mirror of
https://git.FreeBSD.org/src.git
synced 2025-01-06 13:09:50 +00:00
5156 lines
145 KiB
C
5156 lines
145 KiB
C
/* Definitions for C++ name lookup routines.
|
||
Copyright (C) 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
|
||
Contributed by Gabriel Dos Reis <gdr@integrable-solutions.net>
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2, or (at your option)
|
||
any later version.
|
||
|
||
GCC is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING. If not, write to
|
||
the Free Software Foundation, 51 Franklin Street, Fifth Floor,
|
||
Boston, MA 02110-1301, USA. */
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "coretypes.h"
|
||
#include "tm.h"
|
||
#include "flags.h"
|
||
#include "tree.h"
|
||
#include "cp-tree.h"
|
||
#include "name-lookup.h"
|
||
#include "timevar.h"
|
||
#include "toplev.h"
|
||
#include "diagnostic.h"
|
||
#include "debug.h"
|
||
#include "c-pragma.h"
|
||
|
||
/* The bindings for a particular name in a particular scope. */
|
||
|
||
struct scope_binding {
|
||
tree value;
|
||
tree type;
|
||
};
|
||
#define EMPTY_SCOPE_BINDING { NULL_TREE, NULL_TREE }
|
||
|
||
static cxx_scope *innermost_nonclass_level (void);
|
||
static tree select_decl (const struct scope_binding *, int);
|
||
static cxx_binding *binding_for_name (cxx_scope *, tree);
|
||
static tree lookup_name_innermost_nonclass_level (tree);
|
||
static tree push_overloaded_decl (tree, int, bool);
|
||
static bool lookup_using_namespace (tree, struct scope_binding *, tree,
|
||
tree, int);
|
||
static bool qualified_lookup_using_namespace (tree, tree,
|
||
struct scope_binding *, int);
|
||
static tree lookup_type_current_level (tree);
|
||
static tree push_using_directive (tree);
|
||
|
||
/* The :: namespace. */
|
||
|
||
tree global_namespace;
|
||
|
||
/* The name of the anonymous namespace, throughout this translation
|
||
unit. */
|
||
static GTY(()) tree anonymous_namespace_name;
|
||
|
||
|
||
/* Compute the chain index of a binding_entry given the HASH value of its
|
||
name and the total COUNT of chains. COUNT is assumed to be a power
|
||
of 2. */
|
||
|
||
#define ENTRY_INDEX(HASH, COUNT) (((HASH) >> 3) & ((COUNT) - 1))
|
||
|
||
/* A free list of "binding_entry"s awaiting for re-use. */
|
||
|
||
static GTY((deletable)) binding_entry free_binding_entry = NULL;
|
||
|
||
/* Create a binding_entry object for (NAME, TYPE). */
|
||
|
||
static inline binding_entry
|
||
binding_entry_make (tree name, tree type)
|
||
{
|
||
binding_entry entry;
|
||
|
||
if (free_binding_entry)
|
||
{
|
||
entry = free_binding_entry;
|
||
free_binding_entry = entry->chain;
|
||
}
|
||
else
|
||
entry = GGC_NEW (struct binding_entry_s);
|
||
|
||
entry->name = name;
|
||
entry->type = type;
|
||
entry->chain = NULL;
|
||
|
||
return entry;
|
||
}
|
||
|
||
/* Put ENTRY back on the free list. */
|
||
#if 0
|
||
static inline void
|
||
binding_entry_free (binding_entry entry)
|
||
{
|
||
entry->name = NULL;
|
||
entry->type = NULL;
|
||
entry->chain = free_binding_entry;
|
||
free_binding_entry = entry;
|
||
}
|
||
#endif
|
||
|
||
/* The datatype used to implement the mapping from names to types at
|
||
a given scope. */
|
||
struct binding_table_s GTY(())
|
||
{
|
||
/* Array of chains of "binding_entry"s */
|
||
binding_entry * GTY((length ("%h.chain_count"))) chain;
|
||
|
||
/* The number of chains in this table. This is the length of the
|
||
the member "chain" considered as an array. */
|
||
size_t chain_count;
|
||
|
||
/* Number of "binding_entry"s in this table. */
|
||
size_t entry_count;
|
||
};
|
||
|
||
/* Construct TABLE with an initial CHAIN_COUNT. */
|
||
|
||
static inline void
|
||
binding_table_construct (binding_table table, size_t chain_count)
|
||
{
|
||
table->chain_count = chain_count;
|
||
table->entry_count = 0;
|
||
table->chain = GGC_CNEWVEC (binding_entry, table->chain_count);
|
||
}
|
||
|
||
/* Make TABLE's entries ready for reuse. */
|
||
#if 0
|
||
static void
|
||
binding_table_free (binding_table table)
|
||
{
|
||
size_t i;
|
||
size_t count;
|
||
|
||
if (table == NULL)
|
||
return;
|
||
|
||
for (i = 0, count = table->chain_count; i < count; ++i)
|
||
{
|
||
binding_entry temp = table->chain[i];
|
||
while (temp != NULL)
|
||
{
|
||
binding_entry entry = temp;
|
||
temp = entry->chain;
|
||
binding_entry_free (entry);
|
||
}
|
||
table->chain[i] = NULL;
|
||
}
|
||
table->entry_count = 0;
|
||
}
|
||
#endif
|
||
|
||
/* Allocate a table with CHAIN_COUNT, assumed to be a power of two. */
|
||
|
||
static inline binding_table
|
||
binding_table_new (size_t chain_count)
|
||
{
|
||
binding_table table = GGC_NEW (struct binding_table_s);
|
||
table->chain = NULL;
|
||
binding_table_construct (table, chain_count);
|
||
return table;
|
||
}
|
||
|
||
/* Expand TABLE to twice its current chain_count. */
|
||
|
||
static void
|
||
binding_table_expand (binding_table table)
|
||
{
|
||
const size_t old_chain_count = table->chain_count;
|
||
const size_t old_entry_count = table->entry_count;
|
||
const size_t new_chain_count = 2 * old_chain_count;
|
||
binding_entry *old_chains = table->chain;
|
||
size_t i;
|
||
|
||
binding_table_construct (table, new_chain_count);
|
||
for (i = 0; i < old_chain_count; ++i)
|
||
{
|
||
binding_entry entry = old_chains[i];
|
||
for (; entry != NULL; entry = old_chains[i])
|
||
{
|
||
const unsigned int hash = IDENTIFIER_HASH_VALUE (entry->name);
|
||
const size_t j = ENTRY_INDEX (hash, new_chain_count);
|
||
|
||
old_chains[i] = entry->chain;
|
||
entry->chain = table->chain[j];
|
||
table->chain[j] = entry;
|
||
}
|
||
}
|
||
table->entry_count = old_entry_count;
|
||
}
|
||
|
||
/* Insert a binding for NAME to TYPE into TABLE. */
|
||
|
||
static void
|
||
binding_table_insert (binding_table table, tree name, tree type)
|
||
{
|
||
const unsigned int hash = IDENTIFIER_HASH_VALUE (name);
|
||
const size_t i = ENTRY_INDEX (hash, table->chain_count);
|
||
binding_entry entry = binding_entry_make (name, type);
|
||
|
||
entry->chain = table->chain[i];
|
||
table->chain[i] = entry;
|
||
++table->entry_count;
|
||
|
||
if (3 * table->chain_count < 5 * table->entry_count)
|
||
binding_table_expand (table);
|
||
}
|
||
|
||
/* Return the binding_entry, if any, that maps NAME. */
|
||
|
||
binding_entry
|
||
binding_table_find (binding_table table, tree name)
|
||
{
|
||
const unsigned int hash = IDENTIFIER_HASH_VALUE (name);
|
||
binding_entry entry = table->chain[ENTRY_INDEX (hash, table->chain_count)];
|
||
|
||
while (entry != NULL && entry->name != name)
|
||
entry = entry->chain;
|
||
|
||
return entry;
|
||
}
|
||
|
||
/* Apply PROC -- with DATA -- to all entries in TABLE. */
|
||
|
||
void
|
||
binding_table_foreach (binding_table table, bt_foreach_proc proc, void *data)
|
||
{
|
||
const size_t chain_count = table->chain_count;
|
||
size_t i;
|
||
|
||
for (i = 0; i < chain_count; ++i)
|
||
{
|
||
binding_entry entry = table->chain[i];
|
||
for (; entry != NULL; entry = entry->chain)
|
||
proc (entry, data);
|
||
}
|
||
}
|
||
|
||
#ifndef ENABLE_SCOPE_CHECKING
|
||
# define ENABLE_SCOPE_CHECKING 0
|
||
#else
|
||
# define ENABLE_SCOPE_CHECKING 1
|
||
#endif
|
||
|
||
/* A free list of "cxx_binding"s, connected by their PREVIOUS. */
|
||
|
||
static GTY((deletable)) cxx_binding *free_bindings;
|
||
|
||
/* Initialize VALUE and TYPE field for BINDING, and set the PREVIOUS
|
||
field to NULL. */
|
||
|
||
static inline void
|
||
cxx_binding_init (cxx_binding *binding, tree value, tree type)
|
||
{
|
||
binding->value = value;
|
||
binding->type = type;
|
||
binding->previous = NULL;
|
||
}
|
||
|
||
/* (GC)-allocate a binding object with VALUE and TYPE member initialized. */
|
||
|
||
static cxx_binding *
|
||
cxx_binding_make (tree value, tree type)
|
||
{
|
||
cxx_binding *binding;
|
||
if (free_bindings)
|
||
{
|
||
binding = free_bindings;
|
||
free_bindings = binding->previous;
|
||
}
|
||
else
|
||
binding = GGC_NEW (cxx_binding);
|
||
|
||
cxx_binding_init (binding, value, type);
|
||
|
||
return binding;
|
||
}
|
||
|
||
/* Put BINDING back on the free list. */
|
||
|
||
static inline void
|
||
cxx_binding_free (cxx_binding *binding)
|
||
{
|
||
binding->scope = NULL;
|
||
binding->previous = free_bindings;
|
||
free_bindings = binding;
|
||
}
|
||
|
||
/* Create a new binding for NAME (with the indicated VALUE and TYPE
|
||
bindings) in the class scope indicated by SCOPE. */
|
||
|
||
static cxx_binding *
|
||
new_class_binding (tree name, tree value, tree type, cxx_scope *scope)
|
||
{
|
||
cp_class_binding *cb;
|
||
cxx_binding *binding;
|
||
|
||
if (VEC_length (cp_class_binding, scope->class_shadowed))
|
||
{
|
||
cp_class_binding *old_base;
|
||
old_base = VEC_index (cp_class_binding, scope->class_shadowed, 0);
|
||
if (VEC_reserve (cp_class_binding, gc, scope->class_shadowed, 1))
|
||
{
|
||
/* Fixup the current bindings, as they might have moved. */
|
||
size_t i;
|
||
|
||
for (i = 0;
|
||
VEC_iterate (cp_class_binding, scope->class_shadowed, i, cb);
|
||
i++)
|
||
{
|
||
cxx_binding **b;
|
||
b = &IDENTIFIER_BINDING (cb->identifier);
|
||
while (*b != &old_base[i].base)
|
||
b = &((*b)->previous);
|
||
*b = &cb->base;
|
||
}
|
||
}
|
||
cb = VEC_quick_push (cp_class_binding, scope->class_shadowed, NULL);
|
||
}
|
||
else
|
||
cb = VEC_safe_push (cp_class_binding, gc, scope->class_shadowed, NULL);
|
||
|
||
cb->identifier = name;
|
||
binding = &cb->base;
|
||
binding->scope = scope;
|
||
cxx_binding_init (binding, value, type);
|
||
return binding;
|
||
}
|
||
|
||
/* Make DECL the innermost binding for ID. The LEVEL is the binding
|
||
level at which this declaration is being bound. */
|
||
|
||
static void
|
||
push_binding (tree id, tree decl, cxx_scope* level)
|
||
{
|
||
cxx_binding *binding;
|
||
|
||
if (level != class_binding_level)
|
||
{
|
||
binding = cxx_binding_make (decl, NULL_TREE);
|
||
binding->scope = level;
|
||
}
|
||
else
|
||
binding = new_class_binding (id, decl, /*type=*/NULL_TREE, level);
|
||
|
||
/* Now, fill in the binding information. */
|
||
binding->previous = IDENTIFIER_BINDING (id);
|
||
INHERITED_VALUE_BINDING_P (binding) = 0;
|
||
LOCAL_BINDING_P (binding) = (level != class_binding_level);
|
||
|
||
/* And put it on the front of the list of bindings for ID. */
|
||
IDENTIFIER_BINDING (id) = binding;
|
||
}
|
||
|
||
/* Remove the binding for DECL which should be the innermost binding
|
||
for ID. */
|
||
|
||
void
|
||
pop_binding (tree id, tree decl)
|
||
{
|
||
cxx_binding *binding;
|
||
|
||
if (id == NULL_TREE)
|
||
/* It's easiest to write the loops that call this function without
|
||
checking whether or not the entities involved have names. We
|
||
get here for such an entity. */
|
||
return;
|
||
|
||
/* Get the innermost binding for ID. */
|
||
binding = IDENTIFIER_BINDING (id);
|
||
|
||
/* The name should be bound. */
|
||
gcc_assert (binding != NULL);
|
||
|
||
/* The DECL will be either the ordinary binding or the type
|
||
binding for this identifier. Remove that binding. */
|
||
if (binding->value == decl)
|
||
binding->value = NULL_TREE;
|
||
else
|
||
{
|
||
gcc_assert (binding->type == decl);
|
||
binding->type = NULL_TREE;
|
||
}
|
||
|
||
if (!binding->value && !binding->type)
|
||
{
|
||
/* We're completely done with the innermost binding for this
|
||
identifier. Unhook it from the list of bindings. */
|
||
IDENTIFIER_BINDING (id) = binding->previous;
|
||
|
||
/* Add it to the free list. */
|
||
cxx_binding_free (binding);
|
||
}
|
||
}
|
||
|
||
/* BINDING records an existing declaration for a name in the current scope.
|
||
But, DECL is another declaration for that same identifier in the
|
||
same scope. This is the `struct stat' hack whereby a non-typedef
|
||
class name or enum-name can be bound at the same level as some other
|
||
kind of entity.
|
||
3.3.7/1
|
||
|
||
A class name (9.1) or enumeration name (7.2) can be hidden by the
|
||
name of an object, function, or enumerator declared in the same scope.
|
||
If a class or enumeration name and an object, function, or enumerator
|
||
are declared in the same scope (in any order) with the same name, the
|
||
class or enumeration name is hidden wherever the object, function, or
|
||
enumerator name is visible.
|
||
|
||
It's the responsibility of the caller to check that
|
||
inserting this name is valid here. Returns nonzero if the new binding
|
||
was successful. */
|
||
|
||
static bool
|
||
supplement_binding (cxx_binding *binding, tree decl)
|
||
{
|
||
tree bval = binding->value;
|
||
bool ok = true;
|
||
|
||
timevar_push (TV_NAME_LOOKUP);
|
||
if (TREE_CODE (decl) == TYPE_DECL && DECL_ARTIFICIAL (decl))
|
||
/* The new name is the type name. */
|
||
binding->type = decl;
|
||
else if (/* BVAL is null when push_class_level_binding moves an
|
||
inherited type-binding out of the way to make room for a
|
||
new value binding. */
|
||
!bval
|
||
/* BVAL is error_mark_node when DECL's name has been used
|
||
in a non-class scope prior declaration. In that case,
|
||
we should have already issued a diagnostic; for graceful
|
||
error recovery purpose, pretend this was the intended
|
||
declaration for that name. */
|
||
|| bval == error_mark_node
|
||
/* If BVAL is anticipated but has not yet been declared,
|
||
pretend it is not there at all. */
|
||
|| (TREE_CODE (bval) == FUNCTION_DECL
|
||
&& DECL_ANTICIPATED (bval)
|
||
&& !DECL_HIDDEN_FRIEND_P (bval)))
|
||
binding->value = decl;
|
||
else if (TREE_CODE (bval) == TYPE_DECL && DECL_ARTIFICIAL (bval))
|
||
{
|
||
/* The old binding was a type name. It was placed in
|
||
VALUE field because it was thought, at the point it was
|
||
declared, to be the only entity with such a name. Move the
|
||
type name into the type slot; it is now hidden by the new
|
||
binding. */
|
||
binding->type = bval;
|
||
binding->value = decl;
|
||
binding->value_is_inherited = false;
|
||
}
|
||
else if (TREE_CODE (bval) == TYPE_DECL
|
||
&& TREE_CODE (decl) == TYPE_DECL
|
||
&& DECL_NAME (decl) == DECL_NAME (bval)
|
||
&& binding->scope->kind != sk_class
|
||
&& (same_type_p (TREE_TYPE (decl), TREE_TYPE (bval))
|
||
/* If either type involves template parameters, we must
|
||
wait until instantiation. */
|
||
|| uses_template_parms (TREE_TYPE (decl))
|
||
|| uses_template_parms (TREE_TYPE (bval))))
|
||
/* We have two typedef-names, both naming the same type to have
|
||
the same name. In general, this is OK because of:
|
||
|
||
[dcl.typedef]
|
||
|
||
In a given scope, a typedef specifier can be used to redefine
|
||
the name of any type declared in that scope to refer to the
|
||
type to which it already refers.
|
||
|
||
However, in class scopes, this rule does not apply due to the
|
||
stricter language in [class.mem] prohibiting redeclarations of
|
||
members. */
|
||
ok = false;
|
||
/* There can be two block-scope declarations of the same variable,
|
||
so long as they are `extern' declarations. However, there cannot
|
||
be two declarations of the same static data member:
|
||
|
||
[class.mem]
|
||
|
||
A member shall not be declared twice in the
|
||
member-specification. */
|
||
else if (TREE_CODE (decl) == VAR_DECL && TREE_CODE (bval) == VAR_DECL
|
||
&& DECL_EXTERNAL (decl) && DECL_EXTERNAL (bval)
|
||
&& !DECL_CLASS_SCOPE_P (decl))
|
||
{
|
||
duplicate_decls (decl, binding->value, /*newdecl_is_friend=*/false);
|
||
ok = false;
|
||
}
|
||
else if (TREE_CODE (decl) == NAMESPACE_DECL
|
||
&& TREE_CODE (bval) == NAMESPACE_DECL
|
||
&& DECL_NAMESPACE_ALIAS (decl)
|
||
&& DECL_NAMESPACE_ALIAS (bval)
|
||
&& ORIGINAL_NAMESPACE (bval) == ORIGINAL_NAMESPACE (decl))
|
||
/* [namespace.alias]
|
||
|
||
In a declarative region, a namespace-alias-definition can be
|
||
used to redefine a namespace-alias declared in that declarative
|
||
region to refer only to the namespace to which it already
|
||
refers. */
|
||
ok = false;
|
||
else
|
||
{
|
||
error ("declaration of %q#D", decl);
|
||
error ("conflicts with previous declaration %q+#D", bval);
|
||
ok = false;
|
||
}
|
||
|
||
POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, ok);
|
||
}
|
||
|
||
/* Add DECL to the list of things declared in B. */
|
||
|
||
static void
|
||
add_decl_to_level (tree decl, cxx_scope *b)
|
||
{
|
||
if (TREE_CODE (decl) == NAMESPACE_DECL
|
||
&& !DECL_NAMESPACE_ALIAS (decl))
|
||
{
|
||
TREE_CHAIN (decl) = b->namespaces;
|
||
b->namespaces = decl;
|
||
}
|
||
else if (TREE_CODE (decl) == VAR_DECL && DECL_VIRTUAL_P (decl))
|
||
{
|
||
TREE_CHAIN (decl) = b->vtables;
|
||
b->vtables = decl;
|
||
}
|
||
else
|
||
{
|
||
/* We build up the list in reverse order, and reverse it later if
|
||
necessary. */
|
||
TREE_CHAIN (decl) = b->names;
|
||
b->names = decl;
|
||
b->names_size++;
|
||
|
||
/* If appropriate, add decl to separate list of statics. We
|
||
include extern variables because they might turn out to be
|
||
static later. It's OK for this list to contain a few false
|
||
positives. */
|
||
if (b->kind == sk_namespace)
|
||
if ((TREE_CODE (decl) == VAR_DECL
|
||
&& (TREE_STATIC (decl) || DECL_EXTERNAL (decl)))
|
||
|| (TREE_CODE (decl) == FUNCTION_DECL
|
||
&& (!TREE_PUBLIC (decl) || DECL_DECLARED_INLINE_P (decl))))
|
||
VEC_safe_push (tree, gc, b->static_decls, decl);
|
||
}
|
||
}
|
||
|
||
/* Record a decl-node X as belonging to the current lexical scope.
|
||
Check for errors (such as an incompatible declaration for the same
|
||
name already seen in the same scope). IS_FRIEND is true if X is
|
||
declared as a friend.
|
||
|
||
Returns either X or an old decl for the same name.
|
||
If an old decl is returned, it may have been smashed
|
||
to agree with what X says. */
|
||
|
||
tree
|
||
pushdecl_maybe_friend (tree x, bool is_friend)
|
||
{
|
||
tree t;
|
||
tree name;
|
||
int need_new_binding;
|
||
|
||
timevar_push (TV_NAME_LOOKUP);
|
||
|
||
if (x == error_mark_node)
|
||
POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, error_mark_node);
|
||
|
||
need_new_binding = 1;
|
||
|
||
if (DECL_TEMPLATE_PARM_P (x))
|
||
/* Template parameters have no context; they are not X::T even
|
||
when declared within a class or namespace. */
|
||
;
|
||
else
|
||
{
|
||
if (current_function_decl && x != current_function_decl
|
||
/* A local declaration for a function doesn't constitute
|
||
nesting. */
|
||
&& TREE_CODE (x) != FUNCTION_DECL
|
||
/* A local declaration for an `extern' variable is in the
|
||
scope of the current namespace, not the current
|
||
function. */
|
||
&& !(TREE_CODE (x) == VAR_DECL && DECL_EXTERNAL (x))
|
||
&& !DECL_CONTEXT (x))
|
||
DECL_CONTEXT (x) = current_function_decl;
|
||
|
||
/* If this is the declaration for a namespace-scope function,
|
||
but the declaration itself is in a local scope, mark the
|
||
declaration. */
|
||
if (TREE_CODE (x) == FUNCTION_DECL
|
||
&& DECL_NAMESPACE_SCOPE_P (x)
|
||
&& current_function_decl
|
||
&& x != current_function_decl)
|
||
DECL_LOCAL_FUNCTION_P (x) = 1;
|
||
}
|
||
|
||
name = DECL_NAME (x);
|
||
if (name)
|
||
{
|
||
int different_binding_level = 0;
|
||
|
||
if (TREE_CODE (name) == TEMPLATE_ID_EXPR)
|
||
name = TREE_OPERAND (name, 0);
|
||
|
||
/* In case this decl was explicitly namespace-qualified, look it
|
||
up in its namespace context. */
|
||
if (DECL_NAMESPACE_SCOPE_P (x) && namespace_bindings_p ())
|
||
t = namespace_binding (name, DECL_CONTEXT (x));
|
||
else
|
||
t = lookup_name_innermost_nonclass_level (name);
|
||
|
||
/* [basic.link] If there is a visible declaration of an entity
|
||
with linkage having the same name and type, ignoring entities
|
||
declared outside the innermost enclosing namespace scope, the
|
||
block scope declaration declares that same entity and
|
||
receives the linkage of the previous declaration. */
|
||
if (! t && current_function_decl && x != current_function_decl
|
||
&& (TREE_CODE (x) == FUNCTION_DECL || TREE_CODE (x) == VAR_DECL)
|
||
&& DECL_EXTERNAL (x))
|
||
{
|
||
/* Look in block scope. */
|
||
t = innermost_non_namespace_value (name);
|
||
/* Or in the innermost namespace. */
|
||
if (! t)
|
||
t = namespace_binding (name, DECL_CONTEXT (x));
|
||
/* Does it have linkage? Note that if this isn't a DECL, it's an
|
||
OVERLOAD, which is OK. */
|
||
if (t && DECL_P (t) && ! (TREE_STATIC (t) || DECL_EXTERNAL (t)))
|
||
t = NULL_TREE;
|
||
if (t)
|
||
different_binding_level = 1;
|
||
}
|
||
|
||
/* If we are declaring a function, and the result of name-lookup
|
||
was an OVERLOAD, look for an overloaded instance that is
|
||
actually the same as the function we are declaring. (If
|
||
there is one, we have to merge our declaration with the
|
||
previous declaration.) */
|
||
if (t && TREE_CODE (t) == OVERLOAD)
|
||
{
|
||
tree match;
|
||
|
||
if (TREE_CODE (x) == FUNCTION_DECL)
|
||
for (match = t; match; match = OVL_NEXT (match))
|
||
{
|
||
if (decls_match (OVL_CURRENT (match), x))
|
||
break;
|
||
}
|
||
else
|
||
/* Just choose one. */
|
||
match = t;
|
||
|
||
if (match)
|
||
t = OVL_CURRENT (match);
|
||
else
|
||
t = NULL_TREE;
|
||
}
|
||
|
||
if (t && t != error_mark_node)
|
||
{
|
||
if (different_binding_level)
|
||
{
|
||
if (decls_match (x, t))
|
||
/* The standard only says that the local extern
|
||
inherits linkage from the previous decl; in
|
||
particular, default args are not shared. Add
|
||
the decl into a hash table to make sure only
|
||
the previous decl in this case is seen by the
|
||
middle end. */
|
||
{
|
||
struct cxx_int_tree_map *h;
|
||
void **loc;
|
||
|
||
TREE_PUBLIC (x) = TREE_PUBLIC (t);
|
||
|
||
if (cp_function_chain->extern_decl_map == NULL)
|
||
cp_function_chain->extern_decl_map
|
||
= htab_create_ggc (20, cxx_int_tree_map_hash,
|
||
cxx_int_tree_map_eq, NULL);
|
||
|
||
h = GGC_NEW (struct cxx_int_tree_map);
|
||
h->uid = DECL_UID (x);
|
||
h->to = t;
|
||
loc = htab_find_slot_with_hash
|
||
(cp_function_chain->extern_decl_map, h,
|
||
h->uid, INSERT);
|
||
*(struct cxx_int_tree_map **) loc = h;
|
||
}
|
||
}
|
||
else if (TREE_CODE (t) == PARM_DECL)
|
||
{
|
||
gcc_assert (DECL_CONTEXT (t));
|
||
|
||
/* Check for duplicate params. */
|
||
if (duplicate_decls (x, t, is_friend))
|
||
POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, t);
|
||
}
|
||
else if ((DECL_EXTERN_C_FUNCTION_P (x)
|
||
|| DECL_FUNCTION_TEMPLATE_P (x))
|
||
&& is_overloaded_fn (t))
|
||
/* Don't do anything just yet. */;
|
||
else if (t == wchar_decl_node)
|
||
{
|
||
if (pedantic && ! DECL_IN_SYSTEM_HEADER (x))
|
||
pedwarn ("redeclaration of %<wchar_t%> as %qT",
|
||
TREE_TYPE (x));
|
||
|
||
/* Throw away the redeclaration. */
|
||
POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, t);
|
||
}
|
||
else
|
||
{
|
||
tree olddecl = duplicate_decls (x, t, is_friend);
|
||
|
||
/* If the redeclaration failed, we can stop at this
|
||
point. */
|
||
if (olddecl == error_mark_node)
|
||
POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, error_mark_node);
|
||
|
||
if (olddecl)
|
||
{
|
||
if (TREE_CODE (t) == TYPE_DECL)
|
||
SET_IDENTIFIER_TYPE_VALUE (name, TREE_TYPE (t));
|
||
|
||
POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, t);
|
||
}
|
||
else if (DECL_MAIN_P (x) && TREE_CODE (t) == FUNCTION_DECL)
|
||
{
|
||
/* A redeclaration of main, but not a duplicate of the
|
||
previous one.
