (0);
}
SCTP_STAT_INCR(sctps_earlyfrstart);
if (net->lastsa == 0) {
/* Hmm no rtt estimate yet? */
msec = stcb->asoc.initial_rto >> 2;
} else {
msec = ((net->lastsa >> 2) + net->lastsv) >> 1;
}
if (msec < sctp_early_fr_msec) {
msec = sctp_early_fr_msec;
if (msec < SCTP_MINFR_MSEC_FLOOR) {
msec = SCTP_MINFR_MSEC_FLOOR;
}
}
to_ticks = MSEC_TO_TICKS(msec);
tmr = &net->fr_timer;
}
break;
case SCTP_TIMER_TYPE_ASCONF:
/*
* Here the timer comes from the inp but its value is from
* the RTO.
*/
if ((stcb == NULL) || (net == NULL)) {
return (EFAULT);
}
if (net->RTO == 0) {
to_ticks = MSEC_TO_TICKS(stcb->asoc.initial_rto);
} else {
to_ticks = MSEC_TO_TICKS(net->RTO);
}
tmr = &stcb->asoc.asconf_timer;
break;
case SCTP_TIMER_TYPE_AUTOCLOSE:
if (stcb == NULL) {
return (EFAULT);
}
if (stcb->asoc.sctp_autoclose_ticks == 0) {
/*
* Really an error since stcb is NOT set to
* autoclose
*/
return (0);
}
to_ticks = stcb->asoc.sctp_autoclose_ticks;
tmr = &stcb->asoc.autoclose_timer;
break;
default:
#ifdef SCTP_DEBUG
if (sctp_debug_on & SCTP_DEBUG_TIMER1) {
printf("sctp_timer_start:Unknown timer type %d\n",
t_type);
}
#endif /* SCTP_DEBUG */
return (EFAULT);
break;
};
if ((to_ticks <= 0) || (tmr == NULL)) {
#ifdef SCTP_DEBUG
if (sctp_debug_on & SCTP_DEBUG_TIMER1) {
printf("sctp_timer_start:%d:software error to_ticks:%d tmr:%p not set ??\n",
t_type, to_ticks, tmr);
}
#endif /* SCTP_DEBUG */
return (EFAULT);
}
if (SCTP_OS_TIMER_PENDING(&tmr->timer)) {
/*
* we do NOT allow you to have it already running. if it is
* we leave the current one up unchanged
*/
return (EALREADY);
}
/* At this point we can proceed */
if (t_type == SCTP_TIMER_TYPE_SEND) {
stcb->asoc.num_send_timers_up++;
}
tmr->stopped_from = 0;
tmr->type = t_type;
tmr->ep = (void *)inp;
tmr->tcb = (void *)stcb;
tmr->net = (void *)net;
tmr->self = (void *)tmr;
tmr->ticks = ticks;
SCTP_OS_TIMER_START(&tmr->timer, to_ticks, sctp_timeout_handler, tmr);
return (0);
}
int
sctp_timer_stop(int t_type, struct sctp_inpcb *inp, struct sctp_tcb *stcb,
struct sctp_nets *net, uint32_t from)
{
struct sctp_timer *tmr;
if ((t_type != SCTP_TIMER_TYPE_ADDR_WQ) &&
(inp == NULL))
return (EFAULT);
tmr = NULL;
if (stcb) {
SCTP_TCB_LOCK_ASSERT(stcb);
}
switch (t_type) {
case SCTP_TIMER_TYPE_ADDR_WQ:
tmr = &sctppcbinfo.addr_wq_timer;
break;
case SCTP_TIMER_TYPE_EARLYFR:
if ((stcb == NULL) || (net == NULL)) {
return (EFAULT);
}
tmr = &net->fr_timer;
SCTP_STAT_INCR(sctps_earlyfrstop);
break;
case SCTP_TIMER_TYPE_ITERATOR:
{
struct sctp_iterator *it;
it = (struct sctp_iterator *)inp;
tmr = &it->tmr;
}
break;
case SCTP_TIMER_TYPE_SEND:
if ((stcb == NULL) || (net == NULL)) {
return (EFAULT);
}
tmr = &net->rxt_timer;
break;
case SCTP_TIMER_TYPE_INIT:
if ((stcb == NULL) || (net == NULL)) {
return (EFAULT);
}
tmr = &net->rxt_timer;
break;
case SCTP_TIMER_TYPE_RECV:
if (stcb == NULL) {
return (EFAULT);
}
tmr = &stcb->asoc.dack_timer;
break;
case SCTP_TIMER_TYPE_SHUTDOWN:
if ((stcb == NULL) || (net == NULL)) {
return (EFAULT);
}
tmr = &net->rxt_timer;
break;
case SCTP_TIMER_TYPE_HEARTBEAT:
if (stcb == NULL) {
return (EFAULT);
}
tmr = &stcb->asoc.hb_timer;
break;
case SCTP_TIMER_TYPE_COOKIE:
if ((stcb == NULL) || (net == NULL)) {
return (EFAULT);
}
tmr = &net->rxt_timer;
break;
case SCTP_TIMER_TYPE_NEWCOOKIE:
/* nothing needed but the endpoint here */
tmr = &inp->sctp_ep.signature_change;
/*
* We re-use the newcookie timer for the INP kill timer. We
* must assure that we do not kill it by accident.
*/
break;
case SCTP_TIMER_TYPE_ASOCKILL:
/*
* Stop the asoc kill timer.
*/
if (stcb == NULL) {
return (EFAULT);
}
tmr = &stcb->asoc.strreset_timer;
break;
case SCTP_TIMER_TYPE_INPKILL:
/*
* The inp is setup to die. We re-use the signature_chage
* timer since that has stopped and we are in the GONE
* state.
*/
tmr = &inp->sctp_ep.signature_change;
break;
case SCTP_TIMER_TYPE_PATHMTURAISE:
if ((stcb == NULL) || (net == NULL)) {
return (EFAULT);
}
tmr = &net->pmtu_timer;
break;
case SCTP_TIMER_TYPE_SHUTDOWNACK:
if ((stcb == NULL) || (net == NULL)) {
return (EFAULT);
}
tmr = &net->rxt_timer;
break;
case SCTP_TIMER_TYPE_SHUTDOWNGUARD:
if (stcb == NULL) {
return (EFAULT);
}
tmr = &stcb->asoc.shut_guard_timer;
break;
case SCTP_TIMER_TYPE_STRRESET:
if (stcb == NULL) {
return (EFAULT);
}
tmr = &stcb->asoc.strreset_timer;
break;
case SCTP_TIMER_TYPE_ASCONF:
if (stcb == NULL) {
return (EFAULT);
}
tmr = &stcb->asoc.asconf_timer;
break;
case SCTP_TIMER_TYPE_AUTOCLOSE:
if (stcb == NULL) {
return (EFAULT);
}
tmr = &stcb->asoc.autoclose_timer;
break;
default:
#ifdef SCTP_DEBUG
if (sctp_debug_on & SCTP_DEBUG_TIMER1) {
printf("sctp_timer_stop:Unknown timer type %d\n",
t_type);
}
#endif /* SCTP_DEBUG */
break;
};
if (tmr == NULL) {
return (EFAULT);
}
if ((tmr->type != t_type) && tmr->type) {
/*
* Ok we have a timer that is under joint use. Cookie timer
* per chance with the SEND timer. We therefore are NOT
* running the timer that the caller wants stopped. So just
* return.
*/
return (0);
}
if (t_type == SCTP_TIMER_TYPE_SEND) {
stcb->asoc.num_send_timers_up--;
if (stcb->asoc.num_send_timers_up < 0) {
stcb->asoc.num_send_timers_up = 0;
}
}
tmr->self = NULL;
tmr->stopped_from = from;
SCTP_OS_TIMER_STOP(&tmr->timer);
return (0);
}
#ifdef SCTP_USE_ADLER32
static uint32_t
update_adler32(uint32_t adler, uint8_t * buf, int32_t len)
{
uint32_t s1 = adler & 0xffff;
uint32_t s2 = (adler >> 16) & 0xffff;
int n;
for (n = 0; n < len; n++, buf++) {
/* s1 = (s1 + buf[n]) % BASE */
/* first we add */
s1 = (s1 + *buf);
/*
* now if we need to, we do a mod by subtracting. It seems a
* bit faster since I really will only ever do one subtract
* at the MOST, since buf[n] is a max of 255.
*/
if (s1 >= SCTP_ADLER32_BASE) {
s1 -= SCTP_ADLER32_BASE;
}
/* s2 = (s2 + s1) % BASE */
/* first we add */
s2 = (s2 + s1);
/*
* again, it is more efficent (it seems) to subtract since
* the most s2 will ever be is (BASE-1 + BASE-1) in the
* worse case. This would then be (2 * BASE) - 2, which will
* still only do one subtract. On Intel this is much better
* to do this way and avoid the divide. Have not -pg'd on
* sparc.
*/
if (s2 >= SCTP_ADLER32_BASE) {
s2 -= SCTP_ADLER32_BASE;
}
}
/* Return the adler32 of the bytes buf[0..len-1] */
return ((s2 << 16) + s1);
}
#endif
uint32_t
sctp_calculate_len(struct mbuf *m)
{
uint32_t tlen = 0;
struct mbuf *at;
at = m;
while (at) {
tlen += SCTP_BUF_LEN(at);
at = SCTP_BUF_NEXT(at);
}
return (tlen);
}
#if defined(SCTP_WITH_NO_CSUM)
uint32_t
sctp_calculate_sum(struct mbuf *m, int32_t * pktlen, uint32_t offset)
{
/*
* given a mbuf chain with a packetheader offset by 'offset'
* pointing at a sctphdr (with csum set to 0) go through the chain
* of SCTP_BUF_NEXT()'s and calculate the SCTP checksum. This is
* currently Adler32 but will change to CRC32x soon. Also has a side
* bonus calculate the total length of the mbuf chain. Note: if
* offset is greater than the total mbuf length, checksum=1,
* pktlen=0 is returned (ie. no real error code)
*/
if (pktlen == NULL)
return (0);
*pktlen = sctp_calculate_len(m);
return (0);
}
#elif defined(SCTP_USE_INCHKSUM)
#include <machine/in_cksum.h>
uint32_t
sctp_calculate_sum(struct mbuf *m, int32_t * pktlen, uint32_t offset)
{
/*
* given a mbuf chain with a packetheader offset by 'offset'
* pointing at a sctphdr (with csum set to 0) go through the chain
* of SCTP_BUF_NEXT()'s and calculate the SCTP checksum. This is
* currently Adler32 but will change to CRC32x soon. Also has a side
* bonus calculate the total length of the mbuf chain. Note: if
* offset is greater than the total mbuf length, checksum=1,
* pktlen=0 is returned (ie. no real error code)
*/
int32_t tlen = 0;
struct mbuf *at;
uint32_t the_sum, retsum;
at = m;
while (at) {
tlen += SCTP_BUF_LEN(at);
at = SCTP_BUF_NEXT(at);
}
the_sum = (uint32_t) (in_cksum_skip(m, tlen, offset));
if (pktlen != NULL)
*pktlen = (tlen - offset);
retsum = htons(the_sum);
return (the_sum);
}
#else
uint32_t
sctp_calculate_sum(struct mbuf *m, int32_t * pktlen, uint32_t offset)
{
/*
* given a mbuf chain with a packetheader offset by 'offset'
* pointing at a sctphdr (with csum set to 0) go through the chain
* of SCTP_BUF_NEXT()'s and calculate the SCTP checksum. This is
* currently Adler32 but will change to CRC32x soon. Also has a side
* bonus calculate the total length of the mbuf chain. Note: if
* offset is greater than the total mbuf length, checksum=1,
* pktlen=0 is returned (ie. no real error code)
*/
int32_t tlen = 0;
#ifdef SCTP_USE_ADLER32
uint32_t base = 1L;
#else
uint32_t base = 0xffffffff;
#endif /* SCTP_USE_ADLER32 */
struct mbuf *at;
at = m;
/* find the correct mbuf and offset into mbuf */
while ((at != NULL) && (offset > (uint32_t) SCTP_BUF_LEN(at))) {
offset -= SCTP_BUF_LEN(at); /* update remaining offset
* left */
at = SCTP_BUF_NEXT(at);
}
while (at != NULL) {
if ((SCTP_BUF_LEN(at) - offset) > 0) {
#ifdef SCTP_USE_ADLER32
base = update_adler32(base,
(unsigned char *)(SCTP_BUF_AT(at, offset)),
(unsigned int)(SCTP_BUF_LEN(at) - offset));
#else
if ((SCTP_BUF_LEN(at) - offset) < 4) {
/* Use old method if less than 4 bytes */
base = old_update_crc32(base,
(unsigned char *)(SCTP_BUF_AT(at, offset)),
(unsigned int)(SCTP_BUF_LEN(at) - offset));
} else {
base = update_crc32(base,
(unsigned char *)(SCTP_BUF_AT(at, offset)),
(unsigned int)(SCTP_BUF_LEN(at) - offset));
}
#endif /* SCTP_USE_ADLER32 */
tlen += SCTP_BUF_LEN(at) - offset;
/* we only offset once into the first mbuf */
}
if (offset) {
if (offset < SCTP_BUF_LEN(at))
offset = 0;
else
offset -= SCTP_BUF_LEN(at);
}
at = SCTP_BUF_NEXT(at);
}
if (pktlen != NULL) {
*pktlen = tlen;
}
#ifdef SCTP_USE_ADLER32
/* Adler32 */
base = htonl(base);
#else
/* CRC-32c */
base = sctp_csum_finalize(base);
#endif
return (base);
}
#endif
void
sctp_mtu_size_reset(struct sctp_inpcb *inp,
struct sctp_association *asoc, uint32_t mtu)
{
/*
* Reset the P-MTU size on this association, this involves changing
* the asoc MTU, going through ANY chunk+overhead larger than mtu to
* allow the DF flag to be cleared.
*/
struct sctp_tmit_chunk *chk;
unsigned int eff_mtu, ovh;
asoc->smallest_mtu = mtu;
if (inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) {
ovh = SCTP_MIN_OVERHEAD;
} else {
ovh = SCTP_MIN_V4_OVERHEAD;
}
eff_mtu = mtu - ovh;
TAILQ_FOREACH(chk, &asoc->send_queue, sctp_next) {
if (chk->send_size > eff_mtu) {
chk->flags |= CHUNK_FLAGS_FRAGMENT_OK;
}
}
TAILQ_FOREACH(chk, &asoc->sent_queue, sctp_next) {
if (chk->send_size > eff_mtu) {
chk->flags |= CHUNK_FLAGS_FRAGMENT_OK;
}
}
}
/*
* given an association and starting time of the current RTT period return
* RTO in number of msecs net should point to the current network
*/
uint32_t
sctp_calculate_rto(struct sctp_tcb *stcb,
struct sctp_association *asoc,
struct sctp_nets *net,
struct timeval *old)
{
/*
* given an association and the starting time of the current RTT
* period (in value1/value2) return RTO in number of msecs.
