1
0
mirror of https://git.FreeBSD.org/src.git synced 2024-12-26 11:47:31 +00:00
freebsd/sys/netinet/in_pcb.c
2006-12-29 14:58:18 +00:00

1236 lines
33 KiB
C

/*-
* Copyright (c) 1982, 1986, 1991, 1993, 1995
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)in_pcb.c 8.4 (Berkeley) 5/24/95
* $FreeBSD$
*/
#include "opt_ipsec.h"
#include "opt_inet6.h"
#include "opt_mac.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/domain.h>
#include <sys/protosw.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/priv.h>
#include <sys/proc.h>
#include <sys/jail.h>
#include <sys/kernel.h>
#include <sys/sysctl.h>
#include <vm/uma.h>
#include <net/if.h>
#include <net/if_types.h>
#include <net/route.h>
#include <netinet/in.h>
#include <netinet/in_pcb.h>
#include <netinet/in_var.h>
#include <netinet/ip_var.h>
#include <netinet/tcp_var.h>
#include <netinet/udp.h>
#include <netinet/udp_var.h>
#ifdef INET6
#include <netinet/ip6.h>
#include <netinet6/ip6_var.h>
#endif /* INET6 */
#ifdef IPSEC
#include <netinet6/ipsec.h>
#include <netkey/key.h>
#endif /* IPSEC */
#ifdef FAST_IPSEC
#if defined(IPSEC) || defined(IPSEC_ESP)
#error "Bad idea: don't compile with both IPSEC and FAST_IPSEC!"
#endif
#include <netipsec/ipsec.h>
#include <netipsec/key.h>
#endif /* FAST_IPSEC */
#include <security/mac/mac_framework.h>
/*
* These configure the range of local port addresses assigned to
* "unspecified" outgoing connections/packets/whatever.
*/
int ipport_lowfirstauto = IPPORT_RESERVED - 1; /* 1023 */
int ipport_lowlastauto = IPPORT_RESERVEDSTART; /* 600 */
int ipport_firstauto = IPPORT_HIFIRSTAUTO; /* 49152 */
int ipport_lastauto = IPPORT_HILASTAUTO; /* 65535 */
int ipport_hifirstauto = IPPORT_HIFIRSTAUTO; /* 49152 */
int ipport_hilastauto = IPPORT_HILASTAUTO; /* 65535 */
/*
* Reserved ports accessible only to root. There are significant
* security considerations that must be accounted for when changing these,
* but the security benefits can be great. Please be careful.
*/
int ipport_reservedhigh = IPPORT_RESERVED - 1; /* 1023 */
int ipport_reservedlow = 0;
/* Variables dealing with random ephemeral port allocation. */
int ipport_randomized = 1; /* user controlled via sysctl */
int ipport_randomcps = 10; /* user controlled via sysctl */
int ipport_randomtime = 45; /* user controlled via sysctl */
int ipport_stoprandom = 0; /* toggled by ipport_tick */
int ipport_tcpallocs;
int ipport_tcplastcount;
#define RANGECHK(var, min, max) \
if ((var) < (min)) { (var) = (min); } \
else if ((var) > (max)) { (var) = (max); }
static int
sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS)
{
int error;
error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2, req);
if (error == 0) {
RANGECHK(ipport_lowfirstauto, 1, IPPORT_RESERVED - 1);
RANGECHK(ipport_lowlastauto, 1, IPPORT_RESERVED - 1);
RANGECHK(ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX);
RANGECHK(ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX);
RANGECHK(ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX);
RANGECHK(ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX);
}
return (error);
}
#undef RANGECHK
SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW, 0, "IP Ports");
SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst, CTLTYPE_INT|CTLFLAG_RW,
&ipport_lowfirstauto, 0, &sysctl_net_ipport_check, "I", "");
SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast, CTLTYPE_INT|CTLFLAG_RW,
&ipport_lowlastauto, 0, &sysctl_net_ipport_check, "I", "");
SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first, CTLTYPE_INT|CTLFLAG_RW,
&ipport_firstauto, 0, &sysctl_net_ipport_check, "I", "");
SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last, CTLTYPE_INT|CTLFLAG_RW,
&ipport_lastauto, 0, &sysctl_net_ipport_check, "I", "");
SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst, CTLTYPE_INT|CTLFLAG_RW,
&ipport_hifirstauto, 0, &sysctl_net_ipport_check, "I", "");
SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast, CTLTYPE_INT|CTLFLAG_RW,
&ipport_hilastauto, 0, &sysctl_net_ipport_check, "I", "");
SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh,
CTLFLAG_RW|CTLFLAG_SECURE, &ipport_reservedhigh, 0, "");
SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow,
CTLFLAG_RW|CTLFLAG_SECURE, &ipport_reservedlow, 0, "");
SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized, CTLFLAG_RW,
&ipport_randomized, 0, "Enable random port allocation");
SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomcps, CTLFLAG_RW,
&ipport_randomcps, 0, "Maximum number of random port "
"allocations before switching to a sequental one");
SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomtime, CTLFLAG_RW,
&ipport_randomtime, 0, "Minimum time to keep sequental port "
"allocation before switching to a random one");
/*
* in_pcb.c: manage the Protocol Control Blocks.