|
||
|
||
[basic.start.main]
|
||
|
||
This function shall not be overloaded. */
|
||
error ("invalid redeclaration of %q+D", t);
|
||
error ("as %qD", x);
|
||
/* We don't try to push this declaration since that
|
||
causes a crash. */
|
||
POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, x);
|
||
}
|
||
}
|
||
}
|
||
|
||
if (TREE_CODE (x) == FUNCTION_DECL || DECL_FUNCTION_TEMPLATE_P (x))
|
||
check_default_args (x);
|
||
|
||
check_template_shadow (x);
|
||
|
||
/* If this is a function conjured up by the backend, massage it
|
||
so it looks friendly. */
|
||
if (DECL_NON_THUNK_FUNCTION_P (x) && ! DECL_LANG_SPECIFIC (x))
|
||
{
|
||
retrofit_lang_decl (x);
|
||
SET_DECL_LANGUAGE (x, lang_c);
|
||
}
|
||
|
||
if (DECL_NON_THUNK_FUNCTION_P (x) && ! DECL_FUNCTION_MEMBER_P (x))
|
||
{
|
||
t = push_overloaded_decl (x, PUSH_LOCAL, is_friend);
|
||
if (t != x)
|
||
POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, t);
|
||
if (!namespace_bindings_p ())
|
||
/* We do not need to create a binding for this name;
|
||
push_overloaded_decl will have already done so if
|
||
necessary. */
|
||
need_new_binding = 0;
|
||
}
|
||
else if (DECL_FUNCTION_TEMPLATE_P (x) && DECL_NAMESPACE_SCOPE_P (x))
|
||
{
|
||
t = push_overloaded_decl (x, PUSH_GLOBAL, is_friend);
|
||
if (t == x)
|
||
add_decl_to_level (x, NAMESPACE_LEVEL (CP_DECL_CONTEXT (t)));
|
||
POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, t);
|
||
}
|
||
|
||
/* If declaring a type as a typedef, copy the type (unless we're
|
||
at line 0), and install this TYPE_DECL as the new type's typedef
|
||
name. See the extensive comment in ../c-decl.c (pushdecl). */
|
||
if (TREE_CODE (x) == TYPE_DECL)
|
||
{
|
||
tree type = TREE_TYPE (x);
|
||
if (DECL_IS_BUILTIN (x))
|
||
{
|
||
if (TYPE_NAME (type) == 0)
|
||
TYPE_NAME (type) = x;
|
||
}
|
||
else if (type != error_mark_node && TYPE_NAME (type) != x
|
||
/* We don't want to copy the type when all we're
|
||
doing is making a TYPE_DECL for the purposes of
|
||
inlining. */
|
||
&& (!TYPE_NAME (type)
|
||
|| TYPE_NAME (type) != DECL_ABSTRACT_ORIGIN (x)))
|
||
{
|
||
DECL_ORIGINAL_TYPE (x) = type;
|
||
type = build_variant_type_copy (type);
|
||
TYPE_STUB_DECL (type) = TYPE_STUB_DECL (DECL_ORIGINAL_TYPE (x));
|
||
TYPE_NAME (type) = x;
|
||
TREE_TYPE (x) = type;
|
||
}
|
||
|
||
if (type != error_mark_node
|
||
&& TYPE_NAME (type)
|
||
&& TYPE_IDENTIFIER (type))
|
||
set_identifier_type_value (DECL_NAME (x), x);
|
||
}
|
||
|
||
/* Multiple external decls of the same identifier ought to match.
|
||
|
||
We get warnings about inline functions where they are defined.
|
||
We get warnings about other functions from push_overloaded_decl.
|
||
|
||
Avoid duplicate warnings where they are used. */
|
||
if (TREE_PUBLIC (x) && TREE_CODE (x) != FUNCTION_DECL)
|
||
{
|
||
tree decl;
|
||
|
||
decl = IDENTIFIER_NAMESPACE_VALUE (name);
|
||
if (decl && TREE_CODE (decl) == OVERLOAD)
|
||
decl = OVL_FUNCTION (decl);
|
||
|
||
if (decl && decl != error_mark_node
|
||
&& (DECL_EXTERNAL (decl) || TREE_PUBLIC (decl))
|
||
/* If different sort of thing, we already gave an error. */
|
||
&& TREE_CODE (decl) == TREE_CODE (x)
|
||
&& !same_type_p (TREE_TYPE (x), TREE_TYPE (decl)))
|
||
{
|
||
pedwarn ("type mismatch with previous external decl of %q#D", x);
|
||
pedwarn ("previous external decl of %q+#D", decl);
|
||
}
|
||
}
|
||
|
||
if (TREE_CODE (x) == FUNCTION_DECL
|
||
&& is_friend
|
||
&& !flag_friend_injection)
|
||
{
|
||
/* This is a new declaration of a friend function, so hide
|
||
it from ordinary function lookup. */
|
||
DECL_ANTICIPATED (x) = 1;
|
||
DECL_HIDDEN_FRIEND_P (x) = 1;
|
||
}
|
||
|
||
/* This name is new in its binding level.
|
||
Install the new declaration and return it. */
|
||
if (namespace_bindings_p ())
|
||
{
|
||
/* Install a global value. */
|
||
|
||
/* If the first global decl has external linkage,
|
||
warn if we later see static one. */
|
||
if (IDENTIFIER_GLOBAL_VALUE (name) == NULL_TREE && TREE_PUBLIC (x))
|
||
TREE_PUBLIC (name) = 1;
|
||
|
||
/* Bind the name for the entity. */
|
||
if (!(TREE_CODE (x) == TYPE_DECL && DECL_ARTIFICIAL (x)
|
||
&& t != NULL_TREE)
|
||
&& (TREE_CODE (x) == TYPE_DECL
|
||
|| TREE_CODE (x) == VAR_DECL
|
||
|| TREE_CODE (x) == NAMESPACE_DECL
|
||
|| TREE_CODE (x) == CONST_DECL
|
||
|| TREE_CODE (x) == TEMPLATE_DECL))
|
||
SET_IDENTIFIER_NAMESPACE_VALUE (name, x);
|
||
|
||
/* If new decl is `static' and an `extern' was seen previously,
|
||
warn about it. */
|
||
if (x != NULL_TREE && t != NULL_TREE && decls_match (x, t))
|
||
warn_extern_redeclared_static (x, t);
|
||
}
|
||
else
|
||
{
|
||
/* Here to install a non-global value. */
|
||
tree oldlocal = innermost_non_namespace_value (name);
|
||
tree oldglobal = IDENTIFIER_NAMESPACE_VALUE (name);
|
||
|
||
if (need_new_binding)
|
||
{
|
||
push_local_binding (name, x, 0);
|
||
/* Because push_local_binding will hook X on to the
|
||
current_binding_level's name list, we don't want to
|
||
do that again below. */
|
||
need_new_binding = 0;
|
||
}
|
||
|
||
/* If this is a TYPE_DECL, push it into the type value slot. */
|
||
if (TREE_CODE (x) == TYPE_DECL)
|
||
set_identifier_type_value (name, x);
|
||
|
||
/* Clear out any TYPE_DECL shadowed by a namespace so that
|
||
we won't think this is a type. The C struct hack doesn't
|
||
go through namespaces. */
|
||
if (TREE_CODE (x) == NAMESPACE_DECL)
|
||
set_identifier_type_value (name, NULL_TREE);
|
||
|
||
if (oldlocal)
|
||
{
|
||
tree d = oldlocal;
|
||
|
||
while (oldlocal
|
||
&& TREE_CODE (oldlocal) == VAR_DECL
|
||
&& DECL_DEAD_FOR_LOCAL (oldlocal))
|
||
oldlocal = DECL_SHADOWED_FOR_VAR (oldlocal);
|
||
|
||
if (oldlocal == NULL_TREE)
|
||
oldlocal = IDENTIFIER_NAMESPACE_VALUE (DECL_NAME (d));
|
||
}
|
||
|
||
/* If this is an extern function declaration, see if we
|
||
have a global definition or declaration for the function. */
|
||
if (oldlocal == NULL_TREE
|
||
&& DECL_EXTERNAL (x)
|
||
&& oldglobal != NULL_TREE
|
||
&& TREE_CODE (x) == FUNCTION_DECL
|
||
&& TREE_CODE (oldglobal) == FUNCTION_DECL)
|
||
{
|
||
/* We have one. Their types must agree. */
|
||
if (decls_match (x, oldglobal))
|
||
/* OK */;
|
||
else
|
||
{
|
||
warning (0, "extern declaration of %q#D doesn't match", x);
|
||
warning (0, "global declaration %q+#D", oldglobal);
|
||
}
|
||
}
|
||
/* If we have a local external declaration,
|
||
and no file-scope declaration has yet been seen,
|
||
then if we later have a file-scope decl it must not be static. */
|
||
if (oldlocal == NULL_TREE
|
||
&& oldglobal == NULL_TREE
|
||
&& DECL_EXTERNAL (x)
|
||
&& TREE_PUBLIC (x))
|
||
TREE_PUBLIC (name) = 1;
|
||
|
||
/* Warn if shadowing an argument at the top level of the body. */
|
||
if (oldlocal != NULL_TREE && !DECL_EXTERNAL (x)
|
||
/* Inline decls shadow nothing. */
|
||
&& !DECL_FROM_INLINE (x)
|
||
&& TREE_CODE (oldlocal) == PARM_DECL
|
||
/* Don't check the `this' parameter. */
|
||
&& !DECL_ARTIFICIAL (oldlocal))
|
||
{
|
||
bool err = false;
|
||
|
||
/* Don't complain if it's from an enclosing function. */
|
||
if (DECL_CONTEXT (oldlocal) == current_function_decl
|
||
&& TREE_CODE (x) != PARM_DECL)
|
||
{
|
||
/* Go to where the parms should be and see if we find
|
||
them there. */
|
||
struct cp_binding_level *b = current_binding_level->level_chain;
|
||
|
||
if (FUNCTION_NEEDS_BODY_BLOCK (current_function_decl))
|
||
/* Skip the ctor/dtor cleanup level. */
|
||
b = b->level_chain;
|
||
|
||
/* ARM $8.3 */
|
||
if (b->kind == sk_function_parms)
|
||
{
|
||
error ("declaration of %q#D shadows a parameter", x);
|
||
err = true;
|
||
}
|
||
}
|
||
|
||
if (warn_shadow && !err)
|
||
{
|
||
warning (OPT_Wshadow, "declaration of %q#D shadows a parameter", x);
|
||
warning (OPT_Wshadow, "%Jshadowed declaration is here", oldlocal);
|
||
}
|
||
}
|
||
|
||
/* Maybe warn if shadowing something else. */
|
||
else if (warn_shadow && !DECL_EXTERNAL (x)
|
||
/* No shadow warnings for internally generated vars. */
|
||
&& ! DECL_ARTIFICIAL (x)
|
||
/* No shadow warnings for vars made for inlining. */
|
||
&& ! DECL_FROM_INLINE (x))
|
||
{
|
||
tree member;
|
||
|
||
if (current_class_ptr)
|
||
member = lookup_member (current_class_type,
|
||
name,
|
||
/*protect=*/0,
|
||
/*want_type=*/false);
|
||
else
|
||
member = NULL_TREE;
|
||
|
||
if (member && !TREE_STATIC (member))
|
||
{
|
||
/* Location of previous decl is not useful in this case. */
|
||
warning (OPT_Wshadow, "declaration of %qD shadows a member of 'this'",
|
||
x);
|
||
}
|
||
else if (oldlocal != NULL_TREE
|
||
&& TREE_CODE (oldlocal) == VAR_DECL)
|
||
{
|
||
warning (OPT_Wshadow, "declaration of %qD shadows a previous local", x);
|
||
warning (OPT_Wshadow, "%Jshadowed declaration is here", oldlocal);
|
||
}
|
||
else if (oldglobal != NULL_TREE
|
||
&& TREE_CODE (oldglobal) == VAR_DECL)
|
||
/* XXX shadow warnings in outer-more namespaces */
|
||
{
|
||
warning (OPT_Wshadow, "declaration of %qD shadows a global declaration",
|
||
x);
|
||
warning (OPT_Wshadow, "%Jshadowed declaration is here", oldglobal);
|
||
}
|
||
}
|
||
}
|
||
|
||
if (TREE_CODE (x) == VAR_DECL)
|
||
maybe_register_incomplete_var (x);
|
||
}
|
||
|
||
if (need_new_binding)
|
||
add_decl_to_level (x,
|
||
DECL_NAMESPACE_SCOPE_P (x)
|
||
? NAMESPACE_LEVEL (CP_DECL_CONTEXT (x))
|
||
: current_binding_level);
|
||
|
||
POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, x);
|
||
}
|
||
|
||
/* Record a decl-node X as belonging to the current lexical scope. */
|
||
|
||
tree
|
||
pushdecl (tree x)
|
||
{
|
||
return pushdecl_maybe_friend (x, false);
|
||
}
|
||
|
||
/* Enter DECL into the symbol table, if that's appropriate. Returns
|
||
DECL, or a modified version thereof. */
|
||
|
||
tree
|
||
maybe_push_decl (tree decl)
|
||
{
|
||
tree type = TREE_TYPE (decl);
|
||
|
||
/* Add this decl to the current binding level, but not if it comes
|
||
from another scope, e.g. a static member variable. TEM may equal
|
||
DECL or it may be a previous decl of the same name. */
|
||
if (decl == error_mark_node
|
||
|| (TREE_CODE (decl) != PARM_DECL
|
||
&& DECL_CONTEXT (decl) != NULL_TREE
|
||
/* Definitions of namespace members outside their namespace are
|
||
possible. */
|
||
&& TREE_CODE (DECL_CONTEXT (decl)) != NAMESPACE_DECL)
|
||
|| (TREE_CODE (decl) == TEMPLATE_DECL && !namespace_bindings_p ())
|
||
|| TREE_CODE (type) == UNKNOWN_TYPE
|
||
/* The declaration of a template specialization does not affect
|
||
the functions available for overload resolution, so we do not
|
||
call pushdecl. */
|
||
|| (TREE_CODE (decl) == FUNCTION_DECL
|
||
&& DECL_TEMPLATE_SPECIALIZATION (decl)))
|
||
return decl;
|
||
else
|
||
return pushdecl (decl);
|
||
}
|
||
|
||
/* Bind DECL to ID in the current_binding_level, assumed to be a local
|
||
binding level. If PUSH_USING is set in FLAGS, we know that DECL
|
||
doesn't really belong to this binding level, that it got here
|
||
through a using-declaration. */
|
||
|
||
void
|
||
push_local_binding (tree id, tree decl, int flags)
|
||
{
|
||
struct cp_binding_level *b;
|
||
|
||
/* Skip over any local classes. This makes sense if we call
|
||
push_local_binding with a friend decl of a local class. */
|
||
b = innermost_nonclass_level ();
|
||
|
||
if (lookup_name_innermost_nonclass_level (id))
|
||
{
|
||
/* Supplement the existing binding. */
|
||
if (!supplement_binding (IDENTIFIER_BINDING (id), decl))
|
||
/* It didn't work. Something else must be bound at this
|
||
level. Do not add DECL to the list of things to pop
|
||
later. */
|
||
return;
|
||
}
|
||
else
|
||
/* Create a new binding. */
|
||
push_binding (id, decl, b);
|
||
|
||
if (TREE_CODE (decl) == OVERLOAD || (flags & PUSH_USING))
|
||
/* We must put the OVERLOAD into a TREE_LIST since the
|
||
TREE_CHAIN of an OVERLOAD is already used. Similarly for
|
||
decls that got here through a using-declaration. */
|
||
decl = build_tree_list (NULL_TREE, decl);
|
||
|
||
/* And put DECL on the list of things declared by the current
|
||
binding level. */
|
||
add_decl_to_level (decl, b);
|
||
}
|
||
|
||
/* Check to see whether or not DECL is a variable that would have been
|
||
in scope under the ARM, but is not in scope under the ANSI/ISO
|
||
standard. If so, issue an error message. If name lookup would
|
||
work in both cases, but return a different result, this function
|
||
returns the result of ANSI/ISO lookup. Otherwise, it returns
|
||
DECL. */
|
||
|
||
tree
|
||
check_for_out_of_scope_variable (tree decl)
|
||
{
|
||
tree shadowed;
|
||
|
||
/* We only care about out of scope variables. */
|
||
if (!(TREE_CODE (decl) == VAR_DECL && DECL_DEAD_FOR_LOCAL (decl)))
|
||
return decl;
|
||
|
||
shadowed = DECL_HAS_SHADOWED_FOR_VAR_P (decl)
|
||
? DECL_SHADOWED_FOR_VAR (decl) : NULL_TREE ;
|
||
while (shadowed != NULL_TREE && TREE_CODE (shadowed) == VAR_DECL
|
||
&& DECL_DEAD_FOR_LOCAL (shadowed))
|
||
shadowed = DECL_HAS_SHADOWED_FOR_VAR_P (shadowed)
|
||
? DECL_SHADOWED_FOR_VAR (shadowed) : NULL_TREE;
|
||
if (!shadowed)
|
||
shadowed = IDENTIFIER_NAMESPACE_VALUE (DECL_NAME (decl));
|
||
if (shadowed)
|
||
{
|
||
if (!DECL_ERROR_REPORTED (decl))
|
||
{
|
||
warning (0, "name lookup of %qD changed", DECL_NAME (decl));
|
||
warning (0, " matches this %q+D under ISO standard rules",
|
||
shadowed);
|
||
warning (0, " matches this %q+D under old rules", decl);
|
||
DECL_ERROR_REPORTED (decl) = 1;
|
||
}
|
||
return shadowed;
|
||
}
|
||
|
||
/* If we have already complained about this declaration, there's no
|
||
need to do it again. */
|
||
if (DECL_ERROR_REPORTED (decl))
|
||
return decl;
|
||
|
||
DECL_ERROR_REPORTED (decl) = 1;
|
||
|
||
if (TREE_TYPE (decl) == error_mark_node)
|
||
return decl;
|
||
|
||
if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TREE_TYPE (decl)))
|
||
{
|
||
error ("name lookup of %qD changed for new ISO %<for%> scoping",
|
||
DECL_NAME (decl));
|
||
error (" cannot use obsolete binding at %q+D because "
|
||
"it has a destructor", decl);
|
||
return error_mark_node;
|
||
}
|
||
else
|
||
{
|
||
pedwarn ("name lookup of %qD changed for new ISO %<for%> scoping",
|
||
DECL_NAME (decl));
|
||
pedwarn (" using obsolete binding at %q+D", decl);
|
||
}
|
||
|
||
return decl;
|
||
}
|
||
|
||
/* true means unconditionally make a BLOCK for the next level pushed. */
|
||
|
||
static bool keep_next_level_flag;
|
||
|
||
static int binding_depth = 0;
|
||
static int is_class_level = 0;
|
||
|
||
static void
|
||
indent (int depth)
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i < depth * 2; i++)
|
||
putc (' ', stderr);
|
||
}
|
||
|
||
/* Return a string describing the kind of SCOPE we have. */
|
||
static const char *
|
||
cxx_scope_descriptor (cxx_scope *scope)
|
||
{
|
||
/* The order of this table must match the "scope_kind"
|
||
enumerators. */
|
||
static const char* scope_kind_names[] = {
|
||
"block-scope",
|
||
"cleanup-scope",
|
||
"try-scope",
|
||
"catch-scope",
|
||
"for-scope",
|
||
"function-parameter-scope",
|
||
"class-scope",
|
||
"namespace-scope",
|
||
"template-parameter-scope",
|
||
"template-explicit-spec-scope"
|
||
};
|
||
const scope_kind kind = scope->explicit_spec_p
|
||
? sk_template_spec : scope->kind;
|
||
|
||
return scope_kind_names[kind];
|
||
}
|
||
|
||
/* Output a debugging information about SCOPE when performing
|
||
ACTION at LINE. */
|
||
static void
|
||
cxx_scope_debug (cxx_scope *scope, int line, const char *action)
|
||
{
|
||
const char *desc = cxx_scope_descriptor (scope);
|
||
if (scope->this_entity)
|
||
verbatim ("%s %s(%E) %p %d\n", action, desc,
|
||
scope->this_entity, (void *) scope, line);
|
||
else
|
||
verbatim ("%s %s %p %d\n", action, desc, (void *) scope, line);
|
||
}
|
||
|
||
/* Return the estimated initial size of the hashtable of a NAMESPACE
|
||
scope. */
|
||
|
||
static inline size_t
|
||
namespace_scope_ht_size (tree ns)
|
||
{
|
||
tree name = DECL_NAME (ns);
|
||
|
||
return name == std_identifier
|
||
? NAMESPACE_STD_HT_SIZE
|
||
: (name == global_scope_name
|
||
? GLOBAL_SCOPE_HT_SIZE
|
||
: NAMESPACE_ORDINARY_HT_SIZE);
|
||
}
|
||
|
||
/* A chain of binding_level structures awaiting reuse. */
|
||
|
||
static GTY((deletable)) struct cp_binding_level *free_binding_level;
|
||
|
||
/* Insert SCOPE as the innermost binding level. */
|
||
|
||
void
|
||
push_binding_level (struct cp_binding_level *scope)
|
||
{
|
||
/* Add it to the front of currently active scopes stack. */
|
||
scope->level_chain = current_binding_level;
|
||
current_binding_level = scope;
|
||
keep_next_level_flag = false;
|
||
|
||
if (ENABLE_SCOPE_CHECKING)
|
||
{
|
||
scope->binding_depth = binding_depth;
|
||
indent (binding_depth);
|
||
cxx_scope_debug (scope, input_line, "push");
|
||
is_class_level = 0;
|
||
binding_depth++;
|
||
}
|
||
}
|
||
|
||
/* Create a new KIND scope and make it the top of the active scopes stack.
