mirror of
https://git.FreeBSD.org/src.git
synced 2025-01-01 12:19:28 +00:00
99b96cf934
Pointed out by: N.J. Mann <njm at njm.me.uk>, John Nielsen <john at jnielsen.net>, julian (!), lstewart MFC after: 2 days
1771 lines
45 KiB
C
1771 lines
45 KiB
C
/*-
|
|
* Copyright (c) 1982, 1986, 1988, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)ip_input.c 8.2 (Berkeley) 1/4/94
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include "opt_bootp.h"
|
|
#include "opt_ipfw.h"
|
|
#include "opt_ipstealth.h"
|
|
#include "opt_ipsec.h"
|
|
#include "opt_route.h"
|
|
#include "opt_carp.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/callout.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/domain.h>
|
|
#include <sys/protosw.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/time.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/rwlock.h>
|
|
#include <sys/syslog.h>
|
|
#include <sys/sysctl.h>
|
|
|
|
#include <net/pfil.h>
|
|
#include <net/if.h>
|
|
#include <net/if_types.h>
|
|
#include <net/if_var.h>
|
|
#include <net/if_dl.h>
|
|
#include <net/route.h>
|
|
#include <net/netisr.h>
|
|
#include <net/vnet.h>
|
|
#include <net/flowtable.h>
|
|
|
|
#include <netinet/in.h>
|
|
#include <netinet/in_systm.h>
|
|
#include <netinet/in_var.h>
|
|
#include <netinet/ip.h>
|
|
#include <netinet/in_pcb.h>
|
|
#include <netinet/ip_var.h>
|
|
#include <netinet/ip_fw.h>
|
|
#include <netinet/ip_icmp.h>
|
|
#include <netinet/ip_options.h>
|
|
#include <machine/in_cksum.h>
|
|
#ifdef DEV_CARP
|
|
#include <netinet/ip_carp.h>
|
|
#endif
|
|
#ifdef IPSEC
|
|
#include <netinet/ip_ipsec.h>
|
|
#endif /* IPSEC */
|
|
|
|
#include <sys/socketvar.h>
|
|
|
|
#include <security/mac/mac_framework.h>
|
|
|
|
#ifdef CTASSERT
|
|
CTASSERT(sizeof(struct ip) == 20);
|
|
#endif
|
|
|
|
static VNET_DEFINE(int, ipsendredirects) = 1; /* XXX */
|
|
static VNET_DEFINE(int, ip_checkinterface);
|
|
static VNET_DEFINE(int, ip_keepfaith);
|
|
static VNET_DEFINE(int, ip_sendsourcequench);
|
|
|
|
#define V_ipsendredirects VNET(ipsendredirects)
|
|
#define V_ip_checkinterface VNET(ip_checkinterface)
|
|
#define V_ip_keepfaith VNET(ip_keepfaith)
|
|
#define V_ip_sendsourcequench VNET(ip_sendsourcequench)
|
|
|
|
VNET_DEFINE(int, ip_defttl) = IPDEFTTL;
|
|
VNET_DEFINE(int, ip_do_randomid);
|
|
VNET_DEFINE(int, ipforwarding);
|
|
|
|
VNET_DEFINE(struct in_ifaddrhead, in_ifaddrhead); /* first inet address */
|
|
VNET_DEFINE(struct in_ifaddrhashhead *, in_ifaddrhashtbl); /* inet addr hash table */
|
|
VNET_DEFINE(u_long, in_ifaddrhmask); /* mask for hash table */
|
|
VNET_DEFINE(struct ipstat, ipstat);
|
|
|
|
static VNET_DEFINE(int, ip_rsvp_on);
|
|
VNET_DEFINE(struct socket *, ip_rsvpd);
|
|
VNET_DEFINE(int, rsvp_on);
|
|
|
|
#define V_ip_rsvp_on VNET(ip_rsvp_on)
|
|
|
|
static VNET_DEFINE(TAILQ_HEAD(ipqhead, ipq), ipq[IPREASS_NHASH]);
|
|
static VNET_DEFINE(int, maxnipq); /* Administrative limit on # reass queues. */
|
|
static VNET_DEFINE(int, maxfragsperpacket);
|
|
static VNET_DEFINE(int, nipq); /* Total # of reass queues */
|
|
|
|
#define V_ipq VNET(ipq)
|
|
#define V_maxnipq VNET(maxnipq)
|
|
#define V_maxfragsperpacket VNET(maxfragsperpacket)
|
|
#define V_nipq VNET(nipq)
|
|
|
|
VNET_DEFINE(int, ipstealth);
|
|
|
|
struct rwlock in_ifaddr_lock;
|
|
RW_SYSINIT(in_ifaddr_lock, &in_ifaddr_lock, "in_ifaddr_lock");
|
|
|
|
SYSCTL_VNET_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
|
|
&VNET_NAME(ipforwarding), 0,
|
|
"Enable IP forwarding between interfaces");
|
|
|
|
SYSCTL_VNET_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
|
|
&VNET_NAME(ipsendredirects), 0,
|
|
"Enable sending IP redirects");
|
|
|
|
SYSCTL_VNET_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
|
|
&VNET_NAME(ip_defttl), 0,
|
|
"Maximum TTL on IP packets");
|
|
|
|