*
* NOTE: It is assumed that most of these functions will be called with
* the pcbinfo lock held, and often, the inpcb lock held, as these utility
* functions often modify hash chains or addresses in pcbs.
*/
/*
* Allocate a PCB and associate it with the socket.
* On success return with the PCB locked.
*/
int
in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo)
{
struct inpcb *inp;
int error;
INP_INFO_WLOCK_ASSERT(pcbinfo);
error = 0;
inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT);
if (inp == NULL)
return (ENOBUFS);
bzero(inp, inp_zero_size);
inp->inp_pcbinfo = pcbinfo;
inp->inp_socket = so;
#ifdef MAC
error = mac_init_inpcb(inp, M_NOWAIT);
if (error != 0)
goto out;
SOCK_LOCK(so);
mac_create_inpcb_from_socket(so, inp);
SOCK_UNLOCK(so);
#endif
#if defined(IPSEC) || defined(FAST_IPSEC)
#ifdef FAST_IPSEC
error = ipsec_init_policy(so, &inp->inp_sp);
#else
error = ipsec_init_pcbpolicy(so, &inp->inp_sp);
#endif
if (error != 0)
goto out;
#endif /*IPSEC*/
#ifdef INET6
if (INP_SOCKAF(so) == AF_INET6) {
inp->inp_vflag |= INP_IPV6PROTO;
if (ip6_v6only)
inp->inp_flags |= IN6P_IPV6_V6ONLY;
}
#endif
LIST_INSERT_HEAD(pcbinfo->listhead, inp, inp_list);
pcbinfo->ipi_count++;
so->so_pcb = (caddr_t)inp;
#ifdef INET6
if (ip6_auto_flowlabel)
inp->inp_flags |= IN6P_AUTOFLOWLABEL;
#endif
INP_LOCK(inp);
inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
#if defined(IPSEC) || defined(FAST_IPSEC) || defined(MAC)
out:
if (error != 0)
uma_zfree(pcbinfo->ipi_zone, inp);
#endif
return (error);
}
int
in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
{
int anonport, error;
INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo);
INP_LOCK_ASSERT(inp);
if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY)
return (EINVAL);
anonport = inp->inp_lport == 0 && (nam == NULL ||
((struct sockaddr_in *)nam)->sin_port == 0);
error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr,
&inp->inp_lport, cred);
if (error)
return (error);
if (in_pcbinshash(inp) != 0) {
inp->inp_laddr.s_addr = INADDR_ANY;
inp->inp_lport = 0;
return (EAGAIN);
}
if (anonport)
inp->inp_flags |= INP_ANONPORT;
return (0);
}
/*
* Set up a bind operation on a PCB, performing port allocation
* as required, but do not actually modify the PCB. Callers can
* either complete the bind by setting inp_laddr/inp_lport and
* calling in_pcbinshash(), or they can just use the resulting
* port and address to authorise the sending of a once-off packet.
*
* On error, the values of *laddrp and *lportp are not changed.
*/
int
in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp,
u_short *lportp, struct ucred *cred)
{
struct socket *so = inp->inp_socket;
unsigned short *lastport;
struct sockaddr_in *sin;
struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
struct in_addr laddr;
u_short lport = 0;
int wild = 0, reuseport = (so->so_options & SO_REUSEPORT);
int error, prison = 0;
int dorandom;
INP_INFO_WLOCK_ASSERT(pcbinfo);
INP_LOCK_ASSERT(inp);
if (TAILQ_EMPTY(&in_ifaddrhead)) /* XXX broken! */
return (EADDRNOTAVAIL);
laddr.s_addr = *laddrp;
if (nam != NULL && laddr.s_addr != INADDR_ANY)
return (EINVAL);
if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) == 0)
wild = INPLOOKUP_WILDCARD;
if (nam) {
sin = (struct sockaddr_in *)nam;
if (nam->sa_len != sizeof (*sin))
return (EINVAL);
#ifdef notdef
/*
* We should check the family, but old programs
* incorrectly fail to initialize it.
