mirror of
https://git.FreeBSD.org/src.git
synced 2024-12-20 11:11:24 +00:00
ba3e88262e
order to avoid namespace collision with subr_mchain.c's mb_init(). This wasn't "fatal" as the mbuf initialization routine mb_init() was local to subr_mbuf.c which in turn didn't pull in subr_mchain.c's mb_init() declaration, but it should deffinately be changed now before it creates headache.
1051 lines
32 KiB
C
1051 lines
32 KiB
C
/*
|
|
* Copyright (c) 2001
|
|
* Bosko Milekic <bmilekic@FreeBSD.org>. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. The name of the author may not be used to endorse or promote products
|
|
* derived from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* $FreeBSD$
|
|
*/
|
|
|
|
#include "opt_param.h"
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/condvar.h>
|
|
#include <sys/smp.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/domain.h>
|
|
#include <sys/protosw.h>
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_kern.h>
|
|
#include <vm/vm_extern.h>
|
|
|
|
/*
|
|
* Maximum number of PCPU containers. If you know what you're doing you could
|
|
* explicitly define MBALLOC_NCPU to be exactly the number of CPUs on your
|
|
* system during compilation, and thus prevent kernel structure bloat.
|
|
*
|
|
* SMP and non-SMP kernels clearly have a different number of possible cpus,
|
|
* but because we cannot assume a dense array of CPUs, we always allocate
|
|
* and traverse PCPU containers up to NCPU amount and merely check for
|
|
* CPU availability.
|
|
*/
|
|
#ifdef MBALLOC_NCPU
|
|
#define NCPU MBALLOC_NCPU
|
|
#else
|
|
#define NCPU MAXCPU
|
|
#endif
|
|
|
|
/*
|
|
* The mbuf allocator is heavily based on Alfred Perlstein's
|
|
* (alfred@FreeBSD.org) "memcache" allocator which is itself based
|
|
* on concepts from several per-CPU memory allocators. The difference
|
|
* between this allocator and memcache is that, among other things:
|
|
*
|
|
* (i) We don't free back to the map from the free() routine - we leave the
|
|
* option of implementing lazy freeing (from a kproc) in the future.
|
|
*
|
|
* (ii) We allocate from separate sub-maps of kmem_map, thus limiting the
|
|
* maximum number of allocatable objects of a given type. Further,
|
|
* we handle blocking on a cv in the case that the map is starved and
|
|
* we have to rely solely on cached (circulating) objects.
|
|
*
|
|
* The mbuf allocator keeps all objects that it allocates in mb_buckets.
|
|
* The buckets keep a page worth of objects (an object can be an mbuf or an
|
|
* mbuf cluster) and facilitate moving larger sets of contiguous objects
|
|
* from the per-CPU lists to the main list for the given object. The buckets
|
|
* also have an added advantage in that after several moves from a per-CPU
|
|
* list to the main list and back to the per-CPU list, contiguous objects
|
|
* are kept together, thus trying to put the TLB cache to good use.
|
|
*
|
|
* The buckets are kept on singly-linked lists called "containers." A container
|
|
* is protected by a mutex lock in order to ensure consistency. The mutex lock
|
|
* itself is allocated seperately and attached to the container at boot time,
|
|
* thus allowing for certain containers to share the same mutex lock. Per-CPU
|
|
* containers for mbufs and mbuf clusters all share the same per-CPU
|
|
* lock whereas the "general system" containers (i.e. the "main lists") for
|
|
* these objects share one global lock.
|
|
*
|
|
*/
|
|
struct mb_bucket {
|
|
SLIST_ENTRY(mb_bucket) mb_blist;
|
|
int mb_owner;
|
|
int mb_numfree;
|
|
void *mb_free[0];
|
|
};
|
|
|
|
struct mb_container {
|
|
SLIST_HEAD(mc_buckethd, mb_bucket) mc_bhead;
|
|
struct mtx *mc_lock;
|
|
int mc_numowner;
|
|
u_int mc_starved;
|
|
u_long *mc_objcount;
|
|
u_long *mc_numpgs;
|
|
};
|
|
|
|
struct mb_gen_list {
|
|
struct mb_container mb_cont;
|
|
struct cv mgl_mstarved;
|
|
};
|
|
|
|
struct mb_pcpu_list {
|
|
struct mb_container mb_cont;
|
|
};
|
|
|
|
/*
|
|
* Boot-time configurable object counts that will determine the maximum
|
|
* number of permitted objects in the mbuf and mcluster cases. In the
|
|
* ext counter (nmbcnt) case, it's just an indicator serving to scale
|
|
* kmem_map size properly - in other words, we may be allowed to allocate
|
|
* more than nmbcnt counters, whereas we will never be allowed to allocate
|
|
* more than nmbufs mbufs or nmbclusters mclusters.
|
|
* As for nsfbufs, it is used to indicate how many sendfile(2) buffers will be
|
|
* allocatable by the sfbuf allocator (found in uipc_syscalls.c)
|
|
*/
|
|
#ifndef NMBCLUSTERS
|
|
#define NMBCLUSTERS (1024 + maxusers * 64)
|
|
#endif
|
|
#ifndef NMBUFS
|
|
#define NMBUFS (nmbclusters * 2)
|
|
#endif
|
|
#ifndef NSFBUFS
|
|
#define NSFBUFS (512 + maxusers * 16)
|
|
#endif
|
|
#ifndef NMBCNTS
|
|
#define NMBCNTS (nmbclusters + nsfbufs)
|
|
#endif
|
|
int nmbufs;
|
|
int nmbclusters;
|
|
int nmbcnt;
|
|
int nsfbufs;
|
|
|
|
/*
|
|
* Perform sanity checks of tunables declared above.
|
|
*/
|
|
static void
|
|
tunable_mbinit(void *dummy)
|
|
{
|
|
|
|
/*
|
|
* This has to be done before VM init.