SYSCTL_VNET_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
|
|
&VNET_NAME(ip_keepfaith), 0,
|
|
"Enable packet capture for FAITH IPv4->IPv6 translater daemon");
|
|
|
|
SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
|
|
&VNET_NAME(ip_sendsourcequench), 0,
|
|
"Enable the transmission of source quench packets");
|
|
|
|
SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, random_id, CTLFLAG_RW,
|
|
&VNET_NAME(ip_do_randomid), 0,
|
|
"Assign random ip_id values");
|
|
|
|
/*
|
|
* XXX - Setting ip_checkinterface mostly implements the receive side of
|
|
* the Strong ES model described in RFC 1122, but since the routing table
|
|
* and transmit implementation do not implement the Strong ES model,
|
|
* setting this to 1 results in an odd hybrid.
|
|
*
|
|
* XXX - ip_checkinterface currently must be disabled if you use ipnat
|
|
* to translate the destination address to another local interface.
|
|
*
|
|
* XXX - ip_checkinterface must be disabled if you add IP aliases
|
|
* to the loopback interface instead of the interface where the
|
|
* packets for those addresses are received.
|
|
*/
|
|
SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
|
|
&VNET_NAME(ip_checkinterface), 0,
|
|
"Verify packet arrives on correct interface");
|
|
|
|
VNET_DEFINE(struct pfil_head, inet_pfil_hook); /* Packet filter hooks */
|
|
|
|
static struct netisr_handler ip_nh = {
|
|
.nh_name = "ip",
|
|
.nh_handler = ip_input,
|
|
.nh_proto = NETISR_IP,
|
|
.nh_policy = NETISR_POLICY_FLOW,
|
|
};
|
|
|
|
extern struct domain inetdomain;
|
|
extern struct protosw inetsw[];
|
|
u_char ip_protox[IPPROTO_MAX];
|
|
|
|
SYSCTL_VNET_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW,
|
|
&VNET_NAME(ipstat), ipstat,
|
|
"IP statistics (struct ipstat, netinet/ip_var.h)");
|
|
|
|
static VNET_DEFINE(uma_zone_t, ipq_zone);
|
|
#define V_ipq_zone VNET(ipq_zone)
|
|
|
|
static struct mtx ipqlock;
|
|
|
|
#define IPQ_LOCK() mtx_lock(&ipqlock)
|
|
#define IPQ_UNLOCK() mtx_unlock(&ipqlock)
|
|
#define IPQ_LOCK_INIT() mtx_init(&ipqlock, "ipqlock", NULL, MTX_DEF)
|
|
#define IPQ_LOCK_ASSERT() mtx_assert(&ipqlock, MA_OWNED)
|
|
|
|
static void maxnipq_update(void);
|
|
static void ipq_zone_change(void *);
|
|
|
|
SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, fragpackets, CTLFLAG_RD,
|
|
&VNET_NAME(nipq), 0,
|
|
"Current number of IPv4 fragment reassembly queue entries");
|
|
|
|
SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW,
|
|
&VNET_NAME(maxfragsperpacket), 0,
|
|
"Maximum number of IPv4 fragments allowed per packet");
|
|
|
|
struct callout ipport_tick_callout;
|
|
|
|
#ifdef IPCTL_DEFMTU
|
|
SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
|
|
&ip_mtu, 0, "Default MTU");
|
|
#endif
|
|
|
|
#ifdef IPSTEALTH
|
|
SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW,
|
|
&VNET_NAME(ipstealth), 0,
|
|
"IP stealth mode, no TTL decrementation on forwarding");
|
|
#endif
|
|
|
|
#ifdef FLOWTABLE
|
|
static VNET_DEFINE(int, ip_output_flowtable_size) = 2048;
|
|
VNET_DEFINE(struct flowtable *, ip_ft);
|
|
#define V_ip_output_flowtable_size VNET(ip_output_flowtable_size)
|
|
|
|
SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, output_flowtable_size, CTLFLAG_RDTUN,
|
|
&VNET_NAME(ip_output_flowtable_size), 2048,
|
|
"number of entries in the per-cpu output flow caches");
|
|
#endif
|
|
|
|
VNET_DEFINE(int, fw_one_pass) = 1;
|
|
|
|
static void ip_freef(struct ipqhead *, struct ipq *);
|
|
|
|
/*
|
|
* Kernel module interface for updating ipstat. The argument is an index
|
|
* into ipstat treated as an array of u_long. While this encodes the general
|
|
* layout of ipstat into the caller, it doesn't encode its location, so that
|
|
* future changes to add, for example, per-CPU stats support won't cause
|
|
* binary compatibility problems for kernel modules.
