1
0
mirror of https://git.FreeBSD.org/src.git synced 2025-01-19 15:33:56 +00:00
freebsd/sys/kern/kern_synch.c
Matthew Dillon 918c3b1361 Make yield() MPSAFE.
Synchronize syscalls.master with all MPSAFE changes to date.  Synchronize
new syscall generation follows because yield() will panic if it is out
of sync with syscalls.master.
2001-09-01 03:54:09 +00:00

868 lines
24 KiB
C

/*-
* Copyright (c) 1982, 1986, 1990, 1991, 1993
* The Regents of the University of California. All rights reserved.
* (c) UNIX System Laboratories, Inc.
* All or some portions of this file are derived from material licensed
* to the University of California by American Telephone and Telegraph
* Co. or Unix System Laboratories, Inc. and are reproduced herein with
* the permission of UNIX System Laboratories, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
* $FreeBSD$
*/
#include "opt_ddb.h"
#include "opt_ktrace.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/condvar.h>
#include <sys/kernel.h>
#include <sys/ktr.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/resourcevar.h>
#include <sys/signalvar.h>
#include <sys/smp.h>
#include <sys/sx.h>
#include <sys/sysctl.h>
#include <sys/sysproto.h>
#include <sys/vmmeter.h>
#include <vm/vm.h>
#include <vm/vm_extern.h>
#ifdef DDB
#include <ddb/ddb.h>
#endif
#ifdef KTRACE
#include <sys/uio.h>
#include <sys/ktrace.h>
#endif
#include <machine/cpu.h>
static void sched_setup __P((void *dummy));
SYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL)
int hogticks;
int lbolt;
int sched_quantum; /* Roundrobin scheduling quantum in ticks. */
static struct callout schedcpu_callout;
static struct callout roundrobin_callout;
static void endtsleep __P((void *));
static void roundrobin __P((void *arg));
static void schedcpu __P((void *arg));
static int
sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
{
int error, new_val;
new_val = sched_quantum * tick;
error = sysctl_handle_int(oidp, &new_val, 0, req);
if (error != 0 || req->newptr == NULL)
return (error);
if (new_val < tick)
return (EINVAL);
sched_quantum = new_val / tick;
hogticks = 2 * sched_quantum;
return (0);
}
SYSCTL_PROC(_kern, OID_AUTO, quantum, CTLTYPE_INT|CTLFLAG_RW,
0, sizeof sched_quantum, sysctl_kern_quantum, "I", "");
/*
* Arrange to reschedule if necessary, taking the priorities and
* schedulers into account.
*/
void
maybe_resched(p)
struct proc *p;
{
mtx_assert(&sched_lock, MA_OWNED);
if (p->p_pri.pri_level < curproc->p_pri.pri_level)
curproc->p_sflag |= PS_NEEDRESCHED;
}
int
roundrobin_interval(void)
{
return (sched_quantum);
}
/*
* Force switch among equal priority processes every 100ms.
* We don't actually need to force a context switch of the current process.
* The act of firing the event triggers a context switch to softclock() and
* then switching back out again which is equivalent to a preemption, thus
* no further work is needed on the local CPU.
*/
/* ARGSUSED */
static void
roundrobin(arg)
void *arg;
{
#ifdef SMP
mtx_lock_spin(&sched_lock);
forward_roundrobin();
mtx_unlock_spin(&sched_lock);
#endif
callout_reset(&roundrobin_callout, sched_quantum, roundrobin, NULL);
}
/*
* Constants for digital decay and forget:
* 90% of (p_estcpu) usage in 5 * loadav time
* 95% of (p_pctcpu) usage in 60 seconds (load insensitive)
* Note that, as ps(1) mentions, this can let percentages
* total over 100% (I've seen 137.9% for 3 processes).
*
* Note that schedclock() updates p_estcpu and p_cpticks asynchronously.
*
* We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
* That is, the system wants to compute a value of decay such
* that the following for loop:
* for (i = 0; i < (5 * loadavg); i++)
* p_estcpu *= decay;
* will compute
* p_estcpu *= 0.1;
* for all values of loadavg:
*
* Mathematically this loop can be expressed by saying:
* decay ** (5 * loadavg) ~= .1
*
* The system computes decay as:
* decay = (2 * loadavg) / (2 * loadavg + 1)
*
* We wish to prove that the system's computation of decay
* will always fulfill the equation:
* decay ** (5 * loadavg) ~= .1
*
* If we compute b as:
* b = 2 * loadavg
* then
* decay = b / (b + 1)
*
* We now need to prove two things:
* 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
* 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
*
* Facts:
* For x close to zero, exp(x) =~ 1 + x, since
* exp(x) = 0! + x**1/1! + x**2/2! + ... .
* therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
* For x close to zero, ln(1+x) =~ x, since
* ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1
* therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
* ln(.1) =~ -2.30
*
* Proof of (1):
* Solve (factor)**(power) =~ .1 given power (5*loadav):
* solving for factor,
* ln(factor) =~ (-2.30/5*loadav), or
* factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
* exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED
*
* Proof of (2):
* Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
* solving for power,
* power*ln(b/(b+1)) =~ -2.30, or
* power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED
*
* Actual power values for the implemented algorithm are as follows:
* loadav: 1 2 3 4
* power: 5.68 10.32 14.94 19.55
*/
/* calculations for digital decay to forget 90% of usage in 5*loadav sec */
#define loadfactor(loadav) (2 * (loadav))
#define decay_cpu(loadfac, cpu) (((loadfac) * (cpu)) / ((loadfac) + FSCALE))
/* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
static fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
/* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
static int fscale __unused = FSCALE;
SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
/*
* If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
* faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
* and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
*
* To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
* 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
*
* If you don't want to bother with the faster/more-accurate formula, you
* can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
* (more general) method of calculating the %age of CPU used by a process.
*/
#define CCPU_SHIFT 11
/*
* Recompute process priorities, every hz ticks.
* MP-safe, called without the Giant mutex.
*/
/* ARGSUSED */
static void
schedcpu(arg)
void *arg;
{
register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
register struct proc *p;
register int realstathz;
realstathz = stathz ? stathz : hz;
sx_slock(&allproc_lock);
LIST_FOREACH(p, &allproc, p_list) {
/*
* Increment time in/out of memory and sleep time
* (if sleeping). We ignore overflow; with 16-bit int's
* (remember them?) overflow takes 45 days.
*/
mtx_lock_spin(&sched_lock);
p->p_swtime++;
if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
p->p_slptime++;
p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
/*
* If the process has slept the entire second,
* stop recalculating its priority until it wakes up.
*/
if (p->p_slptime > 1) {
mtx_unlock_spin(&sched_lock);
continue;
}
/*
* p_pctcpu is only for ps.
*/
#if (FSHIFT >= CCPU_SHIFT)
p->p_pctcpu += (realstathz == 100)?
((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
100 * (((fixpt_t) p->p_cpticks)
<< (FSHIFT - CCPU_SHIFT)) / realstathz;
#else
p->p_pctcpu += ((FSCALE - ccpu) *
(p->p_cpticks * FSCALE / realstathz)) >> FSHIFT;
#endif
p->p_cpticks = 0;
p->p_estcpu = decay_cpu(loadfac, p->p_estcpu);
resetpriority(p);
if (p->p_pri.pri_level >= PUSER) {
if (p->p_oncpu == NOCPU && /* idle */
p->p_stat == SRUN &&
(p->p_sflag & PS_INMEM) &&
(p->p_pri.pri_level / RQ_PPQ) !=
(p->p_pri.pri_user / RQ_PPQ)) {
remrunqueue(p);
p->p_pri.pri_level = p->p_pri.pri_user;
setrunqueue(p);
} else
p->p_pri.pri_level = p->p_pri.pri_user;
}
mtx_unlock_spin(&sched_lock);
}
sx_sunlock(&allproc_lock);
vmmeter();
wakeup((caddr_t)&lbolt);
callout_reset(&schedcpu_callout, hz, schedcpu, NULL);
}
/*
* Recalculate the priority of a process after it has slept for a while.
* For all load averages >= 1 and max p_estcpu of 255, sleeping for at
* least six times the loadfactor will decay p_estcpu to zero.
*/
void
updatepri(p)
register struct proc *p;
{
register unsigned int newcpu = p->p_estcpu;
register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
if (p->p_slptime > 5 * loadfac)
p->p_estcpu = 0;
else {
p->p_slptime--; /* the first time was done in schedcpu */
while (newcpu && --p->p_slptime)
newcpu = decay_cpu(loadfac, newcpu);
p->p_estcpu = newcpu;
}
resetpriority(p);
}
/*
* We're only looking at 7 bits of the address; everything is
* aligned to 4, lots of things are aligned to greater powers
* of 2. Shift right by 8, i.e. drop the bottom 256 worth.
