1
0
mirror of https://git.FreeBSD.org/src.git synced 2024-12-14 10:09:48 +00:00
freebsd/sys/pci/if_ste.c
1999-08-28 01:08:13 +00:00

1643 lines
37 KiB
C

/*
* Copyright (c) 1997, 1998, 1999
* Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*
* $FreeBSD$
*/
#include "bpf.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#if NBPF > 0
#include <net/bpf.h>
#endif
#include "opt_bdg.h"
#ifdef BRIDGE
#include <net/bridge.h>
#endif
#include <vm/vm.h> /* for vtophys */
#include <vm/pmap.h> /* for vtophys */
#include <machine/clock.h> /* for DELAY */
#include <machine/bus_memio.h>
#include <machine/bus_pio.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/bus.h>
#include <sys/rman.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <pci/pcireg.h>
#include <pci/pcivar.h>
#include "miibus_if.h"
#define STE_USEIOSPACE
#include <pci/if_stereg.h>
#if !defined(lint)
static const char rcsid[] =
"$FreeBSD$";
#endif
/*
* Various supported device vendors/types and their names.
*/
static struct ste_type ste_devs[] = {
{ ST_VENDORID, ST_DEVICEID_ST201, "Sundance ST201 10/100BaseTX" },
{ DL_VENDORID, DL_DEVICEID_550TX, "D-Link DFE-550TX 10/100BaseTX" },
{ 0, 0, NULL }
};
static int ste_probe __P((device_t));
static int ste_attach __P((device_t));
static int ste_detach __P((device_t));
static void ste_init __P((void *));
static void ste_intr __P((void *));
static void ste_rxeof __P((struct ste_softc *));
static void ste_txeoc __P((struct ste_softc *));
static void ste_txeof __P((struct ste_softc *));
static void ste_stats_update __P((void *));
static void ste_stop __P((struct ste_softc *));
static void ste_reset __P((struct ste_softc *));
static int ste_ioctl __P((struct ifnet *, u_long, caddr_t));
static int ste_encap __P((struct ste_softc *, struct ste_chain *,
struct mbuf *));
static void ste_start __P((struct ifnet *));
static void ste_watchdog __P((struct ifnet *));
static void ste_shutdown __P((device_t));
static int ste_newbuf __P((struct ste_softc *,
struct ste_chain_onefrag *,
struct mbuf *));
static int ste_ifmedia_upd __P((struct ifnet *));
static void ste_ifmedia_sts __P((struct ifnet *, struct ifmediareq *));
static void ste_mii_sync __P((struct ste_softc *));
static void ste_mii_send __P((struct ste_softc *, u_int32_t, int));
static int ste_mii_readreg __P((struct ste_softc *,
struct ste_mii_frame *));
static int ste_mii_writereg __P((struct ste_softc *,
struct ste_mii_frame *));
static int ste_miibus_readreg __P((device_t, int, int));
static int ste_miibus_writereg __P((device_t, int, int, int));
static void ste_miibus_statchg __P((device_t));
static int ste_eeprom_wait __P((struct ste_softc *));
static int ste_read_eeprom __P((struct ste_softc *, caddr_t, int,
int, int));
static void ste_wait __P((struct ste_softc *));
static u_int8_t ste_calchash __P((caddr_t));
static void ste_setmulti __P((struct ste_softc *));
static int ste_init_rx_list __P((struct ste_softc *));
static void ste_init_tx_list __P((struct ste_softc *));
#ifdef STE_USEIOSPACE
#define STE_RES SYS_RES_IOPORT
#define STE_RID STE_PCI_LOIO
#else
#define STE_RES SYS_RES_MEMORY
#define STE_RID STE_PCI_LOMEM
#endif
static device_method_t ste_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, ste_probe),
DEVMETHOD(device_attach, ste_attach),
DEVMETHOD(device_detach, ste_detach),
DEVMETHOD(device_shutdown, ste_shutdown),
/* bus interface */
DEVMETHOD(bus_print_child, bus_generic_print_child),
DEVMETHOD(bus_driver_added, bus_generic_driver_added),
/* MII interface */
DEVMETHOD(miibus_readreg, ste_miibus_readreg),
DEVMETHOD(miibus_writereg, ste_miibus_writereg),
DEVMETHOD(miibus_statchg, ste_miibus_statchg),
{ 0, 0 }
};
static driver_t ste_driver = {
"ste",
ste_methods,
sizeof(struct ste_softc)
};
static devclass_t ste_devclass;
DRIVER_MODULE(ste, pci, ste_driver, ste_devclass, 0, 0);
DRIVER_MODULE(miibus, ste, miibus_driver, miibus_devclass, 0, 0);
#define STE_SETBIT4(sc, reg, x) \
CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x)
#define STE_CLRBIT4(sc, reg, x) \
CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x)
#define STE_SETBIT2(sc, reg, x) \
CSR_WRITE_2(sc, reg, CSR_READ_2(sc, reg) | x)
#define STE_CLRBIT2(sc, reg, x) \
CSR_WRITE_2(sc, reg, CSR_READ_2(sc, reg) & ~x)
#define STE_SETBIT1(sc, reg, x) \
CSR_WRITE_1(sc, reg, CSR_READ_1(sc, reg) | x)
#define STE_CLRBIT1(sc, reg, x) \
CSR_WRITE_1(sc, reg, CSR_READ_1(sc, reg) & ~x)
#define MII_SET(x) STE_SETBIT1(sc, STE_PHYCTL, x)
#define MII_CLR(x) STE_CLRBIT1(sc, STE_PHYCTL, x)
/*
* Sync the PHYs by setting data bit and strobing the clock 32 times.
*/
static void ste_mii_sync(sc)
struct ste_softc *sc;
{
register int i;
MII_SET(STE_PHYCTL_MDIR|STE_PHYCTL_MDATA);
for (i = 0; i < 32; i++) {
MII_SET(STE_PHYCTL_MCLK);
DELAY(1);
MII_CLR(STE_PHYCTL_MCLK);
DELAY(1);
}
return;
}
/*
* Clock a series of bits through the MII.