*/
if (sin->sin_family != AF_INET)
return (EAFNOSUPPORT);
#endif
if (sin->sin_addr.s_addr != INADDR_ANY)
if (prison_ip(cred, 0, &sin->sin_addr.s_addr))
return(EINVAL);
if (sin->sin_port != *lportp) {
/* Don't allow the port to change. */
if (*lportp != 0)
return (EINVAL);
lport = sin->sin_port;
}
/* NB: lport is left as 0 if the port isn't being changed. */
if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) {
/*
* Treat SO_REUSEADDR as SO_REUSEPORT for multicast;
* allow complete duplication of binding if
* SO_REUSEPORT is set, or if SO_REUSEADDR is set
* and a multicast address is bound on both
* new and duplicated sockets.
*/
if (so->so_options & SO_REUSEADDR)
reuseport = SO_REUSEADDR|SO_REUSEPORT;
} else if (sin->sin_addr.s_addr != INADDR_ANY) {
sin->sin_port = 0; /* yech... */
bzero(&sin->sin_zero, sizeof(sin->sin_zero));
if (ifa_ifwithaddr((struct sockaddr *)sin) == 0)
return (EADDRNOTAVAIL);
}
laddr = sin->sin_addr;
if (lport) {
struct inpcb *t;
struct tcptw *tw;
/* GROSS */
if (ntohs(lport) <= ipport_reservedhigh &&
ntohs(lport) >= ipport_reservedlow &&
priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT,
SUSER_ALLOWJAIL))
return (EACCES);
if (jailed(cred))
prison = 1;
if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) &&
suser_cred(so->so_cred, SUSER_ALLOWJAIL) != 0) {
t = in_pcblookup_local(inp->inp_pcbinfo,
sin->sin_addr, lport,
prison ? 0 : INPLOOKUP_WILDCARD);
/*
* XXX
* This entire block sorely needs a rewrite.
*/
if (t &&
((t->inp_vflag & INP_TIMEWAIT) == 0) &&
(so->so_type != SOCK_STREAM ||
ntohl(t->inp_faddr.s_addr) == INADDR_ANY) &&
(ntohl(sin->sin_addr.s_addr) != INADDR_ANY ||
ntohl(t->inp_laddr.s_addr) != INADDR_ANY ||
(t->inp_socket->so_options &
SO_REUSEPORT) == 0) &&
(so->so_cred->cr_uid !=
t->inp_socket->so_cred->cr_uid))
return (EADDRINUSE);
}
if (prison && prison_ip(cred, 0, &sin->sin_addr.s_addr))
return (EADDRNOTAVAIL);
t = in_pcblookup_local(pcbinfo, sin->sin_addr,
lport, prison ? 0 : wild);
if (t && (t->inp_vflag & INP_TIMEWAIT)) {
/*
* XXXRW: If an incpb has had its timewait
* state recycled, we treat the address as
* being in use (for now). This is better
* than a panic, but not desirable.
*/
tw = intotw(inp);
if (tw == NULL ||
(reuseport & tw->tw_so_options) == 0)
return (EADDRINUSE);
} else if (t &&
(reuseport & t->inp_socket->so_options) == 0) {
#ifdef INET6
if (ntohl(sin->sin_addr.s_addr) !=
INADDR_ANY ||
ntohl(t->inp_laddr.s_addr) !=
INADDR_ANY ||
INP_SOCKAF(so) ==
INP_SOCKAF(t->inp_socket))
#endif
return (EADDRINUSE);
}
}
}
if (*lportp != 0)
lport = *lportp;
if (lport == 0) {
u_short first, last;
int count;
if (laddr.s_addr != INADDR_ANY)
if (prison_ip(cred, 0, &laddr.s_addr))
return (EINVAL);
if (inp->inp_flags & INP_HIGHPORT) {
first = ipport_hifirstauto; /* sysctl */
last = ipport_hilastauto;
lastport = &pcbinfo->lasthi;
} else if (inp->inp_flags & INP_LOWPORT) {
error = priv_check_cred(cred,
PRIV_NETINET_RESERVEDPORT, SUSER_ALLOWJAIL);
if (error)
return error;
first = ipport_lowfirstauto; /* 1023 */
last = ipport_lowlastauto; /* 600 */
lastport = &pcbinfo->lastlow;
} else {
first = ipport_firstauto; /* sysctl */
last = ipport_lastauto;
lastport = &pcbinfo->lastport;
}
/*
* For UDP, use random port allocation as long as the user
* allows it. For TCP (and as of yet unknown) connections,
* use random port allocation only if the user allows it AND
* ipport_tick() allows it.
*/
if (ipport_randomized &&
(!ipport_stoprandom || pcbinfo == &udbinfo))
dorandom = 1;
else
dorandom = 0;
/*
* It makes no sense to do random port allocation if
* we have the only port available.