|
||
ENTITY is the scope of the associated C++ entity (namespace, class,
|
||
function); it is NULL otherwise. */
|
||
|
||
cxx_scope *
|
||
begin_scope (scope_kind kind, tree entity)
|
||
{
|
||
cxx_scope *scope;
|
||
|
||
/* Reuse or create a struct for this binding level. */
|
||
if (!ENABLE_SCOPE_CHECKING && free_binding_level)
|
||
{
|
||
scope = free_binding_level;
|
||
free_binding_level = scope->level_chain;
|
||
}
|
||
else
|
||
scope = GGC_NEW (cxx_scope);
|
||
memset (scope, 0, sizeof (cxx_scope));
|
||
|
||
scope->this_entity = entity;
|
||
scope->more_cleanups_ok = true;
|
||
switch (kind)
|
||
{
|
||
case sk_cleanup:
|
||
scope->keep = true;
|
||
break;
|
||
|
||
case sk_template_spec:
|
||
scope->explicit_spec_p = true;
|
||
kind = sk_template_parms;
|
||
/* Fall through. */
|
||
case sk_template_parms:
|
||
case sk_block:
|
||
case sk_try:
|
||
case sk_catch:
|
||
case sk_for:
|
||
case sk_class:
|
||
case sk_function_parms:
|
||
case sk_omp:
|
||
scope->keep = keep_next_level_flag;
|
||
break;
|
||
|
||
case sk_namespace:
|
||
NAMESPACE_LEVEL (entity) = scope;
|
||
scope->static_decls =
|
||
VEC_alloc (tree, gc,
|
||
DECL_NAME (entity) == std_identifier
|
||
|| DECL_NAME (entity) == global_scope_name
|
||
? 200 : 10);
|
||
break;
|
||
|
||
default:
|
||
/* Should not happen. */
|
||
gcc_unreachable ();
|
||
break;
|
||
}
|
||
scope->kind = kind;
|
||
|
||
push_binding_level (scope);
|
||
|
||
return scope;
|
||
}
|
||
|
||
/* We're about to leave current scope. Pop the top of the stack of
|
||
currently active scopes. Return the enclosing scope, now active. */
|
||
|
||
cxx_scope *
|
||
leave_scope (void)
|
||
{
|
||
cxx_scope *scope = current_binding_level;
|
||
|
||
if (scope->kind == sk_namespace && class_binding_level)
|
||
current_binding_level = class_binding_level;
|
||
|
||
/* We cannot leave a scope, if there are none left. */
|
||
if (NAMESPACE_LEVEL (global_namespace))
|
||
gcc_assert (!global_scope_p (scope));
|
||
|
||
if (ENABLE_SCOPE_CHECKING)
|
||
{
|
||
indent (--binding_depth);
|
||
cxx_scope_debug (scope, input_line, "leave");
|
||
if (is_class_level != (scope == class_binding_level))
|
||
{
|
||
indent (binding_depth);
|
||
verbatim ("XXX is_class_level != (current_scope == class_scope)\n");
|
||
}
|
||
is_class_level = 0;
|
||
}
|
||
|
||
#ifdef HANDLE_PRAGMA_VISIBILITY
|
||
if (scope->has_visibility)
|
||
pop_visibility ();
|
||
#endif
|
||
|
||
/* Move one nesting level up. */
|
||
current_binding_level = scope->level_chain;
|
||
|
||
/* Namespace-scopes are left most probably temporarily, not
|
||
completely; they can be reopened later, e.g. in namespace-extension
|
||
or any name binding activity that requires us to resume a
|
||
namespace. For classes, we cache some binding levels. For other
|
||
scopes, we just make the structure available for reuse. */
|
||
if (scope->kind != sk_namespace
|
||
&& scope->kind != sk_class)
|
||
{
|
||
scope->level_chain = free_binding_level;
|
||
gcc_assert (!ENABLE_SCOPE_CHECKING
|
||
|| scope->binding_depth == binding_depth);
|
||
free_binding_level = scope;
|
||
}
|
||
|
||
/* Find the innermost enclosing class scope, and reset
|
||
CLASS_BINDING_LEVEL appropriately. */
|
||
if (scope->kind == sk_class)
|
||
{
|
||
class_binding_level = NULL;
|
||
for (scope = current_binding_level; scope; scope = scope->level_chain)
|
||
if (scope->kind == sk_class)
|
||
{
|
||
class_binding_level = scope;
|
||
break;
|
||
}
|
||
}
|
||
|
||
return current_binding_level;
|
||
}
|
||
|
||
static void
|
||
resume_scope (struct cp_binding_level* b)
|
||
{
|
||
/* Resuming binding levels is meant only for namespaces,
|
||
and those cannot nest into classes. */
|
||
gcc_assert (!class_binding_level);
|
||
/* Also, resuming a non-directly nested namespace is a no-no. */
|
||
gcc_assert (b->level_chain == current_binding_level);
|
||
current_binding_level = b;
|
||
if (ENABLE_SCOPE_CHECKING)
|
||
{
|
||
b->binding_depth = binding_depth;
|
||
indent (binding_depth);
|
||
cxx_scope_debug (b, input_line, "resume");
|
||
is_class_level = 0;
|
||
binding_depth++;
|
||
}
|
||
}
|
||
|
||
/* Return the innermost binding level that is not for a class scope. */
|
||
|
||
static cxx_scope *
|
||
innermost_nonclass_level (void)
|
||
{
|
||
cxx_scope *b;
|
||
|
||
b = current_binding_level;
|
||
while (b->kind == sk_class)
|
||
b = b->level_chain;
|
||
|
||
return b;
|
||
}
|
||
|
||
/* We're defining an object of type TYPE. If it needs a cleanup, but
|
||
we're not allowed to add any more objects with cleanups to the current
|
||
scope, create a new binding level. */
|
||
|
||
void
|
||
maybe_push_cleanup_level (tree type)
|
||
{
|
||
if (type != error_mark_node
|
||
&& TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
|
||
&& current_binding_level->more_cleanups_ok == 0)
|
||
{
|
||
begin_scope (sk_cleanup, NULL);
|
||
current_binding_level->statement_list = push_stmt_list ();
|
||
}
|
||
}
|
||
|
||
/* Nonzero if we are currently in the global binding level. */
|
||
|
||
int
|
||
global_bindings_p (void)
|
||
{
|
||
return global_scope_p (current_binding_level);
|
||
}
|
||
|
||
/* True if we are currently in a toplevel binding level. This
|
||
means either the global binding level or a namespace in a toplevel
|
||
binding level. Since there are no non-toplevel namespace levels,
|
||
this really means any namespace or template parameter level. We
|
||
also include a class whose context is toplevel. */
|
||
|
||
bool
|
||
toplevel_bindings_p (void)
|
||
{
|
||
struct cp_binding_level *b = innermost_nonclass_level ();
|
||
|
||
return b->kind == sk_namespace || b->kind == sk_template_parms;
|
||
}
|
||
|
||
/* True if this is a namespace scope, or if we are defining a class
|
||
which is itself at namespace scope, or whose enclosing class is
|
||
such a class, etc. */
|
||
|
||
bool
|
||
namespace_bindings_p (void)
|
||
{
|
||
struct cp_binding_level *b = innermost_nonclass_level ();
|
||
|
||
return b->kind == sk_namespace;
|
||
}
|
||
|
||
/* True if the current level needs to have a BLOCK made. */
|
||
|
||
bool
|
||
kept_level_p (void)
|
||
{
|
||
return (current_binding_level->blocks != NULL_TREE
|
||
|| current_binding_level->keep
|
||
|| current_binding_level->kind == sk_cleanup
|
||
|| current_binding_level->names != NULL_TREE);
|
||
}
|
||
|
||
/* Returns the kind of the innermost scope. */
|
||
|
||
scope_kind
|
||
innermost_scope_kind (void)
|
||
{
|
||
return current_binding_level->kind;
|
||
}
|
||
|
||
/* Returns true if this scope was created to store template parameters. */
|
||
|
||
bool
|
||
template_parm_scope_p (void)
|
||
{
|
||
return innermost_scope_kind () == sk_template_parms;
|
||
}
|
||
|
||
/* If KEEP is true, make a BLOCK node for the next binding level,
|
||
unconditionally. Otherwise, use the normal logic to decide whether
|
||
or not to create a BLOCK. */
|
||
|
||
void
|
||
keep_next_level (bool keep)
|
||
{
|
||
keep_next_level_flag = keep;
|
||
}
|
||
|
||
/* Return the list of declarations of the current level.
|
||
Note that this list is in reverse order unless/until
|
||
you nreverse it; and when you do nreverse it, you must
|
||
store the result back using `storedecls' or you will lose. */
|
||
|
||
tree
|
||
getdecls (void)
|
||
{
|
||
return current_binding_level->names;
|
||
}
|
||
|
||
/* For debugging. */
|
||
static int no_print_functions = 0;
|
||
static int no_print_builtins = 0;
|
||
|
||
static void
|
||
print_binding_level (struct cp_binding_level* lvl)
|
||
{
|
||
tree t;
|
||
int i = 0, len;
|
||
fprintf (stderr, " blocks=%p", (void *) lvl->blocks);
|
||
if (lvl->more_cleanups_ok)
|
||
fprintf (stderr, " more-cleanups-ok");
|
||
if (lvl->have_cleanups)
|
||
fprintf (stderr, " have-cleanups");
|
||
fprintf (stderr, "\n");
|
||
if (lvl->names)
|
||
{
|
||
fprintf (stderr, " names:\t");
|
||
/* We can probably fit 3 names to a line? */
|
||
for (t = lvl->names; t; t = TREE_CHAIN (t))
|
||
{
|
||
if (no_print_functions && (TREE_CODE (t) == FUNCTION_DECL))
|
||
continue;
|
||
if (no_print_builtins
|
||
&& (TREE_CODE (t) == TYPE_DECL)
|
||
&& DECL_IS_BUILTIN (t))
|
||
continue;
|
||
|
||
/* Function decls tend to have longer names. */
|
||
if (TREE_CODE (t) == FUNCTION_DECL)
|
||
len = 3;
|
||
else
|
||
len = 2;
|
||
i += len;
|
||
if (i > 6)
|
||
{
|
||
fprintf (stderr, "\n\t");
|
||
i = len;
|
||
}
|
||
print_node_brief (stderr, "", t, 0);
|
||
if (t == error_mark_node)
|
||
break;
|
||
}
|
||
if (i)
|
||
fprintf (stderr, "\n");
|
||
}
|
||
if (VEC_length (cp_class_binding, lvl->class_shadowed))
|
||
{
|
||
size_t i;
|
||
cp_class_binding *b;
|
||
fprintf (stderr, " class-shadowed:");
|
||
for (i = 0;
|
||
VEC_iterate(cp_class_binding, lvl->class_shadowed, i, b);
|
||
++i)
|
||
fprintf (stderr, " %s ", IDENTIFIER_POINTER (b->identifier));
|
||
fprintf (stderr, "\n");
|
||
}
|
||
if (lvl->type_shadowed)
|
||
{
|
||
fprintf (stderr, " type-shadowed:");
|
||
for (t = lvl->type_shadowed; t; t = TREE_CHAIN (t))
|
||
{
|
||
fprintf (stderr, " %s ", IDENTIFIER_POINTER (TREE_PURPOSE (t)));
|
||
}
|
||
fprintf (stderr, "\n");
|
||
}
|
||
}
|
||
|
||
void
|
||
print_other_binding_stack (struct cp_binding_level *stack)
|
||
{
|
||
struct cp_binding_level *level;
|
||
for (level = stack; !global_scope_p (level); level = level->level_chain)
|
||
{
|
||
fprintf (stderr, "binding level %p\n", (void *) level);
|
||
print_binding_level (level);
|
||
}
|
||
}
|
||
|
||
void
|
||
print_binding_stack (void)
|
||
{
|
||
struct cp_binding_level *b;
|
||
fprintf (stderr, "current_binding_level=%p\n"
|
||
"class_binding_level=%p\n"
|
||
"NAMESPACE_LEVEL (global_namespace)=%p\n",
|
||
(void *) current_binding_level, (void *) class_binding_level,
|
||
(void *) NAMESPACE_LEVEL (global_namespace));
|
||
if (class_binding_level)
|
||
{
|
||
for (b = class_binding_level; b; b = b->level_chain)
|
||
if (b == current_binding_level)
|
||
break;
|
||
if (b)
|
||
b = class_binding_level;
|
||
else
|
||
b = current_binding_level;
|
||
}
|
||
else
|
||
b = current_binding_level;
|
||
print_other_binding_stack (b);
|
||
fprintf (stderr, "global:\n");
|
||
print_binding_level (NAMESPACE_LEVEL (global_namespace));
|
||
}
|
||
|
||
/* Return the type associated with id. */
|
||
|
||
tree
|
||
identifier_type_value (tree id)
|
||
{
|
||
timevar_push (TV_NAME_LOOKUP);
|
||
/* There is no type with that name, anywhere. */
|
||
if (REAL_IDENTIFIER_TYPE_VALUE (id) == NULL_TREE)
|
||
POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, NULL_TREE);
|
||
/* This is not the type marker, but the real thing. */
|
||
if (REAL_IDENTIFIER_TYPE_VALUE (id) != global_type_node)
|
||
POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, REAL_IDENTIFIER_TYPE_VALUE (id));
|
||
/* Have to search for it. It must be on the global level, now.
|
||
Ask lookup_name not to return non-types. */
|
||
id = lookup_name_real (id, 2, 1, /*block_p=*/true, 0, LOOKUP_COMPLAIN);
|
||
if (id)
|
||
POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, TREE_TYPE (id));
|
||
POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, NULL_TREE);
|
||
}
|
||
|
||
/* Return the IDENTIFIER_GLOBAL_VALUE of T, for use in common code, since
|
||
the definition of IDENTIFIER_GLOBAL_VALUE is different for C and C++. */
|
||
|
||
tree
|
||
identifier_global_value (tree t)
|
||
{
|
||
return IDENTIFIER_GLOBAL_VALUE (t);
|
||
}
|
||
|
||
/* Push a definition of struct, union or enum tag named ID. into
|
||
binding_level B. DECL is a TYPE_DECL for the type. We assume that
|
||
the tag ID is not already defined. */
|
||
|
||
static void
|
||
set_identifier_type_value_with_scope (tree id, tree decl, cxx_scope *b)
|
||
{
|
||
tree type;
|
||
|
||
if (b->kind != sk_namespace)
|
||
{
|
||
/* Shadow the marker, not the real thing, so that the marker
|
||
gets restored later. */
|
||
tree old_type_value = REAL_IDENTIFIER_TYPE_VALUE (id);
|
||
b->type_shadowed
|
||
= tree_cons (id, old_type_value, b->type_shadowed);
|
||
type = decl ? TREE_TYPE (decl) : NULL_TREE;
|
||
TREE_TYPE (b->type_shadowed) = type;
|
||
}
|
||
else
|
||
{
|
||
cxx_binding *binding =
|
||
binding_for_name (NAMESPACE_LEVEL (current_namespace), id);
|
||
gcc_assert (decl);
|
||
if (binding->value)
|
||
supplement_binding (binding, decl);
|
||
else
|
||
binding->value = decl;
|
||
|
||
/* Store marker instead of real type. */
|
||
type = global_type_node;
|
||
}
|
||
SET_IDENTIFIER_TYPE_VALUE (id, type);
|
||
}
|
||
|
||
/* As set_identifier_type_value_with_scope, but using
|
||
current_binding_level. */
|
||
|
||
void
|
||
set_identifier_type_value (tree id, tree decl)
|
||
{
|
||
set_identifier_type_value_with_scope (id, decl, current_binding_level);
|
||
}
|
||
|
||
/* Return the name for the constructor (or destructor) for the
|
||
specified class TYPE. When given a template, this routine doesn't
|
||
lose the specialization. */
|
||
|
||
static inline tree
|
||
constructor_name_full (tree type)
|
||
{
|
||
return TYPE_IDENTIFIER (TYPE_MAIN_VARIANT (type));
|
||
}
|
||
|
||
/* Return the name for the constructor (or destructor) for the
|
||
specified class. When given a template, return the plain
|
||
unspecialized name. */
|
||
|
||
tree
|
||
constructor_name (tree type)
|
||
{
|
||
tree name;
|
||
name = constructor_name_full (type);
|
||
if (IDENTIFIER_TEMPLATE (name))
|
||
name = IDENTIFIER_TEMPLATE (name);
|
||
return name;
|
||
}
|
||
|
||
/* Returns TRUE if NAME is the name for the constructor for TYPE. */
|
||
|
||
bool
|
||
constructor_name_p (tree name, tree type)
|
||
{
|
||
tree ctor_name;
|
||
|
||
if (!name)
|
||
return false;
|
||
|
||
if (TREE_CODE (name) != IDENTIFIER_NODE)
|
||
return false;
|
||
|
||
ctor_name = constructor_name_full (type);
|
||
if (name == ctor_name)
|
||
return true;
|
||
if (IDENTIFIER_TEMPLATE (ctor_name)
|
||
&& name == IDENTIFIER_TEMPLATE (ctor_name))
|
||
return true;
|
||
return false;
|
||
}
|
||
|
||
/* Counter used to create anonymous type names. */
|
||
|
||
static GTY(()) int anon_cnt;
|
||
|
||
/* Return an IDENTIFIER which can be used as a name for
|
||
anonymous structs and unions. */
|
||
|
||
tree
|
||
make_anon_name (void)
|
||
{
|
||
char buf[32];
|
||
|
||
sprintf (buf, ANON_AGGRNAME_FORMAT, anon_cnt++);
|
||
return get_identifier (buf);
|
||
}
|
||
|
||
/* Return (from the stack of) the BINDING, if any, established at SCOPE. */
|
||
|
||
static inline cxx_binding *
|
||
find_binding (cxx_scope *scope, cxx_binding *binding)
|
||
{
|
||
timevar_push (TV_NAME_LOOKUP);
|
||
|
||
for (; binding != NULL; binding = binding->previous)
|
||
if (binding->scope == scope)
|
||
POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, binding);
|
||
|
||
POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, (cxx_binding *)0);
|
||
}
|
||
|
||
/* Return the binding for NAME in SCOPE, if any. Otherwise, return NULL. */
|
||
|
||
static inline cxx_binding *
|
||
cxx_scope_find_binding_for_name (cxx_scope *scope, tree name)
|
||
{
|
||
cxx_binding *b = IDENTIFIER_NAMESPACE_BINDINGS (name);
|
||
if (b)
|
||
{
|
||
/* Fold-in case where NAME is used only once. */
|
||
if (scope == b->scope && b->previous == NULL)
|
||
return b;
|
||
return find_binding (scope, b);
|
||
}
|
||
return NULL;
|
||
}
|
||
|
||
/* Always returns a binding for name in scope. If no binding is
|
||
found, make a new one. */
|
||
|
||
static cxx_binding *
|
||
binding_for_name (cxx_scope *scope, tree name)
|
||
{
|
||
cxx_binding *result;
|
||
|
||
result = cxx_scope_find_binding_for_name (scope, name);
|
||
if (result)
|
||
return result;
|
||
/* Not found, make a new one. */
|
||
result = cxx_binding_make (NULL, NULL);
|
||
result->previous = IDENTIFIER_NAMESPACE_BINDINGS (name);
|
||
result->scope = scope;
|
||
result->is_local = false;
|
||
result->value_is_inherited = false;
|
||
IDENTIFIER_NAMESPACE_BINDINGS (name) = result;
|
||
return result;
|
||
}
|
||
|
||
/* Insert another USING_DECL into the current binding level, returning
|
||
this declaration. If this is a redeclaration, do nothing, and
|
||
return NULL_TREE if this not in namespace scope (in namespace
|
||
scope, a using decl might extend any previous bindings). */
|
||
|
||
static tree
|
||
push_using_decl (tree scope, tree name)
|
||
{
|
||
tree decl;
|
||
|
||
timevar_push (TV_NAME_LOOKUP);
|
||
gcc_assert (TREE_CODE (scope) == NAMESPACE_DECL);
|
||
gcc_assert (TREE_CODE (name) == IDENTIFIER_NODE);
|
||
for (decl = current_binding_level->usings; decl; decl = TREE_CHAIN (decl))
|
||
if (USING_DECL_SCOPE (decl) == scope && DECL_NAME (decl) == name)
|
||
break;
|
||
if (decl)
|
||
POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP,
|
||
namespace_bindings_p () ? decl : NULL_TREE);
|
||
decl = build_lang_decl (USING_DECL, name, NULL_TREE);
|
||
USING_DECL_SCOPE (decl) = scope;
|
||
TREE_CHAIN (decl) = current_binding_level->usings;
|
||
current_binding_level->usings = decl;
|
||
POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, decl);
|
||
}
|
||
|
||
/* Same as pushdecl, but define X in binding-level LEVEL. We rely on the
|
||
caller to set DECL_CONTEXT properly. */
|
||
|
||
tree
|
||
pushdecl_with_scope (tree x, cxx_scope *level, bool is_friend)
|
||
{
|
||
struct cp_binding_level *b;
|
||
tree function_decl = current_function_decl;
|
||
|
||
timevar_push (TV_NAME_LOOKUP);
|
||
current_function_decl = NULL_TREE;
|
||
if (level->kind == sk_class)
|
||
{
|
||
b = class_binding_level;
|
||
class_binding_level = level;
|
||
pushdecl_class_level (x);
|
||
class_binding_level = b;
|
||
}
|
||
else
|
||
{
|
||
b = current_binding_level;
|
||
current_binding_level = level;
|
||
x = pushdecl_maybe_friend (x, is_friend);
|
||
current_binding_level = b;
|
||
}
|
||
current_function_decl = function_decl;
|
||
POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, x);
|
||
}
|
||
|
||
/* DECL is a FUNCTION_DECL for a non-member function, which may have
|
||
other definitions already in place. We get around this by making
|
||
the value of the identifier point to a list of all the things that
|
||
want to be referenced by that name. It is then up to the users of
|
||
that name to decide what to do with that list.
|
||
|
||
DECL may also be a TEMPLATE_DECL, with a FUNCTION_DECL in its
|
||
DECL_TEMPLATE_RESULT. It is dealt with the same way.
|
||
|
||
FLAGS is a bitwise-or of the following values:
|
||
PUSH_LOCAL: Bind DECL in the current scope, rather than at
|
||
namespace scope.
|
||
PUSH_USING: DECL is being pushed as the result of a using
|
||
declaration.
|
||
|
||
IS_FRIEND is true if this is a friend declaration.