|
|
*/
|
|
void
|
|
kmod_ipstat_inc(int statnum)
|
|
{
|
|
|
|
(*((u_long *)&V_ipstat + statnum))++;
|
|
}
|
|
|
|
void
|
|
kmod_ipstat_dec(int statnum)
|
|
{
|
|
|
|
(*((u_long *)&V_ipstat + statnum))--;
|
|
}
|
|
|
|
static int
|
|
sysctl_netinet_intr_queue_maxlen(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
int error, qlimit;
|
|
|
|
netisr_getqlimit(&ip_nh, &qlimit);
|
|
error = sysctl_handle_int(oidp, &qlimit, 0, req);
|
|
if (error || !req->newptr)
|
|
return (error);
|
|
if (qlimit < 1)
|
|
return (EINVAL);
|
|
return (netisr_setqlimit(&ip_nh, qlimit));
|
|
}
|
|
SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen,
|
|
CTLTYPE_INT|CTLFLAG_RW, 0, 0, sysctl_netinet_intr_queue_maxlen, "I",
|
|
"Maximum size of the IP input queue");
|
|
|
|
static int
|
|
sysctl_netinet_intr_queue_drops(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
u_int64_t qdrops_long;
|
|
int error, qdrops;
|
|
|
|
netisr_getqdrops(&ip_nh, &qdrops_long);
|
|
qdrops = qdrops_long;
|
|
error = sysctl_handle_int(oidp, &qdrops, 0, req);
|
|
if (error || !req->newptr)
|
|
return (error);
|
|
if (qdrops != 0)
|
|
return (EINVAL);
|
|
netisr_clearqdrops(&ip_nh);
|
|
return (0);
|
|
}
|
|
|
|
SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops,
|
|
CTLTYPE_INT|CTLFLAG_RD, 0, 0, sysctl_netinet_intr_queue_drops, "I",
|
|
"Number of packets dropped from the IP input queue");
|
|
|
|
/*
|
|
* IP initialization: fill in IP protocol switch table.
|
|
* All protocols not implemented in kernel go to raw IP protocol handler.
|
|
*/
|
|
void
|
|
ip_init(void)
|
|
{
|
|
struct protosw *pr;
|
|
int i;
|
|
|
|
V_ip_id = time_second & 0xffff;
|
|
|
|
TAILQ_INIT(&V_in_ifaddrhead);
|
|
V_in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &V_in_ifaddrhmask);
|
|
|
|
/* Initialize IP reassembly queue. */
|
|
for (i = 0; i < IPREASS_NHASH; i++)
|
|
TAILQ_INIT(&V_ipq[i]);
|
|
V_maxnipq = nmbclusters / 32;
|
|
V_maxfragsperpacket = 16;
|
|
V_ipq_zone = uma_zcreate("ipq", sizeof(struct ipq), NULL, NULL, NULL,
|
|
NULL, UMA_ALIGN_PTR, 0);
|
|
maxnipq_update();
|
|
|
|
/* Initialize packet filter hooks. */
|
|
V_inet_pfil_hook.ph_type = PFIL_TYPE_AF;
|
|
V_inet_pfil_hook.ph_af = AF_INET;
|
|
if ((i = pfil_head_register(&V_inet_pfil_hook)) != 0)
|
|
printf("%s: WARNING: unable to register pfil hook, "
|
|
"error %d\n", __func__, i);
|
|
|
|
#ifdef FLOWTABLE
|
|
TUNABLE_INT_FETCH("net.inet.ip.output_flowtable_size",
|
|
&V_ip_output_flowtable_size);
|
|
V_ip_ft = flowtable_alloc(V_ip_output_flowtable_size, FL_PCPU);
|
|
#endif
|
|
|
|
/* Skip initialization of globals for non-default instances. */
|
|
if (!IS_DEFAULT_VNET(curvnet))
|
|
return;
|
|
|
|
pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
|
|
if (pr == NULL)
|
|
panic("ip_init: PF_INET not found");
|
|
|
|
/* Initialize the entire ip_protox[] array to IPPROTO_RAW. */
|
|
for (i = 0; i < IPPROTO_MAX; i++)
|
|
ip_protox[i] = pr - inetsw;
|
|
/*
|
|
* Cycle through IP protocols and put them into the appropriate place
|
|
* in ip_protox[].