*/
int calc_time = 0;
int o_calctime;
uint32_t new_rto = 0;
int first_measure = 0;
struct timeval now;
/************************/
/* 1. calculate new RTT */
/************************/
/* get the current time */
SCTP_GETTIME_TIMEVAL(&now);
/* compute the RTT value */
if ((u_long)now.tv_sec > (u_long)old->tv_sec) {
calc_time = ((u_long)now.tv_sec - (u_long)old->tv_sec) * 1000;
if ((u_long)now.tv_usec > (u_long)old->tv_usec) {
calc_time += (((u_long)now.tv_usec -
(u_long)old->tv_usec) / 1000);
} else if ((u_long)now.tv_usec < (u_long)old->tv_usec) {
/* Borrow 1,000ms from current calculation */
calc_time -= 1000;
/* Add in the slop over */
calc_time += ((int)now.tv_usec / 1000);
/* Add in the pre-second ms's */
calc_time += (((int)1000000 - (int)old->tv_usec) / 1000);
}
} else if ((u_long)now.tv_sec == (u_long)old->tv_sec) {
if ((u_long)now.tv_usec > (u_long)old->tv_usec) {
calc_time = ((u_long)now.tv_usec -
(u_long)old->tv_usec) / 1000;
} else if ((u_long)now.tv_usec < (u_long)old->tv_usec) {
/* impossible .. garbage in nothing out */
goto calc_rto;
} else if ((u_long)now.tv_usec == (u_long)old->tv_usec) {
/*
* We have to have 1 usec :-D this must be the
* loopback.
*/
calc_time = 1;
} else {
/* impossible .. garbage in nothing out */
goto calc_rto;
}
} else {
/* Clock wrapped? */
goto calc_rto;
}
/***************************/
/* 2. update RTTVAR & SRTT */
/***************************/
o_calctime = calc_time;
/* this is Van Jacobson's integer version */
if (net->RTO) {
calc_time -= (net->lastsa >> 3);
#ifdef SCTP_RTTVAR_LOGGING
rto_logging(net, SCTP_LOG_RTTVAR);
#endif
net->prev_rtt = o_calctime;
net->lastsa += calc_time;
if (calc_time < 0) {
calc_time = -calc_time;
}
calc_time -= (net->lastsv >> 2);
net->lastsv += calc_time;
if (net->lastsv == 0) {
net->lastsv = SCTP_CLOCK_GRANULARITY;
}
} else {
/* First RTO measurment */
net->lastsa = calc_time;
net->lastsv = calc_time >> 1;
first_measure = 1;
net->prev_rtt = o_calctime;
#ifdef SCTP_RTTVAR_LOGGING
rto_logging(net, SCTP_LOG_INITIAL_RTT);
#endif
}
calc_rto:
new_rto = ((net->lastsa >> 2) + net->lastsv) >> 1;
if ((new_rto > SCTP_SAT_NETWORK_MIN) &&
(stcb->asoc.sat_network_lockout == 0)) {
stcb->asoc.sat_network = 1;
} else if ((!first_measure) && stcb->asoc.sat_network) {
stcb->asoc.sat_network = 0;
stcb->asoc.sat_network_lockout = 1;
}
/* bound it, per C6/C7 in Section 5.3.1 */
if (new_rto < stcb->asoc.minrto) {
new_rto = stcb->asoc.minrto;
}
if (new_rto > stcb->asoc.maxrto) {
new_rto = stcb->asoc.maxrto;
}
/* we are now returning the RTO */
return (new_rto);
}
/*
* return a pointer to a contiguous piece of data from the given mbuf chain
* starting at 'off' for 'len' bytes. If the desired piece spans more than
* one mbuf, a copy is made at 'ptr'. caller must ensure that the buffer size
* is >= 'len' returns NULL if there there isn't 'len' bytes in the chain.
*/
__inline caddr_t
sctp_m_getptr(struct mbuf *m, int off, int len, uint8_t * in_ptr)
{
uint32_t count;
uint8_t *ptr;
ptr = in_ptr;
if ((off < 0) || (len <= 0))
return (NULL);
/* find the desired start location */
while ((m != NULL) && (off > 0)) {
if (off < SCTP_BUF_LEN(m))
break;
off -= SCTP_BUF_LEN(m);
m = SCTP_BUF_NEXT(m);
}
if (m == NULL)
return (NULL);
/* is the current mbuf large enough (eg. contiguous)? */
if ((SCTP_BUF_LEN(m) - off) >= len) {
return (mtod(m, caddr_t)+off);
} else {
/* else, it spans more than one mbuf, so save a temp copy... */
while ((m != NULL) && (len > 0)) {
count = min(SCTP_BUF_LEN(m) - off, len);
bcopy(mtod(m, caddr_t)+off, ptr, count);
len -= count;
ptr += count;
off = 0;
m = SCTP_BUF_NEXT(m);
}
if ((m == NULL) && (len > 0))
return (NULL);
else
return ((caddr_t)in_ptr);
}
}
struct sctp_paramhdr *
sctp_get_next_param(struct mbuf *m,
int offset,
struct sctp_paramhdr *pull,
int pull_limit)
{
/* This just provides a typed signature to Peter's Pull routine */
return ((struct sctp_paramhdr *)sctp_m_getptr(m, offset, pull_limit,
(uint8_t *) pull));
}
int
sctp_add_pad_tombuf(struct mbuf *m, int padlen)
{
/*
* add padlen bytes of 0 filled padding to the end of the mbuf. If
* padlen is > 3 this routine will fail.
*/
uint8_t *dp;
int i;
if (padlen > 3) {
return (ENOBUFS);
}
if (M_TRAILINGSPACE(m)) {
/*
* The easy way. We hope the majority of the time we hit
* here :)
*/
dp = (uint8_t *) (mtod(m, caddr_t)+SCTP_BUF_LEN(m));
SCTP_BUF_LEN(m) += padlen;
} else {
/* Hard way we must grow the mbuf */
struct mbuf *tmp;
tmp = sctp_get_mbuf_for_msg(padlen, 0, M_DONTWAIT, 1, MT_DATA);
if (tmp == NULL) {
/* Out of space GAK! we are in big trouble. */
return (ENOSPC);
}
/* setup and insert in middle */
SCTP_BUF_NEXT(tmp) = SCTP_BUF_NEXT(m);
SCTP_BUF_LEN(tmp) = padlen;
SCTP_BUF_NEXT(m) = tmp;
dp = mtod(tmp, uint8_t *);
}
/* zero out the pad */
for (i = 0; i < padlen; i++) {
*dp = 0;
dp++;
}
return (0);
}
int
sctp_pad_lastmbuf(struct mbuf *m, int padval, struct mbuf *last_mbuf)
{
/* find the last mbuf in chain and pad it */
struct mbuf *m_at;
m_at = m;
if (last_mbuf) {
return (sctp_add_pad_tombuf(last_mbuf, padval));
} else {
while (m_at) {
if (SCTP_BUF_NEXT(m_at) == NULL) {
return (sctp_add_pad_tombuf(m_at, padval));
}
m_at = SCTP_BUF_NEXT(m_at);
}
}
return (EFAULT);
}
int sctp_asoc_change_wake = 0;
static void
sctp_notify_assoc_change(uint32_t event, struct sctp_tcb *stcb,
uint32_t error, void *data)
{
struct mbuf *m_notify;
struct sctp_assoc_change *sac;
struct sctp_queued_to_read *control;
/*
* First if we are are going down dump everything we can to the
* socket rcv queue.
*/
if ((stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE) ||
(stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) ||
(stcb->asoc.state & SCTP_STATE_CLOSED_SOCKET)
) {
/* If the socket is gone we are out of here */
return;
}
/*
* For TCP model AND UDP connected sockets we will send an error up
* when an ABORT comes in.
*/
if (((stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) ||
(stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL)) &&
(event == SCTP_COMM_LOST)) {
if (SCTP_GET_STATE(&stcb->asoc) == SCTP_STATE_COOKIE_WAIT)
stcb->sctp_socket->so_error = ECONNREFUSED;
else
stcb->sctp_socket->so_error = ECONNRESET;
/* Wake ANY sleepers */
sorwakeup(stcb->sctp_socket);
sowwakeup(stcb->sctp_socket);
sctp_asoc_change_wake++;
}
if (sctp_is_feature_off(stcb->sctp_ep, SCTP_PCB_FLAGS_RECVASSOCEVNT)) {
/* event not enabled */
return;
}
m_notify = sctp_get_mbuf_for_msg(sizeof(struct sctp_assoc_change), 0, M_DONTWAIT, 1, MT_DATA);
if (m_notify == NULL)
/* no space left */
return;
SCTP_BUF_LEN(m_notify) = 0;
sac = mtod(m_notify, struct sctp_assoc_change *);
sac->sac_type = SCTP_ASSOC_CHANGE;
sac->sac_flags = 0;
sac->sac_length = sizeof(struct sctp_assoc_change);
sac->sac_state = event;
sac->sac_error = error;
/* XXX verify these stream counts */
sac->sac_outbound_streams = stcb->asoc.streamoutcnt;
sac->sac_inbound_streams = stcb->asoc.streamincnt;
sac->sac_assoc_id = sctp_get_associd(stcb);
SCTP_BUF_LEN(m_notify) = sizeof(struct sctp_assoc_change);
SCTP_BUF_NEXT(m_notify) = NULL;
control = sctp_build_readq_entry(stcb, stcb->asoc.primary_destination,
0, 0, 0, 0, 0, 0,
m_notify);
if (control == NULL) {
/* no memory */
sctp_m_freem(m_notify);
return;
}
control->length = SCTP_BUF_LEN(m_notify);
/* not that we need this */
control->tail_mbuf = m_notify;
control->spec_flags = M_NOTIFICATION;
sctp_add_to_readq(stcb->sctp_ep, stcb,
control,
&stcb->sctp_socket->so_rcv, 1);
if (event == SCTP_COMM_LOST) {
/* Wake up any sleeper */
sctp_sowwakeup(stcb->sctp_ep, stcb->sctp_socket);
}
}
static void
sctp_notify_peer_addr_change(struct sctp_tcb *stcb, uint32_t state,
struct sockaddr *sa, uint32_t error)
{
struct mbuf *m_notify;
struct sctp_paddr_change *spc;
struct sctp_queued_to_read *control;
if (sctp_is_feature_off(stcb->sctp_ep, SCTP_PCB_FLAGS_RECVPADDREVNT))
/* event not enabled */
return;
m_notify = sctp_get_mbuf_for_msg(sizeof(struct sctp_paddr_change), 0, M_DONTWAIT, 1, MT_DATA);
if (m_notify == NULL)
return;
SCTP_BUF_LEN(m_notify) = 0;
spc = mtod(m_notify, struct sctp_paddr_change *);
spc->spc_type = SCTP_PEER_ADDR_CHANGE;
spc->spc_flags = 0;
spc->spc_length = sizeof(struct sctp_paddr_change);
if (sa->sa_family == AF_INET) {
memcpy(&spc->spc_aaddr, sa, sizeof(struct sockaddr_in));
} else {
struct sockaddr_in6 *sin6;
memcpy(&spc->spc_aaddr, sa, sizeof(struct sockaddr_in6));
sin6 = (struct sockaddr_in6 *)&spc->spc_aaddr;
if (IN6_IS_SCOPE_LINKLOCAL(&sin6->sin6_addr)) {
if (sin6->sin6_scope_id == 0) {
/* recover scope_id for user */
(void)sa6_recoverscope(sin6);
} else {
/* clear embedded scope_id for user */
in6_clearscope(&sin6->sin6_addr);
}
}
}
spc->spc_state = state;
spc->spc_error = error;
spc->spc_assoc_id = sctp_get_associd(stcb);
SCTP_BUF_LEN(m_notify) = sizeof(struct sctp_paddr_change);
SCTP_BUF_NEXT(m_notify) = NULL;
/* append to socket */
control = sctp_build_readq_entry(stcb, stcb->asoc.primary_destination,
0, 0, 0, 0, 0, 0,
m_notify);
if (control == NULL) {
/* no memory */
sctp_m_freem(m_notify);
return;
}
control->length = SCTP_BUF_LEN(m_notify);
control->spec_flags = M_NOTIFICATION;
/* not that we need this */
control->tail_mbuf = m_notify;
sctp_add_to_readq(stcb->sctp_ep, stcb,
control,
&stcb->sctp_socket->so_rcv, 1);
}
static void
sctp_notify_send_failed(struct sctp_tcb *stcb, uint32_t error,
struct sctp_tmit_chunk *chk)
{
struct mbuf *m_notify;
struct sctp_send_failed *ssf;
struct sctp_queued_to_read *control;
int length;
if (sctp_is_feature_off(stcb->sctp_ep, SCTP_PCB_FLAGS_RECVSENDFAILEVNT))
/* event not enabled */
return;
length = sizeof(struct sctp_send_failed) + chk->send_size;
m_notify = sctp_get_mbuf_for_msg(sizeof(struct sctp_send_failed), 0, M_DONTWAIT, 1, MT_DATA);
if (m_notify == NULL)
/* no space left */
return;
SCTP_BUF_LEN(m_notify) = 0;
ssf = mtod(m_notify, struct sctp_send_failed *);
ssf->ssf_type = SCTP_SEND_FAILED;
if (error == SCTP_NOTIFY_DATAGRAM_UNSENT)
ssf->ssf_flags = SCTP_DATA_UNSENT;
else
ssf->ssf_flags = SCTP_DATA_SENT;
ssf->ssf_length = length;
ssf->ssf_error = error;
/* not exactly what the user sent in, but should be close :) */
ssf->ssf_info.sinfo_stream = chk->rec.data.stream_number;
ssf->ssf_info.sinfo_ssn = chk->rec.data.stream_seq;
ssf->ssf_info.sinfo_flags = chk->rec.data.rcv_flags;
ssf->ssf_info.sinfo_ppid = chk->rec.data.payloadtype;
ssf->ssf_info.sinfo_context = chk->rec.data.context;
ssf->ssf_info.sinfo_assoc_id = sctp_get_associd(stcb);
ssf->ssf_assoc_id = sctp_get_associd(stcb);
SCTP_BUF_NEXT(m_notify) = chk->data;
SCTP_BUF_LEN(m_notify) = sizeof(struct sctp_send_failed);
/* Steal off the mbuf */
chk->data = NULL;
/*
* For this case, we check the actual socket buffer, since the assoc
* is going away we don't want to overfill the socket buffer for a
* non-reader
*/
if (sctp_sbspace_failedmsgs(&stcb->sctp_socket->so_rcv) < SCTP_BUF_LEN(m_notify)) {
sctp_m_freem(m_notify);
return;
}
/* append to socket */
control = sctp_build_readq_entry(stcb, stcb->asoc.primary_destination,
0, 0, 0, 0, 0, 0,
m_notify);
if (control == NULL) {
/* no memory */
sctp_m_freem(m_notify);
return;
}
control->spec_flags = M_NOTIFICATION;
sctp_add_to_readq(stcb->sctp_ep, stcb,
control,
&stcb->sctp_socket->so_rcv, 1);
}
static void
sctp_notify_send_failed2(struct sctp_tcb *stcb, uint32_t error,
struct sctp_stream_queue_pending *sp)
{
struct mbuf *m_notify;
struct sctp_send_failed *ssf;
struct sctp_queued_to_read *control;
int length;
if (sctp_is_feature_off(stcb->sctp_ep, SCTP_PCB_FLAGS_RECVSENDFAILEVNT))
/* event not enabled */
return;
length = sizeof(struct sctp_send_failed) + sp->length;
m_notify = sctp_get_mbuf_for_msg(sizeof(struct sctp_adaption_event), 0, M_DONTWAIT, 1, MT_DATA);