|
||
|
||
The value returned may be a previous declaration if we guessed wrong
|
||
about what language DECL should belong to (C or C++). Otherwise,
|
||
it's always DECL (and never something that's not a _DECL). */
|
||
|
||
static tree
|
||
push_overloaded_decl (tree decl, int flags, bool is_friend)
|
||
{
|
||
tree name = DECL_NAME (decl);
|
||
tree old;
|
||
tree new_binding;
|
||
int doing_global = (namespace_bindings_p () || !(flags & PUSH_LOCAL));
|
||
|
||
timevar_push (TV_NAME_LOOKUP);
|
||
if (doing_global)
|
||
old = namespace_binding (name, DECL_CONTEXT (decl));
|
||
else
|
||
old = lookup_name_innermost_nonclass_level (name);
|
||
|
||
if (old)
|
||
{
|
||
if (TREE_CODE (old) == TYPE_DECL && DECL_ARTIFICIAL (old))
|
||
{
|
||
tree t = TREE_TYPE (old);
|
||
if (IS_AGGR_TYPE (t) && warn_shadow
|
||
&& (! DECL_IN_SYSTEM_HEADER (decl)
|
||
|| ! DECL_IN_SYSTEM_HEADER (old)))
|
||
warning (0, "%q#D hides constructor for %q#T", decl, t);
|
||
old = NULL_TREE;
|
||
}
|
||
else if (is_overloaded_fn (old))
|
||
{
|
||
tree tmp;
|
||
|
||
for (tmp = old; tmp; tmp = OVL_NEXT (tmp))
|
||
{
|
||
tree fn = OVL_CURRENT (tmp);
|
||
tree dup;
|
||
|
||
if (TREE_CODE (tmp) == OVERLOAD && OVL_USED (tmp)
|
||
&& !(flags & PUSH_USING)
|
||
&& compparms (TYPE_ARG_TYPES (TREE_TYPE (fn)),
|
||
TYPE_ARG_TYPES (TREE_TYPE (decl)))
|
||
&& ! decls_match (fn, decl))
|
||
error ("%q#D conflicts with previous using declaration %q#D",
|
||
decl, fn);
|
||
|
||
dup = duplicate_decls (decl, fn, is_friend);
|
||
/* If DECL was a redeclaration of FN -- even an invalid
|
||
one -- pass that information along to our caller. */
|
||
if (dup == fn || dup == error_mark_node)
|
||
POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, dup);
|
||
}
|
||
|
||
/* We don't overload implicit built-ins. duplicate_decls()
|
||
may fail to merge the decls if the new decl is e.g. a
|
||
template function. */
|
||
if (TREE_CODE (old) == FUNCTION_DECL
|
||
&& DECL_ANTICIPATED (old)
|
||
&& !DECL_HIDDEN_FRIEND_P (old))
|
||
old = NULL;
|
||
}
|
||
else if (old == error_mark_node)
|
||
/* Ignore the undefined symbol marker. */
|
||
old = NULL_TREE;
|
||
else
|
||
{
|
||
error ("previous non-function declaration %q+#D", old);
|
||
error ("conflicts with function declaration %q#D", decl);
|
||
POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, decl);
|
||
}
|
||
}
|
||
|
||
if (old || TREE_CODE (decl) == TEMPLATE_DECL
|
||
/* If it's a using declaration, we always need to build an OVERLOAD,
|
||
because it's the only way to remember that the declaration comes
|
||
from 'using', and have the lookup behave correctly. */
|
||
|| (flags & PUSH_USING))
|
||
{
|
||
if (old && TREE_CODE (old) != OVERLOAD)
|
||
new_binding = ovl_cons (decl, ovl_cons (old, NULL_TREE));
|
||
else
|
||
new_binding = ovl_cons (decl, old);
|
||
if (flags & PUSH_USING)
|
||
OVL_USED (new_binding) = 1;
|
||
}
|
||
else
|
||
/* NAME is not ambiguous. */
|
||
new_binding = decl;
|
||
|
||
if (doing_global)
|
||
set_namespace_binding (name, current_namespace, new_binding);
|
||
else
|
||
{
|
||
/* We only create an OVERLOAD if there was a previous binding at
|
||
this level, or if decl is a template. In the former case, we
|
||
need to remove the old binding and replace it with the new
|
||
binding. We must also run through the NAMES on the binding
|
||
level where the name was bound to update the chain. */
|
||
|
||
if (TREE_CODE (new_binding) == OVERLOAD && old)
|
||
{
|
||
tree *d;
|
||
|
||
for (d = &IDENTIFIER_BINDING (name)->scope->names;
|
||
*d;
|
||
d = &TREE_CHAIN (*d))
|
||
if (*d == old
|
||
|| (TREE_CODE (*d) == TREE_LIST
|
||
&& TREE_VALUE (*d) == old))
|
||
{
|
||
if (TREE_CODE (*d) == TREE_LIST)
|
||
/* Just replace the old binding with the new. */
|
||
TREE_VALUE (*d) = new_binding;
|
||
else
|
||
/* Build a TREE_LIST to wrap the OVERLOAD. */
|
||
*d = tree_cons (NULL_TREE, new_binding,
|
||
TREE_CHAIN (*d));
|
||
|
||
/* And update the cxx_binding node. */
|
||
IDENTIFIER_BINDING (name)->value = new_binding;
|
||
POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, decl);
|
||
}
|
||
|
||
/* We should always find a previous binding in this case. */
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
/* Install the new binding. */
|
||
push_local_binding (name, new_binding, flags);
|
||
}
|
||
|
||
POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, decl);
|
||
}
|
||
|
||
/* Check a non-member using-declaration. Return the name and scope
|
||
being used, and the USING_DECL, or NULL_TREE on failure. */
|
||
|
||
static tree
|
||
validate_nonmember_using_decl (tree decl, tree scope, tree name)
|
||
{
|
||
/* [namespace.udecl]
|
||
A using-declaration for a class member shall be a
|
||
member-declaration. */
|
||
if (TYPE_P (scope))
|
||
{
|
||
error ("%qT is not a namespace", scope);
|
||
return NULL_TREE;
|
||
}
|
||
else if (scope == error_mark_node)
|
||
return NULL_TREE;
|
||
|
||
if (TREE_CODE (decl) == TEMPLATE_ID_EXPR)
|
||
{
|
||
/* 7.3.3/5
|
||
A using-declaration shall not name a template-id. */
|
||
error ("a using-declaration cannot specify a template-id. "
|
||
"Try %<using %D%>", name);
|
||
return NULL_TREE;
|
||
}
|
||
|
||
if (TREE_CODE (decl) == NAMESPACE_DECL)
|
||
{
|
||
error ("namespace %qD not allowed in using-declaration", decl);
|
||
return NULL_TREE;
|
||
}
|
||
|
||
if (TREE_CODE (decl) == SCOPE_REF)
|
||
{
|
||
/* It's a nested name with template parameter dependent scope.
|
||
This can only be using-declaration for class member. */
|
||
error ("%qT is not a namespace", TREE_OPERAND (decl, 0));
|
||
return NULL_TREE;
|
||
}
|
||
|
||
if (is_overloaded_fn (decl))
|
||
decl = get_first_fn (decl);
|
||
|
||
gcc_assert (DECL_P (decl));
|
||
|
||
/* Make a USING_DECL. */
|
||
return push_using_decl (scope, name);
|
||
}
|
||
|
||
/* Process local and global using-declarations. */
|
||
|
||
static void
|
||
do_nonmember_using_decl (tree scope, tree name, tree oldval, tree oldtype,
|
||
tree *newval, tree *newtype)
|
||
{
|
||
struct scope_binding decls = EMPTY_SCOPE_BINDING;
|
||
|
||
*newval = *newtype = NULL_TREE;
|
||
if (!qualified_lookup_using_namespace (name, scope, &decls, 0))
|
||
/* Lookup error */
|
||
return;
|
||
|
||
if (!decls.value && !decls.type)
|
||
{
|
||
error ("%qD not declared", name);
|
||
return;
|
||
}
|
||
|
||
/* It is impossible to overload a built-in function; any explicit
|
||
declaration eliminates the built-in declaration. So, if OLDVAL
|
||
is a built-in, then we can just pretend it isn't there. */
|
||
if (oldval
|
||
&& TREE_CODE (oldval) == FUNCTION_DECL
|
||
&& DECL_ANTICIPATED (oldval)
|
||
&& !DECL_HIDDEN_FRIEND_P (oldval))
|
||
oldval = NULL_TREE;
|
||
|
||
/* Check for using functions. */
|
||
if (decls.value && is_overloaded_fn (decls.value))
|
||
{
|
||
tree tmp, tmp1;
|
||
|
||
if (oldval && !is_overloaded_fn (oldval))
|
||
{
|
||
if (!DECL_IMPLICIT_TYPEDEF_P (oldval))
|
||
error ("%qD is already declared in this scope", name);
|
||
oldval = NULL_TREE;
|
||
}
|
||
|
||
*newval = oldval;
|
||
for (tmp = decls.value; tmp; tmp = OVL_NEXT (tmp))
|
||
{
|
||
tree new_fn = OVL_CURRENT (tmp);
|
||
|
||
/* [namespace.udecl]
|
||
|
||
If a function declaration in namespace scope or block
|
||
scope has the same name and the same parameter types as a
|
||
function introduced by a using declaration the program is
|
||
ill-formed. */
|
||
for (tmp1 = oldval; tmp1; tmp1 = OVL_NEXT (tmp1))
|
||
{
|
||
tree old_fn = OVL_CURRENT (tmp1);
|
||
|
||
if (new_fn == old_fn)
|
||
/* The function already exists in the current namespace. */
|
||
break;
|
||
else if (OVL_USED (tmp1))
|
||
continue; /* this is a using decl */
|
||
else if (compparms (TYPE_ARG_TYPES (TREE_TYPE (new_fn)),
|
||
TYPE_ARG_TYPES (TREE_TYPE (old_fn))))
|
||
{
|
||
gcc_assert (!DECL_ANTICIPATED (old_fn)
|
||
|| DECL_HIDDEN_FRIEND_P (old_fn));
|
||
|
||
/* There was already a non-using declaration in
|
||
this scope with the same parameter types. If both
|
||
are the same extern "C" functions, that's ok. */
|
||
if (decls_match (new_fn, old_fn))
|
||
break;
|
||
else
|
||
{
|
||
error ("%qD is already declared in this scope", name);
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* If we broke out of the loop, there's no reason to add
|
||
this function to the using declarations for this
|
||
scope. */
|
||
if (tmp1)
|
||
continue;
|
||
|
||
/* If we are adding to an existing OVERLOAD, then we no
|
||
longer know the type of the set of functions. */
|
||
if (*newval && TREE_CODE (*newval) == OVERLOAD)
|
||
TREE_TYPE (*newval) = unknown_type_node;
|
||
/* Add this new function to the set. */
|
||
*newval = build_overload (OVL_CURRENT (tmp), *newval);
|
||
/* If there is only one function, then we use its type. (A
|
||
using-declaration naming a single function can be used in
|
||
contexts where overload resolution cannot be
|
||
performed.) */
|
||
if (TREE_CODE (*newval) != OVERLOAD)
|
||
{
|
||
*newval = ovl_cons (*newval, NULL_TREE);
|
||
TREE_TYPE (*newval) = TREE_TYPE (OVL_CURRENT (tmp));
|
||
}
|
||
OVL_USED (*newval) = 1;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
*newval = decls.value;
|
||
if (oldval && !decls_match (*newval, oldval))
|
||
error ("%qD is already declared in this scope", name);
|
||
}
|
||
|
||
*newtype = decls.type;
|
||
if (oldtype && *newtype && !same_type_p (oldtype, *newtype))
|
||
{
|
||
error ("using declaration %qD introduced ambiguous type %qT",
|
||
name, oldtype);
|
||
return;
|
||
}
|
||
}
|
||
|
||
/* Process a using-declaration at function scope. */
|
||
|
||
void
|
||
do_local_using_decl (tree decl, tree scope, tree name)
|
||
{
|
||
tree oldval, oldtype, newval, newtype;
|
||
tree orig_decl = decl;
|
||
|
||
decl = validate_nonmember_using_decl (decl, scope, name);
|
||
if (decl == NULL_TREE)
|
||
return;
|
||
|
||
if (building_stmt_tree ()
|
||
&& at_function_scope_p ())
|
||
add_decl_expr (decl);
|
||
|
||
oldval = lookup_name_innermost_nonclass_level (name);
|
||
oldtype = lookup_type_current_level (name);
|
||
|
||
do_nonmember_using_decl (scope, name, oldval, oldtype, &newval, &newtype);
|
||
|
||
if (newval)
|
||
{
|
||
if (is_overloaded_fn (newval))
|
||
{
|
||
tree fn, term;
|
||
|
||
/* We only need to push declarations for those functions
|
||
that were not already bound in the current level.
|
||
The old value might be NULL_TREE, it might be a single
|
||
function, or an OVERLOAD. */
|
||
if (oldval && TREE_CODE (oldval) == OVERLOAD)
|
||
term = OVL_FUNCTION (oldval);
|
||
else
|
||
term = oldval;
|
||
for (fn = newval; fn && OVL_CURRENT (fn) != term;
|
||
fn = OVL_NEXT (fn))
|
||
push_overloaded_decl (OVL_CURRENT (fn),
|
||
PUSH_LOCAL | PUSH_USING,
|
||
false);
|
||
}
|
||
else
|
||
push_local_binding (name, newval, PUSH_USING);
|
||
}
|
||
if (newtype)
|
||
{
|
||
push_local_binding (name, newtype, PUSH_USING);
|
||
set_identifier_type_value (name, newtype);
|
||
}
|
||
|
||
/* Emit debug info. */
|
||
if (!processing_template_decl)
|
||
cp_emit_debug_info_for_using (orig_decl, current_scope());
|
||
}
|
||
|
||
/* Returns true if ROOT (a namespace, class, or function) encloses
|
||
CHILD. CHILD may be either a class type or a namespace. */
|
||
|
||
bool
|
||
is_ancestor (tree root, tree child)
|
||
{
|
||
gcc_assert ((TREE_CODE (root) == NAMESPACE_DECL
|
||
|| TREE_CODE (root) == FUNCTION_DECL
|
||
|| CLASS_TYPE_P (root)));
|
||
gcc_assert ((TREE_CODE (child) == NAMESPACE_DECL
|
||
|| CLASS_TYPE_P (child)));
|
||
|
||
/* The global namespace encloses everything. */
|
||
if (root == global_namespace)
|
||
return true;
|
||
|
||
while (true)
|
||
{
|
||
/* If we've run out of scopes, stop. */
|
||
if (!child)
|
||
return false;
|
||
/* If we've reached the ROOT, it encloses CHILD. */
|
||
if (root == child)
|
||
return true;
|
||
/* Go out one level. */
|
||
if (TYPE_P (child))
|
||
child = TYPE_NAME (child);
|
||
child = DECL_CONTEXT (child);
|
||
}
|
||
}
|
||
|
||
/* Enter the class or namespace scope indicated by T suitable for name
|
||
lookup. T can be arbitrary scope, not necessary nested inside the
|
||
current scope. Returns a non-null scope to pop iff pop_scope
|
||
should be called later to exit this scope. */
|
||
|
||
tree
|
||
push_scope (tree t)
|
||
{
|
||
if (TREE_CODE (t) == NAMESPACE_DECL)
|
||
push_decl_namespace (t);
|
||
else if (CLASS_TYPE_P (t))
|
||
{
|
||
if (!at_class_scope_p ()
|
||
|| !same_type_p (current_class_type, t))
|
||
push_nested_class (t);
|
||
else
|
||
/* T is the same as the current scope. There is therefore no
|
||
need to re-enter the scope. Since we are not actually
|
||
pushing a new scope, our caller should not call
|
||
pop_scope. */
|
||
t = NULL_TREE;
|
||
}
|
||
|
||
return t;
|
||
}
|
||
|
||
/* Leave scope pushed by push_scope. */
|
||
|
||
void
|
||
pop_scope (tree t)
|
||
{
|
||
if (TREE_CODE (t) == NAMESPACE_DECL)
|
||
pop_decl_namespace ();
|
||
else if CLASS_TYPE_P (t)
|
||
pop_nested_class ();
|
||
}
|
||
|
||
/* Subroutine of push_inner_scope. */
|
||
|
||
static void
|
||
push_inner_scope_r (tree outer, tree inner)
|
||
{
|
||
tree prev;
|
||
|
||
if (outer == inner
|
||
|| (TREE_CODE (inner) != NAMESPACE_DECL && !CLASS_TYPE_P (inner)))
|
||
return;
|
||
|
||
prev = CP_DECL_CONTEXT (TREE_CODE (inner) == NAMESPACE_DECL ? inner : TYPE_NAME (inner));
|
||
if (outer != prev)
|
||
push_inner_scope_r (outer, prev);
|
||
if (TREE_CODE (inner) == NAMESPACE_DECL)
|
||
{
|
||
struct cp_binding_level *save_template_parm = 0;
|
||
/* Temporary take out template parameter scopes. They are saved
|
||
in reversed order in save_template_parm. */
|
||
while (current_binding_level->kind == sk_template_parms)
|
||
{
|
||
struct cp_binding_level *b = current_binding_level;
|
||
current_binding_level = b->level_chain;
|
||
b->level_chain = save_template_parm;
|
||
save_template_parm = b;
|
||
}
|
||
|
||
resume_scope (NAMESPACE_LEVEL (inner));
|
||
current_namespace = inner;
|
||
|
||
/* Restore template parameter scopes. */
|
||
while (save_template_parm)
|
||
{
|
||
struct cp_binding_level *b = save_template_parm;
|
||
save_template_parm = b->level_chain;
|
||
b->level_chain = current_binding_level;
|
||
current_binding_level = b;
|
||
}
|
||
}
|
||
else
|
||
pushclass (inner);
|
||
}
|
||
|
||
/* Enter the scope INNER from current scope. INNER must be a scope
|
||
nested inside current scope. This works with both name lookup and
|
||
pushing name into scope. In case a template parameter scope is present,
|
||
namespace is pushed under the template parameter scope according to
|
||
name lookup rule in 14.6.1/6.
|
||
|
||
Return the former current scope suitable for pop_inner_scope. */
|
||
|
||
tree
|
||
push_inner_scope (tree inner)
|
||
{
|
||
tree outer = current_scope ();
|
||
if (!outer)
|
||
outer = current_namespace;
|
||
|
||
push_inner_scope_r (outer, inner);
|
||
return outer;
|
||
}
|
||
|
||
/* Exit the current scope INNER back to scope OUTER. */
|
||
|
||
void
|
||
pop_inner_scope (tree outer, tree inner)
|
||
{
|
||
if (outer == inner
|
||
|| (TREE_CODE (inner) != NAMESPACE_DECL && !CLASS_TYPE_P (inner)))
|
||
return;
|
||
|
||
while (outer != inner)
|
||
{
|
||
if (TREE_CODE (inner) == NAMESPACE_DECL)
|
||
{
|
||
struct cp_binding_level *save_template_parm = 0;
|
||
/* Temporary take out template parameter scopes. They are saved
|
||
in reversed order in save_template_parm. */
|
||
while (current_binding_level->kind == sk_template_parms)
|
||
{
|
||
struct cp_binding_level *b = current_binding_level;
|
||
current_binding_level = b->level_chain;
|
||
b->level_chain = save_template_parm;
|
||
save_template_parm = b;
|
||
}
|
||
|
||
pop_namespace ();
|
||
|
||
/* Restore template parameter scopes. */
|
||
while (save_template_parm)
|
||
{
|
||
struct cp_binding_level *b = save_template_parm;
|
||
save_template_parm = b->level_chain;
|
||
b->level_chain = current_binding_level;
|
||
current_binding_level = b;
|
||
}
|
||
}
|
||
else
|
||
popclass ();
|
||
|
||
inner = CP_DECL_CONTEXT (TREE_CODE (inner) == NAMESPACE_DECL ? inner : TYPE_NAME (inner));
|
||
}
|
||
}
|
||
|
||
/* Do a pushlevel for class declarations. */
|
||
|
||
void
|
||
pushlevel_class (void)
|
||
{
|
||
if (ENABLE_SCOPE_CHECKING)
|
||
is_class_level = 1;
|
||
|
||
class_binding_level = begin_scope (sk_class, current_class_type);
|
||
}
|
||
|
||
/* ...and a poplevel for class declarations. */
|
||
|
||
void
|
||
poplevel_class (void)
|
||
{
|
||
struct cp_binding_level *level = class_binding_level;
|
||
cp_class_binding *cb;
|
||
size_t i;
|
||
tree shadowed;
|
||
|
||
timevar_push (TV_NAME_LOOKUP);
|
||
gcc_assert (level != 0);
|
||
|
||
/* If we're leaving a toplevel class, cache its binding level. */
|
||
if (current_class_depth == 1)
|
||
previous_class_level = level;
|
||
for (shadowed = level->type_shadowed;
|
||
shadowed;
|
||
shadowed = TREE_CHAIN (shadowed))
|
||
SET_IDENTIFIER_TYPE_VALUE (TREE_PURPOSE (shadowed), TREE_VALUE (shadowed));
|
||
|
||
/* Remove the bindings for all of the class-level declarations. */
|
||
if (level->class_shadowed)
|
||
{
|
||
for (i = 0;
|
||
VEC_iterate (cp_class_binding, level->class_shadowed, i, cb);
|
||
++i)
|
||
IDENTIFIER_BINDING (cb->identifier) = cb->base.previous;
|
||
ggc_free (level->class_shadowed);
|
||
level->class_shadowed = NULL;
|
||
}
|
||
|
||
/* Now, pop out of the binding level which we created up in the
|
||
`pushlevel_class' routine. */
|
||
if (ENABLE_SCOPE_CHECKING)
|
||
is_class_level = 1;
|
||
|
||
leave_scope ();
|
||
timevar_pop (TV_NAME_LOOKUP);
|
||
}
|
||
|
||
/* Set INHERITED_VALUE_BINDING_P on BINDING to true or false, as
|
||
appropriate. DECL is the value to which a name has just been
|
||
bound. CLASS_TYPE is the class in which the lookup occurred. */
|
||
|
||
static void
|
||
set_inherited_value_binding_p (cxx_binding *binding, tree decl,
|
||
tree class_type)
|
||
{
|
||
if (binding->value == decl && TREE_CODE (decl) != TREE_LIST)
|
||
{
|
||
tree context;
|
||
|
||
if (TREE_CODE (decl) == OVERLOAD)
|
||
context = CP_DECL_CONTEXT (OVL_CURRENT (decl));
|
||
else
|
||
{
|
||
gcc_assert (DECL_P (decl));
|
||
context = context_for_name_lookup (decl);
|
||
}
|
||
|
||
if (is_properly_derived_from (class_type, context))
|
||
INHERITED_VALUE_BINDING_P (binding) = 1;
|
||
else
|
||
INHERITED_VALUE_BINDING_P (binding) = 0;
|
||
}
|
||
else if (binding->value == decl)
|
||
/* We only encounter a TREE_LIST when there is an ambiguity in the
|
||
base classes. Such an ambiguity can be overridden by a
|
||
definition in this class. */
|
||
INHERITED_VALUE_BINDING_P (binding) = 1;
|
||
else
|
||
INHERITED_VALUE_BINDING_P (binding) = 0;
|
||
}
|
||
|
||
/* Make the declaration of X appear in CLASS scope. */
|
||
|
||
bool
|
||
pushdecl_class_level (tree x)
|
||
{
|
||
tree name;
|
||
bool is_valid = true;
|
||
|
||
timevar_push (TV_NAME_LOOKUP);
|
||
/* Get the name of X. */
|
||
if (TREE_CODE (x) == OVERLOAD)
|
||
name = DECL_NAME (get_first_fn (x));
|
||
else
|
||
name = DECL_NAME (x);
|
||
|
||
if (name)
|
||
{
|
||
is_valid = push_class_level_binding (name, x);
|
||
if (TREE_CODE (x) == TYPE_DECL)
|
||
set_identifier_type_value (name, x);
|
||
}
|
||
else if (ANON_AGGR_TYPE_P (TREE_TYPE (x)))
|
||
{
|
||
/* If X is an anonymous aggregate, all of its members are
|
||
treated as if they were members of the class containing the
|
||
aggregate, for naming purposes. */
|
||
tree f;
|
||
|
||
for (f = TYPE_FIELDS (TREE_TYPE (x)); f; f = TREE_CHAIN (f))
|
||
{
|
||
location_t save_location = input_location;
|
||
input_location = DECL_SOURCE_LOCATION (f);
|
||
if (!pushdecl_class_level (f))
|
||
is_valid = false;
|
||
input_location = save_location;
|
||
}
|
||
}
|
||
POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, is_valid);
|
||
}
|
||
|
||
/* Return the BINDING (if any) for NAME in SCOPE, which is a class
|
||
scope. If the value returned is non-NULL, and the PREVIOUS field
|
||
is not set, callers must set the PREVIOUS field explicitly. */
|
||
|
||
static cxx_binding *
|
||
get_class_binding (tree name, cxx_scope *scope)
|
||
{
|
||
tree class_type;
|
||
tree type_binding;
|
||
tree value_binding;
|
||
cxx_binding *binding;
|
||
|
||
class_type = scope->this_entity;
|
||
|
||
/* Get the type binding. */
|
||
type_binding = lookup_member (class_type, name,
|
||
/*protect=*/2, /*want_type=*/true);
|
||
/* Get the value binding. */
|
||
value_binding = lookup_member (class_type, name,
|
||
/*protect=*/2, /*want_type=*/false);
|
||
|
||
if (value_binding
|
||
&& (TREE_CODE (value_binding) == TYPE_DECL
|
||
|| DECL_CLASS_TEMPLATE_P (value_binding)
|
||
|| (TREE_CODE (value_binding) == TREE_LIST
|
||
&& TREE_TYPE (value_binding) == error_mark_node
|
||
&& (TREE_CODE (TREE_VALUE (value_binding))
|
||
== TYPE_DECL))))
|
||
/* We found a type binding, even when looking for a non-type
|
||
binding. This means that we already processed this binding
|
||
above. */
|
||
;
|
||
else if (value_binding)
|
||
{
|
||
if (TREE_CODE (value_binding) == TREE_LIST
|
||
&& TREE_TYPE (value_binding) == error_mark_node)
|
||
/* NAME is ambiguous. */
|
||
;
|
||
else if (BASELINK_P (value_binding))
|
||
/* NAME is some overloaded functions. */
|
||
value_binding = BASELINK_FUNCTIONS (value_binding);
|
||
}
|
||
|
||
/* If we found either a type binding or a value binding, create a
|
||
new binding object. */
|
||
if (type_binding || value_binding)
|
||
{
|
||
binding = new_class_binding (name,
|
||
value_binding,
|
||
type_binding,
|
||
scope);
|
||
/* This is a class-scope binding, not a block-scope binding. */
|
||
LOCAL_BINDING_P (binding) = 0;
|
||
set_inherited_value_binding_p (binding, value_binding, class_type);
|
||
}
|
||
else
|
||
binding = NULL;
|
||
|
||
return binding;
|
||
}
|
||
|
||
/* Make the declaration(s) of X appear in CLASS scope under the name
|
||
NAME. Returns true if the binding is valid. */
|
||
|
||
bool
|
||
push_class_level_binding (tree name, tree x)
|
||
{
|
||
cxx_binding *binding;
|
||
tree decl = x;
|
||
bool ok;
|
||
|
||
timevar_push (TV_NAME_LOOKUP);
|
||
/* The class_binding_level will be NULL if x is a template
|
||
parameter name in a member template. */
|
||
if (!class_binding_level)
|
||
POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, true);
|
||
|
||
if (name == error_mark_node)
|
||
POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, false);
|
||
|
||
/* Check for invalid member names. */
|
||
gcc_assert (TYPE_BEING_DEFINED (current_class_type));
|
||
/* We could have been passed a tree list if this is an ambiguous
|
||
declaration. If so, pull the declaration out because
|
||
check_template_shadow will not handle a TREE_LIST. */
|
||
if (TREE_CODE (decl) == TREE_LIST
|
||
&& TREE_TYPE (decl) == error_mark_node)
|
||
decl = TREE_VALUE (decl);
|
||
|
||
check_template_shadow (decl);
|
||
|
||
/* [class.mem]
|
||
|
||
If T is the name of a class, then each of the following shall
|
||
have a name different from T:
|
||
|
||
-- every static data member of class T;
|
||
|
||
-- every member of class T that is itself a type;
|
||
|
||
-- every enumerator of every member of class T that is an
|
||
enumerated type;
|
||
|
||
-- every member of every anonymous union that is a member of
|
||
class T.