|
|
*/
|
|
nmbclusters = NMBCLUSTERS;
|
|
TUNABLE_INT_FETCH("kern.ipc.nmbclusters", &nmbclusters);
|
|
nmbufs = NMBUFS;
|
|
TUNABLE_INT_FETCH("kern.ipc.nmbufs", &nmbufs);
|
|
nsfbufs = NSFBUFS;
|
|
TUNABLE_INT_FETCH("kern.ipc.nsfbufs", &nsfbufs);
|
|
nmbcnt = NMBCNTS;
|
|
TUNABLE_INT_FETCH("kern.ipc.nmbcnt", &nmbcnt);
|
|
/* Sanity checks */
|
|
if (nmbufs < nmbclusters * 2)
|
|
nmbufs = nmbclusters * 2;
|
|
if (nmbcnt < nmbclusters + nsfbufs)
|
|
nmbcnt = nmbclusters + nsfbufs;
|
|
|
|
return;
|
|
}
|
|
SYSINIT(tunable_mbinit, SI_SUB_TUNABLES, SI_ORDER_ANY, tunable_mbinit, NULL);
|
|
|
|
/*
|
|
* The freelist structures and mutex locks. The number statically declared
|
|
* here depends on the number of CPUs.
|
|
*
|
|
* We setup in such a way that all the objects (mbufs, clusters)
|
|
* share the same mutex lock. It has been established that we do not benefit
|
|
* from different locks for different objects, so we use the same lock,
|
|
* regardless of object type.
|
|
*/
|
|
struct mb_lstmngr {
|
|
struct mb_gen_list *ml_genlist;
|
|
struct mb_pcpu_list *ml_cntlst[NCPU];
|
|
struct mb_bucket **ml_btable;
|
|
vm_map_t ml_map;
|
|
vm_offset_t ml_mapbase;
|
|
vm_offset_t ml_maptop;
|
|
int ml_mapfull;
|
|
u_int ml_objsize;
|
|
u_int *ml_wmhigh;
|
|
};
|
|
struct mb_lstmngr mb_list_mbuf, mb_list_clust;
|
|
struct mtx mbuf_gen, mbuf_pcpu[NCPU];
|
|
|
|
/*
|
|
* Local macros for internal allocator structure manipulations.
|
|
*/
|
|
#ifdef SMP
|
|
#define MB_GET_PCPU_LIST(mb_lst) (mb_lst)->ml_cntlst[PCPU_GET(cpuid)]
|
|
#else
|
|
#define MB_GET_PCPU_LIST(mb_lst) (mb_lst)->ml_cntlst[0]
|
|
#endif
|
|
|
|
#define MB_GET_PCPU_LIST_NUM(mb_lst, num) (mb_lst)->ml_cntlst[(num)]
|
|
|
|
#define MB_GET_GEN_LIST(mb_lst) (mb_lst)->ml_genlist
|
|
|
|
#define MB_LOCK_CONT(mb_cnt) mtx_lock((mb_cnt)->mb_cont.mc_lock)
|
|
|
|
#define MB_UNLOCK_CONT(mb_cnt) mtx_unlock((mb_cnt)->mb_cont.mc_lock)
|
|
|
|
#define MB_BUCKET_INDX(mb_obj, mb_lst) \
|
|
(int)(((caddr_t)(mb_obj) - (caddr_t)(mb_lst)->ml_mapbase) / PAGE_SIZE)
|
|
|
|
#define MB_GET_OBJECT(mb_objp, mb_bckt, mb_lst) \
|
|
{ \
|
|
struct mc_buckethd *_mchd = &((mb_lst)->mb_cont.mc_bhead); \
|
|
\
|
|
(mb_bckt)->mb_numfree--; \
|
|
(mb_objp) = (mb_bckt)->mb_free[((mb_bckt)->mb_numfree)]; \
|
|
(*((mb_lst)->mb_cont.mc_objcount))--; \
|
|
if ((mb_bckt)->mb_numfree == 0) { \
|
|
SLIST_REMOVE_HEAD(_mchd, mb_blist); \
|
|
SLIST_NEXT((mb_bckt), mb_blist) = NULL; \
|
|
(mb_bckt)->mb_owner |= MB_BUCKET_FREE; \
|
|
} \
|
|
}
|
|
|
|
#define MB_PUT_OBJECT(mb_objp, mb_bckt, mb_lst) \
|
|
(mb_bckt)->mb_free[((mb_bckt)->mb_numfree)] = (mb_objp); \
|
|
(mb_bckt)->mb_numfree++; \
|
|
(*((mb_lst)->mb_cont.mc_objcount))++;
|
|
|
|
/*
|
|
* Ownership of buckets/containers is represented by integers. The PCPU
|
|
* lists range from 0 to NCPU-1. We need a free numerical id for the general
|
|
* list (we use NCPU). We also need a non-conflicting free bit to indicate
|
|
* that the bucket is free and removed from a container, while not losing
|
|
* the bucket's originating container id. We use the highest bit
|
|
* for the free marker.
|
|
*/
|
|
#define MB_GENLIST_OWNER (NCPU)
|
|
#define MB_BUCKET_FREE (1 << (sizeof(int) * 8 - 1))
|
|
|
|
/*
|
|
* sysctl(8) exported objects
|
|
*/
|
|
struct mbstat mbstat; /* General stats + infos. */
|
|
struct mbpstat mb_statpcpu[NCPU+1]; /* PCPU + Gen. container alloc stats */
|
|
int mbuf_wait = 64; /* Sleep time for wait code (ticks) */
|
|
u_int mbuf_limit = 512; /* Upper lim. on # of mbufs per CPU */
|
|
u_int clust_limit = 128; /* Upper lim. on # of clusts per CPU */
|
|
SYSCTL_DECL(_kern_ipc);
|
|
SYSCTL_INT(_kern_ipc, OID_AUTO, nmbclusters, CTLFLAG_RD, &nmbclusters, 0,
|
|
"Maximum number of mbuf clusters available");
|
|
SYSCTL_INT(_kern_ipc, OID_AUTO, nmbufs, CTLFLAG_RD, &nmbufs, 0,
|
|
"Maximum number of mbufs available");
|
|
SYSCTL_INT(_kern_ipc, OID_AUTO, nmbcnt, CTLFLAG_RD, &nmbcnt, 0,
|
|
"Number used to scale kmem_map to ensure sufficient space for counters");
|
|
SYSCTL_INT(_kern_ipc, OID_AUTO, nsfbufs, CTLFLAG_RD, &nsfbufs, 0,
|
|
"Maximum number of sendfile(2) sf_bufs available");
|
|
SYSCTL_INT(_kern_ipc, OID_AUTO, mbuf_wait, CTLFLAG_RW, &mbuf_wait, 0,
|
|
"Sleep time of mbuf subsystem wait allocations during exhaustion");
|
|
SYSCTL_UINT(_kern_ipc, OID_AUTO, mbuf_limit, CTLFLAG_RW, &mbuf_limit, 0,
|
|
"Upper limit of number of mbufs allowed on each PCPU list");
|
|
SYSCTL_UINT(_kern_ipc, OID_AUTO, clust_limit, CTLFLAG_RW, &clust_limit, 0,
|
|
"Upper limit of number of mbuf clusters allowed on each PCPU list");
|
|
SYSCTL_STRUCT(_kern_ipc, OID_AUTO, mbstat, CTLFLAG_RD, &mbstat, mbstat,
|
|
"Mbuf general information and statistics");
|
|
SYSCTL_OPAQUE(_kern_ipc, OID_AUTO, mb_statpcpu, CTLFLAG_RD, mb_statpcpu,
|
|
sizeof(mb_statpcpu), "S,", "Mbuf allocator per CPU statistics");
|
|
|
|
/*
|
|
* Prototypes of local allocator routines.