if (m_notify == NULL)
/* no space left */
return;
SCTP_BUF_LEN(m_notify) = 0;
ssf = mtod(m_notify, struct sctp_send_failed *);
ssf->ssf_type = SCTP_SEND_FAILED;
if (error == SCTP_NOTIFY_DATAGRAM_UNSENT)
ssf->ssf_flags = SCTP_DATA_UNSENT;
else
ssf->ssf_flags = SCTP_DATA_SENT;
ssf->ssf_length = length;
ssf->ssf_error = error;
/* not exactly what the user sent in, but should be close :) */
ssf->ssf_info.sinfo_stream = sp->stream;
ssf->ssf_info.sinfo_ssn = sp->strseq;
ssf->ssf_info.sinfo_flags = sp->sinfo_flags;
ssf->ssf_info.sinfo_ppid = sp->ppid;
ssf->ssf_info.sinfo_context = sp->context;
ssf->ssf_info.sinfo_assoc_id = sctp_get_associd(stcb);
ssf->ssf_assoc_id = sctp_get_associd(stcb);
SCTP_BUF_NEXT(m_notify) = sp->data;
SCTP_BUF_LEN(m_notify) = sizeof(struct sctp_send_failed);
/* Steal off the mbuf */
sp->data = NULL;
/*
* For this case, we check the actual socket buffer, since the assoc
* is going away we don't want to overfill the socket buffer for a
* non-reader
*/
if (sctp_sbspace_failedmsgs(&stcb->sctp_socket->so_rcv) < SCTP_BUF_LEN(m_notify)) {
sctp_m_freem(m_notify);
return;
}
/* append to socket */
control = sctp_build_readq_entry(stcb, stcb->asoc.primary_destination,
0, 0, 0, 0, 0, 0,
m_notify);
if (control == NULL) {
/* no memory */
sctp_m_freem(m_notify);
return;
}
control->spec_flags = M_NOTIFICATION;
sctp_add_to_readq(stcb->sctp_ep, stcb,
control,
&stcb->sctp_socket->so_rcv, 1);
}
static void
sctp_notify_adaptation_layer(struct sctp_tcb *stcb,
uint32_t error)
{
struct mbuf *m_notify;
struct sctp_adaptation_event *sai;
struct sctp_queued_to_read *control;
if (sctp_is_feature_off(stcb->sctp_ep, SCTP_PCB_FLAGS_ADAPTATIONEVNT))
/* event not enabled */
return;
m_notify = sctp_get_mbuf_for_msg(sizeof(struct sctp_adaption_event), 0, M_DONTWAIT, 1, MT_DATA);
if (m_notify == NULL)
/* no space left */
return;
SCTP_BUF_LEN(m_notify) = 0;
sai = mtod(m_notify, struct sctp_adaptation_event *);
sai->sai_type = SCTP_ADAPTATION_INDICATION;
sai->sai_flags = 0;
sai->sai_length = sizeof(struct sctp_adaptation_event);
sai->sai_adaptation_ind = error;
sai->sai_assoc_id = sctp_get_associd(stcb);
SCTP_BUF_LEN(m_notify) = sizeof(struct sctp_adaptation_event);
SCTP_BUF_NEXT(m_notify) = NULL;
/* append to socket */
control = sctp_build_readq_entry(stcb, stcb->asoc.primary_destination,
0, 0, 0, 0, 0, 0,
m_notify);
if (control == NULL) {
/* no memory */
sctp_m_freem(m_notify);
return;
}
control->length = SCTP_BUF_LEN(m_notify);
control->spec_flags = M_NOTIFICATION;
/* not that we need this */
control->tail_mbuf = m_notify;
sctp_add_to_readq(stcb->sctp_ep, stcb,
control,
&stcb->sctp_socket->so_rcv, 1);
}
/* This always must be called with the read-queue LOCKED in the INP */
void
sctp_notify_partial_delivery_indication(struct sctp_tcb *stcb,
uint32_t error, int nolock)
{
struct mbuf *m_notify;
struct sctp_pdapi_event *pdapi;
struct sctp_queued_to_read *control;
struct sockbuf *sb;
if (sctp_is_feature_off(stcb->sctp_ep, SCTP_PCB_FLAGS_PDAPIEVNT))
/* event not enabled */
return;
m_notify = sctp_get_mbuf_for_msg(sizeof(struct sctp_pdapi_event), 0, M_DONTWAIT, 1, MT_DATA);
if (m_notify == NULL)
/* no space left */
return;
SCTP_BUF_LEN(m_notify) = 0;
pdapi = mtod(m_notify, struct sctp_pdapi_event *);
pdapi->pdapi_type = SCTP_PARTIAL_DELIVERY_EVENT;
pdapi->pdapi_flags = 0;
pdapi->pdapi_length = sizeof(struct sctp_pdapi_event);
pdapi->pdapi_indication = error;
pdapi->pdapi_assoc_id = sctp_get_associd(stcb);
SCTP_BUF_LEN(m_notify) = sizeof(struct sctp_pdapi_event);
SCTP_BUF_NEXT(m_notify) = NULL;
control = sctp_build_readq_entry(stcb, stcb->asoc.primary_destination,
0, 0, 0, 0, 0, 0,
m_notify);
if (control == NULL) {
/* no memory */
sctp_m_freem(m_notify);
return;
}
control->spec_flags = M_NOTIFICATION;
control->length = SCTP_BUF_LEN(m_notify);
/* not that we need this */
control->tail_mbuf = m_notify;
control->held_length = 0;
control->length = 0;
if (nolock == 0) {
SCTP_INP_READ_LOCK(stcb->sctp_ep);
}
sb = &stcb->sctp_socket->so_rcv;
#ifdef SCTP_SB_LOGGING
sctp_sblog(sb, control->do_not_ref_stcb ? NULL : stcb, SCTP_LOG_SBALLOC, SCTP_BUF_LEN(m_notify));
#endif
sctp_sballoc(stcb, sb, m_notify);
#ifdef SCTP_SB_LOGGING
sctp_sblog(sb, control->do_not_ref_stcb ? NULL : stcb, SCTP_LOG_SBRESULT, 0);
#endif
atomic_add_int(&control->length, SCTP_BUF_LEN(m_notify));
control->end_added = 1;
if (stcb->asoc.control_pdapi)
TAILQ_INSERT_AFTER(&stcb->sctp_ep->read_queue, stcb->asoc.control_pdapi, control, next);
else {
/* we really should not see this case */
TAILQ_INSERT_TAIL(&stcb->sctp_ep->read_queue, control, next);
}
if (nolock == 0) {
SCTP_INP_READ_UNLOCK(stcb->sctp_ep);
}
if (stcb->sctp_ep && stcb->sctp_socket) {
/* This should always be the case */
sctp_sorwakeup(stcb->sctp_ep, stcb->sctp_socket);
}
}
static void
sctp_notify_shutdown_event(struct sctp_tcb *stcb)
{
struct mbuf *m_notify;
struct sctp_shutdown_event *sse;
struct sctp_queued_to_read *control;
/*
* For TCP model AND UDP connected sockets we will send an error up
* when an SHUTDOWN completes
*/
if ((stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) ||
(stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL)) {
/* mark socket closed for read/write and wakeup! */
socantsendmore(stcb->sctp_socket);
}
if (sctp_is_feature_off(stcb->sctp_ep, SCTP_PCB_FLAGS_RECVSHUTDOWNEVNT))
/* event not enabled */
return;
m_notify = sctp_get_mbuf_for_msg(sizeof(struct sctp_shutdown_event), 0, M_DONTWAIT, 1, MT_DATA);
if (m_notify == NULL)
/* no space left */
return;
sse = mtod(m_notify, struct sctp_shutdown_event *);
sse->sse_type = SCTP_SHUTDOWN_EVENT;
sse->sse_flags = 0;
sse->sse_length = sizeof(struct sctp_shutdown_event);
sse->sse_assoc_id = sctp_get_associd(stcb);
SCTP_BUF_LEN(m_notify) = sizeof(struct sctp_shutdown_event);
SCTP_BUF_NEXT(m_notify) = NULL;
/* append to socket */
control = sctp_build_readq_entry(stcb, stcb->asoc.primary_destination,
0, 0, 0, 0, 0, 0,
m_notify);
if (control == NULL) {
/* no memory */
sctp_m_freem(m_notify);
return;
}
control->spec_flags = M_NOTIFICATION;
control->length = SCTP_BUF_LEN(m_notify);
/* not that we need this */
control->tail_mbuf = m_notify;
sctp_add_to_readq(stcb->sctp_ep, stcb,
control,
&stcb->sctp_socket->so_rcv, 1);
}
static void
sctp_notify_stream_reset(struct sctp_tcb *stcb,
int number_entries, uint16_t * list, int flag)
{
struct mbuf *m_notify;
struct sctp_queued_to_read *control;
struct sctp_stream_reset_event *strreset;
int len;
if (sctp_is_feature_off(stcb->sctp_ep, SCTP_PCB_FLAGS_STREAM_RESETEVNT))
/* event not enabled */
return;
m_notify = sctp_get_mbuf_for_msg(MCLBYTES, 0, M_DONTWAIT, 1, MT_DATA);
if (m_notify == NULL)
/* no space left */
return;
SCTP_BUF_LEN(m_notify) = 0;
len = sizeof(struct sctp_stream_reset_event) + (number_entries * sizeof(uint16_t));
if (len > M_TRAILINGSPACE(m_notify)) {
/* never enough room */
sctp_m_freem(m_notify);
return;
}
strreset = mtod(m_notify, struct sctp_stream_reset_event *);
strreset->strreset_type = SCTP_STREAM_RESET_EVENT;
if (number_entries == 0) {
strreset->strreset_flags = flag | SCTP_STRRESET_ALL_STREAMS;
} else {
strreset->strreset_flags = flag | SCTP_STRRESET_STREAM_LIST;
}
strreset->strreset_length = len;
strreset->strreset_assoc_id = sctp_get_associd(stcb);
if (number_entries) {
int i;
for (i = 0; i < number_entries; i++) {
strreset->strreset_list[i] = ntohs(list[i]);
}
}
SCTP_BUF_LEN(m_notify) = len;
SCTP_BUF_NEXT(m_notify) = NULL;
if (sctp_sbspace(&stcb->asoc, &stcb->sctp_socket->so_rcv) < SCTP_BUF_LEN(m_notify)) {
/* no space */
sctp_m_freem(m_notify);
return;
}
/* append to socket */
control = sctp_build_readq_entry(stcb, stcb->asoc.primary_destination,
0, 0, 0, 0, 0, 0,
m_notify);
if (control == NULL) {
/* no memory */
sctp_m_freem(m_notify);
return;
}
control->spec_flags = M_NOTIFICATION;
control->length = SCTP_BUF_LEN(m_notify);
/* not that we need this */
control->tail_mbuf = m_notify;
sctp_add_to_readq(stcb->sctp_ep, stcb,
control,
&stcb->sctp_socket->so_rcv, 1);
}
void
sctp_ulp_notify(uint32_t notification, struct sctp_tcb *stcb,
uint32_t error, void *data)
{
if (stcb == NULL) {
/* unlikely but */
return;
}
if ((stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE) ||
(stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) ||
(stcb->asoc.state & SCTP_STATE_CLOSED_SOCKET)
) {
/* No notifications up when we are in a no socket state */
return;
}
if (stcb->asoc.state & SCTP_STATE_CLOSED_SOCKET) {
/* Can't send up to a closed socket any notifications */
return;
}
if (stcb && (stcb->asoc.assoc_up_sent == 0) && (notification != SCTP_NOTIFY_ASSOC_UP)) {
if ((notification != SCTP_NOTIFY_ASSOC_DOWN) &&
(notification != SCTP_NOTIFY_ASSOC_ABORTED) &&
(notification != SCTP_NOTIFY_SPECIAL_SP_FAIL) &&
(notification != SCTP_NOTIFY_DG_FAIL) &&
(notification != SCTP_NOTIFY_PEER_SHUTDOWN)) {
sctp_notify_assoc_change(SCTP_COMM_UP, stcb, 0, NULL);
stcb->asoc.assoc_up_sent = 1;
}
}
switch (notification) {
case SCTP_NOTIFY_ASSOC_UP:
if (stcb->asoc.assoc_up_sent == 0) {
sctp_notify_assoc_change(SCTP_COMM_UP, stcb, error, NULL);
stcb->asoc.assoc_up_sent = 1;
}
break;
case SCTP_NOTIFY_ASSOC_DOWN:
sctp_notify_assoc_change(SCTP_SHUTDOWN_COMP, stcb, error, NULL);
break;
case SCTP_NOTIFY_INTERFACE_DOWN:
{
struct sctp_nets *net;
net = (struct sctp_nets *)data;
sctp_notify_peer_addr_change(stcb, SCTP_ADDR_UNREACHABLE,
(struct sockaddr *)&net->ro._l_addr, error);
break;
}
case SCTP_NOTIFY_INTERFACE_UP:
{
struct sctp_nets *net;
net = (struct sctp_nets *)data;
sctp_notify_peer_addr_change(stcb, SCTP_ADDR_AVAILABLE,
(struct sockaddr *)&net->ro._l_addr, error);
break;
}
case SCTP_NOTIFY_INTERFACE_CONFIRMED:
{
struct sctp_nets *net;
net = (struct sctp_nets *)data;
sctp_notify_peer_addr_change(stcb, SCTP_ADDR_CONFIRMED,
(struct sockaddr *)&net->ro._l_addr, error);
break;
}
case SCTP_NOTIFY_SPECIAL_SP_FAIL:
sctp_notify_send_failed2(stcb, error,
(struct sctp_stream_queue_pending *)data);
break;
case SCTP_NOTIFY_DG_FAIL:
sctp_notify_send_failed(stcb, error,
(struct sctp_tmit_chunk *)data);
break;
case SCTP_NOTIFY_ADAPTATION_INDICATION:
/* Here the error is the adaptation indication */
sctp_notify_adaptation_layer(stcb, error);
break;
case SCTP_NOTIFY_PARTIAL_DELVIERY_INDICATION:
sctp_notify_partial_delivery_indication(stcb, error, 0);
break;
case SCTP_NOTIFY_STRDATA_ERR:
break;
case SCTP_NOTIFY_ASSOC_ABORTED:
sctp_notify_assoc_change(SCTP_COMM_LOST, stcb, error, NULL);
break;
case SCTP_NOTIFY_PEER_OPENED_STREAM:
break;
case SCTP_NOTIFY_STREAM_OPENED_OK:
break;
case SCTP_NOTIFY_ASSOC_RESTART:
sctp_notify_assoc_change(SCTP_RESTART, stcb, error, data);
break;
case SCTP_NOTIFY_HB_RESP:
break;
case SCTP_NOTIFY_STR_RESET_SEND:
sctp_notify_stream_reset(stcb, error, ((uint16_t *) data), SCTP_STRRESET_OUTBOUND_STR);
break;
case SCTP_NOTIFY_STR_RESET_RECV:
sctp_notify_stream_reset(stcb, error, ((uint16_t *) data), SCTP_STRRESET_INBOUND_STR);
break;
case SCTP_NOTIFY_STR_RESET_FAILED_OUT:
sctp_notify_stream_reset(stcb, error, ((uint16_t *) data), (SCTP_STRRESET_OUTBOUND_STR | SCTP_STRRESET_INBOUND_STR));
break;
case SCTP_NOTIFY_STR_RESET_FAILED_IN:
sctp_notify_stream_reset(stcb, error, ((uint16_t *) data), (SCTP_STRRESET_INBOUND_STR | SCTP_STRRESET_INBOUND_STR));
break;
case SCTP_NOTIFY_ASCONF_ADD_IP:
sctp_notify_peer_addr_change(stcb, SCTP_ADDR_ADDED, data,
error);
break;
case SCTP_NOTIFY_ASCONF_DELETE_IP:
sctp_notify_peer_addr_change(stcb, SCTP_ADDR_REMOVED, data,
error);
break;
case SCTP_NOTIFY_ASCONF_SET_PRIMARY:
sctp_notify_peer_addr_change(stcb, SCTP_ADDR_MADE_PRIM, data,
error);
break;
case SCTP_NOTIFY_ASCONF_SUCCESS:
break;