*/
static void ste_mii_send(sc, bits, cnt)
struct ste_softc *sc;
u_int32_t bits;
int cnt;
{
int i;
MII_CLR(STE_PHYCTL_MCLK);
for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
if (bits & i) {
MII_SET(STE_PHYCTL_MDATA);
} else {
MII_CLR(STE_PHYCTL_MDATA);
}
DELAY(1);
MII_CLR(STE_PHYCTL_MCLK);
DELAY(1);
MII_SET(STE_PHYCTL_MCLK);
}
}
/*
* Read an PHY register through the MII.
*/
static int ste_mii_readreg(sc, frame)
struct ste_softc *sc;
struct ste_mii_frame *frame;
{
int i, ack, s;
s = splimp();
/*
* Set up frame for RX.
*/
frame->mii_stdelim = STE_MII_STARTDELIM;
frame->mii_opcode = STE_MII_READOP;
frame->mii_turnaround = 0;
frame->mii_data = 0;
CSR_WRITE_2(sc, STE_PHYCTL, 0);
/*
* Turn on data xmit.
*/
MII_SET(STE_PHYCTL_MDIR);
ste_mii_sync(sc);
/*
* Send command/address info.
*/
ste_mii_send(sc, frame->mii_stdelim, 2);
ste_mii_send(sc, frame->mii_opcode, 2);
ste_mii_send(sc, frame->mii_phyaddr, 5);
ste_mii_send(sc, frame->mii_regaddr, 5);
/* Turn off xmit. */
MII_CLR(STE_PHYCTL_MDIR);
/* Idle bit */
MII_CLR((STE_PHYCTL_MCLK|STE_PHYCTL_MDATA));
DELAY(1);
MII_SET(STE_PHYCTL_MCLK);
DELAY(1);
/* Check for ack */
MII_CLR(STE_PHYCTL_MCLK);
DELAY(1);
MII_SET(STE_PHYCTL_MCLK);
DELAY(1);
ack = CSR_READ_2(sc, STE_PHYCTL) & STE_PHYCTL_MDATA;
/*
* Now try reading data bits. If the ack failed, we still
* need to clock through 16 cycles to keep the PHY(s) in sync.
*/
if (ack) {
for(i = 0; i < 16; i++) {
MII_CLR(STE_PHYCTL_MCLK);
DELAY(1);
MII_SET(STE_PHYCTL_MCLK);
DELAY(1);
}
goto fail;
}
for (i = 0x8000; i; i >>= 1) {
MII_CLR(STE_PHYCTL_MCLK);
DELAY(1);
if (!ack) {
if (CSR_READ_2(sc, STE_PHYCTL) & STE_PHYCTL_MDATA)
frame->mii_data |= i;
DELAY(1);
}
MII_SET(STE_PHYCTL_MCLK);
DELAY(1);
}
fail:
MII_CLR(STE_PHYCTL_MCLK);
DELAY(1);
MII_SET(STE_PHYCTL_MCLK);
DELAY(1);
splx(s);
if (ack)
return(1);
return(0);
}
/*
* Write to a PHY register through the MII.
*/
static int ste_mii_writereg(sc, frame)
struct ste_softc *sc;
struct ste_mii_frame *frame;
{
int s;
s = splimp();
/*
* Set up frame for TX.
*/
frame->mii_stdelim = STE_MII_STARTDELIM;
frame->mii_opcode = STE_MII_WRITEOP;
frame->mii_turnaround = STE_MII_TURNAROUND;
/*
* Turn on data output.
*/
MII_SET(STE_PHYCTL_MDIR);
ste_mii_sync(sc);
ste_mii_send(sc, frame->mii_stdelim, 2);
ste_mii_send(sc, frame->mii_opcode, 2);
ste_mii_send(sc, frame->mii_phyaddr, 5);
ste_mii_send(sc, frame->mii_regaddr, 5);
ste_mii_send(sc, frame->mii_turnaround, 2);
ste_mii_send(sc, frame->mii_data, 16);
/* Idle bit. */
MII_SET(STE_PHYCTL_MCLK);
DELAY(1);
MII_CLR(STE_PHYCTL_MCLK);
DELAY(1);
/*
* Turn off xmit.
*/
MII_CLR(STE_PHYCTL_MDIR);
splx(s);
return(0);
}
static int ste_miibus_readreg(dev, phy, reg)
device_t dev;
int phy, reg;
{
struct ste_softc *sc;
struct ste_mii_frame frame;
sc = device_get_softc(dev);
bzero((char *)&frame, sizeof(frame));
frame.mii_phyaddr = phy;
frame.mii_regaddr = reg;
ste_mii_readreg(sc, &frame);
return(frame.mii_data);
}
static int ste_miibus_writereg(dev, phy, reg, data)
device_t dev;
int phy, reg, data;
{
struct ste_softc *sc;
struct ste_mii_frame frame;
sc = device_get_softc(dev);
bzero((char *)&frame, sizeof(frame));
frame.mii_phyaddr = phy;
frame.mii_regaddr = reg;
frame.mii_data = data;
ste_mii_writereg(sc, &frame);
return(0);
}
static void ste_miibus_statchg(dev)
device_t dev;
{
struct ste_softc *sc;
struct mii_data *mii;
sc = device_get_softc(dev);
mii = device_get_softc(sc->ste_miibus);
if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
STE_SETBIT2(sc, STE_MACCTL0, STE_MACCTL0_FULLDUPLEX);
} else {
STE_CLRBIT2(sc, STE_MACCTL0, STE_MACCTL0_FULLDUPLEX);
}
return;
}
static int ste_ifmedia_upd(ifp)
struct ifnet *ifp;
{
struct ste_softc *sc;
struct mii_data *mii;
sc = ifp->if_softc;
mii = device_get_softc(sc->ste_miibus);
mii_mediachg(mii);
return(0);
}
static void ste_ifmedia_sts(ifp, ifmr)
struct ifnet *ifp;
struct ifmediareq *ifmr;
{
struct ste_softc *sc;
struct mii_data *mii;
sc = ifp->if_softc;
mii = device_get_softc(sc->ste_miibus);
mii_pollstat(mii);
ifmr->ifm_active = mii->mii_media_active;
ifmr->ifm_status = mii->mii_media_status;
return;
}
static void ste_wait(sc)
struct ste_softc *sc;
{
register int i;
for (i = 0; i < STE_TIMEOUT; i++) {
if (!(CSR_READ_4(sc, STE_DMACTL) & STE_DMACTL_DMA_HALTINPROG))
break;
}
if (i == STE_TIMEOUT)
printf("ste%d: command never completed!\n", sc->ste_unit);
return;
}
/*
* The EEPROM is slow: give it time to come ready after issuing
* it a command.
