mirror of
https://git.FreeBSD.org/src.git
synced 2024-12-25 11:37:56 +00:00
c488362e1a
kernel access control. Instrument the TCP socket code for packet generation and delivery: label outgoing mbufs with the label of the socket, and check socket and mbuf labels before permitting delivery to a socket. Assign labels to newly accepted connections when the syncache/cookie code has done its business. Also set peer labels as convenient. Currently, MAC policies cannot influence the PCB matching algorithm, so cannot implement polyinstantiation. Note that there is at least one case where a PCB is not available due to the TCP packet not being associated with any socket, so we don't label in that case, but need to handle it in a special manner. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
1386 lines
37 KiB
C
1386 lines
37 KiB
C
/*-
|
|
* Copyright (c) 2001 Networks Associates Technology, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This software was developed for the FreeBSD Project by Jonathan Lemon
|
|
* and NAI Labs, the Security Research Division of Network Associates, Inc.
|
|
* under DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the
|
|
* DARPA CHATS research program.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. The name of the author may not be used to endorse or promote
|
|
* products derived from this software without specific prior written
|
|
* permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* $FreeBSD$
|
|
*/
|
|
|
|
#include "opt_inet6.h"
|
|
#include "opt_ipsec.h"
|
|
#include "opt_mac.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mac.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/md5.h>
|
|
#include <sys/proc.h> /* for proc0 declaration */
|
|
#include <sys/random.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/socketvar.h>
|
|
|
|
#include <net/if.h>
|
|
#include <net/route.h>
|
|
|
|
#include <netinet/in.h>
|
|
#include <netinet/in_systm.h>
|
|
#include <netinet/ip.h>
|
|
#include <netinet/in_var.h>
|
|
#include <netinet/in_pcb.h>
|
|
#include <netinet/ip_var.h>
|
|
#ifdef INET6
|
|
#include <netinet/ip6.h>
|
|
#include <netinet/icmp6.h>
|
|
#include <netinet6/nd6.h>
|
|
#include <netinet6/ip6_var.h>
|
|
#include <netinet6/in6_pcb.h>
|
|
#endif
|
|
#include <netinet/tcp.h>
|
|
#include <netinet/tcp_fsm.h>
|
|
#include <netinet/tcp_seq.h>
|
|
#include <netinet/tcp_timer.h>
|
|
#include <netinet/tcp_var.h>
|
|
#ifdef INET6
|
|
#include <netinet6/tcp6_var.h>
|
|
#endif
|
|
|
|
#ifdef IPSEC
|
|
#include <netinet6/ipsec.h>
|
|
#ifdef INET6
|
|
#include <netinet6/ipsec6.h>
|
|
#endif
|
|
#include <netkey/key.h>
|
|
#endif /*IPSEC*/
|
|
|
|
#include <machine/in_cksum.h>
|
|
#include <vm/uma.h>
|
|
|
|
static int tcp_syncookies = 1;
|
|
SYSCTL_INT(_net_inet_tcp, OID_AUTO, syncookies, CTLFLAG_RW,
|
|
&tcp_syncookies, 0,
|
|
"Use TCP SYN cookies if the syncache overflows");
|
|
|
|
static void syncache_drop(struct syncache *, struct syncache_head *);
|
|
static void syncache_free(struct syncache *);
|
|
static void syncache_insert(struct syncache *, struct syncache_head *);
|
|
struct syncache *syncache_lookup(struct in_conninfo *, struct syncache_head **);
|
|
static int syncache_respond(struct syncache *, struct mbuf *);
|
|
static struct socket *syncache_socket(struct syncache *, struct socket *,
|
|
struct mbuf *m);
|
|
static void syncache_timer(void *);
|
|
static u_int32_t syncookie_generate(struct syncache *);
|
|
static struct syncache *syncookie_lookup(struct in_conninfo *,
|
|
struct tcphdr *, struct socket *);
|
|
|
|
/*
|
|
* Transmit the SYN,ACK fewer times than TCP_MAXRXTSHIFT specifies.
|
|
* 3 retransmits corresponds to a timeout of (1 + 2 + 4 + 8 == 15) seconds,
|
|
* the odds are that the user has given up attempting to connect by then.
|
|
*/
|
|
#define SYNCACHE_MAXREXMTS 3
|
|
|
|
/* Arbitrary values */
|
|
#define TCP_SYNCACHE_HASHSIZE 512
|
|
#define TCP_SYNCACHE_BUCKETLIMIT 30
|
|
|
|
struct tcp_syncache {
|
|
struct syncache_head *hashbase;
|
|
uma_zone_t zone;
|
|
u_int hashsize;
|
|
u_int hashmask;
|
|
u_int bucket_limit;
|
|
u_int cache_count;
|
|
u_int cache_limit;
|
|
u_int rexmt_limit;
|
|
u_int hash_secret;
|
|
u_int next_reseed;
|
|
TAILQ_HEAD(, syncache) timerq[SYNCACHE_MAXREXMTS + 1];
|
|
struct callout tt_timerq[SYNCACHE_MAXREXMTS + 1];
|
|
};
|
|
static struct tcp_syncache tcp_syncache;
|
|
|
|
SYSCTL_NODE(_net_inet_tcp, OID_AUTO, syncache, CTLFLAG_RW, 0, "TCP SYN cache");
|
|
|
|
SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, bucketlimit, CTLFLAG_RD,
|
|
&tcp_syncache.bucket_limit, 0, "Per-bucket hash limit for syncache");
|
|
|
|
SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, cachelimit, CTLFLAG_RD,
|
|
&tcp_syncache.cache_limit, 0, "Overall entry limit for syncache");
|
|
|
|
SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, count, CTLFLAG_RD,
|
|
&tcp_syncache.cache_count, 0, "Current number of entries in syncache");
|
|
|
|
SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, hashsize, CTLFLAG_RD,
|
|
&tcp_syncache.hashsize, 0, "Size of TCP syncache hashtable");
|
|
|
|
SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, rexmtlimit, CTLFLAG_RW,
|
|
&tcp_syncache.rexmt_limit, 0, "Limit on SYN/ACK retransmissions");
|
|
|
|
static MALLOC_DEFINE(M_SYNCACHE, "syncache", "TCP syncache");
|
|
|
|
#define SYNCACHE_HASH(inc, mask) \
|
|
((tcp_syncache.hash_secret ^ \
|
|
(inc)->inc_faddr.s_addr ^ \
|
|
((inc)->inc_faddr.s_addr >> 16) ^ \
|
|
(inc)->inc_fport ^ (inc)->inc_lport) & mask)
|
|
|
|
#define SYNCACHE_HASH6(inc, mask) \
|
|
((tcp_syncache.hash_secret ^ \
|
|
(inc)->inc6_faddr.s6_addr32[0] ^ \
|
|
(inc)->inc6_faddr.s6_addr32[3] ^ \
|
|
(inc)->inc_fport ^ (inc)->inc_lport) & mask)
|
|
|
|
#define ENDPTS_EQ(a, b) ( \
|
|
(a)->ie_fport == (b)->ie_fport && \
|
|
(a)->ie_lport == (b)->ie_lport && \
|
|
(a)->ie_faddr.s_addr == (b)->ie_faddr.s_addr && \
|
|
(a)->ie_laddr.s_addr == (b)->ie_laddr.s_addr \
|
|
)
|
|
|
|
#define ENDPTS6_EQ(a, b) (memcmp(a, b, sizeof(*a)) == 0)
|
|
|
|
#define SYNCACHE_TIMEOUT(sc, slot) do { \
|
|
sc->sc_rxtslot = slot; \
|
|
sc->sc_rxttime = ticks + TCPTV_RTOBASE * tcp_backoff[slot]; \
|
|
TAILQ_INSERT_TAIL(&tcp_syncache.timerq[slot], sc, sc_timerq); \
|
|
if (!callout_active(&tcp_syncache.tt_timerq[slot])) \
|
|
callout_reset(&tcp_syncache.tt_timerq[slot], \
|
|
TCPTV_RTOBASE * tcp_backoff[slot], \
|
|
syncache_timer, (void *)((intptr_t)slot)); \
|
|
} while (0)
|
|
|
|
static void
|
|
syncache_free(struct syncache *sc)
|
|
{
|
|
struct rtentry *rt;
|
|
|
|
if (sc->sc_ipopts)
|
|
(void) m_free(sc->sc_ipopts);
|
|
#ifdef INET6
|
|
if (sc->sc_inc.inc_isipv6)
|
|
rt = sc->sc_route6.ro_rt;
|
|
else
|
|
#endif
|
|
rt = sc->sc_route.ro_rt;
|
|
if (rt != NULL) {
|
|
/*
|
|
* If this is the only reference to a protocol cloned
|
|
* route, remove it immediately.