case SCTP_NOTIFY_ASCONF_FAILED:
break;
case SCTP_NOTIFY_PEER_SHUTDOWN:
sctp_notify_shutdown_event(stcb);
break;
case SCTP_NOTIFY_AUTH_NEW_KEY:
sctp_notify_authentication(stcb, SCTP_AUTH_NEWKEY, error,
(uint16_t) (uintptr_t) data);
break;
#if 0
case SCTP_NOTIFY_AUTH_KEY_CONFLICT:
sctp_notify_authentication(stcb, SCTP_AUTH_KEY_CONFLICT,
error, (uint16_t) (uintptr_t) data);
break;
#endif /* not yet? remove? */
default:
#ifdef SCTP_DEBUG
if (sctp_debug_on & SCTP_DEBUG_UTIL1) {
printf("NOTIFY: unknown notification %xh (%u)\n",
notification, notification);
}
#endif /* SCTP_DEBUG */
break;
} /* end switch */
}
void
sctp_report_all_outbound(struct sctp_tcb *stcb, int holds_lock)
{
struct sctp_association *asoc;
struct sctp_stream_out *outs;
struct sctp_tmit_chunk *chk;
struct sctp_stream_queue_pending *sp;
int i;
asoc = &stcb->asoc;
if ((stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE) ||
(stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) ||
(stcb->asoc.state & SCTP_STATE_CLOSED_SOCKET)) {
return;
}
/* now through all the gunk freeing chunks */
if (holds_lock == 0)
SCTP_TCB_SEND_LOCK(stcb);
for (i = 0; i < stcb->asoc.streamoutcnt; i++) {
/* For each stream */
outs = &stcb->asoc.strmout[i];
/* clean up any sends there */
stcb->asoc.locked_on_sending = NULL;
sp = TAILQ_FIRST(&outs->outqueue);
while (sp) {
stcb->asoc.stream_queue_cnt--;
TAILQ_REMOVE(&outs->outqueue, sp, next);
sctp_free_spbufspace(stcb, asoc, sp);
sctp_ulp_notify(SCTP_NOTIFY_SPECIAL_SP_FAIL, stcb,
SCTP_NOTIFY_DATAGRAM_UNSENT, (void *)sp);
if (sp->data) {
sctp_m_freem(sp->data);
sp->data = NULL;
}
if (sp->net)
sctp_free_remote_addr(sp->net);
sp->net = NULL;
/* Free the chunk */
sctp_free_a_strmoq(stcb, sp);
sp = TAILQ_FIRST(&outs->outqueue);
}
}
/* pending send queue SHOULD be empty */
if (!TAILQ_EMPTY(&asoc->send_queue)) {
chk = TAILQ_FIRST(&asoc->send_queue);
while (chk) {
TAILQ_REMOVE(&asoc->send_queue, chk, sctp_next);
asoc->send_queue_cnt--;
if (chk->data) {
/*
* trim off the sctp chunk header(it should
* be there)
*/
if (chk->send_size >= sizeof(struct sctp_data_chunk)) {
m_adj(chk->data, sizeof(struct sctp_data_chunk));
sctp_mbuf_crush(chk->data);
}
}
sctp_free_bufspace(stcb, asoc, chk, 1);
sctp_ulp_notify(SCTP_NOTIFY_DG_FAIL, stcb, SCTP_NOTIFY_DATAGRAM_UNSENT, chk);
if (chk->data) {
sctp_m_freem(chk->data);
chk->data = NULL;
}
if (chk->whoTo)
sctp_free_remote_addr(chk->whoTo);
chk->whoTo = NULL;
sctp_free_a_chunk(stcb, chk);
chk = TAILQ_FIRST(&asoc->send_queue);
}
}
/* sent queue SHOULD be empty */
if (!TAILQ_EMPTY(&asoc->sent_queue)) {
chk = TAILQ_FIRST(&asoc->sent_queue);
while (chk) {
TAILQ_REMOVE(&asoc->sent_queue, chk, sctp_next);
asoc->sent_queue_cnt--;
if (chk->data) {
/*
* trim off the sctp chunk header(it should
* be there)
*/
if (chk->send_size >= sizeof(struct sctp_data_chunk)) {
m_adj(chk->data, sizeof(struct sctp_data_chunk));
sctp_mbuf_crush(chk->data);
}
}
sctp_free_bufspace(stcb, asoc, chk, 1);
sctp_ulp_notify(SCTP_NOTIFY_DG_FAIL, stcb,
SCTP_NOTIFY_DATAGRAM_SENT, chk);
if (chk->data) {
sctp_m_freem(chk->data);
chk->data = NULL;
}
if (chk->whoTo)
sctp_free_remote_addr(chk->whoTo);
chk->whoTo = NULL;
sctp_free_a_chunk(stcb, chk);
chk = TAILQ_FIRST(&asoc->sent_queue);
}
}
if (holds_lock == 0)
SCTP_TCB_SEND_UNLOCK(stcb);
}
void
sctp_abort_notification(struct sctp_tcb *stcb, int error)
{
if ((stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE) ||
(stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) ||
(stcb->asoc.state & SCTP_STATE_CLOSED_SOCKET)) {
return;
}
/* Tell them we lost the asoc */
sctp_report_all_outbound(stcb, 1);
if ((stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL) ||
((stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) &&
(stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_CONNECTED))) {
stcb->sctp_ep->sctp_flags |= SCTP_PCB_FLAGS_WAS_ABORTED;
}
sctp_ulp_notify(SCTP_NOTIFY_ASSOC_ABORTED, stcb, error, NULL);
}
void
sctp_abort_association(struct sctp_inpcb *inp, struct sctp_tcb *stcb,
struct mbuf *m, int iphlen, struct sctphdr *sh, struct mbuf *op_err)
{
uint32_t vtag;
vtag = 0;
if (stcb != NULL) {
/* We have a TCB to abort, send notification too */
vtag = stcb->asoc.peer_vtag;
sctp_abort_notification(stcb, 0);
}
sctp_send_abort(m, iphlen, sh, vtag, op_err);
if (stcb != NULL) {
/* Ok, now lets free it */
sctp_free_assoc(inp, stcb, SCTP_NORMAL_PROC, SCTP_FROM_SCTPUTIL + SCTP_LOC_4);
} else {
if (inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE) {
if (LIST_FIRST(&inp->sctp_asoc_list) == NULL) {
sctp_inpcb_free(inp, 1, 0);
}
}
}
}
void
sctp_abort_an_association(struct sctp_inpcb *inp, struct sctp_tcb *stcb,
int error, struct mbuf *op_err)
{
uint32_t vtag;
if (stcb == NULL) {
/* Got to have a TCB */
if (inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE) {
if (LIST_FIRST(&inp->sctp_asoc_list) == NULL) {
sctp_inpcb_free(inp, 1, 0);
}
}
return;
}
vtag = stcb->asoc.peer_vtag;
/* notify the ulp */
if ((inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE) == 0)
sctp_abort_notification(stcb, error);
/* notify the peer */
sctp_send_abort_tcb(stcb, op_err);
SCTP_STAT_INCR_COUNTER32(sctps_aborted);
if ((SCTP_GET_STATE(&stcb->asoc) == SCTP_STATE_OPEN) ||
(SCTP_GET_STATE(&stcb->asoc) == SCTP_STATE_SHUTDOWN_RECEIVED)) {
SCTP_STAT_DECR_GAUGE32(sctps_currestab);
}
/* now free the asoc */
sctp_free_assoc(inp, stcb, SCTP_NORMAL_PROC, SCTP_FROM_SCTPUTIL + SCTP_LOC_5);
}
void
sctp_handle_ootb(struct mbuf *m, int iphlen, int offset, struct sctphdr *sh,
struct sctp_inpcb *inp, struct mbuf *op_err)
{
struct sctp_chunkhdr *ch, chunk_buf;
unsigned int chk_length;
SCTP_STAT_INCR_COUNTER32(sctps_outoftheblue);
/* Generate a TO address for future reference */
if (inp && (inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE)) {
if (LIST_FIRST(&inp->sctp_asoc_list) == NULL) {
sctp_inpcb_free(inp, 1, 0);
}
}
ch = (struct sctp_chunkhdr *)sctp_m_getptr(m, offset,
sizeof(*ch), (uint8_t *) & chunk_buf);
while (ch != NULL) {
chk_length = ntohs(ch->chunk_length);
if (chk_length < sizeof(*ch)) {
/* break to abort land */
break;
}
switch (ch->chunk_type) {
case SCTP_PACKET_DROPPED:
/* we don't respond to pkt-dropped */
return;
case SCTP_ABORT_ASSOCIATION:
/* we don't respond with an ABORT to an ABORT */
return;
case SCTP_SHUTDOWN_COMPLETE:
/*
* we ignore it since we are not waiting for it and
* peer is gone
*/
return;
case SCTP_SHUTDOWN_ACK:
sctp_send_shutdown_complete2(m, iphlen, sh);
return;
default:
break;
}
offset += SCTP_SIZE32(chk_length);
ch = (struct sctp_chunkhdr *)sctp_m_getptr(m, offset,
sizeof(*ch), (uint8_t *) & chunk_buf);
}
sctp_send_abort(m, iphlen, sh, 0, op_err);
}
/*
* check the inbound datagram to make sure there is not an abort inside it,
* if there is return 1, else return 0.
*/
int
sctp_is_there_an_abort_here(struct mbuf *m, int iphlen, uint32_t * vtagfill)
{
struct sctp_chunkhdr *ch;
struct sctp_init_chunk *init_chk, chunk_buf;
int offset;
unsigned int chk_length;
offset = iphlen + sizeof(struct sctphdr);
ch = (struct sctp_chunkhdr *)sctp_m_getptr(m, offset, sizeof(*ch),
(uint8_t *) & chunk_buf);
while (ch != NULL) {
chk_length = ntohs(ch->chunk_length);
if (chk_length < sizeof(*ch)) {
/* packet is probably corrupt */
break;
}
/* we seem to be ok, is it an abort? */
if (ch->chunk_type == SCTP_ABORT_ASSOCIATION) {
/* yep, tell them */
return (1);
}
if (ch->chunk_type == SCTP_INITIATION) {
/* need to update the Vtag */
init_chk = (struct sctp_init_chunk *)sctp_m_getptr(m,
offset, sizeof(*init_chk), (uint8_t *) & chunk_buf);
if (init_chk != NULL) {
*vtagfill = ntohl(init_chk->init.initiate_tag);
}
}
/* Nope, move to the next chunk */
offset += SCTP_SIZE32(chk_length);
ch = (struct sctp_chunkhdr *)sctp_m_getptr(m, offset,
sizeof(*ch), (uint8_t *) & chunk_buf);
}
return (0);
}
/*
* currently (2/02), ifa_addr embeds scope_id's and don't have sin6_scope_id
* set (i.e. it's 0) so, create this function to compare link local scopes
*/
uint32_t
sctp_is_same_scope(struct sockaddr_in6 *addr1, struct sockaddr_in6 *addr2)
{
struct sockaddr_in6 a, b;
/* save copies */
a = *addr1;
b = *addr2;
if (a.sin6_scope_id == 0)
if (sa6_recoverscope(&a)) {
/* can't get scope, so can't match */
return (0);
}
if (b.sin6_scope_id == 0)
if (sa6_recoverscope(&b)) {
/* can't get scope, so can't match */
return (0);
}
if (a.sin6_scope_id != b.sin6_scope_id)
return (0);
return (1);
}
/*
* returns a sockaddr_in6 with embedded scope recovered and removed
*/
struct sockaddr_in6 *
sctp_recover_scope(struct sockaddr_in6 *addr, struct sockaddr_in6 *store)
{
/* check and strip embedded scope junk */
if (addr->sin6_family == AF_INET6) {
if (IN6_IS_SCOPE_LINKLOCAL(&addr->sin6_addr)) {
if (addr->sin6_scope_id == 0) {
*store = *addr;
if (!sa6_recoverscope(store)) {
/* use the recovered scope */
addr = store;
}
} else {
/* else, return the original "to" addr */
in6_clearscope(&addr->sin6_addr);
}
}
}
return (addr);
}
/*
* are the two addresses the same? currently a "scopeless" check returns: 1
* if same, 0 if not
*/
__inline int
sctp_cmpaddr(struct sockaddr *sa1, struct sockaddr *sa2)
{
/* must be valid */
if (sa1 == NULL || sa2 == NULL)
return (0);
/* must be the same family */
if (sa1->sa_family != sa2->sa_family)
return (0);
if (sa1->sa_family == AF_INET6) {
/* IPv6 addresses */
struct sockaddr_in6 *sin6_1, *sin6_2;
sin6_1 = (struct sockaddr_in6 *)sa1;
sin6_2 = (struct sockaddr_in6 *)sa2;
return (SCTP6_ARE_ADDR_EQUAL(&sin6_1->sin6_addr,
&sin6_2->sin6_addr));
} else if (sa1->sa_family == AF_INET) {
/* IPv4 addresses */
struct sockaddr_in *sin_1, *sin_2;
sin_1 = (struct sockaddr_in *)sa1;
sin_2 = (struct sockaddr_in *)sa2;
return (sin_1->sin_addr.s_addr == sin_2->sin_addr.s_addr);
} else {
/* we don't do these... */
return (0);
}
}
void
sctp_print_address(struct sockaddr *sa)
{
if (sa->sa_family == AF_INET6) {
struct sockaddr_in6 *sin6;
char ip6buf[INET6_ADDRSTRLEN];
sin6 = (struct sockaddr_in6 *)sa;
printf("IPv6 address: %s:port:%d scope:%u\n",
ip6_sprintf(ip6buf, &sin6->sin6_addr),
ntohs(sin6->sin6_port),
sin6->sin6_scope_id);
} else if (sa->sa_family == AF_INET) {
struct sockaddr_in *sin;
unsigned char *p;
sin = (struct sockaddr_in *)sa;
p = (unsigned char *)&sin->sin_addr;
printf("IPv4 address: %u.%u.%u.%u:%d\n",
p[0], p[1], p[2], p[3], ntohs(sin->sin_port));
} else {
printf("?\n");
}
}
void
sctp_print_address_pkt(struct ip *iph, struct sctphdr *sh)
{
if (iph->ip_v == IPVERSION) {
struct sockaddr_in lsa, fsa;
bzero(&lsa, sizeof(lsa));
lsa.sin_len = sizeof(lsa);
lsa.sin_family = AF_INET;
lsa.sin_addr = iph->ip_src;
lsa.sin_port = sh->src_port;
bzero(&fsa, sizeof(fsa));
fsa.sin_len = sizeof(fsa);
fsa.sin_family = AF_INET;
fsa.sin_addr = iph->ip_dst;
fsa.sin_port = sh->dest_port;
printf("src: ");
sctp_print_address((struct sockaddr *)&lsa);
printf("dest: ");
sctp_print_address((struct sockaddr *)&fsa);
} else if (iph->ip_v == (IPV6_VERSION >> 4)) {
struct ip6_hdr *ip6;
struct sockaddr_in6 lsa6, fsa6;
ip6 = (struct ip6_hdr *)iph;
bzero(&lsa6, sizeof(lsa6));
lsa6.sin6_len = sizeof(lsa6);
lsa6.sin6_family = AF_INET6;
lsa6.sin6_addr = ip6->ip6_src;
lsa6.sin6_port = sh->src_port;
bzero(&fsa6, sizeof(fsa6));
fsa6.sin6_len = sizeof(fsa6);
fsa6.sin6_family = AF_INET6;
fsa6.sin6_addr = ip6->ip6_dst;
fsa6.sin6_port = sh->dest_port;
printf("src: ");
sctp_print_address((struct sockaddr *)&lsa6);
printf("dest: ");
sctp_print_address((struct sockaddr *)&fsa6);
}
}
void
sctp_pull_off_control_to_new_inp(struct sctp_inpcb *old_inp,
struct sctp_inpcb *new_inp,
struct sctp_tcb *stcb)
{
/*
* go through our old INP and pull off any control structures that
* belong to stcb and move then to the new inp.