*/
static int ste_eeprom_wait(sc)
struct ste_softc *sc;
{
int i;
DELAY(1000);
for (i = 0; i < 100; i++) {
if (CSR_READ_2(sc, STE_EEPROM_CTL) & STE_EECTL_BUSY)
DELAY(1000);
else
break;
}
if (i == 100) {
printf("ste%d: eeprom failed to come ready\n", sc->ste_unit);
return(1);
}
return(0);
}
/*
* Read a sequence of words from the EEPROM. Note that ethernet address
* data is stored in the EEPROM in network byte order.
*/
static int ste_read_eeprom(sc, dest, off, cnt, swap)
struct ste_softc *sc;
caddr_t dest;
int off;
int cnt;
int swap;
{
int err = 0, i;
u_int16_t word = 0, *ptr;
if (ste_eeprom_wait(sc))
return(1);
for (i = 0; i < cnt; i++) {
CSR_WRITE_2(sc, STE_EEPROM_CTL, STE_EEOPCODE_READ | (off + i));
err = ste_eeprom_wait(sc);
if (err)
break;
word = CSR_READ_2(sc, STE_EEPROM_DATA);
ptr = (u_int16_t *)(dest + (i * 2));
if (swap)
*ptr = ntohs(word);
else
*ptr = word;
}
return(err ? 1 : 0);
}
static u_int8_t ste_calchash(addr)
caddr_t addr;
{
u_int32_t crc, carry;
int i, j;
u_int8_t c;
/* Compute CRC for the address value. */
crc = 0xFFFFFFFF; /* initial value */
for (i = 0; i < 6; i++) {
c = *(addr + i);
for (j = 0; j < 8; j++) {
carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
crc <<= 1;
c >>= 1;
if (carry)
crc = (crc ^ 0x04c11db6) | carry;
}
}
/* return the filter bit position */
return(crc & 0x0000003F);
}
static void ste_setmulti(sc)
struct ste_softc *sc;
{
struct ifnet *ifp;
int h = 0;
u_int32_t hashes[2] = { 0, 0 };
struct ifmultiaddr *ifma;
ifp = &sc->arpcom.ac_if;
if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
STE_SETBIT1(sc, STE_RX_MODE, STE_RXMODE_ALLMULTI);
STE_CLRBIT1(sc, STE_RX_MODE, STE_RXMODE_MULTIHASH);
return;
}
/* first, zot all the existing hash bits */
CSR_WRITE_4(sc, STE_MAR0, 0);
CSR_WRITE_4(sc, STE_MAR1, 0);
/* now program new ones */
for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
ifma = ifma->ifma_link.le_next) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
h = ste_calchash(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
if (h < 32)
hashes[0] |= (1 << h);
else
hashes[1] |= (1 << (h - 32));
}
CSR_WRITE_4(sc, STE_MAR0, hashes[0]);
CSR_WRITE_4(sc, STE_MAR1, hashes[1]);
STE_CLRBIT1(sc, STE_RX_MODE, STE_RXMODE_ALLMULTI);
STE_SETBIT1(sc, STE_RX_MODE, STE_RXMODE_MULTIHASH);
return;
}
static void ste_intr(xsc)
void *xsc;
{
struct ste_softc *sc;
struct ifnet *ifp;
u_int16_t status;
sc = xsc;
ifp = &sc->arpcom.ac_if;
/* See if this is really our interrupt. */
if (!(CSR_READ_2(sc, STE_ISR) & STE_ISR_INTLATCH))
return;
for (;;) {
status = CSR_READ_2(sc, STE_ISR_ACK);
if (!(status & STE_INTRS))
break;
if (status & STE_ISR_RX_DMADONE)
ste_rxeof(sc);
if (status & STE_ISR_TX_DMADONE)
ste_txeof(sc);
if (status & STE_ISR_TX_DONE)
ste_txeoc(sc);
if (status & STE_ISR_STATS_OFLOW) {
untimeout(ste_stats_update, sc, sc->ste_stat_ch);
ste_stats_update(sc);
}
if (status & STE_ISR_HOSTERR) {
ste_reset(sc);
ste_init(sc);
}
}
/* Re-enable interrupts */
CSR_WRITE_2(sc, STE_IMR, STE_INTRS);
if (ifp->if_snd.ifq_head != NULL)
ste_start(ifp);
return;
}
/*
* A frame has been uploaded: pass the resulting mbuf chain up to
* the higher level protocols.
*/
static void ste_rxeof(sc)
struct ste_softc *sc;
{
struct ether_header *eh;
struct mbuf *m;
struct ifnet *ifp;
struct ste_chain_onefrag *cur_rx;
int total_len = 0;
u_int32_t rxstat;
ifp = &sc->arpcom.ac_if;
again:
while((rxstat = sc->ste_cdata.ste_rx_head->ste_ptr->ste_status)) {
cur_rx = sc->ste_cdata.ste_rx_head;
sc->ste_cdata.ste_rx_head = cur_rx->ste_next;
/*
* If an error occurs, update stats, clear the
* status word and leave the mbuf cluster in place:
* it should simply get re-used next time this descriptor
* comes up in the ring.