|
|
*/
|
|
for (pr = inetdomain.dom_protosw;
|
|
pr < inetdomain.dom_protoswNPROTOSW; pr++)
|
|
if (pr->pr_domain->dom_family == PF_INET &&
|
|
pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW) {
|
|
/* Be careful to only index valid IP protocols. */
|
|
if (pr->pr_protocol < IPPROTO_MAX)
|
|
ip_protox[pr->pr_protocol] = pr - inetsw;
|
|
}
|
|
|
|
/* Start ipport_tick. */
|
|
callout_init(&ipport_tick_callout, CALLOUT_MPSAFE);
|
|
callout_reset(&ipport_tick_callout, 1, ipport_tick, NULL);
|
|
EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL,
|
|
SHUTDOWN_PRI_DEFAULT);
|
|
EVENTHANDLER_REGISTER(nmbclusters_change, ipq_zone_change,
|
|
NULL, EVENTHANDLER_PRI_ANY);
|
|
|
|
/* Initialize various other remaining things. */
|
|
IPQ_LOCK_INIT();
|
|
netisr_register(&ip_nh);
|
|
}
|
|
|
|
void
|
|
ip_fini(void *xtp)
|
|
{
|
|
|
|
callout_stop(&ipport_tick_callout);
|
|
}
|
|
|
|
/*
|
|
* Ip input routine. Checksum and byte swap header. If fragmented
|
|
* try to reassemble. Process options. Pass to next level.
|
|
*/
|
|
void
|
|
ip_input(struct mbuf *m)
|
|
{
|
|
struct ip *ip = NULL;
|
|
struct in_ifaddr *ia = NULL;
|
|
struct ifaddr *ifa;
|
|
struct ifnet *ifp;
|
|
int checkif, hlen = 0;
|
|
u_short sum;
|
|
int dchg = 0; /* dest changed after fw */
|
|
struct in_addr odst; /* original dst address */
|
|
|
|
M_ASSERTPKTHDR(m);
|
|
|
|
if (m->m_flags & M_FASTFWD_OURS) {
|
|
/*
|
|
* Firewall or NAT changed destination to local.
|
|
* We expect ip_len and ip_off to be in host byte order.
|
|
*/
|
|
m->m_flags &= ~M_FASTFWD_OURS;
|
|
/* Set up some basics that will be used later. */
|
|
ip = mtod(m, struct ip *);
|
|
hlen = ip->ip_hl << 2;
|
|
goto ours;
|
|
}
|
|
|
|
IPSTAT_INC(ips_total);
|
|
|
|
if (m->m_pkthdr.len < sizeof(struct ip))
|
|
goto tooshort;
|
|
|
|
if (m->m_len < sizeof (struct ip) &&
|
|
(m = m_pullup(m, sizeof (struct ip))) == NULL) {
|
|
IPSTAT_INC(ips_toosmall);
|
|
return;
|
|
}
|
|
ip = mtod(m, struct ip *);
|
|
|
|
if (ip->ip_v != IPVERSION) {
|
|
IPSTAT_INC(ips_badvers);
|
|
goto bad;
|
|
}
|
|
|
|
hlen = ip->ip_hl << 2;
|
|
if (hlen < sizeof(struct ip)) { /* minimum header length */
|
|
IPSTAT_INC(ips_badhlen);
|
|
goto bad;
|
|
}
|
|
if (hlen > m->m_len) {
|
|
if ((m = m_pullup(m, hlen)) == NULL) {
|
|
IPSTAT_INC(ips_badhlen);
|
|
return;
|
|
}
|
|
ip = mtod(m, struct ip *);
|
|
}
|
|
|
|
/* 127/8 must not appear on wire - RFC1122 */
|
|
ifp = m->m_pkthdr.rcvif;
|
|
if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
|
|
(ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
|
|
if ((ifp->if_flags & IFF_LOOPBACK) == 0) {
|
|
IPSTAT_INC(ips_badaddr);
|
|
goto bad;
|
|
}
|
|
}
|
|
|
|
if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
|
|
sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
|
|
} else {
|
|
if (hlen == sizeof(struct ip)) {
|
|
sum = in_cksum_hdr(ip);
|
|
} else {
|
|
sum = in_cksum(m, hlen);
|
|
}
|
|
}
|
|
if (sum) {
|
|
IPSTAT_INC(ips_badsum);
|
|
goto bad;
|
|
}
|
|
|
|
#ifdef ALTQ
|
|
if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0)
|
|
/* packet is dropped by traffic conditioner */
|
|
return;
|
|
#endif
|
|
|
|
/*
|
|
* Convert fields to host representation.