*/
struct socket *old_so, *new_so;
struct sctp_queued_to_read *control, *nctl;
struct sctp_readhead tmp_queue;
struct mbuf *m;
int error = 0;
old_so = old_inp->sctp_socket;
new_so = new_inp->sctp_socket;
TAILQ_INIT(&tmp_queue);
SOCKBUF_LOCK(&(old_so->so_rcv));
error = sblock(&old_so->so_rcv, 0);
SOCKBUF_UNLOCK(&(old_so->so_rcv));
if (error) {
/*
* Gak, can't get sblock, we have a problem. data will be
* left stranded.. and we don't dare look at it since the
* other thread may be reading something. Oh well, its a
* screwed up app that does a peeloff OR a accept while
* reading from the main socket... actually its only the
* peeloff() case, since I think read will fail on a
* listening socket..
*/
return;
}
/* lock the socket buffers */
SCTP_INP_READ_LOCK(old_inp);
control = TAILQ_FIRST(&old_inp->read_queue);
/* Pull off all for out target stcb */
while (control) {
nctl = TAILQ_NEXT(control, next);
if (control->stcb == stcb) {
/* remove it we want it */
TAILQ_REMOVE(&old_inp->read_queue, control, next);
TAILQ_INSERT_TAIL(&tmp_queue, control, next);
m = control->data;
while (m) {
#ifdef SCTP_SB_LOGGING
sctp_sblog(&old_so->so_rcv, control->do_not_ref_stcb ? NULL : stcb, SCTP_LOG_SBFREE, SCTP_BUF_LEN(m));
#endif
sctp_sbfree(control, stcb, &old_so->so_rcv, m);
#ifdef SCTP_SB_LOGGING
sctp_sblog(&old_so->so_rcv, control->do_not_ref_stcb ? NULL : stcb, SCTP_LOG_SBRESULT, 0);
#endif
m = SCTP_BUF_NEXT(m);
}
}
control = nctl;
}
SCTP_INP_READ_UNLOCK(old_inp);
/* Remove the sb-lock on the old socket */
SOCKBUF_LOCK(&(old_so->so_rcv));
sbunlock(&old_so->so_rcv);
SOCKBUF_UNLOCK(&(old_so->so_rcv));
/* Now we move them over to the new socket buffer */
control = TAILQ_FIRST(&tmp_queue);
SCTP_INP_READ_LOCK(new_inp);
while (control) {
nctl = TAILQ_NEXT(control, next);
TAILQ_INSERT_TAIL(&new_inp->read_queue, control, next);
m = control->data;
while (m) {
#ifdef SCTP_SB_LOGGING
sctp_sblog(&new_so->so_rcv, control->do_not_ref_stcb ? NULL : stcb, SCTP_LOG_SBALLOC, SCTP_BUF_LEN(m));
#endif
sctp_sballoc(stcb, &new_so->so_rcv, m);
#ifdef SCTP_SB_LOGGING
sctp_sblog(&new_so->so_rcv, control->do_not_ref_stcb ? NULL : stcb, SCTP_LOG_SBRESULT, 0);
#endif
m = SCTP_BUF_NEXT(m);
}
control = nctl;
}
SCTP_INP_READ_UNLOCK(new_inp);
}
void
sctp_add_to_readq(struct sctp_inpcb *inp,
struct sctp_tcb *stcb,
struct sctp_queued_to_read *control,
struct sockbuf *sb,
int end)
{
/*
* Here we must place the control on the end of the socket read
* queue AND increment sb_cc so that select will work properly on
* read.
*/
struct mbuf *m, *prev = NULL;
if (inp == NULL) {
/* Gak, TSNH!! */
#ifdef INVARIANTS
panic("Gak, inp NULL on add_to_readq");
#endif
return;
}
SCTP_INP_READ_LOCK(inp);
if (!(control->spec_flags & M_NOTIFICATION)) {
atomic_add_int(&inp->total_recvs, 1);
if (!control->do_not_ref_stcb) {
atomic_add_int(&stcb->total_recvs, 1);
}
}
m = control->data;
control->held_length = 0;
control->length = 0;
while (m) {
if (SCTP_BUF_LEN(m) == 0) {
/* Skip mbufs with NO length */
if (prev == NULL) {
/* First one */
control->data = sctp_m_free(m);
m = control->data;
} else {
SCTP_BUF_NEXT(prev) = sctp_m_free(m);
m = SCTP_BUF_NEXT(prev);
}
if (m == NULL) {
control->tail_mbuf = prev;;
}
continue;
}
prev = m;
#ifdef SCTP_SB_LOGGING
sctp_sblog(sb, control->do_not_ref_stcb ? NULL : stcb, SCTP_LOG_SBALLOC, SCTP_BUF_LEN(m));
#endif
sctp_sballoc(stcb, sb, m);
#ifdef SCTP_SB_LOGGING
sctp_sblog(sb, control->do_not_ref_stcb ? NULL : stcb, SCTP_LOG_SBRESULT, 0);
#endif
atomic_add_int(&control->length, SCTP_BUF_LEN(m));
m = SCTP_BUF_NEXT(m);
}
if (prev != NULL) {
control->tail_mbuf = prev;
} else {
/* Everything got collapsed out?? */
return;
}
if (end) {
control->end_added = 1;
}
TAILQ_INSERT_TAIL(&inp->read_queue, control, next);
SCTP_INP_READ_UNLOCK(inp);
if (inp && inp->sctp_socket) {
sctp_sorwakeup(inp, inp->sctp_socket);
}
}
int
sctp_append_to_readq(struct sctp_inpcb *inp,
struct sctp_tcb *stcb,
struct sctp_queued_to_read *control,
struct mbuf *m,
int end,
int ctls_cumack,
struct sockbuf *sb)
{
/*
* A partial delivery API event is underway. OR we are appending on
* the reassembly queue.
*
* If PDAPI this means we need to add m to the end of the data.
* Increase the length in the control AND increment the sb_cc.
* Otherwise sb is NULL and all we need to do is put it at the end
* of the mbuf chain.
*/
int len = 0;
struct mbuf *mm, *tail = NULL, *prev = NULL;
if (inp) {
SCTP_INP_READ_LOCK(inp);
}
if (control == NULL) {
get_out:
if (inp) {
SCTP_INP_READ_UNLOCK(inp);
}
return (-1);
}
if (control->end_added) {
/* huh this one is complete? */
goto get_out;
}
mm = m;
if (mm == NULL) {
goto get_out;
}
while (mm) {
if (SCTP_BUF_LEN(mm) == 0) {
/* Skip mbufs with NO lenght */
if (prev == NULL) {
/* First one */
m = sctp_m_free(mm);
mm = m;
} else {
SCTP_BUF_NEXT(prev) = sctp_m_free(mm);
mm = SCTP_BUF_NEXT(prev);
}
continue;
}
prev = mm;
len += SCTP_BUF_LEN(mm);
if (sb) {
#ifdef SCTP_SB_LOGGING
sctp_sblog(sb, control->do_not_ref_stcb ? NULL : stcb, SCTP_LOG_SBALLOC, SCTP_BUF_LEN(mm));
#endif
sctp_sballoc(stcb, sb, mm);
#ifdef SCTP_SB_LOGGING
sctp_sblog(sb, control->do_not_ref_stcb ? NULL : stcb, SCTP_LOG_SBRESULT, 0);
#endif
}
mm = SCTP_BUF_NEXT(mm);
}
if (prev) {
tail = prev;
} else {
/* Really there should always be a prev */
if (m == NULL) {
/* Huh nothing left? */
#ifdef INVARIANTS
panic("Nothing left to add?");
#else
goto get_out;
#endif
}
tail = m;
}
if (end) {
/* message is complete */
if (control == stcb->asoc.control_pdapi) {
stcb->asoc.control_pdapi = NULL;
}
control->held_length = 0;
control->end_added = 1;
}
atomic_add_int(&control->length, len);
if (control->tail_mbuf) {
/* append */
SCTP_BUF_NEXT(control->tail_mbuf) = m;
control->tail_mbuf = tail;
} else {
/* nothing there */
#ifdef INVARIANTS
if (control->data != NULL) {
panic("This should NOT happen");
}
#endif
control->data = m;
control->tail_mbuf = tail;
}
/*
* When we are appending in partial delivery, the cum-ack is used
* for the actual pd-api highest tsn on this mbuf. The true cum-ack
* is populated in the outbound sinfo structure from the true cumack
* if the association exists...
*/
control->sinfo_tsn = control->sinfo_cumtsn = ctls_cumack;
if (inp) {
SCTP_INP_READ_UNLOCK(inp);
}
if (inp && inp->sctp_socket) {
sctp_sorwakeup(inp, inp->sctp_socket);
}
return (0);
}
/*************HOLD THIS COMMENT FOR PATCH FILE OF
*************ALTERNATE ROUTING CODE
*/
/*************HOLD THIS COMMENT FOR END OF PATCH FILE OF
*************ALTERNATE ROUTING CODE
*/
struct mbuf *
sctp_generate_invmanparam(int err)
{
/* Return a MBUF with a invalid mandatory parameter */
struct mbuf *m;
m = sctp_get_mbuf_for_msg(sizeof(struct sctp_paramhdr), 0, M_DONTWAIT, 1, MT_DATA);
if (m) {
struct sctp_paramhdr *ph;
SCTP_BUF_LEN(m) = sizeof(struct sctp_paramhdr);
ph = mtod(m, struct sctp_paramhdr *);
ph->param_length = htons(sizeof(struct sctp_paramhdr));
ph->param_type = htons(err);
}
return (m);
}
#ifdef SCTP_MBCNT_LOGGING
void
sctp_free_bufspace(struct sctp_tcb *stcb, struct sctp_association *asoc,
struct sctp_tmit_chunk *tp1, int chk_cnt)
{
if (tp1->data == NULL) {
return;
}
asoc->chunks_on_out_queue -= chk_cnt;
sctp_log_mbcnt(SCTP_LOG_MBCNT_DECREASE,
asoc->total_output_queue_size,
tp1->book_size,
0,
tp1->mbcnt);
if (asoc->total_output_queue_size >= tp1->book_size) {
atomic_add_int(&asoc->total_output_queue_size, -tp1->book_size);
} else {
asoc->total_output_queue_size = 0;
}
if (stcb->sctp_socket && (((stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL)) ||
((stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE)))) {
if (stcb->sctp_socket->so_snd.sb_cc >= tp1->book_size) {
stcb->sctp_socket->so_snd.sb_cc -= tp1->book_size;
} else {
stcb->sctp_socket->so_snd.sb_cc = 0;
}
}
}
#endif
int
sctp_release_pr_sctp_chunk(struct sctp_tcb *stcb, struct sctp_tmit_chunk *tp1,
int reason, struct sctpchunk_listhead *queue)
{
int ret_sz = 0;
int notdone;
uint8_t foundeom = 0;
do {
ret_sz += tp1->book_size;
tp1->sent = SCTP_FORWARD_TSN_SKIP;
if (tp1->data) {
sctp_free_bufspace(stcb, &stcb->asoc, tp1, 1);
sctp_ulp_notify(SCTP_NOTIFY_DG_FAIL, stcb, reason, tp1);
sctp_m_freem(tp1->data);
tp1->data = NULL;
sctp_sowwakeup(stcb->sctp_ep, stcb->sctp_socket);
}
if (PR_SCTP_BUF_ENABLED(tp1->flags)) {
stcb->asoc.sent_queue_cnt_removeable--;
}
if (queue == &stcb->asoc.send_queue) {
TAILQ_REMOVE(&stcb->asoc.send_queue, tp1, sctp_next);
/* on to the sent queue */
TAILQ_INSERT_TAIL(&stcb->asoc.sent_queue, tp1,
sctp_next);
stcb->asoc.sent_queue_cnt++;
}
if ((tp1->rec.data.rcv_flags & SCTP_DATA_NOT_FRAG) ==
SCTP_DATA_NOT_FRAG) {
/* not frag'ed we ae done */
notdone = 0;
foundeom = 1;
} else if (tp1->rec.data.rcv_flags & SCTP_DATA_LAST_FRAG) {
/* end of frag, we are done */
notdone = 0;
foundeom = 1;
} else {
/*
* Its a begin or middle piece, we must mark all of
* it
*/
notdone = 1;
tp1 = TAILQ_NEXT(tp1, sctp_next);
}
} while (tp1 && notdone);
if ((foundeom == 0) && (queue == &stcb->asoc.sent_queue)) {
/*
* The multi-part message was scattered across the send and
* sent queue.
*/
tp1 = TAILQ_FIRST(&stcb->asoc.send_queue);
/*
* recurse throught the send_queue too, starting at the
* beginning.