*/
#define TABLESIZE 128
static TAILQ_HEAD(slpquehead, proc) slpque[TABLESIZE];
#define LOOKUP(x) (((intptr_t)(x) >> 8) & (TABLESIZE - 1))
void
sleepinit(void)
{
int i;
sched_quantum = hz/10;
hogticks = 2 * sched_quantum;
for (i = 0; i < TABLESIZE; i++)
TAILQ_INIT(&slpque[i]);
}
/*
* General sleep call. Suspends the current process until a wakeup is
* performed on the specified identifier. The process will then be made
* runnable with the specified priority. Sleeps at most timo/hz seconds
* (0 means no timeout). If pri includes PCATCH flag, signals are checked
* before and after sleeping, else signals are not checked. Returns 0 if
* awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
* signal needs to be delivered, ERESTART is returned if the current system
* call should be restarted if possible, and EINTR is returned if the system
* call should be interrupted by the signal (return EINTR).
*
* The mutex argument is exited before the caller is suspended, and
* entered before msleep returns. If priority includes the PDROP
* flag the mutex is not entered before returning.
*/
int
msleep(ident, mtx, priority, wmesg, timo)
void *ident;
struct mtx *mtx;
int priority, timo;
const char *wmesg;
{
struct proc *p = curproc;
int sig, catch = priority & PCATCH;
int rval = 0;
WITNESS_SAVE_DECL(mtx);
#ifdef KTRACE
if (p && KTRPOINT(p, KTR_CSW))
ktrcsw(p->p_tracep, 1, 0);
#endif
WITNESS_SLEEP(0, &mtx->mtx_object);
KASSERT(timo != 0 || mtx_owned(&Giant) || mtx != NULL,
("sleeping without a mutex"));
mtx_lock_spin(&sched_lock);
if (cold || panicstr) {
/*
* After a panic, or during autoconfiguration,
* just give interrupts a chance, then just return;
* don't run any other procs or panic below,
* in case this is the idle process and already asleep.
*/
if (mtx != NULL && priority & PDROP)
mtx_unlock_flags(mtx, MTX_NOSWITCH);
mtx_unlock_spin(&sched_lock);
return (0);
}
DROP_GIANT_NOSWITCH();
if (mtx != NULL) {
mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
WITNESS_SAVE(&mtx->mtx_object, mtx);
mtx_unlock_flags(mtx, MTX_NOSWITCH);
if (priority & PDROP)
mtx = NULL;
}
KASSERT(p != NULL, ("msleep1"));
KASSERT(ident != NULL && p->p_stat == SRUN, ("msleep"));
p->p_wchan = ident;
p->p_wmesg = wmesg;
p->p_slptime = 0;
p->p_pri.pri_level = priority & PRIMASK;
CTR5(KTR_PROC, "msleep: proc %p (pid %d, %s) on %s (%p)", p, p->p_pid,
p->p_comm, wmesg, ident);
TAILQ_INSERT_TAIL(&slpque[LOOKUP(ident)], p, p_slpq);
if (timo)
callout_reset(&p->p_slpcallout, timo, endtsleep, p);
/*
* We put ourselves on the sleep queue and start our timeout
* before calling CURSIG, as we could stop there, and a wakeup
* or a SIGCONT (or both) could occur while we were stopped.
* A SIGCONT would cause us to be marked as SSLEEP
* without resuming us, thus we must be ready for sleep
* when CURSIG is called. If the wakeup happens while we're
* stopped, p->p_wchan will be 0 upon return from CURSIG.