*/
if (rxstat & STE_RXSTAT_FRAME_ERR) {
ifp->if_ierrors++;
cur_rx->ste_ptr->ste_status = 0;
continue;
}
/*
* If there error bit was not set, the upload complete
* bit should be set which means we have a valid packet.
* If not, something truly strange has happened.
*/
if (!(rxstat & STE_RXSTAT_DMADONE)) {
printf("ste%d: bad receive status -- packet dropped",
sc->ste_unit);
ifp->if_ierrors++;
cur_rx->ste_ptr->ste_status = 0;
continue;
}
/* No errors; receive the packet. */
m = cur_rx->ste_mbuf;
total_len = cur_rx->ste_ptr->ste_status & STE_RXSTAT_FRAMELEN;
/*
* Try to conjure up a new mbuf cluster. If that
* fails, it means we have an out of memory condition and
* should leave the buffer in place and continue. This will
* result in a lost packet, but there's little else we
* can do in this situation.
*/
if (ste_newbuf(sc, cur_rx, NULL) == ENOBUFS) {
ifp->if_ierrors++;
cur_rx->ste_ptr->ste_status = 0;
continue;
}
ifp->if_ipackets++;
eh = mtod(m, struct ether_header *);
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = m->m_len = total_len;
#if NBPF > 0
/* Handle BPF listeners. Let the BPF user see the packet. */
if (ifp->if_bpf)
bpf_mtap(ifp, m);
#endif
#ifdef BRIDGE
if (do_bridge) {
struct ifnet *bdg_ifp ;
bdg_ifp = bridge_in(m);
if (bdg_ifp != BDG_LOCAL && bdg_ifp != BDG_DROP)
bdg_forward(&m, bdg_ifp);
if (((bdg_ifp != BDG_LOCAL) && (bdg_ifp != BDG_BCAST) &&
(bdg_ifp != BDG_MCAST)) || bdg_ifp == BDG_DROP) {
m_freem(m);
continue;
}
}
#endif
#if NBPF > 0
/*
* Don't pass packet up to the ether_input() layer unless it's
* a broadcast packet, multicast packet, matches our ethernet
* address or the interface is in promiscuous mode.
*/
if (ifp->if_bpf) {
if (ifp->if_flags & IFF_PROMISC &&
(bcmp(eh->ether_dhost, sc->arpcom.ac_enaddr,
ETHER_ADDR_LEN) && (eh->ether_dhost[0] & 1) == 0)){
m_freem(m);
continue;
}
}
#endif
/* Remove header from mbuf and pass it on. */
m_adj(m, sizeof(struct ether_header));
ether_input(ifp, eh, m);
}
/*
* Handle the 'end of channel' condition. When the upload
* engine hits the end of the RX ring, it will stall. This
* is our cue to flush the RX ring, reload the uplist pointer
* register and unstall the engine.
* XXX This is actually a little goofy. With the ThunderLAN
* chip, you get an interrupt when the receiver hits the end
* of the receive ring, which tells you exactly when you
* you need to reload the ring pointer. Here we have to
* fake it. I'm mad at myself for not being clever enough
* to avoid the use of a goto here.
*/
if (CSR_READ_4(sc, STE_RX_DMALIST_PTR) == 0 ||
CSR_READ_4(sc, STE_DMACTL) & STE_DMACTL_RXDMA_STOPPED) {
STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_STALL);
ste_wait(sc);
CSR_WRITE_4(sc, STE_RX_DMALIST_PTR,
vtophys(&sc->ste_ldata->ste_rx_list[0]));
sc->ste_cdata.ste_rx_head = &sc->ste_cdata.ste_rx_chain[0];
STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_UNSTALL);
goto again;
}
return;
}
static void ste_txeoc(sc)
struct ste_softc *sc;
{
u_int8_t txstat;
struct ifnet *ifp;
ifp = &sc->arpcom.ac_if;
while ((txstat = CSR_READ_1(sc, STE_TX_STATUS)) &
STE_TXSTATUS_TXDONE) {
if (txstat & STE_TXSTATUS_UNDERRUN ||
txstat & STE_TXSTATUS_EXCESSCOLLS ||
txstat & STE_TXSTATUS_RECLAIMERR) {
ifp->if_oerrors++;
printf("ste%d: transmission error: %x\n",
sc->ste_unit, txstat);
STE_SETBIT4(sc, STE_ASICCTL, STE_ASICCTL_TX_RESET);
if (sc->ste_cdata.ste_tx_head != NULL)
CSR_WRITE_4(sc, STE_TX_DMALIST_PTR,
vtophys(sc->ste_cdata.ste_tx_head->ste_ptr));
if (txstat & STE_TXSTATUS_UNDERRUN &&
sc->ste_tx_thresh < STE_PACKET_SIZE) {
sc->ste_tx_thresh += STE_MIN_FRAMELEN;
printf("ste%d: tx underrun, increasing tx"
" start threshold to %d bytes\n",
sc->ste_unit, sc->ste_tx_thresh);
}
CSR_WRITE_2(sc, STE_TX_STARTTHRESH, sc->ste_tx_thresh);
CSR_WRITE_2(sc, STE_TX_RECLAIM_THRESH,
(STE_PACKET_SIZE >> 4));
}
ste_init(sc);
CSR_WRITE_2(sc, STE_TX_STATUS, txstat);
}
return;
}
static void ste_txeof(sc)
struct ste_softc *sc;
{
struct ste_chain *cur_tx;
struct ifnet *ifp;
ifp = &sc->arpcom.ac_if;
/* Clear the timeout timer. */
ifp->if_timer = 0;
while(sc->ste_cdata.ste_tx_head != NULL) {
cur_tx = sc->ste_cdata.ste_tx_head;
if (!(cur_tx->ste_ptr->ste_ctl & STE_TXCTL_DMADONE))
break;