|
|
*/
|
|
if (rt->rt_flags & RTF_WASCLONED &&
|
|
(sc->sc_flags & SCF_KEEPROUTE) == 0 &&
|
|
rt->rt_refcnt == 1)
|
|
rtrequest(RTM_DELETE, rt_key(rt),
|
|
rt->rt_gateway, rt_mask(rt),
|
|
rt->rt_flags, NULL);
|
|
RTFREE(rt);
|
|
}
|
|
uma_zfree(tcp_syncache.zone, sc);
|
|
}
|
|
|
|
void
|
|
syncache_init(void)
|
|
{
|
|
int i;
|
|
|
|
tcp_syncache.cache_count = 0;
|
|
tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
|
|
tcp_syncache.bucket_limit = TCP_SYNCACHE_BUCKETLIMIT;
|
|
tcp_syncache.cache_limit =
|
|
tcp_syncache.hashsize * tcp_syncache.bucket_limit;
|
|
tcp_syncache.rexmt_limit = SYNCACHE_MAXREXMTS;
|
|
tcp_syncache.next_reseed = 0;
|
|
tcp_syncache.hash_secret = arc4random();
|
|
|
|
TUNABLE_INT_FETCH("net.inet.tcp.syncache.hashsize",
|
|
&tcp_syncache.hashsize);
|
|
TUNABLE_INT_FETCH("net.inet.tcp.syncache.cachelimit",
|
|
&tcp_syncache.cache_limit);
|
|
TUNABLE_INT_FETCH("net.inet.tcp.syncache.bucketlimit",
|
|
&tcp_syncache.bucket_limit);
|
|
if (!powerof2(tcp_syncache.hashsize)) {
|
|
printf("WARNING: syncache hash size is not a power of 2.\n");
|
|
tcp_syncache.hashsize = 512; /* safe default */
|
|
}
|
|
tcp_syncache.hashmask = tcp_syncache.hashsize - 1;
|
|
|
|
/* Allocate the hash table. */
|
|
MALLOC(tcp_syncache.hashbase, struct syncache_head *,
|
|
tcp_syncache.hashsize * sizeof(struct syncache_head),
|
|
M_SYNCACHE, M_WAITOK);
|
|
|
|
/* Initialize the hash buckets. */
|
|
for (i = 0; i < tcp_syncache.hashsize; i++) {
|
|
TAILQ_INIT(&tcp_syncache.hashbase[i].sch_bucket);
|
|
tcp_syncache.hashbase[i].sch_length = 0;
|
|
}
|
|
|
|
/* Initialize the timer queues. */
|
|
for (i = 0; i <= SYNCACHE_MAXREXMTS; i++) {
|
|
TAILQ_INIT(&tcp_syncache.timerq[i]);
|
|
callout_init(&tcp_syncache.tt_timerq[i], 0);
|
|
}
|
|
|
|
/*
|
|
* Allocate the syncache entries. Allow the zone to allocate one
|
|
* more entry than cache limit, so a new entry can bump out an
|
|
* older one.
|
|
*/
|
|
tcp_syncache.cache_limit -= 1;
|
|
tcp_syncache.zone = uma_zcreate("syncache", sizeof(struct syncache),
|
|
NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
|
|
uma_zone_set_max(tcp_syncache.zone, tcp_syncache.cache_limit);
|
|
}
|
|
|
|
static void
|
|
syncache_insert(sc, sch)
|
|
struct syncache *sc;
|
|
struct syncache_head *sch;
|
|
{
|
|
struct syncache *sc2;
|
|
int s, i;
|
|
|
|
/*
|
|
* Make sure that we don't overflow the per-bucket
|
|
* limit or the total cache size limit.
|
|
*/
|
|
s = splnet();
|
|
if (sch->sch_length >= tcp_syncache.bucket_limit) {
|
|
/*
|
|
* The bucket is full, toss the oldest element.
|
|
*/
|
|
sc2 = TAILQ_FIRST(&sch->sch_bucket);
|
|
sc2->sc_tp->ts_recent = ticks;
|
|
syncache_drop(sc2, sch);
|
|
tcpstat.tcps_sc_bucketoverflow++;
|
|
} else if (tcp_syncache.cache_count >= tcp_syncache.cache_limit) {
|
|
/*
|
|
* The cache is full. Toss the oldest entry in the
|
|
* entire cache. This is the front entry in the
|
|
* first non-empty timer queue with the largest
|
|
* timeout value.
|
|
*/
|
|
for (i = SYNCACHE_MAXREXMTS; i >= 0; i--) {
|
|
sc2 = TAILQ_FIRST(&tcp_syncache.timerq[i]);
|
|
if (sc2 != NULL)
|
|
break;
|
|
}
|
|
sc2->sc_tp->ts_recent = ticks;
|
|
syncache_drop(sc2, NULL);
|
|
tcpstat.tcps_sc_cacheoverflow++;
|
|
}
|
|
|
|
/* Initialize the entry's timer. */
|
|
SYNCACHE_TIMEOUT(sc, 0);
|
|
|
|
/* Put it into the bucket. */
|
|
TAILQ_INSERT_TAIL(&sch->sch_bucket, sc, sc_hash);
|
|
sch->sch_length++;
|
|
tcp_syncache.cache_count++;
|
|
tcpstat.tcps_sc_added++;
|
|
splx(s);
|
|
}
|
|
|
|
static void
|
|
syncache_drop(sc, sch)
|
|
struct syncache *sc;
|
|
struct syncache_head *sch;
|
|
{
|
|
int s;
|
|
|
|
if (sch == NULL) {
|
|
#ifdef INET6
|
|
if (sc->sc_inc.inc_isipv6) {
|
|
sch = &tcp_syncache.hashbase[
|
|
SYNCACHE_HASH6(&sc->sc_inc, tcp_syncache.hashmask)];
|
|
} else
|
|
#endif
|
|
{
|
|
sch = &tcp_syncache.hashbase[
|
|
SYNCACHE_HASH(&sc->sc_inc, tcp_syncache.hashmask)];
|
|
}
|
|
}
|
|
|
|
s = splnet();
|
|
|
|
TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
|
|
sch->sch_length--;
|
|
tcp_syncache.cache_count--;
|
|
|
|
TAILQ_REMOVE(&tcp_syncache.timerq[sc->sc_rxtslot], sc, sc_timerq);
|
|
if (TAILQ_EMPTY(&tcp_syncache.timerq[sc->sc_rxtslot]))
|
|
callout_stop(&tcp_syncache.tt_timerq[sc->sc_rxtslot]);
|
|
splx(s);
|
|
|
|
syncache_free(sc);
|
|
}
|
|
|
|
/*
|
|
* Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
|
|
* If we have retransmitted an entry the maximum number of times, expire it.