*/
if (first == last)
dorandom = 0;
/* Make sure to not include UDP packets in the count. */
if (pcbinfo != &udbinfo)
ipport_tcpallocs++;
/*
* Simple check to ensure all ports are not used up causing
* a deadlock here.
*
* We split the two cases (up and down) so that the direction
* is not being tested on each round of the loop.
*/
if (first > last) {
/*
* counting down
*/
if (dorandom)
*lastport = first -
(arc4random() % (first - last));
count = first - last;
do {
if (count-- < 0) /* completely used? */
return (EADDRNOTAVAIL);
--*lastport;
if (*lastport > first || *lastport < last)
*lastport = first;
lport = htons(*lastport);
} while (in_pcblookup_local(pcbinfo, laddr, lport,
wild));
} else {
/*
* counting up
*/
if (dorandom)
*lastport = first +
(arc4random() % (last - first));
count = last - first;
do {
if (count-- < 0) /* completely used? */
return (EADDRNOTAVAIL);
++*lastport;
if (*lastport < first || *lastport > last)
*lastport = first;
lport = htons(*lastport);
} while (in_pcblookup_local(pcbinfo, laddr, lport,
wild));
}
}
if (prison_ip(cred, 0, &laddr.s_addr))
return (EINVAL);
*laddrp = laddr.s_addr;
*lportp = lport;
return (0);
}
/*
* Connect from a socket to a specified address.
* Both address and port must be specified in argument sin.
* If don't have a local address for this socket yet,
* then pick one.
*/
int
in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
{
u_short lport, fport;
in_addr_t laddr, faddr;
int anonport, error;
INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo);
INP_LOCK_ASSERT(inp);
lport = inp->inp_lport;
laddr = inp->inp_laddr.s_addr;
anonport = (lport == 0);
error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport,
NULL, cred);
if (error)
return (error);
/* Do the initial binding of the local address if required. */
if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) {
inp->inp_lport = lport;
inp->inp_laddr.s_addr = laddr;
if (in_pcbinshash(inp) != 0) {
inp->inp_laddr.s_addr = INADDR_ANY;
inp->inp_lport = 0;
return (EAGAIN);
}
}
/* Commit the remaining changes. */
inp->inp_lport = lport;
inp->inp_laddr.s_addr = laddr;
inp->inp_faddr.s_addr = faddr;
inp->inp_fport = fport;
in_pcbrehash(inp);
#ifdef IPSEC
if (inp->inp_socket->so_type == SOCK_STREAM)
ipsec_pcbconn(inp->inp_sp);
#endif
if (anonport)
inp->inp_flags |= INP_ANONPORT;
return (0);
}
/*
* Set up for a connect from a socket to the specified address.
* On entry, *laddrp and *lportp should contain the current local
* address and port for the PCB; these are updated to the values
* that should be placed in inp_laddr and inp_lport to complete
* the connect.
*
* On success, *faddrp and *fportp will be set to the remote address
* and port. These are not updated in the error case.
*
* If the operation fails because the connection already exists,
* *oinpp will be set to the PCB of that connection so that the
* caller can decide to override it. In all other cases, *oinpp
* is set to NULL.
*/
int
in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam,
in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp,
struct inpcb **oinpp, struct ucred *cred)
{
struct sockaddr_in *sin = (struct sockaddr_in *)nam;
struct in_ifaddr *ia;
struct sockaddr_in sa;
struct ucred *socred;
struct inpcb *oinp;
struct in_addr laddr, faddr;
u_short lport, fport;
int error;
INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo);
INP_LOCK_ASSERT(inp);
if (oinpp != NULL)
*oinpp = NULL;
if (nam->sa_len != sizeof (*sin))
return (EINVAL);
if (sin->sin_family != AF_INET)
return (EAFNOSUPPORT);
if (sin->sin_port == 0)
return (EADDRNOTAVAIL);
laddr.s_addr = *laddrp;
lport = *lportp;
faddr = sin->sin_addr;
fport = sin->sin_port;
socred = inp->inp_socket->so_cred;
if (laddr.s_addr == INADDR_ANY && jailed(socred)) {
bzero(&sa, sizeof(sa));
sa.sin_addr.s_addr = htonl(prison_getip(socred));
sa.sin_len = sizeof(sa);
sa.sin_family = AF_INET;
error = in_pcbbind_setup(inp, (struct sockaddr *)&sa,
&laddr.s_addr, &lport, cred);
if (error)
return (error);
}
if (!TAILQ_EMPTY(&in_ifaddrhead)) {
/*
* If the destination address is INADDR_ANY,
* use the primary local address.