|
|
*/
|
|
static __inline void *mb_alloc(struct mb_lstmngr *, int);
|
|
void *mb_alloc_wait(struct mb_lstmngr *);
|
|
static __inline void mb_free(struct mb_lstmngr *, void *);
|
|
static void mbuf_init(void *);
|
|
struct mb_bucket *mb_pop_cont(struct mb_lstmngr *, int,
|
|
struct mb_pcpu_list *);
|
|
void mb_reclaim(void);
|
|
|
|
/*
|
|
* Initial allocation numbers. Each parameter represents the number of buckets
|
|
* of each object that will be placed initially in each PCPU container for
|
|
* said object.
|
|
*/
|
|
#define NMB_MBUF_INIT 4
|
|
#define NMB_CLUST_INIT 16
|
|
|
|
/*
|
|
* Initialize the mbuf subsystem.
|
|
*
|
|
* We sub-divide the kmem_map into several submaps; this way, we don't have
|
|
* to worry about artificially limiting the number of mbuf or mbuf cluster
|
|
* allocations, due to fear of one type of allocation "stealing" address
|
|
* space initially reserved for another.
|
|
*
|
|
* Setup both the general containers and all the PCPU containers. Populate
|
|
* the PCPU containers with initial numbers.
|
|
*/
|
|
MALLOC_DEFINE(M_MBUF, "mbufmgr", "mbuf subsystem management structures");
|
|
SYSINIT(mbuf, SI_SUB_MBUF, SI_ORDER_FIRST, mbuf_init, NULL)
|
|
void
|
|
mbuf_init(void *dummy)
|
|
{
|
|
struct mb_pcpu_list *pcpu_cnt;
|
|
vm_size_t mb_map_size;
|
|
int i, j;
|
|
|
|
/*
|
|
* Setup all the submaps, for each type of object that we deal
|
|
* with in this allocator.
|
|
*/
|
|
mb_map_size = (vm_size_t)(nmbufs * MSIZE);
|
|
mb_map_size = rounddown(mb_map_size, PAGE_SIZE);
|
|
mb_list_mbuf.ml_btable = malloc((unsigned long)mb_map_size / PAGE_SIZE *
|
|
sizeof(struct mb_bucket *), M_MBUF, M_NOWAIT);
|
|
if (mb_list_mbuf.ml_btable == NULL)
|
|
goto bad;
|
|
mb_list_mbuf.ml_map = kmem_suballoc(kmem_map,&(mb_list_mbuf.ml_mapbase),
|
|
&(mb_list_mbuf.ml_maptop), mb_map_size);
|
|
mb_list_mbuf.ml_mapfull = 0;
|
|
mb_list_mbuf.ml_objsize = MSIZE;
|
|
mb_list_mbuf.ml_wmhigh = &mbuf_limit;
|
|
|
|
mb_map_size = (vm_size_t)(nmbclusters * MCLBYTES);
|
|
mb_map_size = rounddown(mb_map_size, PAGE_SIZE);
|
|
mb_list_clust.ml_btable = malloc((unsigned long)mb_map_size / PAGE_SIZE
|
|
* sizeof(struct mb_bucket *), M_MBUF, M_NOWAIT);
|
|
if (mb_list_clust.ml_btable == NULL)
|
|
goto bad;
|
|
mb_list_clust.ml_map = kmem_suballoc(kmem_map,
|
|
&(mb_list_clust.ml_mapbase), &(mb_list_clust.ml_maptop),
|
|
mb_map_size);
|
|
mb_list_clust.ml_mapfull = 0;
|
|
mb_list_clust.ml_objsize = MCLBYTES;
|
|
mb_list_clust.ml_wmhigh = &clust_limit;
|
|
|
|
/* XXX XXX XXX: mbuf_map->system_map = clust_map->system_map = 1 */
|
|
|
|
/*
|
|
* Allocate required general (global) containers for each object type.
|
|
*/
|
|
mb_list_mbuf.ml_genlist = malloc(sizeof(struct mb_gen_list), M_MBUF,
|
|
M_NOWAIT);
|
|
mb_list_clust.ml_genlist = malloc(sizeof(struct mb_gen_list), M_MBUF,
|
|
M_NOWAIT);
|
|
if ((mb_list_mbuf.ml_genlist == NULL) ||
|
|
(mb_list_clust.ml_genlist == NULL))
|
|
goto bad;
|
|
|
|
/*
|
|
* Initialize condition variables and general container mutex locks.
|
|
*/
|
|
mtx_init(&mbuf_gen, "mbuf subsystem general lists lock", 0);
|
|
cv_init(&(mb_list_mbuf.ml_genlist->mgl_mstarved), "mbuf pool starved");
|
|
cv_init(&(mb_list_clust.ml_genlist->mgl_mstarved),
|
|
"mcluster pool starved");
|
|
mb_list_mbuf.ml_genlist->mb_cont.mc_lock =
|
|
mb_list_clust.ml_genlist->mb_cont.mc_lock = &mbuf_gen;
|
|
|
|
/*
|
|
* Setup the general containers for each object.