sc->ste_cdata.ste_tx_head = cur_tx->ste_next;
m_freem(cur_tx->ste_mbuf);
cur_tx->ste_mbuf = NULL;
ifp->if_opackets++;
cur_tx->ste_next = sc->ste_cdata.ste_tx_free;
sc->ste_cdata.ste_tx_free = cur_tx;
}
if (sc->ste_cdata.ste_tx_head == NULL) {
ifp->if_flags &= ~IFF_OACTIVE;
sc->ste_cdata.ste_tx_tail = NULL;
} else {
if (CSR_READ_4(sc, STE_DMACTL) & STE_DMACTL_TXDMA_STOPPED ||
!CSR_READ_4(sc, STE_TX_DMALIST_PTR)) {
CSR_WRITE_4(sc, STE_TX_DMALIST_PTR,
vtophys(sc->ste_cdata.ste_tx_head->ste_ptr));
CSR_WRITE_4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
}
}
return;
}
static void ste_stats_update(xsc)
void *xsc;
{
struct ste_softc *sc;
struct ste_stats stats;
struct ifnet *ifp;
struct mii_data *mii;
int i, s;
u_int8_t *p;
s = splimp();
sc = xsc;
ifp = &sc->arpcom.ac_if;
mii = device_get_softc(sc->ste_miibus);
p = (u_int8_t *)&stats;
for (i = 0; i < sizeof(stats); i++) {
*p = CSR_READ_1(sc, STE_STATS + i);
p++;
}
ifp->if_collisions += stats.ste_single_colls +
stats.ste_multi_colls + stats.ste_late_colls;
mii_tick(mii);
sc->ste_stat_ch = timeout(ste_stats_update, sc, hz);
splx(s);
return;
}
/*
* Probe for a Sundance ST201 chip. Check the PCI vendor and device
* IDs against our list and return a device name if we find a match.
*/
static int ste_probe(dev)
device_t dev;
{
struct ste_type *t;
t = ste_devs;
while(t->ste_name != NULL) {
if ((pci_get_vendor(dev) == t->ste_vid) &&
(pci_get_device(dev) == t->ste_did)) {
device_set_desc(dev, t->ste_name);
return(0);
}
t++;
}
return(ENXIO);
}
/*
* Attach the interface. Allocate softc structures, do ifmedia
* setup and ethernet/BPF attach.
*/
static int ste_attach(dev)
device_t dev;
{
int s;
u_int32_t command;
struct ste_softc *sc;
struct ifnet *ifp;
int unit, error = 0, rid;
s = splimp();
sc = device_get_softc(dev);
unit = device_get_unit(dev);
bzero(sc, sizeof(struct ste_softc));
/*
* Handle power management nonsense.
*/
command = pci_read_config(dev, STE_PCI_CAPID, 4) & 0x000000FF;
if (command == 0x01) {
command = pci_read_config(dev, STE_PCI_PWRMGMTCTRL, 4);
if (command & STE_PSTATE_MASK) {
u_int32_t iobase, membase, irq;
/* Save important PCI config data. */
iobase = pci_read_config(dev, STE_PCI_LOIO, 4);
membase = pci_read_config(dev, STE_PCI_LOMEM, 4);
irq = pci_read_config(dev, STE_PCI_INTLINE, 4);
/* Reset the power state. */
printf("ste%d: chip is in D%d power mode "
"-- setting to D0\n", unit, command & STE_PSTATE_MASK);
command &= 0xFFFFFFFC;
pci_write_config(dev, STE_PCI_PWRMGMTCTRL, command, 4);
/* Restore PCI config data. */
pci_write_config(dev, STE_PCI_LOIO, iobase, 4);
pci_write_config(dev, STE_PCI_LOMEM, membase, 4);
pci_write_config(dev, STE_PCI_INTLINE, irq, 4);
}
}
/*
* Map control/status registers.
*/
command = pci_read_config(dev, PCI_COMMAND_STATUS_REG, 4);
command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
pci_write_config(dev, PCI_COMMAND_STATUS_REG, command, 4);
command = pci_read_config(dev, PCI_COMMAND_STATUS_REG, 4);
#ifdef STE_USEIOSPACE
if (!(command & PCIM_CMD_PORTEN)) {
printf("ste%d: failed to enable I/O ports!\n", unit);
error = ENXIO;
goto fail;
}
#else
if (!(command & PCIM_CMD_MEMEN)) {
printf("ste%d: failed to enable memory mapping!\n", unit);
error = ENXIO;
goto fail;
}
#endif
rid = STE_RID;
sc->ste_res = bus_alloc_resource(dev, STE_RES, &rid,
0, ~0, 1, RF_ACTIVE);
if (sc->ste_res == NULL) {
printf ("ste%d: couldn't map ports/memory\n", unit);
error = ENXIO;
goto fail;
}
sc->ste_btag = rman_get_bustag(sc->ste_res);
sc->ste_bhandle = rman_get_bushandle(sc->ste_res);
rid = 0;
sc->ste_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
RF_SHAREABLE | RF_ACTIVE);
if (sc->ste_irq == NULL) {
printf("ste%d: couldn't map interrupt\n", unit);
bus_release_resource(dev, STE_RES, STE_RID, sc->ste_res);
error = ENXIO;
goto fail;
}
error = bus_setup_intr(dev, sc->ste_irq, INTR_TYPE_NET,
ste_intr, sc, &sc->ste_intrhand);
if (error) {
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ste_irq);
bus_release_resource(dev, STE_RES, STE_RID, sc->ste_res);
printf("ste%d: couldn't set up irq\n", unit);
goto fail;
}
callout_handle_init(&sc->ste_stat_ch);
/* Reset the adapter. */
ste_reset(sc);
/*
* Get station address from the EEPROM.