* If the supplied address is INADDR_BROADCAST,
* and the primary interface supports broadcast,
* choose the broadcast address for that interface.
*/
if (faddr.s_addr == INADDR_ANY)
faddr = IA_SIN(TAILQ_FIRST(&in_ifaddrhead))->sin_addr;
else if (faddr.s_addr == (u_long)INADDR_BROADCAST &&
(TAILQ_FIRST(&in_ifaddrhead)->ia_ifp->if_flags &
IFF_BROADCAST))
faddr = satosin(&TAILQ_FIRST(
&in_ifaddrhead)->ia_broadaddr)->sin_addr;
}
if (laddr.s_addr == INADDR_ANY) {
ia = (struct in_ifaddr *)0;
/*
* If route is known our src addr is taken from the i/f,
* else punt.
*
* Find out route to destination
*/
if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0)
ia = ip_rtaddr(faddr);
/*
* If we found a route, use the address corresponding to
* the outgoing interface.
*
* Otherwise assume faddr is reachable on a directly connected
* network and try to find a corresponding interface to take
* the source address from.
*/
if (ia == 0) {
bzero(&sa, sizeof(sa));
sa.sin_addr = faddr;
sa.sin_len = sizeof(sa);
sa.sin_family = AF_INET;
ia = ifatoia(ifa_ifwithdstaddr(sintosa(&sa)));
if (ia == 0)
ia = ifatoia(ifa_ifwithnet(sintosa(&sa)));
if (ia == 0)
return (ENETUNREACH);
}
/*
* If the destination address is multicast and an outgoing
* interface has been set as a multicast option, use the
* address of that interface as our source address.
*/
if (IN_MULTICAST(ntohl(faddr.s_addr)) &&
inp->inp_moptions != NULL) {
struct ip_moptions *imo;
struct ifnet *ifp;
imo = inp->inp_moptions;
if (imo->imo_multicast_ifp != NULL) {
ifp = imo->imo_multicast_ifp;
TAILQ_FOREACH(ia, &in_ifaddrhead, ia_link)
if (ia->ia_ifp == ifp)
break;
if (ia == 0)
return (EADDRNOTAVAIL);
}
}
laddr = ia->ia_addr.sin_addr;
}
oinp = in_pcblookup_hash(inp->inp_pcbinfo, faddr, fport, laddr, lport,
0, NULL);
if (oinp != NULL) {
if (oinpp != NULL)
*oinpp = oinp;
return (EADDRINUSE);
}
if (lport == 0) {
error = in_pcbbind_setup(inp, NULL, &laddr.s_addr, &lport,
cred);
if (error)
return (error);
}
*laddrp = laddr.s_addr;
*lportp = lport;
*faddrp = faddr.s_addr;
*fportp = fport;
return (0);
}
void
in_pcbdisconnect(struct inpcb *inp)
{
INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo);
INP_LOCK_ASSERT(inp);
inp->inp_faddr.s_addr = INADDR_ANY;
inp->inp_fport = 0;
in_pcbrehash(inp);
#ifdef IPSEC
ipsec_pcbdisconn(inp->inp_sp);
#endif
}
/*
* In the old world order, in_pcbdetach() served two functions: to detach the
* pcb from the socket/potentially free the socket, and to free the pcb
* itself. In the new world order, the protocol code is responsible for
* managing the relationship with the socket, and this code simply frees the
* pcb.
*/
void
in_pcbdetach(struct inpcb *inp)
{
KASSERT(inp->inp_socket != NULL, ("in_pcbdetach: inp_socket == NULL"));
inp->inp_socket->so_pcb = NULL;
inp->inp_socket = NULL;
}
void
in_pcbfree(struct inpcb *inp)
{
struct inpcbinfo *ipi = inp->inp_pcbinfo;
KASSERT(inp->inp_socket == NULL, ("in_pcbfree: inp_socket != NULL"));
INP_INFO_WLOCK_ASSERT(ipi);
INP_LOCK_ASSERT(inp);
#if defined(IPSEC) || defined(FAST_IPSEC)
ipsec4_delete_pcbpolicy(inp);
#endif /*IPSEC*/
inp->inp_gencnt = ++ipi->ipi_gencnt;
in_pcbremlists(inp);
if (inp->inp_options)
(void)m_free(inp->inp_options);
ip_freemoptions(inp->inp_moptions);
inp->inp_vflag = 0;
#ifdef MAC
mac_destroy_inpcb(inp);
#endif
INP_UNLOCK(inp);
uma_zfree(ipi->ipi_zone, inp);
}
/*
* TCP needs to maintain its inpcb structure after the TCP connection has
* been torn down. However, it must be disconnected from the inpcb hashes as
* it must not prevent binding of future connections to the same port/ip
* combination by other inpcbs.