|
|
*/
|
|
mb_list_mbuf.ml_genlist->mb_cont.mc_numowner =
|
|
mb_list_clust.ml_genlist->mb_cont.mc_numowner = MB_GENLIST_OWNER;
|
|
mb_list_mbuf.ml_genlist->mb_cont.mc_starved =
|
|
mb_list_clust.ml_genlist->mb_cont.mc_starved = 0;
|
|
mb_list_mbuf.ml_genlist->mb_cont.mc_objcount =
|
|
&(mb_statpcpu[MB_GENLIST_OWNER].mb_mbfree);
|
|
mb_list_clust.ml_genlist->mb_cont.mc_objcount =
|
|
&(mb_statpcpu[MB_GENLIST_OWNER].mb_clfree);
|
|
mb_list_mbuf.ml_genlist->mb_cont.mc_numpgs =
|
|
&(mb_statpcpu[MB_GENLIST_OWNER].mb_mbpgs);
|
|
mb_list_clust.ml_genlist->mb_cont.mc_numpgs =
|
|
&(mb_statpcpu[MB_GENLIST_OWNER].mb_clpgs);
|
|
SLIST_INIT(&(mb_list_mbuf.ml_genlist->mb_cont.mc_bhead));
|
|
SLIST_INIT(&(mb_list_clust.ml_genlist->mb_cont.mc_bhead));
|
|
|
|
/*
|
|
* Initialize general mbuf statistics
|
|
*/
|
|
mbstat.m_msize = MSIZE;
|
|
mbstat.m_mclbytes = MCLBYTES;
|
|
mbstat.m_minclsize = MINCLSIZE;
|
|
mbstat.m_mlen = MLEN;
|
|
mbstat.m_mhlen = MHLEN;
|
|
|
|
/*
|
|
* Allocate and initialize PCPU containers.
|
|
*/
|
|
for (i = 0; i < NCPU; i++) {
|
|
if (CPU_ABSENT(i))
|
|
continue;
|
|
|
|
mb_list_mbuf.ml_cntlst[i] = malloc(sizeof(struct mb_pcpu_list),
|
|
M_MBUF, M_NOWAIT);
|
|
mb_list_clust.ml_cntlst[i] = malloc(sizeof(struct mb_pcpu_list),
|
|
M_MBUF, M_NOWAIT);
|
|
if ((mb_list_mbuf.ml_cntlst[i] == NULL) ||
|
|
(mb_list_clust.ml_cntlst[i] == NULL))
|
|
goto bad;
|
|
|
|
mtx_init(&mbuf_pcpu[i], "mbuf PCPU list lock", 0);
|
|
mb_list_mbuf.ml_cntlst[i]->mb_cont.mc_lock =
|
|
mb_list_clust.ml_cntlst[i]->mb_cont.mc_lock = &mbuf_pcpu[i];
|
|
|
|
mb_statpcpu[i].mb_active = 1;
|
|
mb_list_mbuf.ml_cntlst[i]->mb_cont.mc_numowner =
|
|
mb_list_clust.ml_cntlst[i]->mb_cont.mc_numowner = i;
|
|
mb_list_mbuf.ml_cntlst[i]->mb_cont.mc_starved =
|
|
mb_list_clust.ml_cntlst[i]->mb_cont.mc_starved = 0;
|
|
mb_list_mbuf.ml_cntlst[i]->mb_cont.mc_objcount =
|
|
&(mb_statpcpu[i].mb_mbfree);
|
|
mb_list_clust.ml_cntlst[i]->mb_cont.mc_objcount =
|
|
&(mb_statpcpu[i].mb_clfree);
|
|
mb_list_mbuf.ml_cntlst[i]->mb_cont.mc_numpgs =
|
|
&(mb_statpcpu[i].mb_mbpgs);
|
|
mb_list_clust.ml_cntlst[i]->mb_cont.mc_numpgs =
|
|
&(mb_statpcpu[i].mb_clpgs);
|
|
|
|
SLIST_INIT(&(mb_list_mbuf.ml_cntlst[i]->mb_cont.mc_bhead));
|
|
SLIST_INIT(&(mb_list_clust.ml_cntlst[i]->mb_cont.mc_bhead));
|
|
|
|
/*
|
|
* Perform initial allocations.
|
|
*/
|
|
pcpu_cnt = MB_GET_PCPU_LIST_NUM(&mb_list_mbuf, i);
|
|
MB_LOCK_CONT(pcpu_cnt);
|
|
for (j = 0; j < NMB_MBUF_INIT; j++) {
|
|
if (mb_pop_cont(&mb_list_mbuf, M_DONTWAIT, pcpu_cnt)
|
|
== NULL)
|
|
goto bad;
|
|
}
|
|
MB_UNLOCK_CONT(pcpu_cnt);
|
|
|
|
pcpu_cnt = MB_GET_PCPU_LIST_NUM(&mb_list_clust, i);
|
|
MB_LOCK_CONT(pcpu_cnt);
|
|
for (j = 0; j < NMB_CLUST_INIT; j++) {
|
|
if (mb_pop_cont(&mb_list_clust, M_DONTWAIT, pcpu_cnt)
|
|
== NULL)
|
|
goto bad;
|
|
}
|
|
MB_UNLOCK_CONT(pcpu_cnt);
|
|
}
|
|
|
|
return;
|
|
bad:
|
|
panic("mbuf_init(): failed to initialize mbuf subsystem!");
|
|
}
|
|
|
|
/*
|
|
* Populate a given mbuf PCPU container with a bucket full of fresh new
|
|
* buffers. Return a pointer to the new bucket (already in the container if
|
|
* successful), or return NULL on failure.
|
|
*
|
|
* LOCKING NOTES:
|
|
* PCPU container lock must be held when this is called.
|
|
* The lock is dropped here so that we can cleanly call the underlying VM
|
|
* code. If we fail, we return with no locks held. If we succeed (i.e. return
|
|
* non-NULL), we return with the PCPU lock held, ready for allocation from
|
|
* the returned bucket.