*/
if (catch) {
CTR3(KTR_PROC, "msleep caught: proc %p (pid %d, %s)", p,
p->p_pid, p->p_comm);
p->p_sflag |= PS_SINTR;
mtx_unlock_spin(&sched_lock);
PROC_LOCK(p);
sig = CURSIG(p);
mtx_lock_spin(&sched_lock);
PROC_UNLOCK_NOSWITCH(p);
if (sig != 0) {
if (p->p_wchan != NULL)
unsleep(p);
} else if (p->p_wchan == NULL)
catch = 0;
} else
sig = 0;
if (p->p_wchan != NULL) {
p->p_stat = SSLEEP;
p->p_stats->p_ru.ru_nvcsw++;
mi_switch();
}
CTR3(KTR_PROC, "msleep resume: proc %p (pid %d, %s)", p, p->p_pid,
p->p_comm);
KASSERT(p->p_stat == SRUN, ("running but not SRUN"));
p->p_sflag &= ~PS_SINTR;
if (p->p_sflag & PS_TIMEOUT) {
p->p_sflag &= ~PS_TIMEOUT;
if (sig == 0)
rval = EWOULDBLOCK;
} else if (p->p_sflag & PS_TIMOFAIL)
p->p_sflag &= ~PS_TIMOFAIL;
else if (timo && callout_stop(&p->p_slpcallout) == 0) {
/*
* This isn't supposed to be pretty. If we are here, then
* the endtsleep() callout is currently executing on another
* CPU and is either spinning on the sched_lock or will be
* soon. If we don't synchronize here, there is a chance
* that this process may msleep() again before the callout
* has a chance to run and the callout may end up waking up
* the wrong msleep(). Yuck.
*/
p->p_sflag |= PS_TIMEOUT;
p->p_stats->p_ru.ru_nivcsw++;
mi_switch();
}
mtx_unlock_spin(&sched_lock);
if (rval == 0 && catch) {
PROC_LOCK(p);
/* XXX: shouldn't we always be calling CURSIG() */
if (sig != 0 || (sig = CURSIG(p))) {
if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
rval = EINTR;
else
rval = ERESTART;
}
PROC_UNLOCK(p);
}
PICKUP_GIANT();
#ifdef KTRACE
mtx_lock(&Giant);
if (KTRPOINT(p, KTR_CSW))
ktrcsw(p->p_tracep, 0, 0);
mtx_unlock(&Giant);
#endif
if (mtx != NULL) {
mtx_lock(mtx);
WITNESS_RESTORE(&mtx->mtx_object, mtx);
}
return (rval);
}
/*
* Implement timeout for msleep()
*
* If process hasn't been awakened (wchan non-zero),
* set timeout flag and undo the sleep. If proc
* is stopped, just unsleep so it will remain stopped.
* MP-safe, called without the Giant mutex.
*/
static void
endtsleep(arg)
void *arg;
{
register struct proc *p;
p = (struct proc *)arg;
CTR3(KTR_PROC, "endtsleep: proc %p (pid %d, %s)", p, p->p_pid,
p->p_comm);
mtx_lock_spin(&sched_lock);
/*
* This is the other half of the synchronization with msleep()
* described above. If the PS_TIMEOUT flag is set, we lost the
* race and just need to put the process back on the runqueue.
*/
if ((p->p_sflag & PS_TIMEOUT) != 0) {
p->p_sflag &= ~PS_TIMEOUT;
setrunqueue(p);
} else if (p->p_wchan != NULL) {
if (p->p_stat == SSLEEP)
setrunnable(p);
else
unsleep(p);
p->p_sflag |= PS_TIMEOUT;
} else
p->p_sflag |= PS_TIMOFAIL;
mtx_unlock_spin(&sched_lock);
}
/*
* Remove a process from its wait queue
*/
void
unsleep(p)
register struct proc *p;
{
mtx_lock_spin(&sched_lock);
if (p->p_wchan != NULL) {
TAILQ_REMOVE(&slpque[LOOKUP(p->p_wchan)], p, p_slpq);
p->p_wchan = NULL;
}
mtx_unlock_spin(&sched_lock);
}
/*
* Make all processes sleeping on the specified identifier runnable.
*/
void
wakeup(ident)
register void *ident;
{
register struct slpquehead *qp;
register struct proc *p;
mtx_lock_spin(&sched_lock);
qp = &slpque[LOOKUP(ident)];
restart:
TAILQ_FOREACH(p, qp, p_slpq) {
if (p->p_wchan == ident) {
TAILQ_REMOVE(qp, p, p_slpq);
p->p_wchan = NULL;
if (p->p_stat == SSLEEP) {
/* OPTIMIZED EXPANSION OF setrunnable(p); */
CTR3(KTR_PROC, "wakeup: proc %p (pid %d, %s)",
p, p->p_pid, p->p_comm);
if (p->p_slptime > 1)
updatepri(p);
p->p_slptime = 0;
p->p_stat = SRUN;
if (p->p_sflag & PS_INMEM) {
setrunqueue(p);
maybe_resched(p);
} else {
p->p_sflag |= PS_SWAPINREQ;
wakeup((caddr_t)&proc0);
}
/* END INLINE EXPANSION */
goto restart;
}
}
}
mtx_unlock_spin(&sched_lock);
}
/*
* Make a process sleeping on the specified identifier runnable.