|
|
*/
|
|
static void
|
|
syncache_timer(xslot)
|
|
void *xslot;
|
|
{
|
|
intptr_t slot = (intptr_t)xslot;
|
|
struct syncache *sc, *nsc;
|
|
struct inpcb *inp;
|
|
int s;
|
|
|
|
s = splnet();
|
|
if (callout_pending(&tcp_syncache.tt_timerq[slot]) ||
|
|
!callout_active(&tcp_syncache.tt_timerq[slot])) {
|
|
splx(s);
|
|
return;
|
|
}
|
|
callout_deactivate(&tcp_syncache.tt_timerq[slot]);
|
|
|
|
nsc = TAILQ_FIRST(&tcp_syncache.timerq[slot]);
|
|
INP_INFO_RLOCK(&tcbinfo);
|
|
while (nsc != NULL) {
|
|
if (ticks < nsc->sc_rxttime)
|
|
break;
|
|
sc = nsc;
|
|
inp = sc->sc_tp->t_inpcb;
|
|
INP_LOCK(inp);
|
|
if (slot == SYNCACHE_MAXREXMTS ||
|
|
slot >= tcp_syncache.rexmt_limit ||
|
|
inp->inp_gencnt != sc->sc_inp_gencnt) {
|
|
nsc = TAILQ_NEXT(sc, sc_timerq);
|
|
syncache_drop(sc, NULL);
|
|
tcpstat.tcps_sc_stale++;
|
|
INP_UNLOCK(inp);
|
|
continue;
|
|
}
|
|
/*
|
|
* syncache_respond() may call back into the syncache to
|
|
* to modify another entry, so do not obtain the next
|
|
* entry on the timer chain until it has completed.
|
|
*/
|
|
(void) syncache_respond(sc, NULL);
|
|
INP_UNLOCK(inp);
|
|
nsc = TAILQ_NEXT(sc, sc_timerq);
|
|
tcpstat.tcps_sc_retransmitted++;
|
|
TAILQ_REMOVE(&tcp_syncache.timerq[slot], sc, sc_timerq);
|
|
SYNCACHE_TIMEOUT(sc, slot + 1);
|
|
}
|
|
INP_INFO_RUNLOCK(&tcbinfo);
|
|
if (nsc != NULL)
|
|
callout_reset(&tcp_syncache.tt_timerq[slot],
|
|
nsc->sc_rxttime - ticks, syncache_timer, (void *)(slot));
|
|
splx(s);
|
|
}
|
|
|
|
/*
|
|
* Find an entry in the syncache.
|
|
*/
|
|
struct syncache *
|
|
syncache_lookup(inc, schp)
|
|
struct in_conninfo *inc;
|
|
struct syncache_head **schp;
|
|
{
|
|
struct syncache *sc;
|
|
struct syncache_head *sch;
|
|
int s;
|
|
|
|
#ifdef INET6
|
|
if (inc->inc_isipv6) {
|
|
sch = &tcp_syncache.hashbase[
|
|
SYNCACHE_HASH6(inc, tcp_syncache.hashmask)];
|
|
*schp = sch;
|
|
s = splnet();
|
|
TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
|
|
if (ENDPTS6_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie)) {
|
|
splx(s);
|
|
return (sc);
|
|
}
|
|
}
|
|
splx(s);
|
|
} else
|
|
#endif
|
|
{
|
|
sch = &tcp_syncache.hashbase[
|
|
SYNCACHE_HASH(inc, tcp_syncache.hashmask)];
|
|
*schp = sch;
|
|
s = splnet();
|
|
TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
|
|
#ifdef INET6
|
|
if (sc->sc_inc.inc_isipv6)
|
|
continue;
|
|
#endif
|
|
if (ENDPTS_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie)) {
|
|
splx(s);
|
|
return (sc);
|
|
}
|
|
}
|
|
splx(s);
|
|
}
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* This function is called when we get a RST for a
|
|
* non-existent connection, so that we can see if the
|
|
* connection is in the syn cache. If it is, zap it.
|
|
*/
|
|
void
|
|
syncache_chkrst(inc, th)
|
|
struct in_conninfo *inc;
|
|
struct tcphdr *th;
|
|
{
|
|
struct syncache *sc;
|
|
struct syncache_head *sch;
|
|
|
|
sc = syncache_lookup(inc, &sch);
|
|
if (sc == NULL)
|
|
return;
|
|
/*
|
|
* If the RST bit is set, check the sequence number to see
|
|
* if this is a valid reset segment.
|
|
* RFC 793 page 37:
|
|
* In all states except SYN-SENT, all reset (RST) segments
|
|
* are validated by checking their SEQ-fields. A reset is
|
|
* valid if its sequence number is in the window.
|
|
*
|
|
* The sequence number in the reset segment is normally an
|
|
* echo of our outgoing acknowlegement numbers, but some hosts
|
|
* send a reset with the sequence number at the rightmost edge
|
|
* of our receive window, and we have to handle this case.
|
|
*/
|
|
if (SEQ_GEQ(th->th_seq, sc->sc_irs) &&
|
|
SEQ_LEQ(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
|
|
syncache_drop(sc, sch);
|
|
tcpstat.tcps_sc_reset++;
|
|
}
|
|
}
|
|
|
|
void
|
|
syncache_badack(inc)
|
|
struct in_conninfo *inc;
|
|
{
|
|
struct syncache *sc;
|
|
struct syncache_head *sch;
|
|
|
|
sc = syncache_lookup(inc, &sch);
|
|
if (sc != NULL) {
|
|
syncache_drop(sc, sch);
|
|
tcpstat.tcps_sc_badack++;
|
|
}
|
|
}
|
|
|
|
void
|
|
syncache_unreach(inc, th)
|
|
struct in_conninfo *inc;
|
|
struct tcphdr *th;
|
|
{
|
|
struct syncache *sc;
|
|
struct syncache_head *sch;
|
|
|
|
/* we are called at splnet() here */
|
|
sc = syncache_lookup(inc, &sch);
|
|
if (sc == NULL)
|
|
return;
|
|
|
|
/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
|
|
if (ntohl(th->th_seq) != sc->sc_iss)
|
|
return;
|
|
|
|
/*
|
|
* If we've rertransmitted 3 times and this is our second error,
|
|
* we remove the entry. Otherwise, we allow it to continue on.
|
|
* This prevents us from incorrectly nuking an entry during a
|
|
* spurious network outage.
|
|
*
|
|
* See tcp_notify().
|
|
*/
|
|
if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtslot < 3) {
|
|
sc->sc_flags |= SCF_UNREACH;
|
|
return;
|
|
}
|
|
syncache_drop(sc, sch);
|
|
tcpstat.tcps_sc_unreach++;
|
|
}
|
|
|
|
/*
|
|
* Build a new TCP socket structure from a syncache entry.