|
|
*/
|
|
struct mb_bucket *
|
|
mb_pop_cont(struct mb_lstmngr *mb_list, int how, struct mb_pcpu_list *cnt_lst)
|
|
{
|
|
struct mb_bucket *bucket;
|
|
caddr_t p;
|
|
int i;
|
|
|
|
MB_UNLOCK_CONT(cnt_lst);
|
|
/*
|
|
* If our object's (finite) map is starved now (i.e. no more address
|
|
* space), bail out now.
|
|
*/
|
|
if (mb_list->ml_mapfull)
|
|
return (NULL);
|
|
|
|
bucket = malloc(sizeof(struct mb_bucket) +
|
|
PAGE_SIZE / mb_list->ml_objsize * sizeof(void *), M_MBUF,
|
|
how == M_TRYWAIT ? M_WAITOK : M_NOWAIT);
|
|
if (bucket == NULL)
|
|
return (NULL);
|
|
|
|
p = (caddr_t)kmem_malloc(mb_list->ml_map, PAGE_SIZE,
|
|
how == M_TRYWAIT ? M_WAITOK : M_NOWAIT);
|
|
if (p == NULL) {
|
|
free(bucket, M_MBUF);
|
|
return (NULL);
|
|
}
|
|
|
|
bucket->mb_numfree = 0;
|
|
mb_list->ml_btable[MB_BUCKET_INDX(p, mb_list)] = bucket;
|
|
for (i = 0; i < (PAGE_SIZE / mb_list->ml_objsize); i++) {
|
|
bucket->mb_free[i] = p;
|
|
bucket->mb_numfree++;
|
|
p += mb_list->ml_objsize;
|
|
}
|
|
|
|
MB_LOCK_CONT(cnt_lst);
|
|
bucket->mb_owner = cnt_lst->mb_cont.mc_numowner;
|
|
SLIST_INSERT_HEAD(&(cnt_lst->mb_cont.mc_bhead), bucket, mb_blist);
|
|
(*(cnt_lst->mb_cont.mc_numpgs))++;
|
|
*(cnt_lst->mb_cont.mc_objcount) += bucket->mb_numfree;
|
|
|
|
return (bucket);
|
|
}
|
|
|
|
/*
|
|
* Allocate an mbuf-subsystem type object.
|
|
* The general case is very easy. Complications only arise if our PCPU
|
|
* container is empty. Things get worse if the PCPU container is empty,
|
|
* the general container is empty, and we've run out of address space
|
|
* in our map; then we try to block if we're willing to (M_TRYWAIT).
|
|
*/
|
|
static __inline
|
|
void *
|
|
mb_alloc(struct mb_lstmngr *mb_list, int how)
|
|
{
|
|
struct mb_pcpu_list *cnt_lst;
|
|
struct mb_bucket *bucket;
|
|
void *m;
|
|
|
|
m = NULL;
|
|
cnt_lst = MB_GET_PCPU_LIST(mb_list);
|
|
MB_LOCK_CONT(cnt_lst);
|
|
|
|
if ((bucket = SLIST_FIRST(&(cnt_lst->mb_cont.mc_bhead))) != NULL) {
|
|
/*
|
|
* This is the easy allocation case. We just grab an object
|
|
* from a bucket in the PCPU container. At worst, we
|
|
* have just emptied the bucket and so we remove it
|
|
* from the container.
|
|
*/
|
|
MB_GET_OBJECT(m, bucket, cnt_lst);
|
|
MB_UNLOCK_CONT(cnt_lst);
|
|
} else {
|
|
struct mb_gen_list *gen_list;
|
|
|
|
/*
|
|
* This is the less-common more difficult case. We must
|
|
* first verify if the general list has anything for us
|
|
* and if that also fails, we must allocate a page from
|
|
* the map and create a new bucket to place in our PCPU
|
|
* container (already locked). If the map is starved then
|
|
* we're really in for trouble, as we have to wait on
|
|
* the general container's condition variable.
|
|
*/
|
|
gen_list = MB_GET_GEN_LIST(mb_list);
|
|
MB_LOCK_CONT(gen_list);
|
|
|
|
if ((bucket = SLIST_FIRST(&(gen_list->mb_cont.mc_bhead)))
|
|
!= NULL) {
|
|
/*
|
|
* Give ownership of the bucket to our CPU's
|
|
* container, but only actually put the bucket
|
|
* in the container if it doesn't become free
|
|
* upon removing an mbuf from it.
|
|
*/
|
|
SLIST_REMOVE_HEAD(&(gen_list->mb_cont.mc_bhead),
|
|
mb_blist);
|
|
bucket->mb_owner = cnt_lst->mb_cont.mc_numowner;
|
|
(*(gen_list->mb_cont.mc_numpgs))--;
|
|
(*(cnt_lst->mb_cont.mc_numpgs))++;
|
|
*(gen_list->mb_cont.mc_objcount) -= bucket->mb_numfree;
|
|
bucket->mb_numfree--;
|
|
m = bucket->mb_free[(bucket->mb_numfree)];
|
|
if (bucket->mb_numfree == 0) {
|
|
SLIST_NEXT(bucket, mb_blist) = NULL;
|
|
bucket->mb_owner |= MB_BUCKET_FREE;
|
|
} else {
|
|
SLIST_INSERT_HEAD(&(cnt_lst->mb_cont.mc_bhead),
|
|
bucket, mb_blist);
|
|
*(cnt_lst->mb_cont.mc_objcount) +=
|
|
bucket->mb_numfree;
|
|
}
|
|
MB_UNLOCK_CONT(gen_list);
|
|
MB_UNLOCK_CONT(cnt_lst);
|
|
} else {
|
|
/*
|
|
* We'll have to allocate a new page.
|
|
*/
|
|
MB_UNLOCK_CONT(gen_list);
|
|
bucket = mb_pop_cont(mb_list, how, cnt_lst);
|
|
if (bucket != NULL) {
|
|
bucket->mb_numfree--;
|
|
m = bucket->mb_free[(bucket->mb_numfree)];
|
|
(*(cnt_lst->mb_cont.mc_objcount))--;
|
|
MB_UNLOCK_CONT(cnt_lst);
|
|
} else {
|
|
if (how == M_TRYWAIT) {
|
|
/*
|
|
* Absolute worst-case scenario. We block if
|
|
* we're willing to, but only after trying to
|
|
* steal from other lists.