|
|
*/
|
|
ip->ip_len = ntohs(ip->ip_len);
|
|
if (ip->ip_len < hlen) {
|
|
IPSTAT_INC(ips_badlen);
|
|
goto bad;
|
|
}
|
|
ip->ip_off = ntohs(ip->ip_off);
|
|
|
|
/*
|
|
* Check that the amount of data in the buffers
|
|
* is as at least much as the IP header would have us expect.
|
|
* Trim mbufs if longer than we expect.
|
|
* Drop packet if shorter than we expect.
|
|
*/
|
|
if (m->m_pkthdr.len < ip->ip_len) {
|
|
tooshort:
|
|
IPSTAT_INC(ips_tooshort);
|
|
goto bad;
|
|
}
|
|
if (m->m_pkthdr.len > ip->ip_len) {
|
|
if (m->m_len == m->m_pkthdr.len) {
|
|
m->m_len = ip->ip_len;
|
|
m->m_pkthdr.len = ip->ip_len;
|
|
} else
|
|
m_adj(m, ip->ip_len - m->m_pkthdr.len);
|
|
}
|
|
#ifdef IPSEC
|
|
/*
|
|
* Bypass packet filtering for packets from a tunnel (gif).
|
|
*/
|
|
if (ip_ipsec_filtertunnel(m))
|
|
goto passin;
|
|
#endif /* IPSEC */
|
|
|
|
/*
|
|
* Run through list of hooks for input packets.
|
|
*
|
|
* NB: Beware of the destination address changing (e.g.
|
|
* by NAT rewriting). When this happens, tell
|
|
* ip_forward to do the right thing.
|
|
*/
|
|
|
|
/* Jump over all PFIL processing if hooks are not active. */
|
|
if (!PFIL_HOOKED(&V_inet_pfil_hook))
|
|
goto passin;
|
|
|
|
odst = ip->ip_dst;
|
|
if (pfil_run_hooks(&V_inet_pfil_hook, &m, ifp, PFIL_IN, NULL) != 0)
|
|
return;
|
|
if (m == NULL) /* consumed by filter */
|
|
return;
|
|
|
|
ip = mtod(m, struct ip *);
|
|
dchg = (odst.s_addr != ip->ip_dst.s_addr);
|
|
ifp = m->m_pkthdr.rcvif;
|
|
|
|
#ifdef IPFIREWALL_FORWARD
|
|
if (m->m_flags & M_FASTFWD_OURS) {
|
|
m->m_flags &= ~M_FASTFWD_OURS;
|
|
goto ours;
|
|
}
|
|
if ((dchg = (m_tag_find(m, PACKET_TAG_IPFORWARD, NULL) != NULL)) != 0) {
|
|
/*
|
|
* Directly ship the packet on. This allows forwarding
|
|
* packets originally destined to us to some other directly
|
|
* connected host.
|
|
*/
|
|
ip_forward(m, dchg);
|
|
return;
|
|
}
|
|
#endif /* IPFIREWALL_FORWARD */
|
|
|
|
passin:
|
|
/*
|
|
* Process options and, if not destined for us,
|
|
* ship it on. ip_dooptions returns 1 when an
|
|
* error was detected (causing an icmp message
|
|
* to be sent and the original packet to be freed).