*/
void
in_pcbdrop(struct inpcb *inp)
{
INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo);
INP_LOCK_ASSERT(inp);
inp->inp_vflag |= INP_DROPPED;
if (inp->inp_lport) {
struct inpcbport *phd = inp->inp_phd;
LIST_REMOVE(inp, inp_hash);
LIST_REMOVE(inp, inp_portlist);
if (LIST_FIRST(&phd->phd_pcblist) == NULL) {
LIST_REMOVE(phd, phd_hash);
free(phd, M_PCB);
}
inp->inp_lport = 0;
}
}
struct sockaddr *
in_sockaddr(in_port_t port, struct in_addr *addr_p)
{
struct sockaddr_in *sin;
MALLOC(sin, struct sockaddr_in *, sizeof *sin, M_SONAME,
M_WAITOK | M_ZERO);
sin->sin_family = AF_INET;
sin->sin_len = sizeof(*sin);
sin->sin_addr = *addr_p;
sin->sin_port = port;
return (struct sockaddr *)sin;
}
/*
* The wrapper function will pass down the pcbinfo for this function to lock.
* The socket must have a valid
* (i.e., non-nil) PCB, but it should be impossible to get an invalid one
* except through a kernel programming error, so it is acceptable to panic
* (or in this case trap) if the PCB is invalid. (Actually, we don't trap
* because there actually /is/ a programming error somewhere... XXX)
*/
int
in_setsockaddr(struct socket *so, struct sockaddr **nam,
struct inpcbinfo *pcbinfo)
{
struct inpcb *inp;
struct in_addr addr;
in_port_t port;
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("in_setsockaddr: inp == NULL"));
INP_LOCK(inp);
port = inp->inp_lport;
addr = inp->inp_laddr;
INP_UNLOCK(inp);
*nam = in_sockaddr(port, &addr);
return 0;
}
/*
* The wrapper function will pass down the pcbinfo for this function to lock.
*/
int
in_setpeeraddr(struct socket *so, struct sockaddr **nam,
struct inpcbinfo *pcbinfo)
{
struct inpcb *inp;
struct in_addr addr;
in_port_t port;
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("in_setpeeraddr: inp == NULL"));
INP_LOCK(inp);
port = inp->inp_fport;
addr = inp->inp_faddr;
INP_UNLOCK(inp);
*nam = in_sockaddr(port, &addr);
return 0;
}
void
in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno,
struct inpcb *(*notify)(struct inpcb *, int))
{
struct inpcb *inp, *ninp;
struct inpcbhead *head;
INP_INFO_WLOCK(pcbinfo);
head = pcbinfo->listhead;
for (inp = LIST_FIRST(head); inp != NULL; inp = ninp) {
INP_LOCK(inp);
ninp = LIST_NEXT(inp, inp_list);
#ifdef INET6
if ((inp->inp_vflag & INP_IPV4) == 0) {
INP_UNLOCK(inp);
continue;
}
#endif
if (inp->inp_faddr.s_addr != faddr.s_addr ||
inp->inp_socket == NULL) {
INP_UNLOCK(inp);
continue;
}
if ((*notify)(inp, errno))
INP_UNLOCK(inp);
}
INP_INFO_WUNLOCK(pcbinfo);
}
void
in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp)
{
struct inpcb *inp;
struct ip_moptions *imo;
int i, gap;
INP_INFO_RLOCK(pcbinfo);
LIST_FOREACH(inp, pcbinfo->listhead, inp_list) {
INP_LOCK(inp);
imo = inp->inp_moptions;
if ((inp->inp_vflag & INP_IPV4) &&
imo != NULL) {
/*
* Unselect the outgoing interface if it is being
* detached.
*/
if (imo->imo_multicast_ifp == ifp)
imo->imo_multicast_ifp = NULL;
/*
* Drop multicast group membership if we joined
* through the interface being detached.
*/
for (i = 0, gap = 0; i < imo->imo_num_memberships;
i++) {
if (imo->imo_membership[i]->inm_ifp == ifp) {
in_delmulti(imo->imo_membership[i]);
gap++;
} else if (gap != 0)
imo->imo_membership[i - gap] =
imo->imo_membership[i];
}
imo->imo_num_memberships -= gap;
}
INP_UNLOCK(inp);
}
INP_INFO_RUNLOCK(pcbinfo);
}
/*
* Lookup a PCB based on the local address and port.