|
|
*/
|
|
mb_list->ml_mapfull = 1;
|
|
m = mb_alloc_wait(mb_list);
|
|
} else
|
|
/* XXX: No consistency. */
|
|
mbstat.m_drops++;
|
|
}
|
|
}
|
|
}
|
|
|
|
return (m);
|
|
}
|
|
|
|
/*
|
|
* This is the worst-case scenario called only if we're allocating with
|
|
* M_TRYWAIT. We first drain all the protocols, then try to find an mbuf
|
|
* by looking in every PCPU container. If we're still unsuccesful, we
|
|
* try the general container one last time and possibly block on our
|
|
* starved cv.
|
|
*/
|
|
void *
|
|
mb_alloc_wait(struct mb_lstmngr *mb_list)
|
|
{
|
|
struct mb_pcpu_list *cnt_lst;
|
|
struct mb_gen_list *gen_list;
|
|
struct mb_bucket *bucket;
|
|
void *m;
|
|
int i, cv_ret;
|
|
|
|
/*
|
|
* Try to reclaim mbuf-related objects (mbufs, clusters).
|
|
*/
|
|
mb_reclaim();
|
|
|
|
/*
|
|
* Cycle all the PCPU containers. Increment starved counts if found
|
|
* empty.
|
|
*/
|
|
for (i = 0; i < NCPU; i++) {
|
|
if (CPU_ABSENT(i))
|
|
continue;
|
|
cnt_lst = MB_GET_PCPU_LIST_NUM(mb_list, i);
|
|
MB_LOCK_CONT(cnt_lst);
|
|
|
|
/*
|
|
* If container is non-empty, get a single object from it.
|
|
* If empty, increment starved count.
|
|
*/
|
|
if ((bucket = SLIST_FIRST(&(cnt_lst->mb_cont.mc_bhead))) !=
|
|
NULL) {
|
|
MB_GET_OBJECT(m, bucket, cnt_lst);
|
|
MB_UNLOCK_CONT(cnt_lst);
|
|
mbstat.m_wait++; /* XXX: No consistency. */
|
|
return (m);
|
|
} else
|
|
cnt_lst->mb_cont.mc_starved++;
|
|
|
|
MB_UNLOCK_CONT(cnt_lst);
|
|
}
|
|
|
|
/*
|
|
* We're still here, so that means it's time to get the general
|
|
* container lock, check it one more time (now that mb_reclaim()
|
|
* has been called) and if we still get nothing, block on the cv.
|
|
*/
|
|
gen_list = MB_GET_GEN_LIST(mb_list);
|
|
MB_LOCK_CONT(gen_list);
|
|
if ((bucket = SLIST_FIRST(&(gen_list->mb_cont.mc_bhead))) != NULL) {
|
|
MB_GET_OBJECT(m, bucket, gen_list);
|
|
MB_UNLOCK_CONT(gen_list);
|
|
mbstat.m_wait++; /* XXX: No consistency. */
|
|
return (m);
|
|
}
|
|
|
|
gen_list->mb_cont.mc_starved++;
|
|
cv_ret = cv_timedwait(&(gen_list->mgl_mstarved),
|
|
gen_list->mb_cont.mc_lock, mbuf_wait);
|
|
gen_list->mb_cont.mc_starved--;
|
|
|
|
if ((cv_ret == 0) &&
|
|
((bucket = SLIST_FIRST(&(gen_list->mb_cont.mc_bhead))) != NULL)) {
|
|
MB_GET_OBJECT(m, bucket, gen_list);
|
|
mbstat.m_wait++; /* XXX: No consistency. */
|
|
} else {
|
|
mbstat.m_drops++; /* XXX: No consistency. */
|
|
m = NULL;
|
|
}
|
|
|
|
MB_UNLOCK_CONT(gen_list);
|
|
|
|
return (m);
|
|
}
|
|
|
|
/*
|
|
* Free an object to its rightful container.
|
|
* In the very general case, this operation is really very easy.
|
|
* Complications arise primarily if:
|
|
* (a) We've hit the high limit on number of free objects allowed in
|
|
* our PCPU container.
|
|
* (b) We're in a critical situation where our container has been
|
|
* marked 'starved' and we need to issue wakeups on the starved
|
|
* condition variable.
|
|
* (c) Minor (odd) cases: our bucket has migrated while we were
|
|
* waiting for the lock; our bucket is in the general container;
|
|
* our bucket is empty.
|
|
*/
|
|
static __inline
|
|
void
|
|
mb_free(struct mb_lstmngr *mb_list, void *m)
|
|
{
|
|
struct mb_pcpu_list *cnt_lst;
|
|
struct mb_gen_list *gen_list;
|
|
struct mb_bucket *bucket;
|
|
u_int owner;
|
|
|
|
bucket = mb_list->ml_btable[MB_BUCKET_INDX(m, mb_list)];
|
|
|
|
/*
|
|
* Make sure that if after we lock the bucket's present container the
|
|
* bucket has migrated, that we drop the lock and get the new one.
|
|
*/
|
|
retry_lock:
|
|
owner = bucket->mb_owner & ~MB_BUCKET_FREE;
|
|
switch (owner) {
|
|
case MB_GENLIST_OWNER:
|
|
gen_list = MB_GET_GEN_LIST(mb_list);
|
|
MB_LOCK_CONT(gen_list);
|
|
if (owner != (bucket->mb_owner & ~MB_BUCKET_FREE)) {
|
|
MB_UNLOCK_CONT(gen_list);
|
|
goto retry_lock;
|
|
}
|
|
|
|
/*
|
|
* If we're intended for the general container, this is
|
|
* real easy: no migrating required. The only `bogon'
|
|
* is that we're now contending with all the threads
|
|
* dealing with the general list, but this is expected.