|
|
*/
|
|
static struct socket *
|
|
syncache_socket(sc, lso, m)
|
|
struct syncache *sc;
|
|
struct socket *lso;
|
|
struct mbuf *m;
|
|
{
|
|
struct inpcb *inp = NULL;
|
|
struct socket *so;
|
|
struct tcpcb *tp;
|
|
|
|
/*
|
|
* Ok, create the full blown connection, and set things up
|
|
* as they would have been set up if we had created the
|
|
* connection when the SYN arrived. If we can't create
|
|
* the connection, abort it.
|
|
*/
|
|
so = sonewconn(lso, SS_ISCONNECTED);
|
|
if (so == NULL) {
|
|
/*
|
|
* Drop the connection; we will send a RST if the peer
|
|
* retransmits the ACK,
|
|
*/
|
|
tcpstat.tcps_listendrop++;
|
|
goto abort;
|
|
}
|
|
#ifdef MAC
|
|
mac_set_socket_peer_from_mbuf(m, so);
|
|
#endif
|
|
|
|
inp = sotoinpcb(so);
|
|
|
|
/*
|
|
* Insert new socket into hash list.
|
|
*/
|
|
inp->inp_inc.inc_isipv6 = sc->sc_inc.inc_isipv6;
|
|
#ifdef INET6
|
|
if (sc->sc_inc.inc_isipv6) {
|
|
inp->in6p_laddr = sc->sc_inc.inc6_laddr;
|
|
} else {
|
|
inp->inp_vflag &= ~INP_IPV6;
|
|
inp->inp_vflag |= INP_IPV4;
|
|
#endif
|
|
inp->inp_laddr = sc->sc_inc.inc_laddr;
|
|
#ifdef INET6
|
|
}
|
|
#endif
|
|
inp->inp_lport = sc->sc_inc.inc_lport;
|
|
if (in_pcbinshash(inp) != 0) {
|
|
/*
|
|
* Undo the assignments above if we failed to
|
|
* put the PCB on the hash lists.
|
|
*/
|
|
#ifdef INET6
|
|
if (sc->sc_inc.inc_isipv6)
|
|
inp->in6p_laddr = in6addr_any;
|
|
else
|
|
#endif
|
|
inp->inp_laddr.s_addr = INADDR_ANY;
|
|
inp->inp_lport = 0;
|
|
goto abort;
|
|
}
|
|
#ifdef IPSEC
|
|
/* copy old policy into new socket's */
|
|
if (ipsec_copy_policy(sotoinpcb(lso)->inp_sp, inp->inp_sp))
|
|
printf("syncache_expand: could not copy policy\n");
|
|
#endif
|
|
#ifdef INET6
|
|
if (sc->sc_inc.inc_isipv6) {
|
|
struct inpcb *oinp = sotoinpcb(lso);
|
|
struct in6_addr laddr6;
|
|
struct sockaddr_in6 *sin6;
|
|
/*
|
|
* Inherit socket options from the listening socket.
|
|
* Note that in6p_inputopts are not (and should not be)
|
|
* copied, since it stores previously received options and is
|
|
* used to detect if each new option is different than the
|
|
* previous one and hence should be passed to a user.
|
|
* If we copied in6p_inputopts, a user would not be able to
|
|
* receive options just after calling the accept system call.
|
|
*/
|
|
inp->inp_flags |= oinp->inp_flags & INP_CONTROLOPTS;
|
|
if (oinp->in6p_outputopts)
|
|
inp->in6p_outputopts =
|
|
ip6_copypktopts(oinp->in6p_outputopts, M_NOWAIT);
|
|
inp->in6p_route = sc->sc_route6;
|
|
sc->sc_route6.ro_rt = NULL;
|
|
|
|
MALLOC(sin6, struct sockaddr_in6 *, sizeof *sin6,
|
|
M_SONAME, M_NOWAIT | M_ZERO);
|
|
if (sin6 == NULL)
|
|
goto abort;
|
|
sin6->sin6_family = AF_INET6;
|
|
sin6->sin6_len = sizeof(*sin6);
|
|
sin6->sin6_addr = sc->sc_inc.inc6_faddr;
|
|
sin6->sin6_port = sc->sc_inc.inc_fport;
|
|
laddr6 = inp->in6p_laddr;
|
|
if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr))
|
|
inp->in6p_laddr = sc->sc_inc.inc6_laddr;
|
|
if (in6_pcbconnect(inp, (struct sockaddr *)sin6, &thread0)) {
|
|
inp->in6p_laddr = laddr6;
|
|
FREE(sin6, M_SONAME);
|
|
goto abort;
|
|
}
|
|
FREE(sin6, M_SONAME);
|
|
} else
|
|
#endif
|
|
{
|
|
struct in_addr laddr;
|
|
struct sockaddr_in *sin;
|
|
|
|
inp->inp_options = ip_srcroute();
|
|
if (inp->inp_options == NULL) {
|
|
inp->inp_options = sc->sc_ipopts;
|
|
sc->sc_ipopts = NULL;
|
|
}
|
|
inp->inp_route = sc->sc_route;
|
|
sc->sc_route.ro_rt = NULL;
|
|
|
|
MALLOC(sin, struct sockaddr_in *, sizeof *sin,
|
|
M_SONAME, M_NOWAIT | M_ZERO);
|
|
if (sin == NULL)
|
|
goto abort;
|
|
sin->sin_family = AF_INET;
|
|
sin->sin_len = sizeof(*sin);
|
|
sin->sin_addr = sc->sc_inc.inc_faddr;
|
|
sin->sin_port = sc->sc_inc.inc_fport;
|
|
bzero((caddr_t)sin->sin_zero, sizeof(sin->sin_zero));
|
|
laddr = inp->inp_laddr;
|
|
if (inp->inp_laddr.s_addr == INADDR_ANY)
|
|
inp->inp_laddr = sc->sc_inc.inc_laddr;
|
|
if (in_pcbconnect(inp, (struct sockaddr *)sin, &thread0)) {
|
|
inp->inp_laddr = laddr;
|
|
FREE(sin, M_SONAME);
|
|
goto abort;
|
|
}
|
|
FREE(sin, M_SONAME);
|
|
}
|
|
|
|
tp = intotcpcb(inp);
|
|
tp->t_state = TCPS_SYN_RECEIVED;
|
|
tp->iss = sc->sc_iss;
|
|
tp->irs = sc->sc_irs;
|
|
tcp_rcvseqinit(tp);
|
|
tcp_sendseqinit(tp);
|
|
tp->snd_wl1 = sc->sc_irs;
|
|
tp->rcv_up = sc->sc_irs + 1;
|
|
tp->rcv_wnd = sc->sc_wnd;
|
|
tp->rcv_adv += tp->rcv_wnd;
|
|
|
|
tp->t_flags = sototcpcb(lso)->t_flags & (TF_NOPUSH|TF_NODELAY);
|
|
if (sc->sc_flags & SCF_NOOPT)
|
|
tp->t_flags |= TF_NOOPT;
|
|
if (sc->sc_flags & SCF_WINSCALE) {
|
|
tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
|
|
tp->requested_s_scale = sc->sc_requested_s_scale;
|
|
tp->request_r_scale = sc->sc_request_r_scale;
|
|
}
|
|
if (sc->sc_flags & SCF_TIMESTAMP) {
|
|
tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
|
|
tp->ts_recent = sc->sc_tsrecent;
|
|
tp->ts_recent_age = ticks;
|
|
}
|
|
if (sc->sc_flags & SCF_CC) {
|
|
/*
|
|
* Initialization of the tcpcb for transaction;
|
|
* set SND.WND = SEG.WND,
|
|
* initialize CCsend and CCrecv.