*/
#define INP_LOOKUP_MAPPED_PCB_COST 3
struct inpcb *
in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr,
u_int lport_arg, int wild_okay)
{
struct inpcb *inp;
#ifdef INET6
int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST;
#else
int matchwild = 3;
#endif
int wildcard;
u_short lport = lport_arg;
INP_INFO_WLOCK_ASSERT(pcbinfo);
if (!wild_okay) {
struct inpcbhead *head;
/*
* Look for an unconnected (wildcard foreign addr) PCB that
* matches the local address and port we're looking for.
*/
head = &pcbinfo->hashbase[INP_PCBHASH(INADDR_ANY, lport, 0, pcbinfo->hashmask)];
LIST_FOREACH(inp, head, inp_hash) {
#ifdef INET6
if ((inp->inp_vflag & INP_IPV4) == 0)
continue;
#endif
if (inp->inp_faddr.s_addr == INADDR_ANY &&
inp->inp_laddr.s_addr == laddr.s_addr &&
inp->inp_lport == lport) {
/*
* Found.
*/
return (inp);
}
}
/*
* Not found.
*/
return (NULL);
} else {
struct inpcbporthead *porthash;
struct inpcbport *phd;
struct inpcb *match = NULL;
/*
* Best fit PCB lookup.
*
* First see if this local port is in use by looking on the
* port hash list.
*/
porthash = &pcbinfo->porthashbase[INP_PCBPORTHASH(lport,
pcbinfo->porthashmask)];
LIST_FOREACH(phd, porthash, phd_hash) {
if (phd->phd_port == lport)
break;
}
if (phd != NULL) {
/*
* Port is in use by one or more PCBs. Look for best
* fit.
*/
LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) {
wildcard = 0;
#ifdef INET6
if ((inp->inp_vflag & INP_IPV4) == 0)
continue;
/*
* We never select the PCB that has
* INP_IPV6 flag and is bound to :: if
* we have another PCB which is bound
* to 0.0.0.0. If a PCB has the
* INP_IPV6 flag, then we set its cost
* higher than IPv4 only PCBs.
*
* Note that the case only happens
* when a socket is bound to ::, under
* the condition that the use of the
* mapped address is allowed.
*/
if ((inp->inp_vflag & INP_IPV6) != 0)
wildcard += INP_LOOKUP_MAPPED_PCB_COST;
#endif
if (inp->inp_faddr.s_addr != INADDR_ANY)
wildcard++;
if (inp->inp_laddr.s_addr != INADDR_ANY) {
if (laddr.s_addr == INADDR_ANY)
wildcard++;
else if (inp->inp_laddr.s_addr != laddr.s_addr)
continue;
} else {
if (laddr.s_addr != INADDR_ANY)
wildcard++;
}
if (wildcard < matchwild) {
match = inp;
matchwild = wildcard;
if (matchwild == 0) {
break;
}
}
}
}
return (match);
}
}
#undef INP_LOOKUP_MAPPED_PCB_COST
/*
* Lookup PCB in hash list.
*/
struct inpcb *
in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr,
u_int fport_arg, struct in_addr laddr, u_int lport_arg, int wildcard,
struct ifnet *ifp)
{
struct inpcbhead *head;
struct inpcb *inp;
u_short fport = fport_arg, lport = lport_arg;
INP_INFO_RLOCK_ASSERT(pcbinfo);
/*
* First look for an exact match.
*/
head = &pcbinfo->hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
pcbinfo->hashmask)];
LIST_FOREACH(inp, head, inp_hash) {
#ifdef INET6
if ((inp->inp_vflag & INP_IPV4) == 0)
continue;
#endif
if (inp->inp_faddr.s_addr == faddr.s_addr &&
inp->inp_laddr.s_addr == laddr.s_addr &&
inp->inp_fport == fport &&
inp->inp_lport == lport)
return (inp);
}
/*
* Then look for a wildcard match, if requested.
*/
if (wildcard) {
struct inpcb *local_wild = NULL;
#ifdef INET6
struct inpcb *local_wild_mapped = NULL;
#endif
head = &pcbinfo->hashbase[INP_PCBHASH(INADDR_ANY, lport, 0,
pcbinfo->hashmask)];
LIST_FOREACH(inp, head, inp_hash) {
#ifdef INET6
if ((inp->inp_vflag & INP_IPV4) == 0)
continue;
#endif
if (inp->inp_faddr.s_addr == INADDR_ANY &&
inp->inp_lport == lport) {
if (ifp && ifp->if_type == IFT_FAITH &&
(inp->inp_flags & INP_FAITH) == 0)
continue;
if (inp->inp_laddr.s_addr == laddr.s_addr)
return (inp);
else if (inp->inp_laddr.s_addr == INADDR_ANY) {
#ifdef INET6
if (INP_CHECK_SOCKAF(inp->inp_socket,
AF_INET6))
local_wild_mapped = inp;
else
#endif
local_wild = inp;
}
}
}
#ifdef INET6
if (local_wild == NULL)
return (local_wild_mapped);
#endif
return (local_wild);
}
return (NULL);
}
/*
* Insert PCB onto various hash lists.