|
||
|
||
(Non-static data members were also forbidden to have the same
|
||
name as T until TC1.) */
|
||
if ((TREE_CODE (x) == VAR_DECL
|
||
|| TREE_CODE (x) == CONST_DECL
|
||
|| (TREE_CODE (x) == TYPE_DECL
|
||
&& !DECL_SELF_REFERENCE_P (x))
|
||
/* A data member of an anonymous union. */
|
||
|| (TREE_CODE (x) == FIELD_DECL
|
||
&& DECL_CONTEXT (x) != current_class_type))
|
||
&& DECL_NAME (x) == constructor_name (current_class_type))
|
||
{
|
||
tree scope = context_for_name_lookup (x);
|
||
if (TYPE_P (scope) && same_type_p (scope, current_class_type))
|
||
{
|
||
error ("%qD has the same name as the class in which it is "
|
||
"declared",
|
||
x);
|
||
POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, false);
|
||
}
|
||
}
|
||
|
||
/* Get the current binding for NAME in this class, if any. */
|
||
binding = IDENTIFIER_BINDING (name);
|
||
if (!binding || binding->scope != class_binding_level)
|
||
{
|
||
binding = get_class_binding (name, class_binding_level);
|
||
/* If a new binding was created, put it at the front of the
|
||
IDENTIFIER_BINDING list. */
|
||
if (binding)
|
||
{
|
||
binding->previous = IDENTIFIER_BINDING (name);
|
||
IDENTIFIER_BINDING (name) = binding;
|
||
}
|
||
}
|
||
|
||
/* If there is already a binding, then we may need to update the
|
||
current value. */
|
||
if (binding && binding->value)
|
||
{
|
||
tree bval = binding->value;
|
||
tree old_decl = NULL_TREE;
|
||
|
||
if (INHERITED_VALUE_BINDING_P (binding))
|
||
{
|
||
/* If the old binding was from a base class, and was for a
|
||
tag name, slide it over to make room for the new binding.
|
||
The old binding is still visible if explicitly qualified
|
||
with a class-key. */
|
||
if (TREE_CODE (bval) == TYPE_DECL && DECL_ARTIFICIAL (bval)
|
||
&& !(TREE_CODE (x) == TYPE_DECL && DECL_ARTIFICIAL (x)))
|
||
{
|
||
old_decl = binding->type;
|
||
binding->type = bval;
|
||
binding->value = NULL_TREE;
|
||
INHERITED_VALUE_BINDING_P (binding) = 0;
|
||
}
|
||
else
|
||
{
|
||
old_decl = bval;
|
||
/* Any inherited type declaration is hidden by the type
|
||
declaration in the derived class. */
|
||
if (TREE_CODE (x) == TYPE_DECL && DECL_ARTIFICIAL (x))
|
||
binding->type = NULL_TREE;
|
||
}
|
||
}
|
||
else if (TREE_CODE (x) == OVERLOAD && is_overloaded_fn (bval))
|
||
old_decl = bval;
|
||
else if (TREE_CODE (x) == USING_DECL && TREE_CODE (bval) == USING_DECL)
|
||
POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, true);
|
||
else if (TREE_CODE (x) == USING_DECL && is_overloaded_fn (bval))
|
||
old_decl = bval;
|
||
else if (TREE_CODE (bval) == USING_DECL && is_overloaded_fn (x))
|
||
POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, true);
|
||
|
||
if (old_decl && binding->scope == class_binding_level)
|
||
{
|
||
binding->value = x;
|
||
/* It is always safe to clear INHERITED_VALUE_BINDING_P
|
||
here. This function is only used to register bindings
|
||
from with the class definition itself. */
|
||
INHERITED_VALUE_BINDING_P (binding) = 0;
|
||
POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, true);
|
||
}
|
||
}
|
||
|
||
/* Note that we declared this value so that we can issue an error if
|
||
this is an invalid redeclaration of a name already used for some
|
||
other purpose. */
|
||
note_name_declared_in_class (name, decl);
|
||
|
||
/* If we didn't replace an existing binding, put the binding on the
|
||
stack of bindings for the identifier, and update the shadowed
|
||
list. */
|
||
if (binding && binding->scope == class_binding_level)
|
||
/* Supplement the existing binding. */
|
||
ok = supplement_binding (binding, decl);
|
||
else
|
||
{
|
||
/* Create a new binding. */
|
||
push_binding (name, decl, class_binding_level);
|
||
ok = true;
|
||
}
|
||
|
||
POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, ok);
|
||
}
|
||
|
||
/* Process "using SCOPE::NAME" in a class scope. Return the
|
||
USING_DECL created. */
|
||
|
||
tree
|
||
do_class_using_decl (tree scope, tree name)
|
||
{
|
||
/* The USING_DECL returned by this function. */
|
||
tree value;
|
||
/* The declaration (or declarations) name by this using
|
||
declaration. NULL if we are in a template and cannot figure out
|
||
what has been named. */
|
||
tree decl;
|
||
/* True if SCOPE is a dependent type. */
|
||
bool scope_dependent_p;
|
||
/* True if SCOPE::NAME is dependent. */
|
||
bool name_dependent_p;
|
||
/* True if any of the bases of CURRENT_CLASS_TYPE are dependent. */
|
||
bool bases_dependent_p;
|
||
tree binfo;
|
||
tree base_binfo;
|
||
int i;
|
||
|
||
if (name == error_mark_node)
|
||
return NULL_TREE;
|
||
|
||
if (!scope || !TYPE_P (scope))
|
||
{
|
||
error ("using-declaration for non-member at class scope");
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Make sure the name is not invalid */
|
||
if (TREE_CODE (name) == BIT_NOT_EXPR)
|
||
{
|
||
error ("%<%T::%D%> names destructor", scope, name);
|
||
return NULL_TREE;
|
||
}
|
||
if (constructor_name_p (name, scope))
|
||
{
|
||
error ("%<%T::%D%> names constructor", scope, name);
|
||
return NULL_TREE;
|
||
}
|
||
if (constructor_name_p (name, current_class_type))
|
||
{
|
||
error ("%<%T::%D%> names constructor in %qT",
|
||
scope, name, current_class_type);
|
||
return NULL_TREE;
|
||
}
|
||
|
||
scope_dependent_p = dependent_type_p (scope);
|
||
name_dependent_p = (scope_dependent_p
|
||
|| (IDENTIFIER_TYPENAME_P (name)
|
||
&& dependent_type_p (TREE_TYPE (name))));
|
||
|
||
bases_dependent_p = false;
|
||
if (processing_template_decl)
|
||
for (binfo = TYPE_BINFO (current_class_type), i = 0;
|
||
BINFO_BASE_ITERATE (binfo, i, base_binfo);
|
||
i++)
|
||
if (dependent_type_p (TREE_TYPE (base_binfo)))
|
||
{
|
||
bases_dependent_p = true;
|
||
break;
|
||
}
|
||
|
||
decl = NULL_TREE;
|
||
|
||
/* From [namespace.udecl]:
|
||
|
||
A using-declaration used as a member-declaration shall refer to a
|
||
member of a base class of the class being defined.
|
||
|
||
In general, we cannot check this constraint in a template because
|
||
we do not know the entire set of base classes of the current
|
||
class type. However, if all of the base classes are
|
||
non-dependent, then we can avoid delaying the check until
|
||
instantiation. */
|
||
if (!scope_dependent_p)
|
||
{
|
||
base_kind b_kind;
|
||
binfo = lookup_base (current_class_type, scope, ba_any, &b_kind);
|
||
if (b_kind < bk_proper_base)
|
||
{
|
||
if (!bases_dependent_p)
|
||
{
|
||
error_not_base_type (scope, current_class_type);
|
||
return NULL_TREE;
|
||
}
|
||
}
|
||
else if (!name_dependent_p)
|
||
{
|
||
decl = lookup_member (binfo, name, 0, false);
|
||
if (!decl)
|
||
{
|
||
error ("no members matching %<%T::%D%> in %q#T", scope, name,
|
||
scope);
|
||
return NULL_TREE;
|
||
}
|
||
/* The binfo from which the functions came does not matter. */
|
||
if (BASELINK_P (decl))
|
||
decl = BASELINK_FUNCTIONS (decl);
|
||
}
|
||
}
|
||
|
||
value = build_lang_decl (USING_DECL, name, NULL_TREE);
|
||
USING_DECL_DECLS (value) = decl;
|
||
USING_DECL_SCOPE (value) = scope;
|
||
DECL_DEPENDENT_P (value) = !decl;
|
||
|
||
return value;
|
||
}
|
||
|
||
|
||
/* Return the binding value for name in scope. */
|
||
|
||
tree
|
||
namespace_binding (tree name, tree scope)
|
||
{
|
||
cxx_binding *binding;
|
||
|
||
if (scope == NULL)
|
||
scope = global_namespace;
|
||
else
|
||
/* Unnecessary for the global namespace because it can't be an alias. */
|
||
scope = ORIGINAL_NAMESPACE (scope);
|
||
|
||
binding = cxx_scope_find_binding_for_name (NAMESPACE_LEVEL (scope), name);
|
||
|
||
return binding ? binding->value : NULL_TREE;
|
||
}
|
||
|
||
/* Set the binding value for name in scope. */
|
||
|
||
void
|
||
set_namespace_binding (tree name, tree scope, tree val)
|
||
{
|
||
cxx_binding *b;
|
||
|
||
timevar_push (TV_NAME_LOOKUP);
|
||
if (scope == NULL_TREE)
|
||
scope = global_namespace;
|
||
b = binding_for_name (NAMESPACE_LEVEL (scope), name);
|
||
if (!b->value || TREE_CODE (val) == OVERLOAD || val == error_mark_node)
|
||
b->value = val;
|
||
else
|
||
supplement_binding (b, val);
|
||
timevar_pop (TV_NAME_LOOKUP);
|
||
}
|
||
|
||
/* Set the context of a declaration to scope. Complain if we are not
|
||
outside scope. */
|
||
|
||
void
|
||
set_decl_namespace (tree decl, tree scope, bool friendp)
|
||
{
|
||
tree old, fn;
|
||
|
||
/* Get rid of namespace aliases. */
|
||
scope = ORIGINAL_NAMESPACE (scope);
|
||
|
||
/* It is ok for friends to be qualified in parallel space. */
|
||
if (!friendp && !is_ancestor (current_namespace, scope))
|
||
error ("declaration of %qD not in a namespace surrounding %qD",
|
||
decl, scope);
|
||
DECL_CONTEXT (decl) = FROB_CONTEXT (scope);
|
||
|
||
/* Writing "int N::i" to declare a variable within "N" is invalid. */
|
||
if (scope == current_namespace)
|
||
{
|
||
if (at_namespace_scope_p ())
|
||
error ("explicit qualification in declaration of %qD",
|
||
decl);
|
||
return;
|
||
}
|
||
|
||
/* See whether this has been declared in the namespace. */
|
||
old = lookup_qualified_name (scope, DECL_NAME (decl), false, true);
|
||
if (!old)
|
||
/* No old declaration at all. */
|
||
goto complain;
|
||
if (!is_overloaded_fn (decl))
|
||
/* Don't compare non-function decls with decls_match here, since
|
||
it can't check for the correct constness at this
|
||
point. pushdecl will find those errors later. */
|
||
return;
|
||
/* Since decl is a function, old should contain a function decl. */
|
||
if (!is_overloaded_fn (old))
|
||
goto complain;
|
||
fn = OVL_CURRENT (old);
|
||
if (!is_associated_namespace (scope, CP_DECL_CONTEXT (fn)))
|
||
goto complain;
|
||
/* A template can be explicitly specialized in any namespace. */
|
||
if (processing_explicit_instantiation)
|
||
return;
|
||
if (processing_template_decl || processing_specialization)
|
||
/* We have not yet called push_template_decl to turn a
|
||
FUNCTION_DECL into a TEMPLATE_DECL, so the declarations won't
|
||
match. But, we'll check later, when we construct the
|
||
template. */
|
||
return;
|
||
/* Instantiations or specializations of templates may be declared as
|
||
friends in any namespace. */
|
||
if (friendp && DECL_USE_TEMPLATE (decl))
|
||
return;
|
||
if (is_overloaded_fn (old))
|
||
{
|
||
for (; old; old = OVL_NEXT (old))
|
||
if (decls_match (decl, OVL_CURRENT (old)))
|
||
return;
|
||
}
|
||
else if (decls_match (decl, old))
|
||
return;
|
||
complain:
|
||
error ("%qD should have been declared inside %qD", decl, scope);
|
||
}
|
||
|
||
/* Return the namespace where the current declaration is declared. */
|
||
|
||
static tree
|
||
current_decl_namespace (void)
|
||
{
|
||
tree result;
|
||
/* If we have been pushed into a different namespace, use it. */
|
||
if (decl_namespace_list)
|
||
return TREE_PURPOSE (decl_namespace_list);
|
||
|
||
if (current_class_type)
|
||
result = decl_namespace_context (current_class_type);
|
||
else if (current_function_decl)
|
||
result = decl_namespace_context (current_function_decl);
|
||
else
|
||
result = current_namespace;
|
||
return result;
|
||
}
|
||
|
||
/* Push into the scope of the NAME namespace. If NAME is NULL_TREE, then we
|
||
select a name that is unique to this compilation unit. */
|
||
|
||
void
|
||
push_namespace (tree name)
|
||
{
|
||
push_namespace_with_attribs (name, NULL_TREE);
|
||
}
|
||
|
||
/* Same, but specify attributes to apply to the namespace. The attributes
|
||
only apply to the current namespace-body, not to any later extensions. */
|
||
|
||
void
|
||
push_namespace_with_attribs (tree name, tree attributes)
|
||
{
|
||
tree d = NULL_TREE;
|
||
int need_new = 1;
|
||
int implicit_use = 0;
|
||
bool anon = !name;
|
||
|
||
timevar_push (TV_NAME_LOOKUP);
|
||
|
||
/* We should not get here if the global_namespace is not yet constructed
|
||
nor if NAME designates the global namespace: The global scope is
|
||
constructed elsewhere. */
|
||
gcc_assert (global_namespace != NULL && name != global_scope_name);
|
||
|
||
if (anon)
|
||
{
|
||
/* The name of anonymous namespace is unique for the translation
|
||
unit. */
|
||
if (!anonymous_namespace_name)
|
||
anonymous_namespace_name = get_file_function_name ('N');
|
||
name = anonymous_namespace_name;
|
||
d = IDENTIFIER_NAMESPACE_VALUE (name);
|
||
if (d)
|
||
/* Reopening anonymous namespace. */
|
||
need_new = 0;
|
||
implicit_use = 1;
|
||
}
|
||
else
|
||
{
|
||
/* Check whether this is an extended namespace definition. */
|
||
d = IDENTIFIER_NAMESPACE_VALUE (name);
|
||
if (d != NULL_TREE && TREE_CODE (d) == NAMESPACE_DECL)
|
||
{
|
||
need_new = 0;
|
||
if (DECL_NAMESPACE_ALIAS (d))
|
||
{
|
||
error ("namespace alias %qD not allowed here, assuming %qD",
|
||
d, DECL_NAMESPACE_ALIAS (d));
|
||
d = DECL_NAMESPACE_ALIAS (d);
|
||
}
|
||
}
|
||
}
|
||
|
||
if (need_new)
|
||
{
|
||
/* Make a new namespace, binding the name to it. */
|
||
d = build_lang_decl (NAMESPACE_DECL, name, void_type_node);
|
||
DECL_CONTEXT (d) = FROB_CONTEXT (current_namespace);
|
||
/* The name of this namespace is not visible to other translation
|
||
units if it is an anonymous namespace or member thereof. */
|
||
if (anon || decl_anon_ns_mem_p (current_namespace))
|
||
TREE_PUBLIC (d) = 0;
|
||
else
|
||
TREE_PUBLIC (d) = 1;
|
||
pushdecl (d);
|
||
if (anon)
|
||
{
|
||
/* Clear DECL_NAME for the benefit of debugging back ends. */
|
||
SET_DECL_ASSEMBLER_NAME (d, name);
|
||
DECL_NAME (d) = NULL_TREE;
|
||
}
|
||
begin_scope (sk_namespace, d);
|
||
}
|
||
else
|
||
resume_scope (NAMESPACE_LEVEL (d));
|
||
|
||
if (implicit_use)
|
||
do_using_directive (d);
|
||
/* Enter the name space. */
|
||
current_namespace = d;
|
||
|
||
#ifdef HANDLE_PRAGMA_VISIBILITY
|
||
/* Clear has_visibility in case a previous namespace-definition had a
|
||
visibility attribute and this one doesn't. */
|
||
current_binding_level->has_visibility = 0;
|
||
for (d = attributes; d; d = TREE_CHAIN (d))
|
||
{
|
||
tree name = TREE_PURPOSE (d);
|
||
tree args = TREE_VALUE (d);
|
||
tree x;
|
||
|
||
if (! is_attribute_p ("visibility", name))
|
||
{
|
||
warning (OPT_Wattributes, "%qs attribute directive ignored",
|
||
IDENTIFIER_POINTER (name));
|
||
continue;
|
||
}
|
||
|
||
x = args ? TREE_VALUE (args) : NULL_TREE;
|
||
if (x == NULL_TREE || TREE_CODE (x) != STRING_CST || TREE_CHAIN (args))
|
||
{
|
||
warning (OPT_Wattributes, "%qs attribute requires a single NTBS argument",
|
||
IDENTIFIER_POINTER (name));
|
||
continue;
|
||
}
|
||
|
||
current_binding_level->has_visibility = 1;
|
||
push_visibility (TREE_STRING_POINTER (x));
|
||
goto found;
|
||
}
|
||
found:
|
||
#endif
|
||
|
||
timevar_pop (TV_NAME_LOOKUP);
|
||
}
|
||
|
||
/* Pop from the scope of the current namespace. */
|
||
|
||
void
|
||
pop_namespace (void)
|
||
{
|
||
gcc_assert (current_namespace != global_namespace);
|
||
current_namespace = CP_DECL_CONTEXT (current_namespace);
|
||
/* The binding level is not popped, as it might be re-opened later. */
|
||
leave_scope ();
|
||
}
|
||
|
||
/* Push into the scope of the namespace NS, even if it is deeply
|
||
nested within another namespace. */
|
||
|
||
void
|
||
push_nested_namespace (tree ns)
|
||
{
|
||
if (ns == global_namespace)
|
||
push_to_top_level ();
|
||
else
|
||
{
|
||
push_nested_namespace (CP_DECL_CONTEXT (ns));
|
||
push_namespace (DECL_NAME (ns));
|
||
}
|
||
}
|
||
|
||
/* Pop back from the scope of the namespace NS, which was previously
|
||
entered with push_nested_namespace. */
|
||
|
||
void
|
||
pop_nested_namespace (tree ns)
|
||
{
|
||
timevar_push (TV_NAME_LOOKUP);
|
||
while (ns != global_namespace)
|
||
{
|
||
pop_namespace ();
|
||
ns = CP_DECL_CONTEXT (ns);
|
||
}
|
||
|
||
pop_from_top_level ();
|
||
timevar_pop (TV_NAME_LOOKUP);
|
||
}
|
||
|
||
/* Temporarily set the namespace for the current declaration. */
|
||
|
||
void
|
||
push_decl_namespace (tree decl)
|
||
{
|
||
if (TREE_CODE (decl) != NAMESPACE_DECL)
|
||
decl = decl_namespace_context (decl);
|
||
decl_namespace_list = tree_cons (ORIGINAL_NAMESPACE (decl),
|
||
NULL_TREE, decl_namespace_list);
|
||
}
|
||
|
||
/* [namespace.memdef]/2 */
|
||
|
||
void
|
||
pop_decl_namespace (void)
|
||
{
|
||
decl_namespace_list = TREE_CHAIN (decl_namespace_list);
|
||
}
|
||
|
||
/* Return the namespace that is the common ancestor
|
||
of two given namespaces. */
|
||
|
||
static tree
|
||
namespace_ancestor (tree ns1, tree ns2)
|
||
{
|
||
timevar_push (TV_NAME_LOOKUP);
|
||
if (is_ancestor (ns1, ns2))
|
||
POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, ns1);
|
||
POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP,
|
||
namespace_ancestor (CP_DECL_CONTEXT (ns1), ns2));
|
||
}
|
||
|
||
/* Process a namespace-alias declaration. */
|
||
|
||
void
|
||
do_namespace_alias (tree alias, tree namespace)
|
||
{
|
||
if (namespace == error_mark_node)
|
||
return;
|
||
|
||
gcc_assert (TREE_CODE (namespace) == NAMESPACE_DECL);
|
||
|
||
namespace = ORIGINAL_NAMESPACE (namespace);
|
||
|
||
/* Build the alias. */
|
||
alias = build_lang_decl (NAMESPACE_DECL, alias, void_type_node);
|
||
DECL_NAMESPACE_ALIAS (alias) = namespace;
|
||
DECL_EXTERNAL (alias) = 1;
|
||
DECL_CONTEXT (alias) = FROB_CONTEXT (current_scope ());
|
||
pushdecl (alias);
|
||
|
||
/* Emit debug info for namespace alias. */
|
||
(*debug_hooks->global_decl) (alias);
|
||
}
|
||
|
||
/* Like pushdecl, only it places X in the current namespace,
|
||
if appropriate. */
|
||
|
||
tree
|
||
pushdecl_namespace_level (tree x, bool is_friend)
|
||
{
|
||
struct cp_binding_level *b = current_binding_level;
|
||
tree t;
|
||
|
||
timevar_push (TV_NAME_LOOKUP);
|
||
t = pushdecl_with_scope (x, NAMESPACE_LEVEL (current_namespace), is_friend);
|
||
|
||
/* Now, the type_shadowed stack may screw us. Munge it so it does
|
||
what we want. */
|
||
if (TREE_CODE (t) == TYPE_DECL)
|
||
{
|
||
tree name = DECL_NAME (t);
|
||
tree newval;
|
||
tree *ptr = (tree *)0;
|
||
for (; !global_scope_p (b); b = b->level_chain)
|
||
{
|
||
tree shadowed = b->type_shadowed;
|
||
for (; shadowed; shadowed = TREE_CHAIN (shadowed))
|
||
if (TREE_PURPOSE (shadowed) == name)
|
||
{
|
||
ptr = &TREE_VALUE (shadowed);
|
||
/* Can't break out of the loop here because sometimes
|
||
a binding level will have duplicate bindings for
|
||
PT names. It's gross, but I haven't time to fix it. */
|
||
}
|
||
}
|
||
newval = TREE_TYPE (t);
|
||
if (ptr == (tree *)0)
|
||
{
|
||
/* @@ This shouldn't be needed. My test case "zstring.cc" trips
|
||
up here if this is changed to an assertion. --KR */
|
||
SET_IDENTIFIER_TYPE_VALUE (name, t);
|
||
}
|
||
else
|
||
{
|
||
*ptr = newval;
|
||
}
|
||
}
|
||
POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, t);
|
||
}
|
||
|
||
/* Insert USED into the using list of USER. Set INDIRECT_flag if this
|
||
directive is not directly from the source. Also find the common
|
||
ancestor and let our users know about the new namespace */
|
||
static void
|
||
add_using_namespace (tree user, tree used, bool indirect)
|
||
{
|
||
tree t;
|
||
timevar_push (TV_NAME_LOOKUP);
|
||
/* Using oneself is a no-op. */
|
||
if (user == used)
|
||
{
|
||
timevar_pop (TV_NAME_LOOKUP);
|
||
return;
|
||
}
|
||
gcc_assert (TREE_CODE (user) == NAMESPACE_DECL);
|
||
gcc_assert (TREE_CODE (used) == NAMESPACE_DECL);
|
||
/* Check if we already have this. */
|
||
t = purpose_member (used, DECL_NAMESPACE_USING (user));
|
||
if (t != NULL_TREE)
|
||
{
|
||
if (!indirect)
|
||
/* Promote to direct usage. */
|
||
TREE_INDIRECT_USING (t) = 0;
|
||
timevar_pop (TV_NAME_LOOKUP);
|
||
return;
|
||
}
|
||
|
||
/* Add used to the user's using list. */
|
||
DECL_NAMESPACE_USING (user)
|
||
= tree_cons (used, namespace_ancestor (user, used),
|
||
DECL_NAMESPACE_USING (user));
|
||
|
||
TREE_INDIRECT_USING (DECL_NAMESPACE_USING (user)) = indirect;
|
||
|
||
/* Add user to the used's users list. */
|
||
DECL_NAMESPACE_USERS (used)
|
||
= tree_cons (user, 0, DECL_NAMESPACE_USERS (used));
|
||
|
||
/* Recursively add all namespaces used. */
|
||
for (t = DECL_NAMESPACE_USING (used); t; t = TREE_CHAIN (t))
|
||
/* indirect usage */
|
||
add_using_namespace (user, TREE_PURPOSE (t), 1);
|
||
|
||
/* Tell everyone using us about the new used namespaces. */
|
||
for (t = DECL_NAMESPACE_USERS (user); t; t = TREE_CHAIN (t))
|
||
add_using_namespace (TREE_PURPOSE (t), used, 1);
|
||
timevar_pop (TV_NAME_LOOKUP);
|
||
}
|
||
|
||
/* Process a using-declaration not appearing in class or local scope. */
|
||
|
||
void
|
||
do_toplevel_using_decl (tree decl, tree scope, tree name)
|
||
{
|
||
tree oldval, oldtype, newval, newtype;
|
||
tree orig_decl = decl;
|
||
cxx_binding *binding;
|
||
|
||
decl = validate_nonmember_using_decl (decl, scope, name);
|
||
if (decl == NULL_TREE)
|
||
return;
|
||
|
||
binding = binding_for_name (NAMESPACE_LEVEL (current_namespace), name);
|
||
|
||
oldval = binding->value;
|
||
oldtype = binding->type;
|
||
|
||
do_nonmember_using_decl (scope, name, oldval, oldtype, &newval, &newtype);
|
||
|
||
/* Emit debug info. */
|
||
if (!processing_template_decl)
|
||
cp_emit_debug_info_for_using (orig_decl, current_namespace);
|
||
|
||
/* Copy declarations found. */
|
||
if (newval)
|
||
binding->value = newval;
|
||
if (newtype)
|
||
binding->type = newtype;
|
||
}
|
||
|
||
/* Process a using-directive. */
|
||
|
||
void
|
||
do_using_directive (tree namespace)
|
||
{
|
||
tree context = NULL_TREE;
|
||
|
||
if (namespace == error_mark_node)
|
||
return;
|
||
|
||
gcc_assert (TREE_CODE (namespace) == NAMESPACE_DECL);
|
||
|
||
if (building_stmt_tree ())
|
||
add_stmt (build_stmt (USING_STMT, namespace));
|
||
namespace = ORIGINAL_NAMESPACE (namespace);
|
||
|
||
if (!toplevel_bindings_p ())
|
||
{
|
||
push_using_directive (namespace);
|
||
context = current_scope ();
|
||
}
|
||
else
|
||
{
|
||
/* direct usage */
|
||
add_using_namespace (current_namespace, namespace, 0);
|
||
if (current_namespace != global_namespace)
|
||
context = current_namespace;
|
||
}
|
||
|
||
/* Emit debugging info. */
|
||
if (!processing_template_decl)
|
||
(*debug_hooks->imported_module_or_decl) (namespace, context);
|
||
}
|
||
|
||
/* Deal with a using-directive seen by the parser. Currently we only
|
||
handle attributes here, since they cannot appear inside a template. */
|
||
|
||
void
|
||
parse_using_directive (tree namespace, tree attribs)
|
||
{
|
||
tree a;
|
||
|
||
do_using_directive (namespace);
|
||
|
||
for (a = attribs; a; a = TREE_CHAIN (a))
|
||
{
|
||
tree name = TREE_PURPOSE (a);
|
||
if (is_attribute_p ("strong", name))
|
||
{
|
||
if (!toplevel_bindings_p ())
|
||
error ("strong using only meaningful at namespace scope");
|
||
else if (namespace != error_mark_node)
|
||
{
|
||
if (!is_ancestor (current_namespace, namespace))
|
||
error ("current namespace %qD does not enclose strongly used namespace %qD",
|
||
current_namespace, namespace);
|
||
DECL_NAMESPACE_ASSOCIATIONS (namespace)
|
||
= tree_cons (current_namespace, 0,
|
||
DECL_NAMESPACE_ASSOCIATIONS (namespace));
|
||
}
|
||
}
|
||
else
|
||
warning (OPT_Wattributes, "%qD attribute directive ignored", name);
|
||
}
|
||
}
|
||
|
||
/* Like pushdecl, only it places X in the global scope if appropriate.