* May wake more than one process if a target process is currently
* swapped out.
*/
void
wakeup_one(ident)
register void *ident;
{
register struct slpquehead *qp;
register struct proc *p;
mtx_lock_spin(&sched_lock);
qp = &slpque[LOOKUP(ident)];
TAILQ_FOREACH(p, qp, p_slpq) {
if (p->p_wchan == ident) {
TAILQ_REMOVE(qp, p, p_slpq);
p->p_wchan = NULL;
if (p->p_stat == SSLEEP) {
/* OPTIMIZED EXPANSION OF setrunnable(p); */
CTR3(KTR_PROC, "wakeup1: proc %p (pid %d, %s)",
p, p->p_pid, p->p_comm);
if (p->p_slptime > 1)
updatepri(p);
p->p_slptime = 0;
p->p_stat = SRUN;
if (p->p_sflag & PS_INMEM) {
setrunqueue(p);
maybe_resched(p);
break;
} else {
p->p_sflag |= PS_SWAPINREQ;
wakeup((caddr_t)&proc0);
}
/* END INLINE EXPANSION */
}
}
}
mtx_unlock_spin(&sched_lock);
}
/*
* The machine independent parts of mi_switch().
*/
void
mi_switch()
{
struct timeval new_switchtime;
register struct proc *p = curproc; /* XXX */
#if 0
register struct rlimit *rlim;
#endif
critical_t sched_crit;
u_int sched_nest;
mtx_assert(&sched_lock, MA_OWNED | MA_NOTRECURSED);
/*
* Compute the amount of time during which the current
* process was running, and add that to its total so far.
*/
microuptime(&new_switchtime);
if (timevalcmp(&new_switchtime, PCPU_PTR(switchtime), <)) {
#if 0
/* XXX: This doesn't play well with sched_lock right now. */
printf("microuptime() went backwards (%ld.%06ld -> %ld.%06ld)\n",
PCPU_GET(switchtime.tv_sec), PCPU_GET(switchtime.tv_usec),
new_switchtime.tv_sec, new_switchtime.tv_usec);
#endif
new_switchtime = PCPU_GET(switchtime);
} else {
p->p_runtime += (new_switchtime.tv_usec - PCPU_GET(switchtime.tv_usec)) +
(new_switchtime.tv_sec - PCPU_GET(switchtime.tv_sec)) *
(int64_t)1000000;
}
#ifdef DDB
/*
* Don't perform context switches from the debugger.
*/
if (db_active) {
mtx_unlock_spin(&sched_lock);
db_error("Context switches not allowed in the debugger.");
}
#endif
#if 0
/*
* Check if the process exceeds its cpu resource allocation.
* If over max, kill it.
*
* XXX drop sched_lock, pickup Giant
*/
if (p->p_stat != SZOMB && p->p_limit->p_cpulimit != RLIM_INFINITY &&
p->p_runtime > p->p_limit->p_cpulimit) {
rlim = &p->p_rlimit[RLIMIT_CPU];
if (p->p_runtime / (rlim_t)1000000 >= rlim->rlim_max) {
mtx_unlock_spin(&sched_lock);
PROC_LOCK(p);
killproc(p, "exceeded maximum CPU limit");
mtx_lock_spin(&sched_lock);
PROC_UNLOCK_NOSWITCH(p);
} else {
mtx_unlock_spin(&sched_lock);
PROC_LOCK(p);
psignal(p, SIGXCPU);
mtx_lock_spin(&sched_lock);
PROC_UNLOCK_NOSWITCH(p);
if (rlim->rlim_cur < rlim->rlim_max) {
/* XXX: we should make a private copy */
rlim->rlim_cur += 5;
}
}
}
#endif
/*
* Pick a new current process and record its start time.