*/
if (ste_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr,
STE_EEADDR_NODE0, 3, 0)) {
printf("ste%d: failed to read station address\n", unit);
free(sc, M_DEVBUF);
goto fail;
}
/*
* A Sundance chip was detected. Inform the world.
*/
printf("ste%d: Ethernet address: %6D\n", unit,
sc->arpcom.ac_enaddr, ":");
sc->ste_unit = unit;
/* Allocate the descriptor queues. */
sc->ste_ldata = contigmalloc(sizeof(struct ste_list_data), M_DEVBUF,
M_NOWAIT, 0x100000, 0xffffffff, PAGE_SIZE, 0);
if (sc->ste_ldata == NULL) {
free(sc, M_DEVBUF);
printf("ste%d: no memory for list buffers!\n", unit);
goto fail;
}
bzero(sc->ste_ldata, sizeof(struct ste_list_data));
/* Do MII setup. */
if (mii_phy_probe(dev, &sc->ste_miibus,
ste_ifmedia_upd, ste_ifmedia_sts)) {
printf("ste%d: MII without any phy!\n", sc->ste_unit);
bus_teardown_intr(dev, sc->ste_irq, sc->ste_intrhand);
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ste_irq);
bus_release_resource(dev, STE_RES, STE_RID, sc->ste_res);
free(sc->ste_ldata, M_DEVBUF);
error = ENXIO;
goto fail;
}
ifp = &sc->arpcom.ac_if;
ifp->if_softc = sc;
ifp->if_unit = unit;
ifp->if_name = "ste";
ifp->if_mtu = ETHERMTU;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = ste_ioctl;
ifp->if_output = ether_output;
ifp->if_start = ste_start;
ifp->if_watchdog = ste_watchdog;
ifp->if_init = ste_init;
ifp->if_baudrate = 10000000;
ifp->if_snd.ifq_maxlen = STE_TX_LIST_CNT - 1;
/*
* Call MI attach routines.
*/
if_attach(ifp);
ether_ifattach(ifp);
#if NBPF > 0
bpfattach(ifp, DLT_EN10MB, sizeof(struct ether_header));
#endif
fail:
splx(s);
return(error);
}
static int ste_detach(dev)
device_t dev;
{
struct ste_softc *sc;
struct ifnet *ifp;
int s;
s = splimp();
sc = device_get_softc(dev);
ifp = &sc->arpcom.ac_if;
ste_stop(sc);
if_detach(ifp);
bus_generic_detach(dev);
device_delete_child(dev, sc->ste_miibus);
bus_teardown_intr(dev, sc->ste_irq, sc->ste_intrhand);
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ste_irq);
bus_release_resource(dev, STE_RES, STE_RID, sc->ste_res);
free(sc->ste_ldata, M_DEVBUF);
splx(s);
return(0);
}
static int ste_newbuf(sc, c, m)
struct ste_softc *sc;
struct ste_chain_onefrag *c;
struct mbuf *m;
{
struct mbuf *m_new = NULL;
if (m == NULL) {
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
if (m_new == NULL) {
printf("ste%d: no memory for rx list -- "
"packet dropped\n", sc->ste_unit);
return(ENOBUFS);
}
MCLGET(m_new, M_DONTWAIT);
if (!(m_new->m_flags & M_EXT)) {
printf("ste%d: no memory for rx list -- "
"packet dropped\n", sc->ste_unit);
m_freem(m_new);
return(ENOBUFS);
}
m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
} else {
m_new = m;
m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
m_new->m_data = m_new->m_ext.ext_buf;
}
m_adj(m_new, ETHER_ALIGN);
c->ste_mbuf = m_new;
c->ste_ptr->ste_status = 0;
c->ste_ptr->ste_frag.ste_addr = vtophys(mtod(m_new, caddr_t));
c->ste_ptr->ste_frag.ste_len = 1536 | STE_FRAG_LAST;
return(0);
}
static int ste_init_rx_list(sc)
struct ste_softc *sc;
{
struct ste_chain_data *cd;
struct ste_list_data *ld;
int i;
cd = &sc->ste_cdata;
ld = sc->ste_ldata;
for (i = 0; i < STE_RX_LIST_CNT; i++) {
cd->ste_rx_chain[i].ste_ptr = &ld->ste_rx_list[i];
if (ste_newbuf(sc, &cd->ste_rx_chain[i], NULL) == ENOBUFS)
return(ENOBUFS);
if (i == (STE_RX_LIST_CNT - 1)) {
cd->ste_rx_chain[i].ste_next =
&cd->ste_rx_chain[0];
ld->ste_rx_list[i].ste_next =
vtophys(&ld->ste_rx_list[0]);
} else {
cd->ste_rx_chain[i].ste_next =
&cd->ste_rx_chain[i + 1];
ld->ste_rx_list[i].ste_next =
vtophys(&ld->ste_rx_list[i + 1]);
}
}
cd->ste_rx_head = &cd->ste_rx_chain[0];
return(0);
}
static void ste_init_tx_list(sc)
struct ste_softc *sc;
{
struct ste_chain_data *cd;
struct ste_list_data *ld;
int i;
cd = &sc->ste_cdata;
ld = sc->ste_ldata;
for (i = 0; i < STE_TX_LIST_CNT; i++) {
cd->ste_tx_chain[i].ste_ptr = &ld->ste_tx_list[i];
if (i == (STE_TX_LIST_CNT - 1))
cd->ste_tx_chain[i].ste_next = NULL;
else
cd->ste_tx_chain[i].ste_next =
&cd->ste_tx_chain[i + 1];
}
cd->ste_tx_free = &cd->ste_tx_chain[0];
cd->ste_tx_tail = cd->ste_tx_head = NULL;
return;
}
static void ste_init(xsc)
void *xsc;
{
struct ste_softc *sc;
int i, s;
struct ifnet *ifp;