|
||
Calls cp_finish_decl to register the variable, initializing it with
|
||
*INIT, if INIT is non-NULL. */
|
||
|
||
static tree
|
||
pushdecl_top_level_1 (tree x, tree *init, bool is_friend)
|
||
{
|
||
timevar_push (TV_NAME_LOOKUP);
|
||
push_to_top_level ();
|
||
x = pushdecl_namespace_level (x, is_friend);
|
||
if (init)
|
||
finish_decl (x, *init, NULL_TREE);
|
||
pop_from_top_level ();
|
||
POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, x);
|
||
}
|
||
|
||
/* Like pushdecl, only it places X in the global scope if appropriate. */
|
||
|
||
tree
|
||
pushdecl_top_level (tree x)
|
||
{
|
||
return pushdecl_top_level_1 (x, NULL, false);
|
||
}
|
||
|
||
/* Like pushdecl_top_level, but adding the IS_FRIEND parameter. */
|
||
|
||
tree
|
||
pushdecl_top_level_maybe_friend (tree x, bool is_friend)
|
||
{
|
||
return pushdecl_top_level_1 (x, NULL, is_friend);
|
||
}
|
||
|
||
/* Like pushdecl, only it places X in the global scope if
|
||
appropriate. Calls cp_finish_decl to register the variable,
|
||
initializing it with INIT. */
|
||
|
||
tree
|
||
pushdecl_top_level_and_finish (tree x, tree init)
|
||
{
|
||
return pushdecl_top_level_1 (x, &init, false);
|
||
}
|
||
|
||
/* Combines two sets of overloaded functions into an OVERLOAD chain, removing
|
||
duplicates. The first list becomes the tail of the result.
|
||
|
||
The algorithm is O(n^2). We could get this down to O(n log n) by
|
||
doing a sort on the addresses of the functions, if that becomes
|
||
necessary. */
|
||
|
||
static tree
|
||
merge_functions (tree s1, tree s2)
|
||
{
|
||
for (; s2; s2 = OVL_NEXT (s2))
|
||
{
|
||
tree fn2 = OVL_CURRENT (s2);
|
||
tree fns1;
|
||
|
||
for (fns1 = s1; fns1; fns1 = OVL_NEXT (fns1))
|
||
{
|
||
tree fn1 = OVL_CURRENT (fns1);
|
||
|
||
/* If the function from S2 is already in S1, there is no
|
||
need to add it again. For `extern "C"' functions, we
|
||
might have two FUNCTION_DECLs for the same function, in
|
||
different namespaces; again, we only need one of them. */
|
||
if (fn1 == fn2
|
||
|| (DECL_EXTERN_C_P (fn1) && DECL_EXTERN_C_P (fn2)
|
||
&& DECL_NAME (fn1) == DECL_NAME (fn2)))
|
||
break;
|
||
}
|
||
|
||
/* If we exhausted all of the functions in S1, FN2 is new. */
|
||
if (!fns1)
|
||
s1 = build_overload (fn2, s1);
|
||
}
|
||
return s1;
|
||
}
|
||
|
||
/* This should return an error not all definitions define functions.
|
||
It is not an error if we find two functions with exactly the
|
||
same signature, only if these are selected in overload resolution.
|
||
old is the current set of bindings, new the freshly-found binding.
|
||
XXX Do we want to give *all* candidates in case of ambiguity?
|
||
XXX In what way should I treat extern declarations?
|
||
XXX I don't want to repeat the entire duplicate_decls here */
|
||
|
||
static void
|
||
ambiguous_decl (tree name, struct scope_binding *old, cxx_binding *new,
|
||
int flags)
|
||
{
|
||
tree val, type;
|
||
gcc_assert (old != NULL);
|
||
/* Copy the value. */
|
||
val = new->value;
|
||
if (val)
|
||
switch (TREE_CODE (val))
|
||
{
|
||
case TEMPLATE_DECL:
|
||
/* If we expect types or namespaces, and not templates,
|
||
or this is not a template class. */
|
||
if ((LOOKUP_QUALIFIERS_ONLY (flags)
|
||
&& !DECL_CLASS_TEMPLATE_P (val))
|
||
|| hidden_name_p (val))
|
||
val = NULL_TREE;
|
||
break;
|
||
case TYPE_DECL:
|
||
if (LOOKUP_NAMESPACES_ONLY (flags) || hidden_name_p (val))
|
||
val = NULL_TREE;
|
||
break;
|
||
case NAMESPACE_DECL:
|
||
if (LOOKUP_TYPES_ONLY (flags))
|
||
val = NULL_TREE;
|
||
break;
|
||
case FUNCTION_DECL:
|
||
/* Ignore built-in functions that are still anticipated. */
|
||
if (LOOKUP_QUALIFIERS_ONLY (flags) || hidden_name_p (val))
|
||
val = NULL_TREE;
|
||
break;
|
||
default:
|
||
if (LOOKUP_QUALIFIERS_ONLY (flags))
|
||
val = NULL_TREE;
|
||
}
|
||
|
||
if (!old->value)
|
||
old->value = val;
|
||
else if (val && val != old->value)
|
||
{
|
||
if (is_overloaded_fn (old->value) && is_overloaded_fn (val))
|
||
old->value = merge_functions (old->value, val);
|
||
else
|
||
{
|
||
old->value = tree_cons (NULL_TREE, old->value,
|
||
build_tree_list (NULL_TREE, new->value));
|
||
TREE_TYPE (old->value) = error_mark_node;
|
||
}
|
||
}
|
||
/* ... and copy the type. */
|
||
type = new->type;
|
||
if (LOOKUP_NAMESPACES_ONLY (flags))
|
||
type = NULL_TREE;
|
||
if (!old->type)
|
||
old->type = type;
|
||
else if (type && old->type != type)
|
||
{
|
||
if (flags & LOOKUP_COMPLAIN)
|
||
{
|
||
error ("%qD denotes an ambiguous type",name);
|
||
error ("%J first type here", TYPE_MAIN_DECL (old->type));
|
||
error ("%J other type here", TYPE_MAIN_DECL (type));
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Return the declarations that are members of the namespace NS. */
|
||
|
||
tree
|
||
cp_namespace_decls (tree ns)
|
||
{
|
||
return NAMESPACE_LEVEL (ns)->names;
|
||
}
|
||
|
||
/* Combine prefer_type and namespaces_only into flags. */
|
||
|
||
static int
|
||
lookup_flags (int prefer_type, int namespaces_only)
|
||
{
|
||
if (namespaces_only)
|
||
return LOOKUP_PREFER_NAMESPACES;
|
||
if (prefer_type > 1)
|
||
return LOOKUP_PREFER_TYPES;
|
||
if (prefer_type > 0)
|
||
return LOOKUP_PREFER_BOTH;
|
||
return 0;
|
||
}
|
||
|
||
/* Given a lookup that returned VAL, use FLAGS to decide if we want to
|
||
ignore it or not. Subroutine of lookup_name_real and
|
||
lookup_type_scope. */
|
||
|
||
static bool
|
||
qualify_lookup (tree val, int flags)
|
||
{
|
||
if (val == NULL_TREE)
|
||
return false;
|
||
if ((flags & LOOKUP_PREFER_NAMESPACES) && TREE_CODE (val) == NAMESPACE_DECL)
|
||
return true;
|
||
if ((flags & LOOKUP_PREFER_TYPES)
|
||
&& (TREE_CODE (val) == TYPE_DECL || TREE_CODE (val) == TEMPLATE_DECL))
|
||
return true;
|
||
if (flags & (LOOKUP_PREFER_NAMESPACES | LOOKUP_PREFER_TYPES))
|
||
return false;
|
||
return true;
|
||
}
|
||
|
||
/* Given a lookup that returned VAL, decide if we want to ignore it or
|
||
not based on DECL_ANTICIPATED. */
|
||
|
||
bool
|
||
hidden_name_p (tree val)
|
||
{
|
||
if (DECL_P (val)
|
||
&& DECL_LANG_SPECIFIC (val)
|
||
&& DECL_ANTICIPATED (val))
|
||
return true;
|
||
return false;
|
||
}
|
||
|
||
/* Remove any hidden friend functions from a possibly overloaded set
|
||
of functions. */
|
||
|
||
tree
|
||
remove_hidden_names (tree fns)
|
||
{
|
||
if (!fns)
|
||
return fns;
|
||
|
||
if (TREE_CODE (fns) == FUNCTION_DECL && hidden_name_p (fns))
|
||
fns = NULL_TREE;
|
||
else if (TREE_CODE (fns) == OVERLOAD)
|
||
{
|
||
tree o;
|
||
|
||
for (o = fns; o; o = OVL_NEXT (o))
|
||
if (hidden_name_p (OVL_CURRENT (o)))
|
||
break;
|
||
if (o)
|
||
{
|
||
tree n = NULL_TREE;
|
||
|
||
for (o = fns; o; o = OVL_NEXT (o))
|
||
if (!hidden_name_p (OVL_CURRENT (o)))
|
||
n = build_overload (OVL_CURRENT (o), n);
|
||
fns = n;
|
||
}
|
||
}
|
||
|
||
return fns;
|
||
}
|
||
|
||
/* Select the right _DECL from multiple choices. */
|
||
|
||
static tree
|
||
select_decl (const struct scope_binding *binding, int flags)
|
||
{
|
||
tree val;
|
||
val = binding->value;
|
||
|
||
timevar_push (TV_NAME_LOOKUP);
|
||
if (LOOKUP_NAMESPACES_ONLY (flags))
|
||
{
|
||
/* We are not interested in types. */
|
||
if (val && (TREE_CODE (val) == NAMESPACE_DECL
|
||
|| TREE_CODE (val) == TREE_LIST))
|
||
POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, val);
|
||
POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, NULL_TREE);
|
||
}
|
||
|
||
/* If looking for a type, or if there is no non-type binding, select
|
||
the value binding. */
|
||
if (binding->type && (!val || (flags & LOOKUP_PREFER_TYPES)))
|
||
val = binding->type;
|
||
/* Don't return non-types if we really prefer types. */
|
||
else if (val && LOOKUP_TYPES_ONLY (flags)
|
||
&& ! DECL_DECLARES_TYPE_P (val))
|
||
val = NULL_TREE;
|
||
|
||
POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, val);
|
||
}
|
||
|
||
/* Unscoped lookup of a global: iterate over current namespaces,
|
||
considering using-directives. */
|
||
|
||
static tree
|
||
unqualified_namespace_lookup (tree name, int flags)
|
||
{
|
||
tree initial = current_decl_namespace ();
|
||
tree scope = initial;
|
||
tree siter;
|
||
struct cp_binding_level *level;
|
||
tree val = NULL_TREE;
|
||
struct scope_binding binding = EMPTY_SCOPE_BINDING;
|
||
|
||
timevar_push (TV_NAME_LOOKUP);
|
||
|
||
for (; !val; scope = CP_DECL_CONTEXT (scope))
|
||
{
|
||
cxx_binding *b =
|
||
cxx_scope_find_binding_for_name (NAMESPACE_LEVEL (scope), name);
|
||
|
||
if (b)
|
||
{
|
||
if (b->value
|
||
&& ((flags & LOOKUP_HIDDEN) || !hidden_name_p (b->value)))
|
||
binding.value = b->value;
|
||
binding.type = b->type;
|
||
}
|
||
|
||
/* Add all _DECLs seen through local using-directives. */
|
||
for (level = current_binding_level;
|
||
level->kind != sk_namespace;
|
||
level = level->level_chain)
|
||
if (!lookup_using_namespace (name, &binding, level->using_directives,
|
||
scope, flags))
|
||
/* Give up because of error. */
|
||
POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, error_mark_node);
|
||
|
||
/* Add all _DECLs seen through global using-directives. */
|
||
/* XXX local and global using lists should work equally. */
|
||
siter = initial;
|
||
while (1)
|
||
{
|
||
if (!lookup_using_namespace (name, &binding,
|
||
DECL_NAMESPACE_USING (siter),
|
||
scope, flags))
|
||
/* Give up because of error. */
|
||
POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, error_mark_node);
|
||
if (siter == scope) break;
|
||
siter = CP_DECL_CONTEXT (siter);
|
||
}
|
||
|
||
val = select_decl (&binding, flags);
|
||
if (scope == global_namespace)
|
||
break;
|
||
}
|
||
POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, val);
|
||
}
|
||
|
||
/* Look up NAME (an IDENTIFIER_NODE) in SCOPE (either a NAMESPACE_DECL
|
||
or a class TYPE). If IS_TYPE_P is TRUE, then ignore non-type
|
||
bindings.
|
||
|
||
Returns a DECL (or OVERLOAD, or BASELINK) representing the
|
||
declaration found. If no suitable declaration can be found,
|
||
ERROR_MARK_NODE is returned. If COMPLAIN is true and SCOPE is
|
||
neither a class-type nor a namespace a diagnostic is issued. */
|
||
|
||
tree
|
||
lookup_qualified_name (tree scope, tree name, bool is_type_p, bool complain)
|
||
{
|
||
int flags = 0;
|
||
tree t = NULL_TREE;
|
||
|
||
if (TREE_CODE (scope) == NAMESPACE_DECL)
|
||
{
|
||
struct scope_binding binding = EMPTY_SCOPE_BINDING;
|
||
|
||
flags |= LOOKUP_COMPLAIN;
|
||
if (is_type_p)
|
||
flags |= LOOKUP_PREFER_TYPES;
|
||
if (qualified_lookup_using_namespace (name, scope, &binding, flags))
|
||
t = select_decl (&binding, flags);
|
||
}
|
||
else if (is_aggr_type (scope, complain))
|
||
t = lookup_member (scope, name, 2, is_type_p);
|
||
|
||
if (!t)
|
||
return error_mark_node;
|
||
return t;
|
||
}
|
||
|
||
/* Subroutine of unqualified_namespace_lookup:
|
||
Add the bindings of NAME in used namespaces to VAL.
|
||
We are currently looking for names in namespace SCOPE, so we
|
||
look through USINGS for using-directives of namespaces
|
||
which have SCOPE as a common ancestor with the current scope.
|
||
Returns false on errors. */
|
||
|
||
static bool
|
||
lookup_using_namespace (tree name, struct scope_binding *val,
|
||
tree usings, tree scope, int flags)
|
||
{
|
||
tree iter;
|
||
timevar_push (TV_NAME_LOOKUP);
|
||
/* Iterate over all used namespaces in current, searching for using
|
||
directives of scope. */
|
||
for (iter = usings; iter; iter = TREE_CHAIN (iter))
|
||
if (TREE_VALUE (iter) == scope)
|
||
{
|
||
tree used = ORIGINAL_NAMESPACE (TREE_PURPOSE (iter));
|
||
cxx_binding *val1 =
|
||
cxx_scope_find_binding_for_name (NAMESPACE_LEVEL (used), name);
|
||
/* Resolve ambiguities. */
|
||
if (val1)
|
||
ambiguous_decl (name, val, val1, flags);
|
||
}
|
||
POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, val->value != error_mark_node);
|
||
}
|
||
|
||
/* [namespace.qual]
|
||
Accepts the NAME to lookup and its qualifying SCOPE.
|
||
Returns the name/type pair found into the cxx_binding *RESULT,
|
||
or false on error. */
|
||
|
||
static bool
|
||
qualified_lookup_using_namespace (tree name, tree scope,
|
||
struct scope_binding *result, int flags)
|
||
{
|
||
/* Maintain a list of namespaces visited... */
|
||
tree seen = NULL_TREE;
|
||
/* ... and a list of namespace yet to see. */
|
||
tree todo = NULL_TREE;
|
||
tree todo_maybe = NULL_TREE;
|
||
tree usings;
|
||
timevar_push (TV_NAME_LOOKUP);
|
||
/* Look through namespace aliases. */
|
||
scope = ORIGINAL_NAMESPACE (scope);
|
||
while (scope && result->value != error_mark_node)
|
||
{
|
||
cxx_binding *binding =
|
||
cxx_scope_find_binding_for_name (NAMESPACE_LEVEL (scope), name);
|
||
seen = tree_cons (scope, NULL_TREE, seen);
|
||
if (binding)
|
||
ambiguous_decl (name, result, binding, flags);
|
||
|
||
/* Consider strong using directives always, and non-strong ones
|
||
if we haven't found a binding yet. ??? Shouldn't we consider
|
||
non-strong ones if the initial RESULT is non-NULL, but the
|
||
binding in the given namespace is? */
|
||
for (usings = DECL_NAMESPACE_USING (scope); usings;
|
||
usings = TREE_CHAIN (usings))
|
||
/* If this was a real directive, and we have not seen it. */
|
||
if (!TREE_INDIRECT_USING (usings))
|
||
{
|
||
/* Try to avoid queuing the same namespace more than once,
|
||
the exception being when a namespace was already
|
||
enqueued for todo_maybe and then a strong using is
|
||
found for it. We could try to remove it from
|
||
todo_maybe, but it's probably not worth the effort. */
|
||
if (is_associated_namespace (scope, TREE_PURPOSE (usings))
|
||
&& !purpose_member (TREE_PURPOSE (usings), seen)
|
||
&& !purpose_member (TREE_PURPOSE (usings), todo))
|
||
todo = tree_cons (TREE_PURPOSE (usings), NULL_TREE, todo);
|
||
else if ((!result->value && !result->type)
|
||
&& !purpose_member (TREE_PURPOSE (usings), seen)
|
||
&& !purpose_member (TREE_PURPOSE (usings), todo)
|
||
&& !purpose_member (TREE_PURPOSE (usings), todo_maybe))
|
||
todo_maybe = tree_cons (TREE_PURPOSE (usings), NULL_TREE,
|
||
todo_maybe);
|
||
}
|
||
if (todo)
|
||
{
|
||
scope = TREE_PURPOSE (todo);
|
||
todo = TREE_CHAIN (todo);
|
||
}
|
||
else if (todo_maybe
|
||
&& (!result->value && !result->type))
|
||
{
|
||
scope = TREE_PURPOSE (todo_maybe);
|
||
todo = TREE_CHAIN (todo_maybe);
|
||
todo_maybe = NULL_TREE;
|
||
}
|
||
else
|
||
scope = NULL_TREE; /* If there never was a todo list. */
|
||
}
|
||
POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, result->value != error_mark_node);
|
||
}
|
||
|
||
/* Return the innermost non-namespace binding for NAME from a scope
|
||
containing BINDING, or, if BINDING is NULL, the current scope. If
|
||
CLASS_P is false, then class bindings are ignored. */
|
||
|
||
cxx_binding *
|
||
outer_binding (tree name,
|
||
cxx_binding *binding,
|
||
bool class_p)
|
||
{
|
||
cxx_binding *outer;
|
||
cxx_scope *scope;
|
||
cxx_scope *outer_scope;
|
||
|
||
if (binding)
|
||
{
|
||
scope = binding->scope->level_chain;
|
||
outer = binding->previous;
|
||
}
|
||
else
|
||
{
|
||
scope = current_binding_level;
|
||
outer = IDENTIFIER_BINDING (name);
|
||
}
|
||
outer_scope = outer ? outer->scope : NULL;
|
||
|
||
/* Because we create class bindings lazily, we might be missing a
|
||
class binding for NAME. If there are any class binding levels
|
||
between the LAST_BINDING_LEVEL and the scope in which OUTER was
|
||
declared, we must lookup NAME in those class scopes. */
|
||
if (class_p)
|
||
while (scope && scope != outer_scope && scope->kind != sk_namespace)
|
||
{
|
||
if (scope->kind == sk_class)
|
||
{
|
||
cxx_binding *class_binding;
|
||
|
||
class_binding = get_class_binding (name, scope);
|
||
if (class_binding)
|
||
{
|
||
/* Thread this new class-scope binding onto the
|
||
IDENTIFIER_BINDING list so that future lookups
|
||
find it quickly. */
|
||
class_binding->previous = outer;
|
||
if (binding)
|
||
binding->previous = class_binding;
|
||
else
|
||
IDENTIFIER_BINDING (name) = class_binding;
|
||
return class_binding;
|
||
}
|
||
}
|
||
scope = scope->level_chain;
|
||
}
|
||
|
||
return outer;
|
||
}
|
||
|
||
/* Return the innermost block-scope or class-scope value binding for
|
||
NAME, or NULL_TREE if there is no such binding. */
|
||
|
||
tree
|
||
innermost_non_namespace_value (tree name)
|
||
{
|
||
cxx_binding *binding;
|
||
binding = outer_binding (name, /*binding=*/NULL, /*class_p=*/true);
|
||
return binding ? binding->value : NULL_TREE;
|
||
}
|
||
|
||
/* Look up NAME in the current binding level and its superiors in the
|
||
namespace of variables, functions and typedefs. Return a ..._DECL
|
||
node of some kind representing its definition if there is only one
|
||
such declaration, or return a TREE_LIST with all the overloaded
|
||
definitions if there are many, or return 0 if it is undefined.