*/
if (tp1) {
ret_sz += sctp_release_pr_sctp_chunk(stcb, tp1, reason,
&stcb->asoc.send_queue);
} else {
printf("hmm, nothing on the send queue and no EOM?\n");
}
}
return (ret_sz);
}
/*
* checks to see if the given address, sa, is one that is currently known by
* the kernel note: can't distinguish the same address on multiple interfaces
* and doesn't handle multiple addresses with different zone/scope id's note:
* ifa_ifwithaddr() compares the entire sockaddr struct
*/
struct sctp_ifa *
sctp_find_ifa_in_ep(struct sctp_inpcb *inp, struct sockaddr *addr, int holds_lock)
{
struct sctp_laddr *laddr;
if (holds_lock == 0)
SCTP_INP_RLOCK(inp);
LIST_FOREACH(laddr, &inp->sctp_addr_list, sctp_nxt_addr) {
if (laddr->ifa == NULL)
continue;
if (addr->sa_family != laddr->ifa->address.sa.sa_family)
continue;
if (addr->sa_family == AF_INET) {
if (((struct sockaddr_in *)addr)->sin_addr.s_addr ==
laddr->ifa->address.sin.sin_addr.s_addr) {
/* found him. */
if (holds_lock == 0)
SCTP_INP_RUNLOCK(inp);
return (laddr->ifa);
break;
}
} else if (addr->sa_family == AF_INET6) {
if (SCTP6_ARE_ADDR_EQUAL(&((struct sockaddr_in6 *)addr)->sin6_addr,
&laddr->ifa->address.sin6.sin6_addr)) {
/* found him. */
if (holds_lock == 0)
SCTP_INP_RUNLOCK(inp);
return (laddr->ifa);
break;
}
}
}
if (holds_lock == 0)
SCTP_INP_RUNLOCK(inp);
return (NULL);
}
struct sctp_ifa *
sctp_find_ifa_in_ifn(struct sctp_ifn *sctp_ifnp, struct sockaddr *addr,
int holds_lock)
{
struct sctp_ifa *sctp_ifap;
if (holds_lock == 0)
SCTP_IPI_ADDR_LOCK();
LIST_FOREACH(sctp_ifap, &sctp_ifnp->ifalist, next_ifa) {
if (addr->sa_family != sctp_ifap->address.sa.sa_family)
continue;
if (addr->sa_family == AF_INET) {
if (((struct sockaddr_in *)addr)->sin_addr.s_addr ==
sctp_ifap->address.sin.sin_addr.s_addr) {
/* found him. */
if (holds_lock == 0)
SCTP_IPI_ADDR_UNLOCK();
return (sctp_ifap);
break;
}
} else if (addr->sa_family == AF_INET6) {
if (SCTP6_ARE_ADDR_EQUAL(&((struct sockaddr_in6 *)addr)->sin6_addr,
&sctp_ifap->address.sin6.sin6_addr)) {
/* found him. */
if (holds_lock == 0)
SCTP_IPI_ADDR_UNLOCK();
return (sctp_ifap);
break;
}
}
}
if (holds_lock == 0)
SCTP_IPI_ADDR_UNLOCK();
return (NULL);
}
uint32_t
sctp_get_ifa_hash_val(struct sockaddr *addr)
{
if (addr->sa_family == AF_INET) {
struct sockaddr_in *sin;
sin = (struct sockaddr_in *)addr;
return (sin->sin_addr.s_addr ^ (sin->sin_addr.s_addr >> 16));
} else if (addr->sa_family == AF_INET6) {
struct sockaddr_in6 *sin6;
uint32_t hash_of_addr;
sin6 = (struct sockaddr_in6 *)addr;
hash_of_addr = (sin6->sin6_addr.s6_addr32[0] +
sin6->sin6_addr.s6_addr32[1] +
sin6->sin6_addr.s6_addr32[2] +
sin6->sin6_addr.s6_addr32[3]);
hash_of_addr = (hash_of_addr ^ (hash_of_addr >> 16));
return (hash_of_addr);
}
return (0);
}
struct sctp_ifa *
sctp_find_ifa_by_addr(struct sockaddr *addr, uint32_t vrf_id, int holds_lock)
{
struct sctp_ifa *sctp_ifap;
struct sctp_vrf *vrf;
struct sctp_ifalist *hash_head;
uint32_t hash_of_addr;
if (holds_lock == 0)
SCTP_IPI_ADDR_LOCK();
vrf = sctp_find_vrf(vrf_id);
if (vrf == NULL) {
if (holds_lock == 0)
SCTP_IPI_ADDR_UNLOCK();
return (NULL);
}
hash_of_addr = sctp_get_ifa_hash_val(addr);
hash_head = &vrf->vrf_addr_hash[(hash_of_addr & vrf->vrf_hashmark)];
if (hash_head == NULL) {
printf("hash_of_addr:%x mask:%x table:%x - ",
(u_int)hash_of_addr, (u_int)vrf->vrf_hashmark,
(u_int)(hash_of_addr & vrf->vrf_hashmark));
sctp_print_address(addr);
printf("No such bucket for address\n");
if (holds_lock == 0)
SCTP_IPI_ADDR_UNLOCK();
return (NULL);
}
LIST_FOREACH(sctp_ifap, hash_head, next_bucket) {
if (sctp_ifap == NULL) {
panic("Huh LIST_FOREACH corrupt");
}
if (addr->sa_family != sctp_ifap->address.sa.sa_family)
continue;
if (addr->sa_family == AF_INET) {
if (((struct sockaddr_in *)addr)->sin_addr.s_addr ==
sctp_ifap->address.sin.sin_addr.s_addr) {
/* found him. */
if (holds_lock == 0)
SCTP_IPI_ADDR_UNLOCK();
return (sctp_ifap);
break;
}
} else if (addr->sa_family == AF_INET6) {
if (SCTP6_ARE_ADDR_EQUAL(&((struct sockaddr_in6 *)addr)->sin6_addr,
&sctp_ifap->address.sin6.sin6_addr)) {
/* found him. */
if (holds_lock == 0)
SCTP_IPI_ADDR_UNLOCK();
return (sctp_ifap);
break;
}
}
}
if (holds_lock == 0)
SCTP_IPI_ADDR_UNLOCK();
return (NULL);
}
static void
sctp_user_rcvd(struct sctp_tcb *stcb, int *freed_so_far, int hold_rlock,
uint32_t rwnd_req)
{
/* User pulled some data, do we need a rwnd update? */
int r_unlocked = 0;
uint32_t dif, rwnd;
struct socket *so = NULL;
if (stcb == NULL)
return;
atomic_add_int(&stcb->asoc.refcnt, 1);
if (stcb->asoc.state & (SCTP_STATE_ABOUT_TO_BE_FREED |
SCTP_STATE_SHUTDOWN_RECEIVED |
SCTP_STATE_SHUTDOWN_ACK_SENT)
) {
/* Pre-check If we are freeing no update */
goto no_lock;
}
SCTP_INP_INCR_REF(stcb->sctp_ep);
if ((stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE) ||
(stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE)) {
goto out;
}
so = stcb->sctp_socket;
if (so == NULL) {
goto out;
}
atomic_add_int(&stcb->freed_by_sorcv_sincelast, *freed_so_far);
/* Have you have freed enough to look */
#ifdef SCTP_RECV_DETAIL_RWND_LOGGING
sctp_misc_ints(SCTP_ENTER_USER_RECV,
(stcb->asoc.my_rwnd - stcb->asoc.my_last_reported_rwnd),
*freed_so_far,
stcb->freed_by_sorcv_sincelast,
rwnd_req);
#endif
*freed_so_far = 0;
/* Yep, its worth a look and the lock overhead */
/* Figure out what the rwnd would be */
rwnd = sctp_calc_rwnd(stcb, &stcb->asoc);
if (rwnd >= stcb->asoc.my_last_reported_rwnd) {
dif = rwnd - stcb->asoc.my_last_reported_rwnd;
} else {
dif = 0;
}
if (dif >= rwnd_req) {
if (hold_rlock) {
SCTP_INP_READ_UNLOCK(stcb->sctp_ep);
r_unlocked = 1;
}
if (stcb->asoc.state & SCTP_STATE_ABOUT_TO_BE_FREED) {
/*
* One last check before we allow the guy possibly
* to get in. There is a race, where the guy has not
* reached the gate. In that case
*/
goto out;
}
SCTP_TCB_LOCK(stcb);
if (stcb->asoc.state & SCTP_STATE_ABOUT_TO_BE_FREED) {
/* No reports here */
SCTP_TCB_UNLOCK(stcb);
goto out;
}
#ifdef SCTP_RECV_DETAIL_RWND_LOGGING
sctp_misc_ints(SCTP_USER_RECV_SACKS,
stcb->asoc.my_rwnd,
stcb->asoc.my_last_reported_rwnd,
stcb->freed_by_sorcv_sincelast,
dif);
#endif
SCTP_STAT_INCR(sctps_wu_sacks_sent);
sctp_send_sack(stcb);
sctp_chunk_output(stcb->sctp_ep, stcb,
SCTP_OUTPUT_FROM_USR_RCVD);
/* make sure no timer is running */
sctp_timer_stop(SCTP_TIMER_TYPE_RECV, stcb->sctp_ep, stcb, NULL, SCTP_FROM_SCTPUTIL + SCTP_LOC_6);
SCTP_TCB_UNLOCK(stcb);
} else {
/* Update how much we have pending */
stcb->freed_by_sorcv_sincelast = dif;
#ifdef SCTP_RECV_DETAIL_RWND_LOGGING
sctp_misc_ints(SCTP_USER_RECV_SACKS,
stcb->asoc.my_rwnd,
stcb->asoc.my_last_reported_rwnd,
stcb->freed_by_sorcv_sincelast,
0);
#endif
}
out:
if (so && r_unlocked && hold_rlock) {
SCTP_INP_READ_LOCK(stcb->sctp_ep);
}
SCTP_INP_DECR_REF(stcb->sctp_ep);
no_lock:
atomic_add_int(&stcb->asoc.refcnt, -1);
return;
}
int
sctp_sorecvmsg(struct socket *so,
struct uio *uio,
struct mbuf **mp,
struct sockaddr *from,
int fromlen,
int *msg_flags,
struct sctp_sndrcvinfo *sinfo,
int filling_sinfo)
{
/*
* MSG flags we will look at MSG_DONTWAIT - non-blocking IO.
* MSG_PEEK - Look don't touch :-D (only valid with OUT mbuf copy
* mp=NULL thus uio is the copy method to userland) MSG_WAITALL - ??
* On the way out we may send out any combination of:
* MSG_NOTIFICATION MSG_EOR
*
*/
struct sctp_inpcb *inp = NULL;
int my_len = 0;
int cp_len = 0, error = 0;
struct sctp_queued_to_read *control = NULL, *ctl = NULL, *nxt = NULL;
struct mbuf *m = NULL, *embuf = NULL;
struct sctp_tcb *stcb = NULL;
int wakeup_read_socket = 0;
int freecnt_applied = 0;
int out_flags = 0, in_flags = 0;
int block_allowed = 1;
int freed_so_far = 0;
int copied_so_far = 0;
int in_eeor_mode = 0;
int no_rcv_needed = 0;
uint32_t rwnd_req = 0;
int hold_sblock = 0;
int hold_rlock = 0;
int alen = 0;
int slen = 0;
int held_length = 0;
if (msg_flags) {
in_flags = *msg_flags;
} else {
in_flags = 0;
}
slen = uio->uio_resid;
/* Pull in and set up our int flags */
if (in_flags & MSG_OOB) {
/* Out of band's NOT supported */
return (EOPNOTSUPP);
}
if ((in_flags & MSG_PEEK) && (mp != NULL)) {
return (EINVAL);
}
if ((in_flags & (MSG_DONTWAIT
| MSG_NBIO
)) ||
SCTP_SO_IS_NBIO(so)) {
block_allowed = 0;
}
/* setup the endpoint */
inp = (struct sctp_inpcb *)so->so_pcb;
if (inp == NULL) {
return (EFAULT);
}
rwnd_req = (SCTP_SB_LIMIT_RCV(so) >> SCTP_RWND_HIWAT_SHIFT);
/* Must be at least a MTU's worth */
if (rwnd_req < SCTP_MIN_RWND)
rwnd_req = SCTP_MIN_RWND;
in_eeor_mode = sctp_is_feature_on(inp, SCTP_PCB_FLAGS_EXPLICIT_EOR);
#ifdef SCTP_RECV_RWND_LOGGING
sctp_misc_ints(SCTP_SORECV_ENTER,
rwnd_req, in_eeor_mode, so->so_rcv.sb_cc, uio->uio_resid);
#endif
SOCKBUF_LOCK(&so->so_rcv);
hold_sblock = 1;
#ifdef SCTP_RECV_RWND_LOGGING
sctp_misc_ints(SCTP_SORECV_ENTERPL,
rwnd_req, block_allowed, so->so_rcv.sb_cc, uio->uio_resid);
#endif
error = sblock(&so->so_rcv, (block_allowed ? M_WAITOK : 0));
if (error) {
goto release_unlocked;
}
restart:
if (hold_sblock == 0) {
SOCKBUF_LOCK(&so->so_rcv);
hold_sblock = 1;
}
sbunlock(&so->so_rcv);
restart_nosblocks:
if (hold_sblock == 0) {
SOCKBUF_LOCK(&so->so_rcv);
hold_sblock = 1;
}
if ((inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE) ||
(inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE)) {
goto out;
}
if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
if (so->so_error) {
error = so->so_error;
if ((in_flags & MSG_PEEK) == 0)
so->so_error = 0;
} else {
error = ENOTCONN;
}
goto out;
}
if ((so->so_rcv.sb_cc <= held_length) && block_allowed) {
/* we need to wait for data */
#ifdef SCTP_RECV_DETAIL_RWND_LOGGING
sctp_misc_ints(SCTP_SORECV_BLOCKSA,
0, 0, so->so_rcv.sb_cc, uio->uio_resid);
#endif
if ((so->so_rcv.sb_cc == 0) &&
((inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) ||
(inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL))) {
if ((inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) == 0) {
/*
* For active open side clear flags for
* re-use passive open is blocked by
* connect.
*/
if (inp->sctp_flags & SCTP_PCB_FLAGS_WAS_ABORTED) {
/*
* You were aborted, passive side
* always hits here
*/
error = ECONNRESET;
/*
* You get this once if you are
* active open side
*/
if (!(inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL)) {
/*
* Remove flag if on the
* active open side
*/
inp->sctp_flags &= ~SCTP_PCB_FLAGS_WAS_ABORTED;
}
}
so->so_state &= ~(SS_ISCONNECTING |
SS_ISDISCONNECTING |
SS_ISCONFIRMING |
SS_ISCONNECTED);
if (error == 0) {
if ((inp->sctp_flags & SCTP_PCB_FLAGS_WAS_CONNECTED) == 0) {
error = ENOTCONN;
} else {
inp->sctp_flags &= ~SCTP_PCB_FLAGS_WAS_CONNECTED;
}
}
goto out;
}
}
error = sbwait(&so->so_rcv);
if (error) {
goto out;
}
held_length = 0;
goto restart_nosblocks;
} else if (so->so_rcv.sb_cc == 0) {
if (so->so_error) {
error = so->so_error;
if ((in_flags & MSG_PEEK) == 0)
so->so_error = 0;
} else {
if ((inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) ||
(inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL)) {
if ((inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) == 0) {
/*
* For active open side clear flags
* for re-use passive open is
* blocked by connect.
*/
if (inp->sctp_flags & SCTP_PCB_FLAGS_WAS_ABORTED) {
/*
* You were aborted, passive
* side always hits here
*/
error = ECONNRESET;
/*
* You get this once if you
* are active open side
*/
if (!(inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL)) {
/*
* Remove flag if on
* the active open
* side
*/
inp->sctp_flags &= ~SCTP_PCB_FLAGS_WAS_ABORTED;
}
}
so->so_state &= ~(SS_ISCONNECTING |
SS_ISDISCONNECTING |
SS_ISCONFIRMING |
SS_ISCONNECTED);
if (error == 0) {
if ((inp->sctp_flags & SCTP_PCB_FLAGS_WAS_CONNECTED) == 0) {
error = ENOTCONN;
} else {
inp->sctp_flags &= ~SCTP_PCB_FLAGS_WAS_CONNECTED;
}
}
goto out;
}
}
error = EWOULDBLOCK;
}
goto out;
}
error = sblock(&so->so_rcv, (block_allowed ? M_WAITOK : 0));
/* we possibly have data we can read */
control = TAILQ_FIRST(&inp->read_queue);
if (control == NULL) {
/*
* This could be happening since the appender did the
* increment but as not yet did the tailq insert onto the
* read_queue
*/
if (hold_rlock == 0) {
SCTP_INP_READ_LOCK(inp);
hold_rlock = 1;
}
control = TAILQ_FIRST(&inp->read_queue);
if ((control == NULL) && (so->so_rcv.sb_cc != 0)) {
#ifdef INVARIANTS
panic("Huh, its non zero and nothing on control?");
#endif
so->so_rcv.sb_cc = 0;
}
SCTP_INP_READ_UNLOCK(inp);
hold_rlock = 0;
goto restart;
}
if ((control->length == 0) &&
(control->do_not_ref_stcb)) {
/*
* Clean up code for freeing assoc that left behind a
* pdapi.. maybe a peer in EEOR that just closed after
* sending and never indicated a EOR.