struct mii_data *mii;
s = splimp();
sc = xsc;
ifp = &sc->arpcom.ac_if;
mii = device_get_softc(sc->ste_miibus);
ste_stop(sc);
/* Init our MAC address */
for (i = 0; i < ETHER_ADDR_LEN; i++) {
CSR_WRITE_1(sc, STE_PAR0 + i, sc->arpcom.ac_enaddr[i]);
}
/* Init RX list */
if (ste_init_rx_list(sc) == ENOBUFS) {
printf("ste%d: initialization failed: no "
"memory for RX buffers\n", sc->ste_unit);
ste_stop(sc);
splx(s);
return;
}
/* Init TX descriptors */
ste_init_tx_list(sc);
/* Set the TX freethresh value */
CSR_WRITE_1(sc, STE_TX_DMABURST_THRESH, STE_PACKET_SIZE >> 8);
/* Set the TX start threshold for best performance. */
sc->ste_tx_thresh = STE_MIN_FRAMELEN;
CSR_WRITE_2(sc, STE_TX_STARTTHRESH, sc->ste_tx_thresh);
/* Set the TX reclaim threshold. */
CSR_WRITE_1(sc, STE_TX_RECLAIM_THRESH, (STE_PACKET_SIZE >> 4));
/* Set up the RX filter. */
CSR_WRITE_1(sc, STE_RX_MODE, STE_RXMODE_UNICAST);
/* If we want promiscuous mode, set the allframes bit. */
if (ifp->if_flags & IFF_PROMISC) {
STE_SETBIT1(sc, STE_RX_MODE, STE_RXMODE_PROMISC);
} else {
STE_CLRBIT1(sc, STE_RX_MODE, STE_RXMODE_PROMISC);
}
/* Set capture broadcast bit to accept broadcast frames. */
if (ifp->if_flags & IFF_BROADCAST) {
STE_SETBIT1(sc, STE_RX_MODE, STE_RXMODE_BROADCAST);
} else {
STE_CLRBIT1(sc, STE_RX_MODE, STE_RXMODE_BROADCAST);
}
ste_setmulti(sc);
/* Load the address of the RX list. */
STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_STALL);
ste_wait(sc);
CSR_WRITE_4(sc, STE_RX_DMALIST_PTR,
vtophys(&sc->ste_ldata->ste_rx_list[0]));
STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_UNSTALL);
STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_UNSTALL);
/* Enable receiver and transmitter */
CSR_WRITE_2(sc, STE_MACCTL0, 0);
STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_TX_ENABLE);
STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_RX_ENABLE);
/* Enable stats counters. */
STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_STATS_ENABLE);
/* Enable interrupts. */
CSR_WRITE_2(sc, STE_ISR, 0xFFFF);
CSR_WRITE_2(sc, STE_IMR, STE_INTRS);
mii_mediachg(mii);
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
splx(s);
sc->ste_stat_ch = timeout(ste_stats_update, sc, hz);
return;
}
static void ste_stop(sc)
struct ste_softc *sc;
{
int i;
struct ifnet *ifp;
ifp = &sc->arpcom.ac_if;
untimeout(ste_stats_update, sc, sc->ste_stat_ch);
CSR_WRITE_2(sc, STE_IMR, 0);
STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_TX_DISABLE);
STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_RX_DISABLE);
STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_STATS_DISABLE);
STE_SETBIT2(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
STE_SETBIT2(sc, STE_DMACTL, STE_DMACTL_RXDMA_STALL);
ste_wait(sc);
for (i = 0; i < STE_RX_LIST_CNT; i++) {
if (sc->ste_cdata.ste_rx_chain[i].ste_mbuf != NULL) {
m_freem(sc->ste_cdata.ste_rx_chain[i].ste_mbuf);
sc->ste_cdata.ste_rx_chain[i].ste_mbuf = NULL;
}
}
for (i = 0; i < STE_TX_LIST_CNT; i++) {
if (sc->ste_cdata.ste_tx_chain[i].ste_mbuf != NULL) {
m_freem(sc->ste_cdata.ste_tx_chain[i].ste_mbuf);
sc->ste_cdata.ste_tx_chain[i].ste_mbuf = NULL;
}
}
ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
return;
}
static void ste_reset(sc)
struct ste_softc *sc;
{
int i;
STE_SETBIT4(sc, STE_ASICCTL,
STE_ASICCTL_GLOBAL_RESET|STE_ASICCTL_RX_RESET|
STE_ASICCTL_TX_RESET|STE_ASICCTL_DMA_RESET|
STE_ASICCTL_FIFO_RESET|STE_ASICCTL_NETWORK_RESET|
STE_ASICCTL_AUTOINIT_RESET|STE_ASICCTL_HOST_RESET|
STE_ASICCTL_EXTRESET_RESET);
DELAY(100000);
for (i = 0; i < STE_TIMEOUT; i++) {
if (!(CSR_READ_4(sc, STE_ASICCTL) & STE_ASICCTL_RESET_BUSY))
break;
}
if (i == STE_TIMEOUT)
printf("ste%d: global reset never completed\n", sc->ste_unit);
#ifdef foo
STE_SETBIT4(sc, STE_ASICCTL, STE_ASICCTL_RX_RESET);
for (i = 0; i < STE_TIMEOUT; i++) {
if (!(CSR_READ_4(sc, STE_ASICCTL) & STE_ASICCTL_RX_RESET))
break;
}
if (i == STE_TIMEOUT)
printf("ste%d: RX reset never completed\n", sc->ste_unit);
DELAY(100000);
STE_SETBIT4(sc, STE_ASICCTL, STE_ASICCTL_TX_RESET);
for (i = 0; i < STE_TIMEOUT; i++) {
if (!(CSR_READ_4(sc, STE_ASICCTL) & STE_ASICCTL_TX_RESET))
break;
}
if (i == STE_TIMEOUT)
printf("ste%d: TX reset never completed\n", sc->ste_unit);