|
||
Hidden name, either friend declaration or built-in function, are
|
||
not ignored.
|
||
|
||
If PREFER_TYPE is > 0, we prefer TYPE_DECLs or namespaces.
|
||
If PREFER_TYPE is > 1, we reject non-type decls (e.g. namespaces).
|
||
Otherwise we prefer non-TYPE_DECLs.
|
||
|
||
If NONCLASS is nonzero, bindings in class scopes are ignored. If
|
||
BLOCK_P is false, bindings in block scopes are ignored. */
|
||
|
||
tree
|
||
lookup_name_real (tree name, int prefer_type, int nonclass, bool block_p,
|
||
int namespaces_only, int flags)
|
||
{
|
||
cxx_binding *iter;
|
||
tree val = NULL_TREE;
|
||
|
||
timevar_push (TV_NAME_LOOKUP);
|
||
/* Conversion operators are handled specially because ordinary
|
||
unqualified name lookup will not find template conversion
|
||
operators. */
|
||
if (IDENTIFIER_TYPENAME_P (name))
|
||
{
|
||
struct cp_binding_level *level;
|
||
|
||
for (level = current_binding_level;
|
||
level && level->kind != sk_namespace;
|
||
level = level->level_chain)
|
||
{
|
||
tree class_type;
|
||
tree operators;
|
||
|
||
/* A conversion operator can only be declared in a class
|
||
scope. */
|
||
if (level->kind != sk_class)
|
||
continue;
|
||
|
||
/* Lookup the conversion operator in the class. */
|
||
class_type = level->this_entity;
|
||
operators = lookup_fnfields (class_type, name, /*protect=*/0);
|
||
if (operators)
|
||
POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, operators);
|
||
}
|
||
|
||
POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, NULL_TREE);
|
||
}
|
||
|
||
flags |= lookup_flags (prefer_type, namespaces_only);
|
||
|
||
/* First, look in non-namespace scopes. */
|
||
|
||
if (current_class_type == NULL_TREE)
|
||
nonclass = 1;
|
||
|
||
if (block_p || !nonclass)
|
||
for (iter = outer_binding (name, NULL, !nonclass);
|
||
iter;
|
||
iter = outer_binding (name, iter, !nonclass))
|
||
{
|
||
tree binding;
|
||
|
||
/* Skip entities we don't want. */
|
||
if (LOCAL_BINDING_P (iter) ? !block_p : nonclass)
|
||
continue;
|
||
|
||
/* If this is the kind of thing we're looking for, we're done. */
|
||
if (qualify_lookup (iter->value, flags))
|
||
binding = iter->value;
|
||
else if ((flags & LOOKUP_PREFER_TYPES)
|
||
&& qualify_lookup (iter->type, flags))
|
||
binding = iter->type;
|
||
else
|
||
binding = NULL_TREE;
|
||
|
||
if (binding)
|
||
{
|
||
/* Only namespace-scope bindings can be hidden. */
|
||
gcc_assert (!hidden_name_p (binding));
|
||
val = binding;
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Now lookup in namespace scopes. */
|
||
if (!val)
|
||
val = unqualified_namespace_lookup (name, flags);
|
||
|
||
/* If we have a single function from a using decl, pull it out. */
|
||
if (val && TREE_CODE (val) == OVERLOAD && !really_overloaded_fn (val))
|
||
val = OVL_FUNCTION (val);
|
||
|
||
POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, val);
|
||
}
|
||
|
||
tree
|
||
lookup_name_nonclass (tree name)
|
||
{
|
||
return lookup_name_real (name, 0, 1, /*block_p=*/true, 0, LOOKUP_COMPLAIN);
|
||
}
|
||
|
||
tree
|
||
lookup_function_nonclass (tree name, tree args, bool block_p)
|
||
{
|
||
return
|
||
lookup_arg_dependent (name,
|
||
lookup_name_real (name, 0, 1, block_p, 0,
|
||
LOOKUP_COMPLAIN),
|
||
args);
|
||
}
|
||
|
||
tree
|
||
lookup_name (tree name)
|
||
{
|
||
return lookup_name_real (name, 0, 0, /*block_p=*/true, 0, LOOKUP_COMPLAIN);
|
||
}
|
||
|
||
tree
|
||
lookup_name_prefer_type (tree name, int prefer_type)
|
||
{
|
||
return lookup_name_real (name, prefer_type, 0, /*block_p=*/true,
|
||
0, LOOKUP_COMPLAIN);
|
||
}
|
||
|
||
/* Look up NAME for type used in elaborated name specifier in
|
||
the scopes given by SCOPE. SCOPE can be either TS_CURRENT or
|
||
TS_WITHIN_ENCLOSING_NON_CLASS. Although not implied by the
|
||
name, more scopes are checked if cleanup or template parameter
|
||
scope is encountered.
|
||
|
||
Unlike lookup_name_real, we make sure that NAME is actually
|
||
declared in the desired scope, not from inheritance, nor using
|
||
directive. For using declaration, there is DR138 still waiting
|
||
to be resolved. Hidden name coming from an earlier friend
|
||
declaration is also returned.
|
||
|
||
A TYPE_DECL best matching the NAME is returned. Catching error
|
||
and issuing diagnostics are caller's responsibility. */
|
||
|
||
tree
|
||
lookup_type_scope (tree name, tag_scope scope)
|
||
{
|
||
cxx_binding *iter = NULL;
|
||
tree val = NULL_TREE;
|
||
|
||
timevar_push (TV_NAME_LOOKUP);
|
||
|
||
/* Look in non-namespace scope first. */
|
||
if (current_binding_level->kind != sk_namespace)
|
||
iter = outer_binding (name, NULL, /*class_p=*/ true);
|
||
for (; iter; iter = outer_binding (name, iter, /*class_p=*/ true))
|
||
{
|
||
/* Check if this is the kind of thing we're looking for.
|
||
If SCOPE is TS_CURRENT, also make sure it doesn't come from
|
||
base class. For ITER->VALUE, we can simply use
|
||
INHERITED_VALUE_BINDING_P. For ITER->TYPE, we have to use
|
||
our own check.
|
||
|
||
We check ITER->TYPE before ITER->VALUE in order to handle
|
||
typedef struct C {} C;
|
||
correctly. */
|
||
|
||
if (qualify_lookup (iter->type, LOOKUP_PREFER_TYPES)
|
||
&& (scope != ts_current
|
||
|| LOCAL_BINDING_P (iter)
|
||
|| DECL_CONTEXT (iter->type) == iter->scope->this_entity))
|
||
val = iter->type;
|
||
else if ((scope != ts_current
|
||
|| !INHERITED_VALUE_BINDING_P (iter))
|
||
&& qualify_lookup (iter->value, LOOKUP_PREFER_TYPES))
|
||
val = iter->value;
|
||
|
||
if (val)
|
||
break;
|
||
}
|
||
|
||
/* Look in namespace scope. */
|
||
if (!val)
|
||
{
|
||
iter = cxx_scope_find_binding_for_name
|
||
(NAMESPACE_LEVEL (current_decl_namespace ()), name);
|
||
|
||
if (iter)
|
||
{
|
||
/* If this is the kind of thing we're looking for, we're done. */
|
||
if (qualify_lookup (iter->type, LOOKUP_PREFER_TYPES))
|
||
val = iter->type;
|
||
else if (qualify_lookup (iter->value, LOOKUP_PREFER_TYPES))
|
||
val = iter->value;
|
||
}
|
||
|
||
}
|
||
|
||
/* Type found, check if it is in the allowed scopes, ignoring cleanup
|
||
and template parameter scopes. */
|
||
if (val)
|
||
{
|
||
struct cp_binding_level *b = current_binding_level;
|
||
while (b)
|
||
{
|
||
if (iter->scope == b)
|
||
POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, val);
|
||
|
||
if (b->kind == sk_cleanup || b->kind == sk_template_parms)
|
||
b = b->level_chain;
|
||
else if (b->kind == sk_class
|
||
&& scope == ts_within_enclosing_non_class)
|
||
b = b->level_chain;
|
||
else
|
||
break;
|
||
}
|
||
}
|
||
|
||
POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, NULL_TREE);
|
||
}
|
||
|
||
/* Similar to `lookup_name' but look only in the innermost non-class
|
||
binding level. */
|
||
|
||
static tree
|
||
lookup_name_innermost_nonclass_level (tree name)
|
||
{
|
||
struct cp_binding_level *b;
|
||
tree t = NULL_TREE;
|
||
|
||
timevar_push (TV_NAME_LOOKUP);
|
||
b = innermost_nonclass_level ();
|
||
|
||
if (b->kind == sk_namespace)
|
||
{
|
||
t = IDENTIFIER_NAMESPACE_VALUE (name);
|
||
|
||
/* extern "C" function() */
|
||
if (t != NULL_TREE && TREE_CODE (t) == TREE_LIST)
|
||
t = TREE_VALUE (t);
|
||
}
|
||
else if (IDENTIFIER_BINDING (name)
|
||
&& LOCAL_BINDING_P (IDENTIFIER_BINDING (name)))
|
||
{
|
||
cxx_binding *binding;
|
||
binding = IDENTIFIER_BINDING (name);
|
||
while (1)
|
||
{
|
||
if (binding->scope == b
|
||
&& !(TREE_CODE (binding->value) == VAR_DECL
|
||
&& DECL_DEAD_FOR_LOCAL (binding->value)))
|
||
POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, binding->value);
|
||
|
||
if (b->kind == sk_cleanup)
|
||
b = b->level_chain;
|
||
else
|
||
break;
|
||
}
|
||
}
|
||
|
||
POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, t);
|
||
}
|
||
|
||
/* Like lookup_name_innermost_nonclass_level, but for types. */
|
||
|
||
static tree
|
||
lookup_type_current_level (tree name)
|
||
{
|
||
tree t = NULL_TREE;
|
||
|
||
timevar_push (TV_NAME_LOOKUP);
|
||
gcc_assert (current_binding_level->kind != sk_namespace);
|
||
|
||
if (REAL_IDENTIFIER_TYPE_VALUE (name) != NULL_TREE
|
||
&& REAL_IDENTIFIER_TYPE_VALUE (name) != global_type_node)
|
||
{
|
||
struct cp_binding_level *b = current_binding_level;
|
||
while (1)
|
||
{
|
||
if (purpose_member (name, b->type_shadowed))
|
||
POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP,
|
||
REAL_IDENTIFIER_TYPE_VALUE (name));
|
||
if (b->kind == sk_cleanup)
|
||
b = b->level_chain;
|
||
else
|
||
break;
|
||
}
|
||
}
|
||
|
||
POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, t);
|
||
}
|
||
|
||
/* [basic.lookup.koenig] */
|
||
/* A nonzero return value in the functions below indicates an error. */
|
||
|
||
struct arg_lookup
|
||
{
|
||
tree name;
|
||
tree args;
|
||
tree namespaces;
|
||
tree classes;
|
||
tree functions;
|
||
};
|
||
|
||
static bool arg_assoc (struct arg_lookup*, tree);
|
||
static bool arg_assoc_args (struct arg_lookup*, tree);
|
||
static bool arg_assoc_type (struct arg_lookup*, tree);
|
||
static bool add_function (struct arg_lookup *, tree);
|
||
static bool arg_assoc_namespace (struct arg_lookup *, tree);
|
||
static bool arg_assoc_class (struct arg_lookup *, tree);
|
||
static bool arg_assoc_template_arg (struct arg_lookup*, tree);
|
||
|
||
/* Add a function to the lookup structure.
|
||
Returns true on error. */
|
||
|
||
static bool
|
||
add_function (struct arg_lookup *k, tree fn)
|
||
{
|
||
/* We used to check here to see if the function was already in the list,
|
||
but that's O(n^2), which is just too expensive for function lookup.
|
||
Now we deal with the occasional duplicate in joust. In doing this, we
|
||
assume that the number of duplicates will be small compared to the
|
||
total number of functions being compared, which should usually be the
|
||
case. */
|
||
|
||
/* We must find only functions, or exactly one non-function. */
|
||
if (!k->functions)
|
||
k->functions = fn;
|
||
else if (fn == k->functions)
|
||
;
|
||
else if (is_overloaded_fn (k->functions) && is_overloaded_fn (fn))
|
||
k->functions = build_overload (fn, k->functions);
|
||
else
|
||
{
|
||
tree f1 = OVL_CURRENT (k->functions);
|
||
tree f2 = fn;
|
||
if (is_overloaded_fn (f1))
|
||
{
|
||
fn = f1; f1 = f2; f2 = fn;
|
||
}
|
||
error ("%q+D is not a function,", f1);
|
||
error (" conflict with %q+D", f2);
|
||
error (" in call to %qD", k->name);
|
||
return true;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Returns true iff CURRENT has declared itself to be an associated
|
||
namespace of SCOPE via a strong using-directive (or transitive chain
|
||
thereof). Both are namespaces. */
|
||
|
||
bool
|
||
is_associated_namespace (tree current, tree scope)
|
||
{
|
||
tree seen = NULL_TREE;
|
||
tree todo = NULL_TREE;
|
||
tree t;
|
||
while (1)
|
||
{
|
||
if (scope == current)
|
||
return true;
|
||
seen = tree_cons (scope, NULL_TREE, seen);
|
||
for (t = DECL_NAMESPACE_ASSOCIATIONS (scope); t; t = TREE_CHAIN (t))
|
||
if (!purpose_member (TREE_PURPOSE (t), seen))
|
||
todo = tree_cons (TREE_PURPOSE (t), NULL_TREE, todo);
|
||
if (todo)
|
||
{
|
||
scope = TREE_PURPOSE (todo);
|
||
todo = TREE_CHAIN (todo);
|
||
}
|
||
else
|
||
return false;
|
||
}
|
||
}
|
||
|
||
/* Return whether FN is a friend of an associated class of ARG. */
|
||
|
||
static bool
|
||
friend_of_associated_class_p (tree arg, tree fn)
|
||
{
|
||
tree type;
|
||
|
||
if (TYPE_P (arg))
|
||
type = arg;
|
||
else if (type_unknown_p (arg))
|
||
return false;
|
||
else
|
||
type = TREE_TYPE (arg);
|
||
|
||
/* If TYPE is a class, the class itself and all base classes are
|
||
associated classes. */
|
||
if (CLASS_TYPE_P (type))
|
||
{
|
||
if (is_friend (type, fn))
|
||
return true;
|
||
|
||
if (TYPE_BINFO (type))
|
||
{
|
||
tree binfo, base_binfo;
|
||
int i;
|
||
|
||
for (binfo = TYPE_BINFO (type), i = 0;
|
||
BINFO_BASE_ITERATE (binfo, i, base_binfo);
|
||
i++)
|
||
if (is_friend (BINFO_TYPE (base_binfo), fn))
|
||
return true;
|
||
}
|
||
}
|
||
|
||
/* If TYPE is a class member, the class of which it is a member is
|
||
an associated class. */
|
||
if ((CLASS_TYPE_P (type)
|
||
|| TREE_CODE (type) == UNION_TYPE
|
||
|| TREE_CODE (type) == ENUMERAL_TYPE)
|
||
&& TYPE_CONTEXT (type)
|
||
&& CLASS_TYPE_P (TYPE_CONTEXT (type))
|
||
&& is_friend (TYPE_CONTEXT (type), fn))
|
||
return true;
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Add functions of a namespace to the lookup structure.
|
||
Returns true on error. */
|
||
|
||
static bool
|
||
arg_assoc_namespace (struct arg_lookup *k, tree scope)
|
||
{
|
||
tree value;
|
||
|
||
if (purpose_member (scope, k->namespaces))
|
||
return 0;
|
||
k->namespaces = tree_cons (scope, NULL_TREE, k->namespaces);
|
||
|
||
/* Check out our super-users. */
|
||
for (value = DECL_NAMESPACE_ASSOCIATIONS (scope); value;
|
||
value = TREE_CHAIN (value))
|
||
if (arg_assoc_namespace (k, TREE_PURPOSE (value)))
|
||
return true;
|
||
|
||
value = namespace_binding (k->name, scope);
|
||
if (!value)
|
||
return false;
|
||
|
||
for (; value; value = OVL_NEXT (value))
|
||
{
|
||
/* We don't want to find arbitrary hidden functions via argument
|
||
dependent lookup. We only want to find friends of associated
|
||
classes. */
|
||
if (hidden_name_p (OVL_CURRENT (value)))
|
||
{
|
||
tree args;
|
||
|
||
for (args = k->args; args; args = TREE_CHAIN (args))
|
||
if (friend_of_associated_class_p (TREE_VALUE (args),
|
||
OVL_CURRENT (value)))
|
||
break;
|
||
if (!args)
|
||
continue;
|
||
}
|
||
|
||
if (add_function (k, OVL_CURRENT (value)))
|
||
return true;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Adds everything associated with a template argument to the lookup
|
||
structure. Returns true on error. */
|
||
|
||
static bool
|
||
arg_assoc_template_arg (struct arg_lookup *k, tree arg)
|
||
{
|
||
/* [basic.lookup.koenig]
|
||
|
||
If T is a template-id, its associated namespaces and classes are
|
||
... the namespaces and classes associated with the types of the
|
||
template arguments provided for template type parameters
|
||
(excluding template template parameters); the namespaces in which
|
||
any template template arguments are defined; and the classes in
|
||
which any member templates used as template template arguments
|
||
are defined. [Note: non-type template arguments do not
|
||
contribute to the set of associated namespaces. ] */
|
||
|
||
/* Consider first template template arguments. */
|
||
if (TREE_CODE (arg) == TEMPLATE_TEMPLATE_PARM
|
||
|| TREE_CODE (arg) == UNBOUND_CLASS_TEMPLATE)
|
||
return false;
|
||
else if (TREE_CODE (arg) == TEMPLATE_DECL)
|
||
{
|
||
tree ctx = CP_DECL_CONTEXT (arg);
|
||
|
||
/* It's not a member template. */
|
||
if (TREE_CODE (ctx) == NAMESPACE_DECL)
|
||
return arg_assoc_namespace (k, ctx);
|
||
/* Otherwise, it must be member template. */
|
||
else
|
||
return arg_assoc_class (k, ctx);
|
||
}
|
||
/* It's not a template template argument, but it is a type template
|
||
argument. */
|
||
else if (TYPE_P (arg))
|
||
return arg_assoc_type (k, arg);
|
||
/* It's a non-type template argument. */
|
||
else
|
||
return false;
|
||
}
|
||
|
||
/* Adds everything associated with class to the lookup structure.
|
||
Returns true on error. */
|
||
|
||
static bool
|
||
arg_assoc_class (struct arg_lookup *k, tree type)
|
||
{
|
||
tree list, friends, context;
|
||
int i;
|
||
|
||
/* Backend build structures, such as __builtin_va_list, aren't
|
||
affected by all this. */
|
||
if (!CLASS_TYPE_P (type))
|
||
return false;
|
||
|
||
if (purpose_member (type, k->classes))
|
||
return false;
|
||
k->classes = tree_cons (type, NULL_TREE, k->classes);
|
||
|
||
context = decl_namespace_context (type);
|
||
if (arg_assoc_namespace (k, context))
|
||
return true;
|
||
|
||
if (TYPE_BINFO (type))
|
||
{
|
||
/* Process baseclasses. */
|
||
tree binfo, base_binfo;
|
||
|
||
for (binfo = TYPE_BINFO (type), i = 0;
|
||
BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
|
||
if (arg_assoc_class (k, BINFO_TYPE (base_binfo)))
|
||
return true;
|
||
}
|
||
|
||
/* Process friends. */
|
||
for (list = DECL_FRIENDLIST (TYPE_MAIN_DECL (type)); list;
|
||
list = TREE_CHAIN (list))
|
||
if (k->name == FRIEND_NAME (list))
|
||
for (friends = FRIEND_DECLS (list); friends;
|
||
friends = TREE_CHAIN (friends))
|
||
{
|
||
tree fn = TREE_VALUE (friends);
|
||
|
||
/* Only interested in global functions with potentially hidden
|
||
(i.e. unqualified) declarations. */
|
||
if (CP_DECL_CONTEXT (fn) != context)
|
||
continue;
|
||
/* Template specializations are never found by name lookup.
|
||
(Templates themselves can be found, but not template
|
||
specializations.) */
|
||
if (TREE_CODE (fn) == FUNCTION_DECL && DECL_USE_TEMPLATE (fn))
|
||
continue;
|
||
if (add_function (k, fn))
|
||
return true;
|
||
}
|
||
|
||
/* Process template arguments. */
|
||
if (CLASSTYPE_TEMPLATE_INFO (type)
|
||
&& PRIMARY_TEMPLATE_P (CLASSTYPE_TI_TEMPLATE (type)))
|
||
{
|
||
list = INNERMOST_TEMPLATE_ARGS (CLASSTYPE_TI_ARGS (type));
|
||
for (i = 0; i < TREE_VEC_LENGTH (list); ++i)
|
||
arg_assoc_template_arg (k, TREE_VEC_ELT (list, i));
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Adds everything associated with a given type.