*/
if (hold_rlock == 0) {
hold_rlock = 1;
SCTP_INP_READ_LOCK(inp);
}
control->held_length = 0;
if (control->data) {
/* Hmm there is data here .. fix */
struct mbuf *m;
int cnt = 0;
m = control->data;
while (m) {
cnt += SCTP_BUF_LEN(m);
if (SCTP_BUF_NEXT(m) == NULL) {
control->tail_mbuf = m;
control->end_added = 1;
}
m = SCTP_BUF_NEXT(m);
}
control->length = cnt;
} else {
/* remove it */
TAILQ_REMOVE(&inp->read_queue, control, next);
/* Add back any hiddend data */
sctp_free_remote_addr(control->whoFrom);
sctp_free_a_readq(stcb, control);
}
if (hold_rlock) {
hold_rlock = 0;
SCTP_INP_READ_UNLOCK(inp);
}
goto restart;
}
if (control->length == 0) {
if ((sctp_is_feature_on(inp, SCTP_PCB_FLAGS_FRAG_INTERLEAVE)) &&
(filling_sinfo)) {
/* find a more suitable one then this */
ctl = TAILQ_NEXT(control, next);
while (ctl) {
if ((ctl->stcb != control->stcb) && (ctl->length)) {
/* found one */
control = ctl;
goto found_one;
}
ctl = TAILQ_NEXT(ctl, next);
}
}
/*
* if we reach here, not suitable replacement is available
* <or> fragment interleave is NOT on. So stuff the sb_cc
* into the our held count, and its time to sleep again.
*/
held_length = so->so_rcv.sb_cc;
control->held_length = so->so_rcv.sb_cc;
goto restart;
}
/* Clear the held length since there is something to read */
control->held_length = 0;
if (hold_rlock) {
SCTP_INP_READ_UNLOCK(inp);
hold_rlock = 0;
}
found_one:
/*
* If we reach here, control has a some data for us to read off.
* Note that stcb COULD be NULL.
*/
if (hold_sblock) {
SOCKBUF_UNLOCK(&so->so_rcv);
hold_sblock = 0;
}
stcb = control->stcb;
if (stcb) {
if ((stcb->asoc.state & SCTP_STATE_ABOUT_TO_BE_FREED) &&
(control->do_not_ref_stcb == 0)) {
if (freecnt_applied == 0)
stcb = NULL;
} else if (control->do_not_ref_stcb == 0) {
/* you can't free it on me please */
/*
* The lock on the socket buffer protects us so the
* free code will stop. But since we used the
* socketbuf lock and the sender uses the tcb_lock
* to increment, we need to use the atomic add to
* the refcnt
*/
atomic_add_int(&stcb->asoc.refcnt, 1);
freecnt_applied = 1;
/*
* Setup to remember how much we have not yet told
* the peer our rwnd has opened up. Note we grab the
* value from the tcb from last time. Note too that
* sack sending clears this when a sack is sent..
* which is fine. Once we hit the rwnd_req, we then
* will go to the sctp_user_rcvd() that will not
* lock until it KNOWs it MUST send a WUP-SACK.
*
*/
freed_so_far = stcb->freed_by_sorcv_sincelast;
stcb->freed_by_sorcv_sincelast = 0;
}
}
/* First lets get off the sinfo and sockaddr info */
if ((sinfo) && filling_sinfo) {
memcpy(sinfo, control, sizeof(struct sctp_nonpad_sndrcvinfo));
nxt = TAILQ_NEXT(control, next);
if (sctp_is_feature_on(inp, SCTP_PCB_FLAGS_EXT_RCVINFO)) {
struct sctp_extrcvinfo *s_extra;
s_extra = (struct sctp_extrcvinfo *)sinfo;
if (nxt) {
s_extra->next_flags = SCTP_NEXT_MSG_AVAIL;
if (nxt->sinfo_flags & SCTP_UNORDERED) {
s_extra->next_flags |= SCTP_NEXT_MSG_IS_UNORDERED;
}
if (nxt->spec_flags & M_NOTIFICATION) {
s_extra->next_flags |= SCTP_NEXT_MSG_IS_NOTIFICATION;
}
s_extra->next_asocid = nxt->sinfo_assoc_id;
s_extra->next_length = nxt->length;
s_extra->next_ppid = nxt->sinfo_ppid;
s_extra->next_stream = nxt->sinfo_stream;
if (nxt->tail_mbuf != NULL) {
if (nxt->end_added) {
s_extra->next_flags |= SCTP_NEXT_MSG_ISCOMPLETE;
}
}
} else {
/*
* we explicitly 0 this, since the memcpy
* got some other things beyond the older
* sinfo_ that is on the control's structure
* :-D
*/
s_extra->next_flags = SCTP_NO_NEXT_MSG;
s_extra->next_asocid = 0;
s_extra->next_length = 0;
s_extra->next_ppid = 0;
s_extra->next_stream = 0;
}
}
/*
* update off the real current cum-ack, if we have an stcb.
*/
if (stcb)
sinfo->sinfo_cumtsn = stcb->asoc.cumulative_tsn;
/*
* mask off the high bits, we keep the actual chunk bits in
* there.
*/
sinfo->sinfo_flags &= 0x00ff;
}
if (fromlen && from) {
struct sockaddr *to;
#ifdef INET
cp_len = min(fromlen, control->whoFrom->ro._l_addr.sin.sin_len);
memcpy(from, &control->whoFrom->ro._l_addr, cp_len);
((struct sockaddr_in *)from)->sin_port = control->port_from;
#else
/* No AF_INET use AF_INET6 */
cp_len = min(fromlen, control->whoFrom->ro._l_addr.sin6.sin6_len);
memcpy(from, &control->whoFrom->ro._l_addr, cp_len);
((struct sockaddr_in6 *)from)->sin6_port = control->port_from;
#endif
to = from;
#if defined(INET) && defined(INET6)
if ((inp->sctp_flags & SCTP_PCB_FLAGS_NEEDS_MAPPED_V4) &&
(to->sa_family == AF_INET) &&
((size_t)fromlen >= sizeof(struct sockaddr_in6))) {
struct sockaddr_in *sin;
struct sockaddr_in6 sin6;
sin = (struct sockaddr_in *)to;
bzero(&sin6, sizeof(sin6));
sin6.sin6_family = AF_INET6;
sin6.sin6_len = sizeof(struct sockaddr_in6);
sin6.sin6_addr.s6_addr16[2] = 0xffff;
bcopy(&sin->sin_addr,
&sin6.sin6_addr.s6_addr16[3],
sizeof(sin6.sin6_addr.s6_addr16[3]));
sin6.sin6_port = sin->sin_port;
memcpy(from, (caddr_t)&sin6, sizeof(sin6));
}
#endif
#if defined(INET6)
{
struct sockaddr_in6 lsa6, *to6;
to6 = (struct sockaddr_in6 *)to;
sctp_recover_scope_mac(to6, (&lsa6));
}
#endif
}
/* now copy out what data we can */
if (mp == NULL) {
/* copy out each mbuf in the chain up to length */
get_more_data:
m = control->data;
while (m) {
/* Move out all we can */
cp_len = (int)uio->uio_resid;
my_len = (int)SCTP_BUF_LEN(m);
if (cp_len > my_len) {
/* not enough in this buf */
cp_len = my_len;
}
if (hold_rlock) {
SCTP_INP_READ_UNLOCK(inp);
hold_rlock = 0;
}
if (cp_len > 0)
error = uiomove(mtod(m, char *), cp_len, uio);
#ifdef SCTP_RECV_DETAIL_RWND_LOGGING
sctp_misc_ints(SCTP_SORCV_DOESCPY,
so->so_rcv.sb_cc,
cp_len,
0,
0);
#endif
/* re-read */
if (inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE) {
goto release;
}
if (stcb &&
stcb->asoc.state & SCTP_STATE_ABOUT_TO_BE_FREED) {
no_rcv_needed = 1;
}
if (error) {
/* error we are out of here */
goto release;
}
if ((SCTP_BUF_NEXT(m) == NULL) &&
(cp_len >= SCTP_BUF_LEN(m)) &&
((control->end_added == 0) ||
(control->end_added && (TAILQ_NEXT(control, next) == NULL)))
) {
#ifdef SCTP_RECV_DETAIL_RWND_LOGGING
sctp_misc_ints(SCTP_SORCV_DOESLCK,
so->so_rcv.sb_cc,
cp_len,
SCTP_BUF_LEN(m),
control->length);
#endif
SCTP_INP_READ_LOCK(inp);
hold_rlock = 1;
}
if (cp_len == SCTP_BUF_LEN(m)) {
#ifdef SCTP_RECV_DETAIL_RWND_LOGGING
sctp_misc_ints(SCTP_SORCV_DOESADJ,
so->so_rcv.sb_cc,
control->length,
cp_len,
0);
#endif
if ((SCTP_BUF_NEXT(m) == NULL) &&
(control->end_added)) {
out_flags |= MSG_EOR;
}
if (control->spec_flags & M_NOTIFICATION) {
out_flags |= MSG_NOTIFICATION;
}
/* we ate up the mbuf */
if (in_flags & MSG_PEEK) {
/* just looking */
m = SCTP_BUF_NEXT(m);
copied_so_far += cp_len;
} else {
/* dispose of the mbuf */
#ifdef SCTP_SB_LOGGING
sctp_sblog(&so->so_rcv,
control->do_not_ref_stcb ? NULL : stcb, SCTP_LOG_SBFREE, SCTP_BUF_LEN(m));
#endif
sctp_sbfree(control, stcb, &so->so_rcv, m);
#ifdef SCTP_SB_LOGGING
sctp_sblog(&so->so_rcv,
control->do_not_ref_stcb ? NULL : stcb, SCTP_LOG_SBRESULT, 0);
#endif
embuf = m;
copied_so_far += cp_len;
freed_so_far += cp_len;
alen = atomic_fetchadd_int(&control->length, -(cp_len));
if (alen < cp_len) {
panic("Control length goes negative?");
}
#ifdef SCTP_RECV_DETAIL_RWND_LOGGING
sctp_misc_ints(SCTP_SORCV_PASSBF,
so->so_rcv.sb_cc,
control->length,
0,
0);
#endif
control->data = sctp_m_free(m);
m = control->data;
/*
* been through it all, must hold sb
* lock ok to null tail
*/
if (control->data == NULL) {
#ifdef INVARIANTS
if ((control->end_added == 0) ||
(TAILQ_NEXT(control, next) == NULL)) {
/*
* If the end is not
* added, OR the
* next is NOT null
* we MUST have the
* lock.
*/
if (mtx_owned(&inp->inp_rdata_mtx) == 0) {
panic("Hmm we don't own the lock?");
}
}
#endif
control->tail_mbuf = NULL;
#ifdef INVARIANTS
if ((control->end_added) && ((out_flags & MSG_EOR) == 0)) {
panic("end_added, nothing left and no MSG_EOR");
}
#endif
}
#ifdef SCTP_RECV_DETAIL_RWND_LOGGING
sctp_misc_ints(SCTP_SORCV_ADJD,
so->so_rcv.sb_cc,
control->length,
0,
0);
#endif
}
} else {
/* Do we need to trim the mbuf? */
if (control->spec_flags & M_NOTIFICATION) {
out_flags |= MSG_NOTIFICATION;
}
if ((in_flags & MSG_PEEK) == 0) {
SCTP_BUF_RESV_UF(m, cp_len);
SCTP_BUF_LEN(m) -= cp_len;
#ifdef SCTP_SB_LOGGING
sctp_sblog(&so->so_rcv, control->do_not_ref_stcb ? NULL : stcb, SCTP_LOG_SBFREE, cp_len);
#endif
atomic_subtract_int(&so->so_rcv.sb_cc, cp_len);
if (stcb) {
atomic_subtract_int(&stcb->asoc.sb_cc, cp_len);
}
copied_so_far += cp_len;
embuf = m;
freed_so_far += cp_len;
#ifdef SCTP_SB_LOGGING
sctp_sblog(&so->so_rcv, control->do_not_ref_stcb ? NULL : stcb,
SCTP_LOG_SBRESULT, 0);
#endif
alen = atomic_fetchadd_int(&control->length, -(cp_len));
if (alen < cp_len) {
panic("Control length goes negative2?");
}
} else {
copied_so_far += cp_len;
}
}
if ((out_flags & MSG_EOR) ||
(uio->uio_resid == 0)
) {
break;
}
if (((stcb) && (in_flags & MSG_PEEK) == 0) &&
(control->do_not_ref_stcb == 0) &&
(freed_so_far >= rwnd_req)) {
sctp_user_rcvd(stcb, &freed_so_far, hold_rlock, rwnd_req);
}
#ifdef SCTP_RECV_DETAIL_RWND_LOGGING
sctp_misc_ints(SCTP_SORCV_BOTWHILE,
so->so_rcv.sb_cc,
control->length,
0,
0);
#endif
} /* end while(m) */
/*
* At this point we have looked at it all and we either have
* a MSG_EOR/or read all the user wants... <OR>
* control->length == 0.
*/
if ((out_flags & MSG_EOR) &&
((in_flags & MSG_PEEK) == 0)) {
/* we are done with this control */
if (control->length == 0) {
if (control->data) {
#ifdef INVARIANTS
panic("control->data not null at read eor?");
#else
printf("Strange, data left in the control buffer .. invarients would panic?\n");
sctp_m_freem(control->data);
control->data = NULL;
#endif
}
done_with_control:
#ifdef SCTP_RECV_DETAIL_RWND_LOGGING
sctp_misc_ints(SCTP_SORCV_FREECTL,
so->so_rcv.sb_cc,
0,
0,
0);
#endif
if (TAILQ_NEXT(control, next) == NULL) {
/*
* If we don't have a next we need a
* lock, if there is a next interupt
* is filling ahead of us and we
* don't need a lock to remove this
* guy (which is the head of the
* queue).
*/
if (hold_rlock == 0) {
SCTP_INP_READ_LOCK(inp);
hold_rlock = 1;
}
}
TAILQ_REMOVE(&inp->read_queue, control, next);
/* Add back any hiddend data */
if (control->held_length) {
held_length = 0;
control->held_length = 0;
wakeup_read_socket = 1;
}
no_rcv_needed = control->do_not_ref_stcb;
sctp_free_remote_addr(control->whoFrom);
control->data = NULL;
sctp_free_a_readq(stcb, control);
control = NULL;
if ((freed_so_far >= rwnd_req) && (no_rcv_needed == 0))
sctp_user_rcvd(stcb, &freed_so_far, hold_rlock, rwnd_req);
} else {
/*
* The user did not read all of this
* message, turn off the returned MSG_EOR
* since we are leaving more behind on the
* control to read.