|
|
*/
|
|
MB_PUT_OBJECT(m, bucket, gen_list);
|
|
if (gen_list->mb_cont.mc_starved > 0)
|
|
cv_signal(&(gen_list->mgl_mstarved));
|
|
MB_UNLOCK_CONT(gen_list);
|
|
break;
|
|
|
|
default:
|
|
cnt_lst = MB_GET_PCPU_LIST_NUM(mb_list, owner);
|
|
MB_LOCK_CONT(cnt_lst);
|
|
if (owner != (bucket->mb_owner & ~MB_BUCKET_FREE)) {
|
|
MB_UNLOCK_CONT(cnt_lst);
|
|
goto retry_lock;
|
|
}
|
|
|
|
MB_PUT_OBJECT(m, bucket, cnt_lst);
|
|
|
|
if (cnt_lst->mb_cont.mc_starved > 0) {
|
|
/*
|
|
* This is a tough case. It means that we've
|
|
* been flagged at least once to indicate that
|
|
* we're empty, and that the system is in a critical
|
|
* situation, so we ought to migrate at least one
|
|
* bucket over to the general container.
|
|
* There may or may not be a thread blocking on
|
|
* the starved condition variable, but chances
|
|
* are that one will eventually come up soon so
|
|
* it's better to migrate now than never.
|
|
*/
|
|
gen_list = MB_GET_GEN_LIST(mb_list);
|
|
MB_LOCK_CONT(gen_list);
|
|
KASSERT((bucket->mb_owner & MB_BUCKET_FREE) != 0,
|
|
("mb_free: corrupt bucket %p\n", bucket));
|
|
SLIST_INSERT_HEAD(&(gen_list->mb_cont.mc_bhead),
|
|
bucket, mb_blist);
|
|
bucket->mb_owner = MB_GENLIST_OWNER;
|
|
(*(cnt_lst->mb_cont.mc_objcount))--;
|
|
(*(gen_list->mb_cont.mc_objcount))++;
|
|
(*(cnt_lst->mb_cont.mc_numpgs))--;
|
|
(*(gen_list->mb_cont.mc_numpgs))++;
|
|
|
|
/*
|
|
* Determine whether or not to keep transferring
|
|
* buckets to the general list or whether we've
|
|
* transferred enough already.
|
|
* We realize that although we may flag another
|
|
* bucket to be migrated to the general container
|
|
* that in the meantime, the thread that was
|
|
* blocked on the cv is already woken up and
|
|
* long gone. But in that case, the worst
|
|
* consequence is that we will end up migrating
|
|
* one bucket too many, which is really not a big
|
|
* deal, especially if we're close to a critical
|
|
* situation.
|
|
*/
|
|
if (gen_list->mb_cont.mc_starved > 0) {
|
|
cnt_lst->mb_cont.mc_starved--;
|
|
cv_signal(&(gen_list->mgl_mstarved));
|
|
} else
|
|
cnt_lst->mb_cont.mc_starved = 0;
|
|
|
|
MB_UNLOCK_CONT(gen_list);
|
|
MB_UNLOCK_CONT(cnt_lst);
|
|
break;
|
|
}
|
|
|
|
if (*(cnt_lst->mb_cont.mc_objcount) > *(mb_list->ml_wmhigh)) {
|
|
/*
|
|
* We've hit the high limit of allowed numbers of mbufs
|
|
* on this PCPU list. We must now migrate a bucket
|
|
* over to the general container.
|
|
*/
|
|
gen_list = MB_GET_GEN_LIST(mb_list);
|
|
MB_LOCK_CONT(gen_list);
|
|
if ((bucket->mb_owner & MB_BUCKET_FREE) == 0) {
|
|
bucket =
|
|
SLIST_FIRST(&(cnt_lst->mb_cont.mc_bhead));
|
|
SLIST_REMOVE_HEAD(&(cnt_lst->mb_cont.mc_bhead),
|
|
mb_blist);
|
|
}
|
|
SLIST_INSERT_HEAD(&(gen_list->mb_cont.mc_bhead),
|
|
bucket, mb_blist);
|
|
bucket->mb_owner = MB_GENLIST_OWNER;
|
|
*(cnt_lst->mb_cont.mc_objcount) -= bucket->mb_numfree;
|
|
*(gen_list->mb_cont.mc_objcount) += bucket->mb_numfree;
|
|
(*(cnt_lst->mb_cont.mc_numpgs))--;
|
|
(*(gen_list->mb_cont.mc_numpgs))++;
|
|
|
|
MB_UNLOCK_CONT(gen_list);
|
|
MB_UNLOCK_CONT(cnt_lst);
|
|
break;
|
|
}
|
|
|
|
if (bucket->mb_owner & MB_BUCKET_FREE) {
|
|
SLIST_INSERT_HEAD(&(cnt_lst->mb_cont.mc_bhead),
|
|
bucket, mb_blist);
|
|
bucket->mb_owner = cnt_lst->mb_cont.mc_numowner;
|
|
}
|
|
|
|
MB_UNLOCK_CONT(cnt_lst);
|
|
break;
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Drain protocols in hopes to free up some resources.
|
|
*
|
|
* LOCKING NOTES:
|
|
* No locks should be held when this is called. The drain routines have to
|
|
* presently acquire some locks which raises the possibility of lock order
|
|
* violation if we're holding any mutex if that mutex is acquired in reverse
|
|
* order relative to one of the locks in the drain routines.
|
|
*/
|
|
void
|
|
mb_reclaim(void)
|
|
{
|
|
struct domain *dp;
|
|
struct protosw *pr;
|
|
|
|
/*
|
|
* XXX: Argh, we almost always trip here with witness turned on now-a-days
|
|
* XXX: because we often come in with Giant held. For now, there's no way
|
|
* XXX: to avoid this.
|
|
*/
|
|
#ifdef WITNESS
|
|
KASSERT(witness_list(curproc) == 0,
|
|
("mb_reclaim() called with locks held"));
|
|
#endif
|
|
|
|
mbstat.m_drain++; /* XXX: No consistency. */
|
|
|
|
for (dp = domains; dp; dp = dp->dom_next)
|
|
for (pr = dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++)
|
|
if (pr->pr_drain)
|
|
(*pr->pr_drain)();
|
|
|
|
}
|
|
|
|
/*
|
|
* Local mbuf & cluster alloc macros and routines.
|
|
* Local macro and function names begin with an underscore ("_").