|
||
Returns 1 on error. */
|
||
|
||
static bool
|
||
arg_assoc_type (struct arg_lookup *k, tree type)
|
||
{
|
||
/* As we do not get the type of non-type dependent expressions
|
||
right, we can end up with such things without a type. */
|
||
if (!type)
|
||
return false;
|
||
|
||
if (TYPE_PTRMEM_P (type))
|
||
{
|
||
/* Pointer to member: associate class type and value type. */
|
||
if (arg_assoc_type (k, TYPE_PTRMEM_CLASS_TYPE (type)))
|
||
return true;
|
||
return arg_assoc_type (k, TYPE_PTRMEM_POINTED_TO_TYPE (type));
|
||
}
|
||
else switch (TREE_CODE (type))
|
||
{
|
||
case ERROR_MARK:
|
||
return false;
|
||
case VOID_TYPE:
|
||
case INTEGER_TYPE:
|
||
case REAL_TYPE:
|
||
case COMPLEX_TYPE:
|
||
case VECTOR_TYPE:
|
||
case BOOLEAN_TYPE:
|
||
return false;
|
||
case RECORD_TYPE:
|
||
if (TYPE_PTRMEMFUNC_P (type))
|
||
return arg_assoc_type (k, TYPE_PTRMEMFUNC_FN_TYPE (type));
|
||
return arg_assoc_class (k, type);
|
||
case POINTER_TYPE:
|
||
case REFERENCE_TYPE:
|
||
case ARRAY_TYPE:
|
||
return arg_assoc_type (k, TREE_TYPE (type));
|
||
case UNION_TYPE:
|
||
case ENUMERAL_TYPE:
|
||
return arg_assoc_namespace (k, decl_namespace_context (type));
|
||
case METHOD_TYPE:
|
||
/* The basetype is referenced in the first arg type, so just
|
||
fall through. */
|
||
case FUNCTION_TYPE:
|
||
/* Associate the parameter types. */
|
||
if (arg_assoc_args (k, TYPE_ARG_TYPES (type)))
|
||
return true;
|
||
/* Associate the return type. */
|
||
return arg_assoc_type (k, TREE_TYPE (type));
|
||
case TEMPLATE_TYPE_PARM:
|
||
case BOUND_TEMPLATE_TEMPLATE_PARM:
|
||
return false;
|
||
case TYPENAME_TYPE:
|
||
return false;
|
||
case LANG_TYPE:
|
||
gcc_assert (type == unknown_type_node);
|
||
return false;
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
return false;
|
||
}
|
||
|
||
/* Adds everything associated with arguments. Returns true on error. */
|
||
|
||
static bool
|
||
arg_assoc_args (struct arg_lookup *k, tree args)
|
||
{
|
||
for (; args; args = TREE_CHAIN (args))
|
||
if (arg_assoc (k, TREE_VALUE (args)))
|
||
return true;
|
||
return false;
|
||
}
|
||
|
||
/* Adds everything associated with a given tree_node. Returns 1 on error. */
|
||
|
||
static bool
|
||
arg_assoc (struct arg_lookup *k, tree n)
|
||
{
|
||
if (n == error_mark_node)
|
||
return false;
|
||
|
||
if (TYPE_P (n))
|
||
return arg_assoc_type (k, n);
|
||
|
||
if (! type_unknown_p (n))
|
||
return arg_assoc_type (k, TREE_TYPE (n));
|
||
|
||
if (TREE_CODE (n) == ADDR_EXPR)
|
||
n = TREE_OPERAND (n, 0);
|
||
if (TREE_CODE (n) == COMPONENT_REF)
|
||
n = TREE_OPERAND (n, 1);
|
||
if (TREE_CODE (n) == OFFSET_REF)
|
||
n = TREE_OPERAND (n, 1);
|
||
while (TREE_CODE (n) == TREE_LIST)
|
||
n = TREE_VALUE (n);
|
||
if (TREE_CODE (n) == BASELINK)
|
||
n = BASELINK_FUNCTIONS (n);
|
||
|
||
if (TREE_CODE (n) == FUNCTION_DECL)
|
||
return arg_assoc_type (k, TREE_TYPE (n));
|
||
if (TREE_CODE (n) == TEMPLATE_ID_EXPR)
|
||
{
|
||
/* [basic.lookup.koenig]
|
||
|
||
If T is a template-id, its associated namespaces and classes
|
||
are the namespace in which the template is defined; for
|
||
member templates, the member template's class... */
|
||
tree template = TREE_OPERAND (n, 0);
|
||
tree args = TREE_OPERAND (n, 1);
|
||
tree ctx;
|
||
int ix;
|
||
|
||
if (TREE_CODE (template) == COMPONENT_REF)
|
||
template = TREE_OPERAND (template, 1);
|
||
|
||
/* First, the template. There may actually be more than one if
|
||
this is an overloaded function template. But, in that case,
|
||
we only need the first; all the functions will be in the same
|
||
namespace. */
|
||
template = OVL_CURRENT (template);
|
||
|
||
ctx = CP_DECL_CONTEXT (template);
|
||
|
||
if (TREE_CODE (ctx) == NAMESPACE_DECL)
|
||
{
|
||
if (arg_assoc_namespace (k, ctx) == 1)
|
||
return true;
|
||
}
|
||
/* It must be a member template. */
|
||
else if (arg_assoc_class (k, ctx) == 1)
|
||
return true;
|
||
|
||
/* Now the arguments. */
|
||
if (args)
|
||
for (ix = TREE_VEC_LENGTH (args); ix--;)
|
||
if (arg_assoc_template_arg (k, TREE_VEC_ELT (args, ix)) == 1)
|
||
return true;
|
||
}
|
||
else if (TREE_CODE (n) == OVERLOAD)
|
||
{
|
||
for (; n; n = OVL_CHAIN (n))
|
||
if (arg_assoc_type (k, TREE_TYPE (OVL_FUNCTION (n))))
|
||
return true;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Performs Koenig lookup depending on arguments, where fns
|
||
are the functions found in normal lookup. */
|
||
|
||
tree
|
||
lookup_arg_dependent (tree name, tree fns, tree args)
|
||
{
|
||
struct arg_lookup k;
|
||
|
||
timevar_push (TV_NAME_LOOKUP);
|
||
|
||
/* Remove any hidden friend functions from the list of functions
|
||
found so far. They will be added back by arg_assoc_class as
|
||
appropriate. */
|
||
fns = remove_hidden_names (fns);
|
||
|
||
k.name = name;
|
||
k.args = args;
|
||
k.functions = fns;
|
||
k.classes = NULL_TREE;
|
||
|
||
/* We previously performed an optimization here by setting
|
||
NAMESPACES to the current namespace when it was safe. However, DR
|
||
164 says that namespaces that were already searched in the first
|
||
stage of template processing are searched again (potentially
|
||
picking up later definitions) in the second stage. */
|
||
k.namespaces = NULL_TREE;
|
||
|
||
arg_assoc_args (&k, args);
|
||
|
||
fns = k.functions;
|
||
|
||
if (fns
|
||
&& TREE_CODE (fns) != VAR_DECL
|
||
&& !is_overloaded_fn (fns))
|
||
{
|
||
error ("argument dependent lookup finds %q+D", fns);
|
||
error (" in call to %qD", name);
|
||
fns = error_mark_node;
|
||
}
|
||
|
||
POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, fns);
|
||
}
|
||
|
||
/* Add namespace to using_directives. Return NULL_TREE if nothing was
|
||
changed (i.e. there was already a directive), or the fresh
|
||
TREE_LIST otherwise. */
|
||
|
||
static tree
|
||
push_using_directive (tree used)
|
||
{
|
||
tree ud = current_binding_level->using_directives;
|
||
tree iter, ancestor;
|
||
|
||
timevar_push (TV_NAME_LOOKUP);
|
||
/* Check if we already have this. */
|
||
if (purpose_member (used, ud) != NULL_TREE)
|
||
POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, NULL_TREE);
|
||
|
||
ancestor = namespace_ancestor (current_decl_namespace (), used);
|
||
ud = current_binding_level->using_directives;
|
||
ud = tree_cons (used, ancestor, ud);
|
||
current_binding_level->using_directives = ud;
|
||
|
||
/* Recursively add all namespaces used. */
|
||
for (iter = DECL_NAMESPACE_USING (used); iter; iter = TREE_CHAIN (iter))
|
||
push_using_directive (TREE_PURPOSE (iter));
|
||
|
||
POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, ud);
|
||
}
|
||
|
||
/* The type TYPE is being declared. If it is a class template, or a
|
||
specialization of a class template, do any processing required and
|
||
perform error-checking. If IS_FRIEND is nonzero, this TYPE is
|
||
being declared a friend. B is the binding level at which this TYPE
|
||
should be bound.
|
||
|
||
Returns the TYPE_DECL for TYPE, which may have been altered by this
|
||
processing. */
|
||
|
||
static tree
|
||
maybe_process_template_type_declaration (tree type, int is_friend,
|
||
cxx_scope *b)
|
||
{
|
||
tree decl = TYPE_NAME (type);
|
||
|
||
if (processing_template_parmlist)
|
||
/* You can't declare a new template type in a template parameter
|
||
list. But, you can declare a non-template type:
|
||
|
||
template <class A*> struct S;
|
||
|
||
is a forward-declaration of `A'. */
|
||
;
|
||
else if (b->kind == sk_namespace
|
||
&& current_binding_level->kind != sk_namespace)
|
||
/* If this new type is being injected into a containing scope,
|
||
then it's not a template type. */
|
||
;
|
||
else
|
||
{
|
||
gcc_assert (IS_AGGR_TYPE (type) || TREE_CODE (type) == ENUMERAL_TYPE);
|
||
|
||
if (processing_template_decl)
|
||
{
|
||
/* This may change after the call to
|
||
push_template_decl_real, but we want the original value. */
|
||
tree name = DECL_NAME (decl);
|
||
|
||
decl = push_template_decl_real (decl, is_friend);
|
||
/* If the current binding level is the binding level for the
|
||
template parameters (see the comment in
|
||
begin_template_parm_list) and the enclosing level is a class
|
||
scope, and we're not looking at a friend, push the
|
||
declaration of the member class into the class scope. In the
|
||
friend case, push_template_decl will already have put the
|
||
friend into global scope, if appropriate. */
|
||
if (TREE_CODE (type) != ENUMERAL_TYPE
|
||
&& !is_friend && b->kind == sk_template_parms
|
||
&& b->level_chain->kind == sk_class)
|
||
{
|
||
finish_member_declaration (CLASSTYPE_TI_TEMPLATE (type));
|
||
|
||
if (!COMPLETE_TYPE_P (current_class_type))
|
||
{
|
||
maybe_add_class_template_decl_list (current_class_type,
|
||
type, /*friend_p=*/0);
|
||
/* Put this UTD in the table of UTDs for the class. */
|
||
if (CLASSTYPE_NESTED_UTDS (current_class_type) == NULL)
|
||
CLASSTYPE_NESTED_UTDS (current_class_type) =
|
||
binding_table_new (SCOPE_DEFAULT_HT_SIZE);
|
||
|
||
binding_table_insert
|
||
(CLASSTYPE_NESTED_UTDS (current_class_type), name, type);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
return decl;
|
||
}
|
||
|
||
/* Push a tag name NAME for struct/class/union/enum type TYPE. In case
|
||
that the NAME is a class template, the tag is processed but not pushed.
|
||
|
||
The pushed scope depend on the SCOPE parameter:
|
||
- When SCOPE is TS_CURRENT, put it into the inner-most non-sk_cleanup
|
||
scope.
|
||
- When SCOPE is TS_GLOBAL, put it in the inner-most non-class and
|
||
non-template-parameter scope. This case is needed for forward
|
||
declarations.
|
||
- When SCOPE is TS_WITHIN_ENCLOSING_NON_CLASS, this is similar to
|
||
TS_GLOBAL case except that names within template-parameter scopes
|
||
are not pushed at all.
|
||
|
||
Returns TYPE upon success and ERROR_MARK_NODE otherwise. */
|
||
|
||
tree
|
||
pushtag (tree name, tree type, tag_scope scope)
|
||
{
|
||
struct cp_binding_level *b;
|
||
tree decl;
|
||
|
||
timevar_push (TV_NAME_LOOKUP);
|
||
b = current_binding_level;
|
||
while (/* Cleanup scopes are not scopes from the point of view of
|
||
the language. */
|
||
b->kind == sk_cleanup
|
||
/* Neither are the scopes used to hold template parameters
|
||
for an explicit specialization. For an ordinary template
|
||
declaration, these scopes are not scopes from the point of
|
||
view of the language. */
|
||
|| (b->kind == sk_template_parms
|
||
&& (b->explicit_spec_p || scope == ts_global))
|
||
|| (b->kind == sk_class
|
||
&& (scope != ts_current
|
||
/* We may be defining a new type in the initializer
|
||
of a static member variable. We allow this when
|
||
not pedantic, and it is particularly useful for
|
||
type punning via an anonymous union. */
|
||
|| COMPLETE_TYPE_P (b->this_entity))))
|
||
b = b->level_chain;
|
||
|
||
gcc_assert (TREE_CODE (name) == IDENTIFIER_NODE);
|
||
|
||
/* Do C++ gratuitous typedefing. */
|
||
if (IDENTIFIER_TYPE_VALUE (name) != type)
|
||
{
|
||
tree tdef;
|
||
int in_class = 0;
|
||
tree context = TYPE_CONTEXT (type);
|
||
|
||
if (! context)
|
||
{
|
||
tree cs = current_scope ();
|
||
|
||
if (scope == ts_current)
|
||
context = cs;
|
||
else if (cs != NULL_TREE && TYPE_P (cs))
|
||
/* When declaring a friend class of a local class, we want
|
||
to inject the newly named class into the scope
|
||
containing the local class, not the namespace
|
||
scope. */
|
||
context = decl_function_context (get_type_decl (cs));
|
||
}
|
||
if (!context)
|
||
context = current_namespace;
|
||
|
||
if (b->kind == sk_class
|
||
|| (b->kind == sk_template_parms
|
||
&& b->level_chain->kind == sk_class))
|
||
in_class = 1;
|
||
|
||
if (current_lang_name == lang_name_java)
|
||
TYPE_FOR_JAVA (type) = 1;
|
||
|
||
tdef = create_implicit_typedef (name, type);
|
||
DECL_CONTEXT (tdef) = FROB_CONTEXT (context);
|
||
if (scope == ts_within_enclosing_non_class)
|
||
{
|
||
/* This is a friend. Make this TYPE_DECL node hidden from
|
||
ordinary name lookup. Its corresponding TEMPLATE_DECL
|
||
will be marked in push_template_decl_real. */
|
||
retrofit_lang_decl (tdef);
|
||
DECL_ANTICIPATED (tdef) = 1;
|
||
DECL_FRIEND_P (tdef) = 1;
|
||
}
|
||
|
||
decl = maybe_process_template_type_declaration
|
||
(type, scope == ts_within_enclosing_non_class, b);
|
||
if (decl == error_mark_node)
|
||
POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, decl);
|
||
|
||
if (! in_class)
|
||
set_identifier_type_value_with_scope (name, tdef, b);
|
||
|
||
if (b->kind == sk_class)
|
||
{
|
||
if (!PROCESSING_REAL_TEMPLATE_DECL_P ())
|
||
/* Put this TYPE_DECL on the TYPE_FIELDS list for the
|
||
class. But if it's a member template class, we want
|
||
the TEMPLATE_DECL, not the TYPE_DECL, so this is done
|
||
later. */
|
||
finish_member_declaration (decl);
|
||
else
|
||
pushdecl_class_level (decl);
|
||
}
|
||
else if (b->kind != sk_template_parms)
|
||
{
|
||
decl = pushdecl_with_scope (decl, b, /*is_friend=*/false);
|
||
if (decl == error_mark_node)
|
||
POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, decl);
|
||
}
|
||
|
||
TYPE_CONTEXT (type) = DECL_CONTEXT (decl);
|
||
|
||
/* If this is a local class, keep track of it. We need this
|
||
information for name-mangling, and so that it is possible to
|
||
find all function definitions in a translation unit in a
|
||
convenient way. (It's otherwise tricky to find a member
|
||
function definition it's only pointed to from within a local
|
||
class.) */
|
||
if (TYPE_CONTEXT (type)
|
||
&& TREE_CODE (TYPE_CONTEXT (type)) == FUNCTION_DECL)
|
||
VEC_safe_push (tree, gc, local_classes, type);
|
||
}
|
||
if (b->kind == sk_class
|
||
&& !COMPLETE_TYPE_P (current_class_type))
|
||
{
|
||
maybe_add_class_template_decl_list (current_class_type,
|
||
type, /*friend_p=*/0);
|
||
|
||
if (CLASSTYPE_NESTED_UTDS (current_class_type) == NULL)
|
||
CLASSTYPE_NESTED_UTDS (current_class_type)
|
||
= binding_table_new (SCOPE_DEFAULT_HT_SIZE);
|
||
|
||
binding_table_insert
|
||
(CLASSTYPE_NESTED_UTDS (current_class_type), name, type);
|
||
}
|
||
|
||
decl = TYPE_NAME (type);
|
||
gcc_assert (TREE_CODE (decl) == TYPE_DECL);
|
||
TYPE_STUB_DECL (type) = decl;
|
||
|
||
/* Set type visibility now if this is a forward declaration. */
|
||
TREE_PUBLIC (decl) = 1;
|
||
determine_visibility (decl);
|
||
|
||
POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, type);
|
||
}
|
||
|
||
/* Subroutines for reverting temporarily to top-level for instantiation
|
||
of templates and such. We actually need to clear out the class- and
|
||
local-value slots of all identifiers, so that only the global values
|
||
are at all visible. Simply setting current_binding_level to the global
|
||
scope isn't enough, because more binding levels may be pushed. */
|
||
struct saved_scope *scope_chain;
|
||
|
||
/* If ID has not already been marked, add an appropriate binding to
|
||
*OLD_BINDINGS. */
|
||
|
||
static void
|
||
store_binding (tree id, VEC(cxx_saved_binding,gc) **old_bindings)
|
||
{
|
||
cxx_saved_binding *saved;
|
||
|
||
if (!id || !IDENTIFIER_BINDING (id))
|
||
return;
|
||
|
||
if (IDENTIFIER_MARKED (id))
|
||
return;
|
||
|
||
IDENTIFIER_MARKED (id) = 1;
|
||
|
||
saved = VEC_safe_push (cxx_saved_binding, gc, *old_bindings, NULL);
|
||
saved->identifier = id;
|
||
saved->binding = IDENTIFIER_BINDING (id);
|
||
saved->real_type_value = REAL_IDENTIFIER_TYPE_VALUE (id);
|
||
IDENTIFIER_BINDING (id) = NULL;
|
||
}
|
||
|
||
static void
|
||
store_bindings (tree names, VEC(cxx_saved_binding,gc) **old_bindings)
|
||
{
|
||
tree t;
|
||
|
||
timevar_push (TV_NAME_LOOKUP);
|
||
for (t = names; t; t = TREE_CHAIN (t))
|
||
{
|
||
tree id;
|
||
|
||
if (TREE_CODE (t) == TREE_LIST)
|
||
id = TREE_PURPOSE (t);
|
||
else
|
||
id = DECL_NAME (t);
|
||
|
||
store_binding (id, old_bindings);
|
||
}
|
||
timevar_pop (TV_NAME_LOOKUP);
|
||
}
|
||
|
||
/* Like store_bindings, but NAMES is a vector of cp_class_binding
|
||
objects, rather than a TREE_LIST. */
|
||
|
||
static void
|
||
store_class_bindings (VEC(cp_class_binding,gc) *names,
|
||
VEC(cxx_saved_binding,gc) **old_bindings)
|
||
{
|
||
size_t i;
|
||
cp_class_binding *cb;
|
||
|
||
timevar_push (TV_NAME_LOOKUP);
|
||
for (i = 0; VEC_iterate(cp_class_binding, names, i, cb); ++i)
|
||
store_binding (cb->identifier, old_bindings);
|
||
timevar_pop (TV_NAME_LOOKUP);
|
||
}
|
||
|
||
void
|
||
push_to_top_level (void)
|
||
{
|
||
struct saved_scope *s;
|
||
struct cp_binding_level *b;
|
||
cxx_saved_binding *sb;
|
||
size_t i;
|
||
int need_pop;
|
||
|
||
timevar_push (TV_NAME_LOOKUP);
|
||
s = GGC_CNEW (struct saved_scope);
|
||
|
||
b = scope_chain ? current_binding_level : 0;
|
||
|
||
/* If we're in the middle of some function, save our state. */
|
||
if (cfun)
|
||
{
|
||
need_pop = 1;
|
||
push_function_context_to (NULL_TREE);
|
||
}
|
||
else
|
||
need_pop = 0;
|
||
|
||
if (scope_chain && previous_class_level)
|
||
store_class_bindings (previous_class_level->class_shadowed,
|
||
&s->old_bindings);
|
||
|
||
/* Have to include the global scope, because class-scope decls
|
||
aren't listed anywhere useful. */
|
||
for (; b; b = b->level_chain)
|
||
{
|
||
tree t;
|
||
|
||
/* Template IDs are inserted into the global level. If they were
|
||
inserted into namespace level, finish_file wouldn't find them
|
||
when doing pending instantiations. Therefore, don't stop at
|
||
namespace level, but continue until :: . */
|
||
if (global_scope_p (b))
|
||
break;
|
||
|
||
store_bindings (b->names, &s->old_bindings);
|
||
/* We also need to check class_shadowed to save class-level type
|
||
bindings, since pushclass doesn't fill in b->names. */
|
||
if (b->kind == sk_class)
|
||
store_class_bindings (b->class_shadowed, &s->old_bindings);
|
||
|
||
/* Unwind type-value slots back to top level. */
|
||
for (t = b->type_shadowed; t; t = TREE_CHAIN (t))
|
||
SET_IDENTIFIER_TYPE_VALUE (TREE_PURPOSE (t), TREE_VALUE (t));
|
||
}
|
||
|
||
for (i = 0; VEC_iterate (cxx_saved_binding, s->old_bindings, i, sb); ++i)
|
||
IDENTIFIER_MARKED (sb->identifier) = 0;
|
||
|
||
s->prev = scope_chain;
|
||
s->bindings = b;
|
||
s->need_pop_function_context = need_pop;
|
||
s->function_decl = current_function_decl;
|
||
s->skip_evaluation = skip_evaluation;
|
||
|
||
scope_chain = s;
|
||
current_function_decl = NULL_TREE;
|
||
current_lang_base = VEC_alloc (tree, gc, 10);
|
||
current_lang_name = lang_name_cplusplus;
|
||
current_namespace = global_namespace;
|
||
push_class_stack ();
|
||
skip_evaluation = 0;
|
||
timevar_pop (TV_NAME_LOOKUP);
|
||
}
|
||
|
||
void
|
||
pop_from_top_level (void)
|
||
{
|
||
struct saved_scope *s = scope_chain;
|
||
cxx_saved_binding *saved;
|
||
size_t i;
|
||
|
||
timevar_push (TV_NAME_LOOKUP);
|
||
/* Clear out class-level bindings cache. */
|
||
if (previous_class_level)
|
||
invalidate_class_lookup_cache ();
|
||
pop_class_stack ();
|
||
|
||
current_lang_base = 0;
|
||
|
||
scope_chain = s->prev;
|
||
for (i = 0; VEC_iterate (cxx_saved_binding, s->old_bindings, i, saved); ++i)
|
||
{
|
||
tree id = saved->identifier;
|
||
|
||
IDENTIFIER_BINDING (id) = saved->binding;
|
||
SET_IDENTIFIER_TYPE_VALUE (id, saved->real_type_value);
|
||
}
|
||
|
||
/* If we were in the middle of compiling a function, restore our
|
||
state. */
|
||
if (s->need_pop_function_context)
|
||
pop_function_context_from (NULL_TREE);
|
||
current_function_decl = s->function_decl;
|
||
skip_evaluation = s->skip_evaluation;
|
||
timevar_pop (TV_NAME_LOOKUP);
|
||
}
|
||
|
||
/* Pop off extraneous binding levels left over due to syntax errors.
|
||
|
||
We don't pop past namespaces, as they might be valid. */
|
||
|
||
void
|
||
pop_everything (void)
|
||
{
|
||
if (ENABLE_SCOPE_CHECKING)
|
||
verbatim ("XXX entering pop_everything ()\n");
|
||
while (!toplevel_bindings_p ())
|
||
{
|
||
if (current_binding_level->kind == sk_class)
|
||
pop_nested_class ();
|
||
else
|
||
poplevel (0, 0, 0);
|
||
}
|
||
if (ENABLE_SCOPE_CHECKING)
|
||
verbatim ("XXX leaving pop_everything ()\n");
|
||
}
|
||
|
||
/* Emit debugging information for using declarations and directives.
|
||
If input tree is overloaded fn then emit debug info for all
|
||
candidates. */
|
||
|
||
void
|
||
cp_emit_debug_info_for_using (tree t, tree context)
|
||
{
|
||
/* Don't try to emit any debug information if we have errors. */
|
||
if (sorrycount || errorcount)
|
||
return;
|
||
|
||
/* Ignore this FUNCTION_DECL if it refers to a builtin declaration
|
||
of a builtin function. */
|
||
if (TREE_CODE (t) == FUNCTION_DECL
|
||
&& DECL_EXTERNAL (t)
|
||
&& DECL_BUILT_IN (t))
|
||
return;
|
||
|
||
/* Do not supply context to imported_module_or_decl, if
|
||
it is a global namespace. */
|
||
if (context == global_namespace)
|
||
context = NULL_TREE;
|
||
|
||
if (BASELINK_P (t))
|
||
t = BASELINK_FUNCTIONS (t);
|
||
|
||
/* FIXME: Handle TEMPLATE_DECLs. */
|
||
for (t = OVL_CURRENT (t); t; t = OVL_NEXT (t))
|
||
if (TREE_CODE (t) != TEMPLATE_DECL)
|
||
(*debug_hooks->imported_module_or_decl) (t, context);
|
||
}
|
||
|
||
#include "gt-cp-name-lookup.h"
|