DELAY(100000);
#endif
return;
}
static int ste_ioctl(ifp, command, data)
struct ifnet *ifp;
u_long command;
caddr_t data;
{
struct ste_softc *sc;
struct ifreq *ifr;
struct mii_data *mii;
int error = 0, s;
s = splimp();
sc = ifp->if_softc;
ifr = (struct ifreq *)data;
switch(command) {
case SIOCSIFADDR:
case SIOCGIFADDR:
case SIOCSIFMTU:
error = ether_ioctl(ifp, command, data);
break;
case SIOCSIFFLAGS:
if (ifp->if_flags & IFF_UP) {
ste_init(sc);
} else {
if (ifp->if_flags & IFF_RUNNING)
ste_stop(sc);
}
error = 0;
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
ste_setmulti(sc);
error = 0;
break;
case SIOCGIFMEDIA:
case SIOCSIFMEDIA:
mii = device_get_softc(sc->ste_miibus);
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
break;
default:
error = EINVAL;
break;
}
splx(s);
return(error);
}
static int ste_encap(sc, c, m_head)
struct ste_softc *sc;
struct ste_chain *c;
struct mbuf *m_head;
{
int frag = 0;
struct ste_frag *f = NULL;
int total_len;
struct mbuf *m;
m = m_head;
total_len = 0;
for (m = m_head, frag = 0; m != NULL; m = m->m_next) {
if (m->m_len != 0) {
if (frag == STE_MAXFRAGS)
break;
total_len += m->m_len;
f = &c->ste_ptr->ste_frags[frag];
f->ste_addr = vtophys(mtod(m, vm_offset_t));
f->ste_len = m->m_len;
frag++;
}
}
if (m != NULL) {
struct mbuf *m_new = NULL;
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
if (m_new == NULL) {
printf("ste%d: no memory for "
"tx list", sc->ste_unit);
return(1);
}
if (m_head->m_pkthdr.len > MHLEN) {
MCLGET(m_new, M_DONTWAIT);
if (!(m_new->m_flags & M_EXT)) {
m_freem(m_new);
printf("ste%d: no memory for "
"tx list", sc->ste_unit);
return(1);
}
}
m_copydata(m_head, 0, m_head->m_pkthdr.len,
mtod(m_new, caddr_t));
m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
m_freem(m_head);
m_head = m_new;
f = &c->ste_ptr->ste_frags[0];
f->ste_addr = vtophys(mtod(m_new, caddr_t));
f->ste_len = total_len = m_new->m_len;
frag = 1;
}
c->ste_mbuf = m_head;
c->ste_ptr->ste_frags[frag - 1].ste_len |= STE_FRAG_LAST;
c->ste_ptr->ste_ctl = total_len;
c->ste_ptr->ste_next = 0;
return(0);
}
static void ste_start(ifp)
struct ifnet *ifp;
{
struct ste_softc *sc;
struct mbuf *m_head = NULL;
struct ste_chain *prev = NULL, *cur_tx = NULL, *start_tx;
sc = ifp->if_softc;
if (sc->ste_cdata.ste_tx_free == NULL) {
ifp->if_flags |= IFF_OACTIVE;
return;
}
start_tx = sc->ste_cdata.ste_tx_free;
while(sc->ste_cdata.ste_tx_free != NULL) {
IF_DEQUEUE(&ifp->if_snd, m_head);
if (m_head == NULL)
break;
cur_tx = sc->ste_cdata.ste_tx_free;
sc->ste_cdata.ste_tx_free = cur_tx->ste_next;
cur_tx->ste_next = NULL;
ste_encap(sc, cur_tx, m_head);
if (prev != NULL) {
prev->ste_next = cur_tx;
prev->ste_ptr->ste_next = vtophys(cur_tx->ste_ptr);
}
prev = cur_tx;
#if NBPF > 0
/*
* If there's a BPF listener, bounce a copt of this frame
* to him.
*/
if (ifp->if_bpf)
bpf_mtap(ifp, cur_tx->ste_mbuf);
#endif
}
if (cur_tx == NULL)
return;
cur_tx->ste_ptr->ste_ctl |= STE_TXCTL_DMAINTR;
STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
ste_wait(sc);
if (sc->ste_cdata.ste_tx_head != NULL) {
sc->ste_cdata.ste_tx_tail->ste_next = start_tx;
sc->ste_cdata.ste_tx_tail->ste_ptr->ste_next =
vtophys(start_tx->ste_ptr);
sc->ste_cdata.ste_tx_tail->ste_ptr->ste_ctl &=
~STE_TXCTL_DMAINTR;
sc->ste_cdata.ste_tx_tail = cur_tx;
} else {
sc->ste_cdata.ste_tx_head = start_tx;
sc->ste_cdata.ste_tx_tail = cur_tx;
}
if (!CSR_READ_4(sc, STE_TX_DMALIST_PTR))
CSR_WRITE_4(sc, STE_TX_DMALIST_PTR,
vtophys(start_tx->ste_ptr));
STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
ifp->if_timer = 5;
return;
}
static void ste_watchdog(ifp)
struct ifnet *ifp;
{
struct ste_softc *sc;
sc = ifp->if_softc;
ifp->if_oerrors++;
printf("ste%d: watchdog timeout\n", sc->ste_unit);
#ifdef foo
if (sc->ste_pinfo != NULL) {
if (!(ste_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_LINKSTAT))
printf("ste%d: no carrier - transceiver "
"cable problem?\n", sc->ste_unit);
}
#endif
ste_txeoc(sc);
ste_txeof(sc);
ste_rxeof(sc);
ste_reset(sc);
ste_init(sc);
if (ifp->if_snd.ifq_head != NULL)
ste_start(ifp);
return;
}
static void ste_shutdown(dev)
device_t dev;
{
struct ste_softc *sc;
sc = device_get_softc(dev);
ste_stop(sc);
return;
}