|
|
*/
|
|
void _mext_free(struct mbuf *);
|
|
void _mclfree(struct mbuf *);
|
|
|
|
#define _m_get(m, how, type) do { \
|
|
(m) = (struct mbuf *)mb_alloc(&mb_list_mbuf, (how)); \
|
|
if ((m) != NULL) { \
|
|
(m)->m_type = (type); \
|
|
(m)->m_next = NULL; \
|
|
(m)->m_nextpkt = NULL; \
|
|
(m)->m_data = (m)->m_dat; \
|
|
(m)->m_flags = 0; \
|
|
} \
|
|
} while (0)
|
|
|
|
#define _m_gethdr(m, how, type) do { \
|
|
(m) = (struct mbuf *)mb_alloc(&mb_list_mbuf, (how)); \
|
|
if ((m) != NULL) { \
|
|
(m)->m_type = (type); \
|
|
(m)->m_next = NULL; \
|
|
(m)->m_nextpkt = NULL; \
|
|
(m)->m_data = (m)->m_pktdat; \
|
|
(m)->m_flags = M_PKTHDR; \
|
|
(m)->m_pkthdr.rcvif = NULL; \
|
|
(m)->m_pkthdr.csum_flags = 0; \
|
|
(m)->m_pkthdr.aux = NULL; \
|
|
} \
|
|
} while (0)
|
|
|
|
/* XXX: Check for M_PKTHDR && m_pkthdr.aux is bogus... please fix (see KAME) */
|
|
#define _m_free(m, n) do { \
|
|
(n) = (m)->m_next; \
|
|
if ((m)->m_flags & M_EXT) \
|
|
MEXTFREE((m)); \
|
|
if (((m)->m_flags & M_PKTHDR) != 0 && (m)->m_pkthdr.aux) { \
|
|
m_freem((m)->m_pkthdr.aux); \
|
|
(m)->m_pkthdr.aux = NULL; \
|
|
} \
|
|
mb_free(&mb_list_mbuf, (m)); \
|
|
} while (0)
|
|
|
|
#define _mext_init_ref(m) do { \
|
|
(m)->m_ext.ref_cnt = malloc(sizeof(u_int), M_MBUF, M_NOWAIT); \
|
|
if ((m)->m_ext.ref_cnt != NULL) { \
|
|
*((m)->m_ext.ref_cnt) = 0; \
|
|
MEXT_ADD_REF((m)); \
|
|
} \
|
|
} while (0)
|
|
|
|
#define _mext_dealloc_ref(m) \
|
|
free((m)->m_ext.ref_cnt, M_MBUF)
|
|
|
|
void
|
|
_mext_free(struct mbuf *mb)
|
|
{
|
|
|
|
if (mb->m_ext.ext_type == EXT_CLUSTER)
|
|
mb_free(&mb_list_clust, (caddr_t)mb->m_ext.ext_buf);
|
|
else
|
|
(*(mb->m_ext.ext_free))(mb->m_ext.ext_buf, mb->m_ext.ext_args);
|
|
|
|
_mext_dealloc_ref(mb);
|
|
return;
|
|
}
|
|
|
|
/* We only include this here to avoid making m_clget() excessively large
|
|
* due to too much inlined code. */
|
|
void
|
|
_mclfree(struct mbuf *mb)
|
|
{
|
|
|
|
mb_free(&mb_list_clust, (caddr_t)mb->m_ext.ext_buf);
|
|
mb->m_ext.ext_buf = NULL;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Exported space allocation and de-allocation routines.
|
|
*/
|
|
struct mbuf *
|
|
m_get(int how, int type)
|
|
{
|
|
struct mbuf *mb;
|
|
|
|
_m_get(mb, how, type);
|
|
return (mb);
|
|
}
|
|
|
|
struct mbuf *
|
|
m_gethdr(int how, int type)
|
|
{
|
|
struct mbuf *mb;
|
|
|
|
_m_gethdr(mb, how, type);
|
|
return (mb);
|
|
}
|
|
|
|
struct mbuf *
|
|
m_get_clrd(int how, int type)
|
|
{
|
|
struct mbuf *mb;
|
|
|
|
_m_get(mb, how, type);
|
|
|
|
if (mb != NULL)
|
|
bzero(mtod(mb, caddr_t), MLEN);
|
|
|
|
return (mb);
|
|
}
|
|
|
|
struct mbuf *
|
|
m_gethdr_clrd(int how, int type)
|
|
{
|
|
struct mbuf *mb;
|
|
|
|
_m_gethdr(mb, how, type);
|
|
|
|
if (mb != NULL)
|
|
bzero(mtod(mb, caddr_t), MHLEN);
|
|
|
|
return (mb);
|
|
}
|
|
|
|
struct mbuf *
|
|
m_free(struct mbuf *mb)
|
|
{
|
|
struct mbuf *nb;
|
|
|
|
_m_free(mb, nb);
|
|
return (nb);
|
|
}
|
|
|
|
void
|
|
m_clget(struct mbuf *mb, int how)
|
|
{
|
|
|
|
mb->m_ext.ext_buf = (caddr_t)mb_alloc(&mb_list_clust, how);
|
|
if (mb->m_ext.ext_buf != NULL) {
|
|
_mext_init_ref(mb);
|
|
if (mb->m_ext.ref_cnt == NULL)
|
|
_mclfree(mb);
|
|
else {
|
|
mb->m_data = mb->m_ext.ext_buf;
|
|
mb->m_flags |= M_EXT;
|
|
mb->m_ext.ext_free = NULL;
|
|
mb->m_ext.ext_args = NULL;
|
|
mb->m_ext.ext_size = MCLBYTES;
|
|
mb->m_ext.ext_type = EXT_CLUSTER;
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
void
|
|
m_extadd(struct mbuf *mb, caddr_t buf, u_int size,
|
|
void (*freef)(caddr_t, void *), void *args, short flags, int type)
|
|
{
|
|
|
|
_mext_init_ref(mb);
|
|
if (mb->m_ext.ref_cnt != NULL) {
|
|
mb->m_flags |= (M_EXT | flags);
|
|
mb->m_ext.ext_buf = buf;
|
|
mb->m_data = mb->m_ext.ext_buf;
|
|
mb->m_ext.ext_size = size;
|
|
mb->m_ext.ext_free = freef;
|
|
mb->m_ext.ext_args = args;
|
|
mb->m_ext.ext_type = type;
|
|
}
|
|
return;
|
|
}
|