|
|
*/
|
|
tp->t_flags |= TF_REQ_CC|TF_RCVD_CC;
|
|
tp->cc_send = sc->sc_cc_send;
|
|
tp->cc_recv = sc->sc_cc_recv;
|
|
}
|
|
|
|
tcp_mss(tp, sc->sc_peer_mss);
|
|
|
|
/*
|
|
* If the SYN,ACK was retransmitted, reset cwnd to 1 segment.
|
|
*/
|
|
if (sc->sc_rxtslot != 0)
|
|
tp->snd_cwnd = tp->t_maxseg;
|
|
callout_reset(tp->tt_keep, tcp_keepinit, tcp_timer_keep, tp);
|
|
|
|
tcpstat.tcps_accepts++;
|
|
return (so);
|
|
|
|
abort:
|
|
if (so != NULL)
|
|
(void) soabort(so);
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* This function gets called when we receive an ACK for a
|
|
* socket in the LISTEN state. We look up the connection
|
|
* in the syncache, and if its there, we pull it out of
|
|
* the cache and turn it into a full-blown connection in
|
|
* the SYN-RECEIVED state.
|
|
*/
|
|
int
|
|
syncache_expand(inc, th, sop, m)
|
|
struct in_conninfo *inc;
|
|
struct tcphdr *th;
|
|
struct socket **sop;
|
|
struct mbuf *m;
|
|
{
|
|
struct syncache *sc;
|
|
struct syncache_head *sch;
|
|
struct socket *so;
|
|
|
|
sc = syncache_lookup(inc, &sch);
|
|
if (sc == NULL) {
|
|
/*
|
|
* There is no syncache entry, so see if this ACK is
|
|
* a returning syncookie. To do this, first:
|
|
* A. See if this socket has had a syncache entry dropped in
|
|
* the past. We don't want to accept a bogus syncookie
|
|
* if we've never received a SYN.
|
|
* B. check that the syncookie is valid. If it is, then
|
|
* cobble up a fake syncache entry, and return.
|
|
*/
|
|
if (!tcp_syncookies)
|
|
return (0);
|
|
sc = syncookie_lookup(inc, th, *sop);
|
|
if (sc == NULL)
|
|
return (0);
|
|
sch = NULL;
|
|
tcpstat.tcps_sc_recvcookie++;
|
|
}
|
|
|
|
/*
|
|
* If seg contains an ACK, but not for our SYN/ACK, send a RST.
|
|
*/
|
|
if (th->th_ack != sc->sc_iss + 1)
|
|
return (0);
|
|
|
|
so = syncache_socket(sc, *sop, m);
|
|
if (so == NULL) {
|
|
#if 0
|
|
resetandabort:
|
|
/* XXXjlemon check this - is this correct? */
|
|
(void) tcp_respond(NULL, m, m, th,
|
|
th->th_seq + tlen, (tcp_seq)0, TH_RST|TH_ACK);
|
|
#endif
|
|
m_freem(m); /* XXX only needed for above */
|
|
tcpstat.tcps_sc_aborted++;
|
|
} else {
|
|
sc->sc_flags |= SCF_KEEPROUTE;
|
|
tcpstat.tcps_sc_completed++;
|
|
}
|
|
if (sch == NULL)
|
|
syncache_free(sc);
|
|
else
|
|
syncache_drop(sc, sch);
|
|
*sop = so;
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* Given a LISTEN socket and an inbound SYN request, add
|
|
* this to the syn cache, and send back a segment:
|
|
* <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
|
|
* to the source.
|
|
*
|
|
* IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
|
|
* Doing so would require that we hold onto the data and deliver it
|
|
* to the application. However, if we are the target of a SYN-flood
|
|
* DoS attack, an attacker could send data which would eventually
|
|
* consume all available buffer space if it were ACKed. By not ACKing
|
|
* the data, we avoid this DoS scenario.
|
|
*/
|
|
int
|
|
syncache_add(inc, to, th, sop, m)
|
|
struct in_conninfo *inc;
|
|
struct tcpopt *to;
|
|
struct tcphdr *th;
|
|
struct socket **sop;
|
|
struct mbuf *m;
|
|
{
|
|
struct tcpcb *tp;
|
|
struct socket *so;
|
|
struct syncache *sc = NULL;
|
|
struct syncache_head *sch;
|
|
struct mbuf *ipopts = NULL;
|
|
struct rmxp_tao *taop;
|
|
int i, s, win;
|
|
|
|
so = *sop;
|
|
tp = sototcpcb(so);
|
|
|
|
/*
|
|
* Remember the IP options, if any.
|
|
*/
|
|
#ifdef INET6
|
|
if (!inc->inc_isipv6)
|
|
#endif
|
|
ipopts = ip_srcroute();
|
|
|
|
/*
|
|
* See if we already have an entry for this connection.
|
|
* If we do, resend the SYN,ACK, and reset the retransmit timer.
|
|
*
|
|
* XXX
|
|
* should the syncache be re-initialized with the contents
|
|
* of the new SYN here (which may have different options?)
|
|
*/
|
|
sc = syncache_lookup(inc, &sch);
|
|
if (sc != NULL) {
|
|
tcpstat.tcps_sc_dupsyn++;
|
|
if (ipopts) {
|
|
/*
|
|
* If we were remembering a previous source route,
|
|
* forget it and use the new one we've been given.
|
|
*/
|
|
if (sc->sc_ipopts)
|
|
(void) m_free(sc->sc_ipopts);
|
|
sc->sc_ipopts = ipopts;
|
|
}
|
|
/*
|
|
* Update timestamp if present.
|
|
*/
|
|
if (sc->sc_flags & SCF_TIMESTAMP)
|
|
sc->sc_tsrecent = to->to_tsval;
|
|
/*
|
|
* PCB may have changed, pick up new values.
|
|
*/
|
|
sc->sc_tp = tp;
|
|
sc->sc_inp_gencnt = tp->t_inpcb->inp_gencnt;
|
|
if (syncache_respond(sc, m) == 0) {
|
|
s = splnet();
|
|
TAILQ_REMOVE(&tcp_syncache.timerq[sc->sc_rxtslot],
|
|
sc, sc_timerq);
|
|
SYNCACHE_TIMEOUT(sc, sc->sc_rxtslot);
|
|
splx(s);
|
|
tcpstat.tcps_sndacks++;
|
|
tcpstat.tcps_sndtotal++;
|
|
}
|
|
*sop = NULL;
|
|
return (1);
|
|
}
|
|
|
|
sc = uma_zalloc(tcp_syncache.zone, M_NOWAIT);
|
|
if (sc == NULL) {
|
|
/*
|
|
* The zone allocator couldn't provide more entries.
|
|
* Treat this as if the cache was full; drop the oldest
|
|
* entry and insert the new one.
|
|
*/
|
|
s = splnet();
|
|
for (i = SYNCACHE_MAXREXMTS; i >= 0; i--) {
|
|
sc = TAILQ_FIRST(&tcp_syncache.timerq[i]);
|
|
if (sc != NULL)
|
|
break;
|
|
}
|
|
sc->sc_tp->ts_recent = ticks;
|
|
syncache_drop(sc, NULL);
|
|
splx(s);
|
|
tcpstat.tcps_sc_zonefail++;
|
|
sc = uma_zalloc(tcp_syncache.zone, M_NOWAIT);
|
|
if (sc == NULL) {
|
|
if (ipopts)
|
|
(void) m_free(ipopts);
|
|
return (0);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Fill in the syncache values.