*/
int
in_pcbinshash(struct inpcb *inp)
{
struct inpcbhead *pcbhash;
struct inpcbporthead *pcbporthash;
struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
struct inpcbport *phd;
u_int32_t hashkey_faddr;
INP_INFO_WLOCK_ASSERT(pcbinfo);
INP_LOCK_ASSERT(inp);
#ifdef INET6
if (inp->inp_vflag & INP_IPV6)
hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX */;
else
#endif /* INET6 */
hashkey_faddr = inp->inp_faddr.s_addr;
pcbhash = &pcbinfo->hashbase[INP_PCBHASH(hashkey_faddr,
inp->inp_lport, inp->inp_fport, pcbinfo->hashmask)];
pcbporthash = &pcbinfo->porthashbase[INP_PCBPORTHASH(inp->inp_lport,
pcbinfo->porthashmask)];
/*
* Go through port list and look for a head for this lport.
*/
LIST_FOREACH(phd, pcbporthash, phd_hash) {
if (phd->phd_port == inp->inp_lport)
break;
}
/*
* If none exists, malloc one and tack it on.
*/
if (phd == NULL) {
MALLOC(phd, struct inpcbport *, sizeof(struct inpcbport), M_PCB, M_NOWAIT);
if (phd == NULL) {
return (ENOBUFS); /* XXX */
}
phd->phd_port = inp->inp_lport;
LIST_INIT(&phd->phd_pcblist);
LIST_INSERT_HEAD(pcbporthash, phd, phd_hash);
}
inp->inp_phd = phd;
LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist);
LIST_INSERT_HEAD(pcbhash, inp, inp_hash);
return (0);
}
/*
* Move PCB to the proper hash bucket when { faddr, fport } have been
* changed. NOTE: This does not handle the case of the lport changing (the
* hashed port list would have to be updated as well), so the lport must
* not change after in_pcbinshash() has been called.
*/
void
in_pcbrehash(struct inpcb *inp)
{
struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
struct inpcbhead *head;
u_int32_t hashkey_faddr;
INP_INFO_WLOCK_ASSERT(pcbinfo);
INP_LOCK_ASSERT(inp);
#ifdef INET6
if (inp->inp_vflag & INP_IPV6)
hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX */;
else
#endif /* INET6 */
hashkey_faddr = inp->inp_faddr.s_addr;
head = &pcbinfo->hashbase[INP_PCBHASH(hashkey_faddr,
inp->inp_lport, inp->inp_fport, pcbinfo->hashmask)];
LIST_REMOVE(inp, inp_hash);
LIST_INSERT_HEAD(head, inp, inp_hash);
}
/*
* Remove PCB from various lists.
*/
void
in_pcbremlists(struct inpcb *inp)
{
struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
INP_INFO_WLOCK_ASSERT(pcbinfo);
INP_LOCK_ASSERT(inp);
inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
if (inp->inp_lport) {
struct inpcbport *phd = inp->inp_phd;
LIST_REMOVE(inp, inp_hash);
LIST_REMOVE(inp, inp_portlist);
if (LIST_FIRST(&phd->phd_pcblist) == NULL) {
LIST_REMOVE(phd, phd_hash);
free(phd, M_PCB);
}
}
LIST_REMOVE(inp, inp_list);
pcbinfo->ipi_count--;
}
/*
* A set label operation has occurred at the socket layer, propagate the
* label change into the in_pcb for the socket.
*/
void
in_pcbsosetlabel(struct socket *so)
{
#ifdef MAC
struct inpcb *inp;
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL"));
INP_LOCK(inp);
SOCK_LOCK(so);
mac_inpcb_sosetlabel(so, inp);
SOCK_UNLOCK(so);
INP_UNLOCK(inp);
#endif
}
/*
* ipport_tick runs once per second, determining if random port allocation
* should be continued. If more than ipport_randomcps ports have been
* allocated in the last second, then we return to sequential port
* allocation. We return to random allocation only once we drop below
* ipport_randomcps for at least ipport_randomtime seconds.
*/
void
ipport_tick(void *xtp)
{
if (ipport_tcpallocs <= ipport_tcplastcount + ipport_randomcps) {
if (ipport_stoprandom > 0)
ipport_stoprandom--;
} else
ipport_stoprandom = ipport_randomtime;
ipport_tcplastcount = ipport_tcpallocs;
callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL);
}