*/
cnt.v_swtch++;
PCPU_SET(switchtime, new_switchtime);
CTR3(KTR_PROC, "mi_switch: old proc %p (pid %d, %s)", p, p->p_pid,
p->p_comm);
sched_crit = sched_lock.mtx_savecrit;
sched_nest = sched_lock.mtx_recurse;
p->p_lastcpu = p->p_oncpu;
p->p_oncpu = NOCPU;
p->p_sflag &= ~PS_NEEDRESCHED;
cpu_switch();
p->p_oncpu = PCPU_GET(cpuid);
sched_lock.mtx_savecrit = sched_crit;
sched_lock.mtx_recurse = sched_nest;
sched_lock.mtx_lock = (uintptr_t)p;
CTR3(KTR_PROC, "mi_switch: new proc %p (pid %d, %s)", p, p->p_pid,
p->p_comm);
if (PCPU_GET(switchtime.tv_sec) == 0)
microuptime(PCPU_PTR(switchtime));
PCPU_SET(switchticks, ticks);
}
/*
* Change process state to be runnable,
* placing it on the run queue if it is in memory,
* and awakening the swapper if it isn't in memory.
*/
void
setrunnable(p)
register struct proc *p;
{
mtx_lock_spin(&sched_lock);
switch (p->p_stat) {
case 0:
case SRUN:
case SZOMB:
case SWAIT:
default:
panic("setrunnable");
case SSTOP:
case SSLEEP: /* e.g. when sending signals */
if (p->p_sflag & PS_CVWAITQ)
cv_waitq_remove(p);
else
unsleep(p);
break;
case SIDL:
break;
}
p->p_stat = SRUN;
if (p->p_slptime > 1)
updatepri(p);
p->p_slptime = 0;
if ((p->p_sflag & PS_INMEM) == 0) {
p->p_sflag |= PS_SWAPINREQ;
wakeup((caddr_t)&proc0);
} else {
setrunqueue(p);
maybe_resched(p);
}
mtx_unlock_spin(&sched_lock);
}
/*
* Compute the priority of a process when running in user mode.
* Arrange to reschedule if the resulting priority is better
* than that of the current process.
*/
void
resetpriority(p)
register struct proc *p;
{
register unsigned int newpriority;
mtx_lock_spin(&sched_lock);
if (p->p_pri.pri_class == PRI_TIMESHARE) {
newpriority = PUSER + p->p_estcpu / INVERSE_ESTCPU_WEIGHT +
NICE_WEIGHT * (p->p_nice - PRIO_MIN);
newpriority = min(max(newpriority, PRI_MIN_TIMESHARE),
PRI_MAX_TIMESHARE);
p->p_pri.pri_user = newpriority;
}
maybe_resched(p);
mtx_unlock_spin(&sched_lock);
}
/* ARGSUSED */
static void
sched_setup(dummy)
void *dummy;
{
callout_init(&schedcpu_callout, 1);
callout_init(&roundrobin_callout, 0);
/* Kick off timeout driven events by calling first time. */
roundrobin(NULL);
schedcpu(NULL);
}
/*
* We adjust the priority of the current process. The priority of
* a process gets worse as it accumulates CPU time. The cpu usage
* estimator (p_estcpu) is increased here. resetpriority() will
* compute a different priority each time p_estcpu increases by
* INVERSE_ESTCPU_WEIGHT
* (until MAXPRI is reached). The cpu usage estimator ramps up
* quite quickly when the process is running (linearly), and decays
* away exponentially, at a rate which is proportionally slower when
* the system is busy. The basic principle is that the system will
* 90% forget that the process used a lot of CPU time in 5 * loadav
* seconds. This causes the system to favor processes which haven't
* run much recently, and to round-robin among other processes.
*/
void
schedclock(p)
struct proc *p;
{
p->p_cpticks++;
p->p_estcpu = ESTCPULIM(p->p_estcpu + 1);
if ((p->p_estcpu % INVERSE_ESTCPU_WEIGHT) == 0) {
resetpriority(p);
if (p->p_pri.pri_level >= PUSER)
p->p_pri.pri_level = p->p_pri.pri_user;
}
}
/*
* General purpose yield system call
*/
int
yield(struct proc *p, struct yield_args *uap)
{
p->p_retval[0] = 0;
mtx_lock_spin(&sched_lock);
mtx_assert(&Giant, MA_NOTOWNED);
#if 0
DROP_GIANT_NOSWITCH();
#endif
p->p_pri.pri_level = PRI_MAX_TIMESHARE;
setrunqueue(p);
p->p_stats->p_ru.ru_nvcsw++;
mi_switch();
mtx_unlock_spin(&sched_lock);
#if 0
PICKUP_GIANT();
#endif
return (0);
}