|
|
*/
|
|
bzero(sc, sizeof(*sc));
|
|
sc->sc_tp = tp;
|
|
sc->sc_inp_gencnt = tp->t_inpcb->inp_gencnt;
|
|
sc->sc_ipopts = ipopts;
|
|
sc->sc_inc.inc_fport = inc->inc_fport;
|
|
sc->sc_inc.inc_lport = inc->inc_lport;
|
|
#ifdef INET6
|
|
sc->sc_inc.inc_isipv6 = inc->inc_isipv6;
|
|
if (inc->inc_isipv6) {
|
|
sc->sc_inc.inc6_faddr = inc->inc6_faddr;
|
|
sc->sc_inc.inc6_laddr = inc->inc6_laddr;
|
|
sc->sc_route6.ro_rt = NULL;
|
|
} else
|
|
#endif
|
|
{
|
|
sc->sc_inc.inc_faddr = inc->inc_faddr;
|
|
sc->sc_inc.inc_laddr = inc->inc_laddr;
|
|
sc->sc_route.ro_rt = NULL;
|
|
}
|
|
sc->sc_irs = th->th_seq;
|
|
if (tcp_syncookies)
|
|
sc->sc_iss = syncookie_generate(sc);
|
|
else
|
|
sc->sc_iss = arc4random();
|
|
|
|
/* Initial receive window: clip sbspace to [0 .. TCP_MAXWIN] */
|
|
win = sbspace(&so->so_rcv);
|
|
win = imax(win, 0);
|
|
win = imin(win, TCP_MAXWIN);
|
|
sc->sc_wnd = win;
|
|
|
|
sc->sc_flags = 0;
|
|
sc->sc_peer_mss = to->to_flags & TOF_MSS ? to->to_mss : 0;
|
|
if (tcp_do_rfc1323) {
|
|
/*
|
|
* A timestamp received in a SYN makes
|
|
* it ok to send timestamp requests and replies.
|
|
*/
|
|
if (to->to_flags & TOF_TS) {
|
|
sc->sc_tsrecent = to->to_tsval;
|
|
sc->sc_flags |= SCF_TIMESTAMP;
|
|
}
|
|
if (to->to_flags & TOF_SCALE) {
|
|
int wscale = 0;
|
|
|
|
/* Compute proper scaling value from buffer space */
|
|
while (wscale < TCP_MAX_WINSHIFT &&
|
|
(TCP_MAXWIN << wscale) < so->so_rcv.sb_hiwat)
|
|
wscale++;
|
|
sc->sc_request_r_scale = wscale;
|
|
sc->sc_requested_s_scale = to->to_requested_s_scale;
|
|
sc->sc_flags |= SCF_WINSCALE;
|
|
}
|
|
}
|
|
if (tcp_do_rfc1644) {
|
|
/*
|
|
* A CC or CC.new option received in a SYN makes
|
|
* it ok to send CC in subsequent segments.
|
|
*/
|
|
if (to->to_flags & (TOF_CC|TOF_CCNEW)) {
|
|
sc->sc_cc_recv = to->to_cc;
|
|
sc->sc_cc_send = CC_INC(tcp_ccgen);
|
|
sc->sc_flags |= SCF_CC;
|
|
}
|
|
}
|
|
if (tp->t_flags & TF_NOOPT)
|
|
sc->sc_flags = SCF_NOOPT;
|
|
|
|
/*
|
|
* XXX
|
|
* We have the option here of not doing TAO (even if the segment
|
|
* qualifies) and instead fall back to a normal 3WHS via the syncache.
|
|
* This allows us to apply synflood protection to TAO-qualifying SYNs
|
|
* also. However, there should be a hueristic to determine when to
|
|
* do this, and is not present at the moment.
|
|
*/
|
|
|
|
/*
|
|
* Perform TAO test on incoming CC (SEG.CC) option, if any.
|
|
* - compare SEG.CC against cached CC from the same host, if any.
|
|
* - if SEG.CC > chached value, SYN must be new and is accepted
|
|
* immediately: save new CC in the cache, mark the socket
|
|
* connected, enter ESTABLISHED state, turn on flag to
|
|
* send a SYN in the next segment.
|
|
* A virtual advertised window is set in rcv_adv to
|
|
* initialize SWS prevention. Then enter normal segment
|
|
* processing: drop SYN, process data and FIN.
|
|
* - otherwise do a normal 3-way handshake.
|
|
*/
|
|
taop = tcp_gettaocache(&sc->sc_inc);
|
|
if ((to->to_flags & TOF_CC) != 0) {
|
|
if (((tp->t_flags & TF_NOPUSH) != 0) &&
|
|
sc->sc_flags & SCF_CC &&
|
|
taop != NULL && taop->tao_cc != 0 &&
|
|
CC_GT(to->to_cc, taop->tao_cc)) {
|
|
sc->sc_rxtslot = 0;
|
|
so = syncache_socket(sc, *sop, m);
|
|
if (so != NULL) {
|
|
sc->sc_flags |= SCF_KEEPROUTE;
|
|
taop->tao_cc = to->to_cc;
|
|
*sop = so;
|
|
}
|
|
syncache_free(sc);
|
|
return (so != NULL);
|
|
}
|
|
} else {
|
|
/*
|
|
* No CC option, but maybe CC.NEW: invalidate cached value.
|
|
*/
|
|
if (taop != NULL)
|
|
taop->tao_cc = 0;
|
|
}
|
|
/*
|
|
* TAO test failed or there was no CC option,
|
|
* do a standard 3-way handshake.
|
|
*/
|
|
if (syncache_respond(sc, m) == 0) {
|
|
syncache_insert(sc, sch);
|
|
tcpstat.tcps_sndacks++;
|
|
tcpstat.tcps_sndtotal++;
|
|
} else {
|
|
syncache_free(sc);
|
|
tcpstat.tcps_sc_dropped++;
|
|
}
|
|
*sop = NULL;
|
|
return (1);
|
|
}
|
|
|
|
static int
|
|
syncache_respond(sc, m)
|
|
struct syncache *sc;
|
|
struct mbuf *m;
|
|
{
|
|
u_int8_t *optp;
|
|
int optlen, error;
|
|
u_int16_t tlen, hlen, mssopt;
|
|
struct ip *ip = NULL;
|
|
struct rtentry *rt;
|
|
struct tcphdr *th;
|
|
#ifdef INET6
|
|
struct ip6_hdr *ip6 = NULL;
|
|
#endif
|
|
|
|
#ifdef INET6
|
|
if (sc->sc_inc.inc_isipv6) {
|
|
rt = tcp_rtlookup6(&sc->sc_inc);
|
|
if (rt != NULL)
|
|
mssopt = rt->rt_ifp->if_mtu -
|
|
(sizeof(struct ip6_hdr) + sizeof(struct tcphdr));
|
|
else
|
|
mssopt = tcp_v6mssdflt;
|
|
hlen = sizeof(struct ip6_hdr);
|
|
} else
|
|
#endif
|
|
{
|
|
rt = tcp_rtlookup(&sc->sc_inc);
|
|
if (rt != NULL)
|
|
mssopt = rt->rt_ifp->if_mtu -
|
|
(sizeof(struct ip) + sizeof(struct tcphdr));
|
|
else
|
|
mssopt = tcp_mssdflt;
|
|
hlen = sizeof(struct ip);
|
|
}
|
|
|
|
/* Compute the size of the TCP options. */
|
|
if (sc->sc_flags & SCF_NOOPT) {
|
|
optlen = 0;
|
|
} else {
|
|
optlen = TCPOLEN_MAXSEG +
|
|
((sc->sc_flags & SCF_WINSCALE) ? 4 : 0) +
|
|
((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0) +
|
|
((sc->sc_flags & SCF_CC) ? TCPOLEN_CC_APPA * 2 : 0);
|
|
}
|
|
tlen = hlen + sizeof(struct tcphdr) + optlen;
|
|
|
|
/*
|
|
* XXX
|
|
* assume that the entire packet will fit in a header mbuf
|
|
*/
|
|
KASSERT(max_linkhdr + tlen <= MHLEN, ("syncache: mbuf too small"));
|
|
|
|
/*
|
|
* XXX shouldn't this reuse the mbuf if possible ?