*/
#ifdef INVARIANTS
if (control->end_added && (control->data == NULL) &&
(control->tail_mbuf == NULL)) {
panic("Gak, control->length is corrupt?");
}
#endif
no_rcv_needed = control->do_not_ref_stcb;
out_flags &= ~MSG_EOR;
}
}
if (out_flags & MSG_EOR) {
goto release;
}
if ((uio->uio_resid == 0) ||
((in_eeor_mode) && (copied_so_far >= max(so->so_rcv.sb_lowat, 1)))
) {
goto release;
}
/*
* If I hit here the receiver wants more and this message is
* NOT done (pd-api). So two questions. Can we block? if not
* we are done. Did the user NOT set MSG_WAITALL?
*/
if (block_allowed == 0) {
goto release;
}
/*
* We need to wait for more data a few things: - We don't
* sbunlock() so we don't get someone else reading. - We
* must be sure to account for the case where what is added
* is NOT to our control when we wakeup.
*/
/*
* Do we need to tell the transport a rwnd update might be
* needed before we go to sleep?
*/
if (((stcb) && (in_flags & MSG_PEEK) == 0) &&
((freed_so_far >= rwnd_req) &&
(control->do_not_ref_stcb == 0) &&
(no_rcv_needed == 0))) {
sctp_user_rcvd(stcb, &freed_so_far, hold_rlock, rwnd_req);
}
wait_some_more:
if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
goto release;
}
if (inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE)
goto release;
if (hold_rlock == 1) {
SCTP_INP_READ_UNLOCK(inp);
hold_rlock = 0;
}
if (hold_sblock == 0) {
SOCKBUF_LOCK(&so->so_rcv);
hold_sblock = 1;
}
#ifdef SCTP_RECV_DETAIL_RWND_LOGGING
if (stcb)
sctp_misc_ints(SCTP_SORECV_BLOCKSB,
freed_so_far,
stcb->asoc.my_rwnd,
so->so_rcv.sb_cc,
uio->uio_resid);
else
sctp_misc_ints(SCTP_SORECV_BLOCKSB,
freed_so_far,
0,
so->so_rcv.sb_cc,
uio->uio_resid);
#endif
if (so->so_rcv.sb_cc <= control->held_length) {
error = sbwait(&so->so_rcv);
if (error) {
goto release;
}
control->held_length = 0;
}
if (hold_sblock) {
SOCKBUF_UNLOCK(&so->so_rcv);
hold_sblock = 0;
}
if (control->length == 0) {
/* still nothing here */
if (control->end_added == 1) {
/* he aborted, or is done i.e.did a shutdown */
out_flags |= MSG_EOR;
if (control->pdapi_aborted)
out_flags |= MSG_TRUNC;
goto done_with_control;
}
if (so->so_rcv.sb_cc > held_length) {
control->held_length = so->so_rcv.sb_cc;
held_length = 0;
}
goto wait_some_more;
} else if (control->data == NULL) {
/*
* we must re-sync since data is probably being
* added
*/
SCTP_INP_READ_LOCK(inp);
if ((control->length > 0) && (control->data == NULL)) {
/*
* big trouble.. we have the lock and its
* corrupt?
*/
panic("Impossible data==NULL length !=0");
}
SCTP_INP_READ_UNLOCK(inp);
/* We will fall around to get more data */
}
goto get_more_data;
} else {
/* copy out the mbuf chain */
get_more_data2:
/*
* Do we have a uio, I doubt it if so we grab the size from
* it, if not you get it all
*/
if (uio)
cp_len = uio->uio_resid;
else
cp_len = control->length;
if ((uint32_t) cp_len >= control->length) {
/* easy way */
if ((control->end_added == 0) ||
(TAILQ_NEXT(control, next) == NULL)) {
/* Need to get rlock */
if (hold_rlock == 0) {
SCTP_INP_READ_LOCK(inp);
hold_rlock = 1;
}
}
if (control->end_added) {
out_flags |= MSG_EOR;
}
if (control->spec_flags & M_NOTIFICATION) {
out_flags |= MSG_NOTIFICATION;
}
if (uio)
uio->uio_resid -= control->length;
*mp = control->data;
m = control->data;
while (m) {
#ifdef SCTP_SB_LOGGING
sctp_sblog(&so->so_rcv,
control->do_not_ref_stcb ? NULL : stcb, SCTP_LOG_SBFREE, SCTP_BUF_LEN(m));
#endif
sctp_sbfree(control, stcb, &so->so_rcv, m);
freed_so_far += SCTP_BUF_LEN(m);
#ifdef SCTP_SB_LOGGING
sctp_sblog(&so->so_rcv,
control->do_not_ref_stcb ? NULL : stcb, SCTP_LOG_SBRESULT, 0);
#endif
m = SCTP_BUF_NEXT(m);
}
control->data = control->tail_mbuf = NULL;
control->length = 0;
if (out_flags & MSG_EOR) {
/* Done with this control */
goto done_with_control;
}
/* still more to do with this conntrol */
/* do we really support msg_waitall here? */
if ((block_allowed == 0) ||
((in_flags & MSG_WAITALL) == 0)) {
goto release;
}
wait_some_more2:
if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
goto release;
if (hold_rlock == 1) {
SCTP_INP_READ_UNLOCK(inp);
hold_rlock = 0;
}
if (hold_sblock == 0) {
SOCKBUF_LOCK(&so->so_rcv);
hold_sblock = 1;
}
if (so->so_rcv.sb_cc <= control->held_length) {
error = sbwait(&so->so_rcv);
if (error) {
goto release;
}
}
if (hold_sblock) {
SOCKBUF_UNLOCK(&so->so_rcv);
hold_sblock = 0;
}
if (control->length == 0) {
/* still nothing here */
if (control->end_added == 1) {
/*
* he aborted, or is done i.e.
* shutdown
*/
out_flags |= MSG_EOR;
if (control->pdapi_aborted)
out_flags |= MSG_TRUNC;
goto done_with_control;
}
if (so->so_rcv.sb_cc > held_length) {
control->held_length = so->so_rcv.sb_cc;
/*
* We don't use held_length while
* getting a message
*/
held_length = 0;
}
goto wait_some_more2;
}
goto get_more_data2;
} else {
/* hard way mbuf by mbuf */
m = control->data;
if (control->end_added == 0) {
/* need the rlock */
if (hold_rlock == 0) {
SCTP_INP_READ_LOCK(inp);
hold_rlock = 1;
}
}
if (control->spec_flags & M_NOTIFICATION) {
out_flags |= MSG_NOTIFICATION;
}
while ((m) && (cp_len > 0)) {
if (cp_len >= SCTP_BUF_LEN(m)) {
*mp = m;
atomic_subtract_int(&control->length, SCTP_BUF_LEN(m));
if (uio)
uio->uio_resid -= SCTP_BUF_LEN(m);
cp_len -= SCTP_BUF_LEN(m);
control->data = SCTP_BUF_NEXT(m);
SCTP_BUF_NEXT(m) = NULL;
#ifdef SCTP_SB_LOGGING
sctp_sblog(&so->so_rcv,
control->do_not_ref_stcb ? NULL : stcb, SCTP_LOG_SBFREE, SCTP_BUF_LEN(m));
#endif
sctp_sbfree(control, stcb, &so->so_rcv, m);
freed_so_far += SCTP_BUF_LEN(m);
#ifdef SCTP_SB_LOGGING
sctp_sblog(&so->so_rcv,
control->do_not_ref_stcb ? NULL : stcb, SCTP_LOG_SBRESULT, 0);
#endif
mp = &SCTP_BUF_NEXT(m);
m = control->data;
} else {
/*
* got all he wants and its part of
* this mbuf only.
*/
if (uio)
uio->uio_resid -= SCTP_BUF_LEN(m);
cp_len -= SCTP_BUF_LEN(m);
if (hold_rlock) {
SCTP_INP_READ_UNLOCK(inp);
hold_rlock = 0;
}
if (hold_sblock) {
SOCKBUF_UNLOCK(&so->so_rcv);
hold_sblock = 0;
}
*mp = SCTP_M_COPYM(m, 0, cp_len,
M_TRYWAIT
);
#ifdef SCTP_LOCK_LOGGING
sctp_log_lock(inp, stcb, SCTP_LOG_LOCK_SOCKBUF_R);
#endif
if (hold_sblock == 0) {
SOCKBUF_LOCK(&so->so_rcv);
hold_sblock = 1;
}
if (inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE)
goto release;
if (stcb &&
stcb->asoc.state & SCTP_STATE_ABOUT_TO_BE_FREED) {
no_rcv_needed = 1;
}
SCTP_BUF_RESV_UF(m, cp_len);
SCTP_BUF_LEN(m) -= cp_len;
#ifdef SCTP_SB_LOGGING
sctp_sblog(&so->so_rcv, control->do_not_ref_stcb ? NULL : stcb, SCTP_LOG_SBFREE, cp_len);
#endif
freed_so_far += cp_len;
atomic_subtract_int(&so->so_rcv.sb_cc, cp_len);
if (stcb) {
atomic_subtract_int(&stcb->asoc.sb_cc, cp_len);
if ((freed_so_far >= rwnd_req) &&
(control->do_not_ref_stcb == 0) &&
(no_rcv_needed == 0))
sctp_user_rcvd(stcb, &freed_so_far, hold_rlock, rwnd_req);
}
#ifdef SCTP_SB_LOGGING
sctp_sblog(&so->so_rcv, control->do_not_ref_stcb ? NULL : stcb,
SCTP_LOG_SBRESULT, 0);
#endif
goto release;
}
}
}
}
release:
if (hold_rlock == 1) {
SCTP_INP_READ_UNLOCK(inp);
hold_rlock = 0;
}
if (hold_sblock == 0) {
SOCKBUF_LOCK(&so->so_rcv);
hold_sblock = 1;
}
sbunlock(&so->so_rcv);
release_unlocked:
if (hold_sblock) {
SOCKBUF_UNLOCK(&so->so_rcv);
hold_sblock = 0;
}
if ((stcb) && (in_flags & MSG_PEEK) == 0) {
if ((freed_so_far >= rwnd_req) &&
(control && (control->do_not_ref_stcb == 0)) &&
(no_rcv_needed == 0))
sctp_user_rcvd(stcb, &freed_so_far, hold_rlock, rwnd_req);
}
if (msg_flags)
*msg_flags |= out_flags;
out:
if (hold_rlock == 1) {
SCTP_INP_READ_UNLOCK(inp);
hold_rlock = 0;
}
if (hold_sblock) {
SOCKBUF_UNLOCK(&so->so_rcv);
hold_sblock = 0;
}
if (freecnt_applied) {
/*
* The lock on the socket buffer protects us so the free
* code will stop. But since we used the socketbuf lock and
* the sender uses the tcb_lock to increment, we need to use
* the atomic add to the refcnt.
*/
if (stcb == NULL) {
panic("stcb for refcnt has gone NULL?");
}
atomic_add_int(&stcb->asoc.refcnt, -1);
freecnt_applied = 0;
/* Save the value back for next time */
stcb->freed_by_sorcv_sincelast = freed_so_far;
}
#ifdef SCTP_RECV_RWND_LOGGING
if (stcb) {
sctp_misc_ints(SCTP_SORECV_DONE,
freed_so_far,
((uio) ? (slen - uio->uio_resid) : slen),
stcb->asoc.my_rwnd,
so->so_rcv.sb_cc);
} else {
sctp_misc_ints(SCTP_SORECV_DONE,
freed_so_far,
((uio) ? (slen - uio->uio_resid) : slen),
0,
so->so_rcv.sb_cc);
}
#endif
if (wakeup_read_socket) {
sctp_sorwakeup(inp, so);
}
return (error);
}
#ifdef SCTP_MBUF_LOGGING
struct mbuf *
sctp_m_free(struct mbuf *m)
{
if (SCTP_BUF_IS_EXTENDED(m)) {
sctp_log_mb(m, SCTP_MBUF_IFREE);
}
return (m_free(m));
}
void
sctp_m_freem(struct mbuf *mb)
{
while (mb != NULL)
mb = sctp_m_free(mb);
}
#endif
int
sctp_dynamic_set_primary(struct sockaddr *sa, uint32_t vrf_id)
{
/*
* Given a local address. For all associations that holds the
* address, request a peer-set-primary.
*/
struct sctp_ifa *ifa;
struct sctp_laddr *wi;
ifa = sctp_find_ifa_by_addr(sa, vrf_id, 0);
if (ifa == NULL) {
return (EADDRNOTAVAIL);
}
/*
* Now that we have the ifa we must awaken the iterator with this
* message.
*/
wi = SCTP_ZONE_GET(sctppcbinfo.ipi_zone_laddr, struct sctp_laddr);
if (wi == NULL) {
return (ENOMEM);
}
/* Now incr the count and int wi structure */
SCTP_INCR_LADDR_COUNT();
bzero(wi, sizeof(*wi));
wi->ifa = ifa;
wi->action = SCTP_SET_PRIM_ADDR;
atomic_add_int(&ifa->refcount, 1);
/* Now add it to the work queue */
SCTP_IPI_ITERATOR_WQ_LOCK();
/*
* Should this really be a tailq? As it is we will process the
* newest first :-0
*/
LIST_INSERT_HEAD(&sctppcbinfo.addr_wq, wi, sctp_nxt_addr);
sctp_timer_start(SCTP_TIMER_TYPE_ADDR_WQ,
(struct sctp_inpcb *)NULL,
(struct sctp_tcb *)NULL,
(struct sctp_nets *)NULL);
SCTP_IPI_ITERATOR_WQ_UNLOCK();
return (0);
}
int
sctp_soreceive(so, psa, uio, mp0, controlp, flagsp)
struct socket *so;
struct sockaddr **psa;
struct uio *uio;
struct mbuf **mp0;
struct mbuf **controlp;
int *flagsp;
{
int error, fromlen;
uint8_t sockbuf[256];
struct sockaddr *from;
struct sctp_extrcvinfo sinfo;
int filling_sinfo = 1;
struct sctp_inpcb *inp;
inp = (struct sctp_inpcb *)so->so_pcb;
/* pickup the assoc we are reading from */
if (inp == NULL) {
return (EINVAL);
}
if ((sctp_is_feature_off(inp,
SCTP_PCB_FLAGS_RECVDATAIOEVNT)) ||
(controlp == NULL)) {
/* user does not want the sndrcv ctl */
filling_sinfo = 0;
}
if (psa) {
from = (struct sockaddr *)sockbuf;
fromlen = sizeof(sockbuf);
from->sa_len = 0;
} else {
from = NULL;
fromlen = 0;
}
error = sctp_sorecvmsg(so, uio, mp0, from, fromlen, flagsp,
(struct sctp_sndrcvinfo *)&sinfo, filling_sinfo);
if ((controlp) && (filling_sinfo)) {
/* copy back the sinfo in a CMSG format */
if (filling_sinfo)
*controlp = sctp_build_ctl_nchunk(inp,
(struct sctp_sndrcvinfo *)&sinfo);
else
*controlp = NULL;
}
if (psa) {
/* copy back the address info */
if (from && from->sa_len) {
*psa = sodupsockaddr(from, M_NOWAIT);
} else {
*psa = NULL;
}
}
return (error);
}