|
|
* Create the IP+TCP header from scratch.
|
|
*/
|
|
if (m)
|
|
m_freem(m);
|
|
|
|
m = m_gethdr(M_DONTWAIT, MT_HEADER);
|
|
if (m == NULL)
|
|
return (ENOBUFS);
|
|
m->m_data += max_linkhdr;
|
|
m->m_len = tlen;
|
|
m->m_pkthdr.len = tlen;
|
|
m->m_pkthdr.rcvif = NULL;
|
|
#ifdef MAC
|
|
mac_create_mbuf_from_socket(sc->sc_tp->t_inpcb->inp_socket, m);
|
|
#endif
|
|
|
|
#ifdef IPSEC
|
|
/* use IPsec policy on listening socket to send SYN,ACK */
|
|
if (ipsec_setsocket(m, sc->sc_tp->t_inpcb->inp_socket) != 0) {
|
|
m_freem(m);
|
|
return (ENOBUFS);
|
|
}
|
|
#endif
|
|
|
|
#ifdef INET6
|
|
if (sc->sc_inc.inc_isipv6) {
|
|
ip6 = mtod(m, struct ip6_hdr *);
|
|
ip6->ip6_vfc = IPV6_VERSION;
|
|
ip6->ip6_nxt = IPPROTO_TCP;
|
|
ip6->ip6_src = sc->sc_inc.inc6_laddr;
|
|
ip6->ip6_dst = sc->sc_inc.inc6_faddr;
|
|
ip6->ip6_plen = htons(tlen - hlen);
|
|
/* ip6_hlim is set after checksum */
|
|
/* ip6_flow = ??? */
|
|
|
|
th = (struct tcphdr *)(ip6 + 1);
|
|
} else
|
|
#endif
|
|
{
|
|
ip = mtod(m, struct ip *);
|
|
ip->ip_v = IPVERSION;
|
|
ip->ip_hl = sizeof(struct ip) >> 2;
|
|
ip->ip_len = tlen;
|
|
ip->ip_id = 0;
|
|
ip->ip_off = 0;
|
|
ip->ip_sum = 0;
|
|
ip->ip_p = IPPROTO_TCP;
|
|
ip->ip_src = sc->sc_inc.inc_laddr;
|
|
ip->ip_dst = sc->sc_inc.inc_faddr;
|
|
ip->ip_ttl = sc->sc_tp->t_inpcb->inp_ip_ttl; /* XXX */
|
|
ip->ip_tos = sc->sc_tp->t_inpcb->inp_ip_tos; /* XXX */
|
|
|
|
/*
|
|
* See if we should do MTU discovery. We do it only if the following
|
|
* are true:
|
|
* 1) we have a valid route to the destination
|
|
* 2) the MTU is not locked (if it is, then discovery has been
|
|
* disabled)
|
|
*/
|
|
if (path_mtu_discovery
|
|
&& (rt != NULL)
|
|
&& rt->rt_flags & RTF_UP
|
|
&& !(rt->rt_rmx.rmx_locks & RTV_MTU)) {
|
|
ip->ip_off |= IP_DF;
|
|
}
|
|
|
|
th = (struct tcphdr *)(ip + 1);
|
|
}
|
|
th->th_sport = sc->sc_inc.inc_lport;
|
|
th->th_dport = sc->sc_inc.inc_fport;
|
|
|
|
th->th_seq = htonl(sc->sc_iss);
|
|
th->th_ack = htonl(sc->sc_irs + 1);
|
|
th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
|
|
th->th_x2 = 0;
|
|
th->th_flags = TH_SYN|TH_ACK;
|
|
th->th_win = htons(sc->sc_wnd);
|
|
th->th_urp = 0;
|
|
|
|
/* Tack on the TCP options. */
|
|
if (optlen == 0)
|
|
goto no_options;
|
|
optp = (u_int8_t *)(th + 1);
|
|
*optp++ = TCPOPT_MAXSEG;
|
|
*optp++ = TCPOLEN_MAXSEG;
|
|
*optp++ = (mssopt >> 8) & 0xff;
|
|
*optp++ = mssopt & 0xff;
|
|
|
|
if (sc->sc_flags & SCF_WINSCALE) {
|
|
*((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
|
|
TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
|
|
sc->sc_request_r_scale);
|
|
optp += 4;
|
|
}
|
|
|
|
if (sc->sc_flags & SCF_TIMESTAMP) {
|
|
u_int32_t *lp = (u_int32_t *)(optp);
|
|
|
|
/* Form timestamp option as shown in appendix A of RFC 1323. */
|
|
*lp++ = htonl(TCPOPT_TSTAMP_HDR);
|
|
*lp++ = htonl(ticks);
|
|
*lp = htonl(sc->sc_tsrecent);
|
|
optp += TCPOLEN_TSTAMP_APPA;
|
|
}
|
|
|
|
/*
|
|
* Send CC and CC.echo if we received CC from our peer.
|
|
*/
|
|
if (sc->sc_flags & SCF_CC) {
|
|
u_int32_t *lp = (u_int32_t *)(optp);
|
|
|
|
*lp++ = htonl(TCPOPT_CC_HDR(TCPOPT_CC));
|
|
*lp++ = htonl(sc->sc_cc_send);
|
|
*lp++ = htonl(TCPOPT_CC_HDR(TCPOPT_CCECHO));
|
|
*lp = htonl(sc->sc_cc_recv);
|
|
optp += TCPOLEN_CC_APPA * 2;
|
|
}
|
|
no_options:
|
|
|
|
#ifdef INET6
|
|
if (sc->sc_inc.inc_isipv6) {
|
|
struct route_in6 *ro6 = &sc->sc_route6;
|
|
|
|
th->th_sum = 0;
|
|
th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
|
|
ip6->ip6_hlim = in6_selecthlim(NULL,
|
|
ro6->ro_rt ? ro6->ro_rt->rt_ifp : NULL);
|
|
error = ip6_output(m, NULL, ro6, 0, NULL, NULL);
|
|
} else
|
|
#endif
|
|
{
|
|
th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
|
|
htons(tlen - hlen + IPPROTO_TCP));
|
|
m->m_pkthdr.csum_flags = CSUM_TCP;
|
|
m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
|
|
error = ip_output(m, sc->sc_ipopts, &sc->sc_route, 0, NULL);
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* cookie layers:
|
|
*
|
|
* |. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .|
|
|
* | peer iss |
|
|
* | MD5(laddr,faddr,lport,fport,secret) |. . . . . . .|
|
|
* | 0 |(A)| |
|
|
* (A): peer mss index
|
|
*/
|
|
|
|
/*
|
|
* The values below are chosen to minimize the size of the tcp_secret
|
|
* table, as well as providing roughly a 4 second lifetime for the cookie.
|
|
*/
|
|
|
|
#define SYNCOOKIE_HASHSHIFT 2 /* log2(# of 32bit words from hash) */
|
|
#define SYNCOOKIE_WNDBITS 7 /* exposed bits for window indexing */
|
|
#define SYNCOOKIE_TIMESHIFT 5 /* scale ticks to window time units */
|
|
|
|
#define SYNCOOKIE_HASHMASK ((1 << SYNCOOKIE_HASHSHIFT) - 1)
|
|
#define SYNCOOKIE_WNDMASK ((1 << SYNCOOKIE_WNDBITS) - 1)
|
|
#define SYNCOOKIE_NSECRETS (1 << (SYNCOOKIE_WNDBITS - SYNCOOKIE_HASHSHIFT))
|
|
#define SYNCOOKIE_TIMEOUT \
|
|
(hz * (1 << SYNCOOKIE_WNDBITS) / (1 << SYNCOOKIE_TIMESHIFT))
|
|
#define SYNCOOKIE_DATAMASK ((3 << SYNCOOKIE_WNDBITS) | SYNCOOKIE_WNDMASK)
|
|
|
|
static struct {
|
|
u_int32_t ts_secbits;
|
|
u_int ts_expire;
|
|
} tcp_secret[SYNCOOKIE_NSECRETS];
|
|
|
|
static int tcp_msstab[] = { 0, 536, 1460, 8960 };
|
|
|
|
static MD5_CTX syn_ctx;
|
|
|
|
#define MD5Add(v) MD5Update(&syn_ctx, (u_char *)&v, sizeof(v))
|
|
|
|
/*
|
|
* Consider the problem of a recreated (and retransmitted) cookie. If the
|
|
* original SYN was accepted, the connection is established. The second
|
|
* SYN is inflight, and if it arrives with an ISN that falls within the
|
|
* receive window, the connection is killed.
|
|
*
|
|
* However, since cookies have other problems, this may not be worth
|
|
* worrying about.
|
|
*/
|
|
|
|
static u_int32_t
|
|
syncookie_generate(struct syncache *sc)
|
|
{
|
|
u_int32_t md5_buffer[4];
|
|
u_int32_t data;
|
|
int wnd, idx;
|
|
|
|
wnd = ((ticks << SYNCOOKIE_TIMESHIFT) / hz) & SYNCOOKIE_WNDMASK;
|
|
idx = wnd >> SYNCOOKIE_HASHSHIFT;
|
|
if (tcp_secret[idx].ts_expire < ticks) {
|
|
tcp_secret[idx].ts_secbits = arc4random();
|
|
tcp_secret[idx].ts_expire = ticks + SYNCOOKIE_TIMEOUT;
|
|
}
|
|
for (data = sizeof(tcp_msstab) / sizeof(int) - 1; data > 0; data--)
|
|
if (tcp_msstab[data] <= sc->sc_peer_mss)
|
|
break;
|
|
data = (data << SYNCOOKIE_WNDBITS) | wnd;
|
|
data ^= sc->sc_irs; /* peer's iss */
|
|
MD5Init(&syn_ctx);
|
|
#ifdef INET6
|
|
if (sc->sc_inc.inc_isipv6) {
|
|
MD5Add(sc->sc_inc.inc6_laddr);
|
|
MD5Add(sc->sc_inc.inc6_faddr);
|
|
} else
|
|
#endif
|
|
{
|
|
MD5Add(sc->sc_inc.inc_laddr);
|
|
MD5Add(sc->sc_inc.inc_faddr);
|
|
}
|
|
MD5Add(sc->sc_inc.inc_lport);
|
|
MD5Add(sc->sc_inc.inc_fport);
|
|
MD5Add(tcp_secret[idx].ts_secbits);
|
|
MD5Final((u_char *)&md5_buffer, &syn_ctx);
|
|
data ^= (md5_buffer[wnd & SYNCOOKIE_HASHMASK] & ~SYNCOOKIE_WNDMASK);
|
|
return (data);
|
|
}
|
|
|
|
static struct syncache *
|
|
syncookie_lookup(inc, th, so)
|
|
struct in_conninfo *inc;
|
|
struct tcphdr *th;
|
|
struct socket *so;
|
|
{
|
|
u_int32_t md5_buffer[4];
|
|
struct syncache *sc;
|
|
u_int32_t data;
|
|
int wnd, idx;
|
|
|
|
data = (th->th_ack - 1) ^ (th->th_seq - 1); /* remove ISS */
|
|
wnd = data & SYNCOOKIE_WNDMASK;
|
|
idx = wnd >> SYNCOOKIE_HASHSHIFT;
|
|
if (tcp_secret[idx].ts_expire < ticks ||
|
|
sototcpcb(so)->ts_recent + SYNCOOKIE_TIMEOUT < ticks)
|
|
return (NULL);
|
|
MD5Init(&syn_ctx);
|
|
#ifdef INET6
|
|
if (inc->inc_isipv6) {
|
|
MD5Add(inc->inc6_laddr);
|
|
MD5Add(inc->inc6_faddr);
|
|
} else
|
|
#endif
|
|
{
|
|
MD5Add(inc->inc_laddr);
|
|
MD5Add(inc->inc_faddr);
|
|
}
|
|
MD5Add(inc->inc_lport);
|
|
MD5Add(inc->inc_fport);
|
|
MD5Add(tcp_secret[idx].ts_secbits);
|
|
MD5Final((u_char *)&md5_buffer, &syn_ctx);
|
|
data ^= md5_buffer[wnd & SYNCOOKIE_HASHMASK];
|
|
if ((data & ~SYNCOOKIE_DATAMASK) != 0)
|
|
return (NULL);
|
|
data = data >> SYNCOOKIE_WNDBITS;
|
|
|
|
sc = uma_zalloc(tcp_syncache.zone, M_NOWAIT);
|
|
if (sc == NULL)
|
|
return (NULL);
|
|
/*
|
|
* Fill in the syncache values.
|
|
* XXX duplicate code from syncache_add
|
|
*/
|
|
sc->sc_ipopts = NULL;
|
|
sc->sc_inc.inc_fport = inc->inc_fport;
|
|
sc->sc_inc.inc_lport = inc->inc_lport;
|
|
#ifdef INET6
|
|
sc->sc_inc.inc_isipv6 = inc->inc_isipv6;
|
|
if (inc->inc_isipv6) {
|
|
sc->sc_inc.inc6_faddr = inc->inc6_faddr;
|
|
sc->sc_inc.inc6_laddr = inc->inc6_laddr;
|
|
sc->sc_route6.ro_rt = NULL;
|
|
} else
|
|
#endif
|
|
{
|
|
sc->sc_inc.inc_faddr = inc->inc_faddr;
|
|
sc->sc_inc.inc_laddr = inc->inc_laddr;
|
|
sc->sc_route.ro_rt = NULL;
|
|
}
|
|
sc->sc_irs = th->th_seq - 1;
|
|
sc->sc_iss = th->th_ack - 1;
|
|
wnd = sbspace(&so->so_rcv);
|
|
wnd = imax(wnd, 0);
|
|
wnd = imin(wnd, TCP_MAXWIN);
|
|
sc->sc_wnd = wnd;
|
|
sc->sc_flags = 0;
|
|
sc->sc_rxtslot = 0;
|
|
sc->sc_peer_mss = tcp_msstab[data];
|
|
return (sc);
|
|
}
|