|
|
*/
|
|
if (hlen > sizeof (struct ip) && ip_dooptions(m, 0))
|
|
return;
|
|
|
|
/* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
|
|
* matter if it is destined to another node, or whether it is
|
|
* a multicast one, RSVP wants it! and prevents it from being forwarded
|
|
* anywhere else. Also checks if the rsvp daemon is running before
|
|
* grabbing the packet.
|
|
*/
|
|
if (V_rsvp_on && ip->ip_p==IPPROTO_RSVP)
|
|
goto ours;
|
|
|
|
/*
|
|
* Check our list of addresses, to see if the packet is for us.
|
|
* If we don't have any addresses, assume any unicast packet
|
|
* we receive might be for us (and let the upper layers deal
|
|
* with it).
|
|
*/
|
|
if (TAILQ_EMPTY(&V_in_ifaddrhead) &&
|
|
(m->m_flags & (M_MCAST|M_BCAST)) == 0)
|
|
goto ours;
|
|
|
|
/*
|
|
* Enable a consistency check between the destination address
|
|
* and the arrival interface for a unicast packet (the RFC 1122
|
|
* strong ES model) if IP forwarding is disabled and the packet
|
|
* is not locally generated and the packet is not subject to
|
|
* 'ipfw fwd'.
|
|
*
|
|
* XXX - Checking also should be disabled if the destination
|
|
* address is ipnat'ed to a different interface.
|
|
*
|
|
* XXX - Checking is incompatible with IP aliases added
|
|
* to the loopback interface instead of the interface where
|
|
* the packets are received.
|
|
*
|
|
* XXX - This is the case for carp vhost IPs as well so we
|
|
* insert a workaround. If the packet got here, we already
|
|
* checked with carp_iamatch() and carp_forus().
|
|
*/
|
|
checkif = V_ip_checkinterface && (V_ipforwarding == 0) &&
|
|
ifp != NULL && ((ifp->if_flags & IFF_LOOPBACK) == 0) &&
|
|
#ifdef DEV_CARP
|
|
!ifp->if_carp &&
|
|
#endif
|
|
(dchg == 0);
|
|
|
|
/*
|
|
* Check for exact addresses in the hash bucket.
|
|
*/
|
|
/* IN_IFADDR_RLOCK(); */
|
|
LIST_FOREACH(ia, INADDR_HASH(ip->ip_dst.s_addr), ia_hash) {
|
|
/*
|
|
* If the address matches, verify that the packet
|
|
* arrived via the correct interface if checking is
|
|
* enabled.
|
|
*/
|
|
if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr &&
|
|
(!checkif || ia->ia_ifp == ifp)) {
|
|
ifa_ref(&ia->ia_ifa);
|
|
/* IN_IFADDR_RUNLOCK(); */
|
|
goto ours;
|
|
}
|
|
}
|
|
/* IN_IFADDR_RUNLOCK(); */
|
|
|
|
/*
|
|
* Check for broadcast addresses.
|
|
*
|
|
* Only accept broadcast packets that arrive via the matching
|
|
* interface. Reception of forwarded directed broadcasts would
|
|
* be handled via ip_forward() and ether_output() with the loopback
|
|
* into the stack for SIMPLEX interfaces handled by ether_output().
|
|
*/
|
|
if (ifp != NULL && ifp->if_flags & IFF_BROADCAST) {
|
|
IF_ADDR_LOCK(ifp);
|
|
TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
|
|
if (ifa->ifa_addr->sa_family != AF_INET)
|
|
continue;
|
|
ia = ifatoia(ifa);
|
|
if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
|
|
ip->ip_dst.s_addr) {
|
|
ifa_ref(ifa);
|
|
IF_ADDR_UNLOCK(ifp);
|
|
goto ours;
|
|
}
|
|
if (ia->ia_netbroadcast.s_addr == ip->ip_dst.s_addr) {
|
|
ifa_ref(ifa);
|
|
IF_ADDR_UNLOCK(ifp);
|
|
goto ours;
|
|
}
|
|
#ifdef BOOTP_COMPAT
|
|
if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY) {
|
|
ifa_ref(ifa);
|
|
IF_ADDR_UNLOCK(ifp);
|
|
goto ours;
|
|
}
|
|
#endif
|
|
}
|
|
IF_ADDR_UNLOCK(ifp);
|
|
ia = NULL;
|
|
}
|
|
/* RFC 3927 2.7: Do not forward datagrams for 169.254.0.0/16. */
|
|
if (IN_LINKLOCAL(ntohl(ip->ip_dst.s_addr))) {
|
|
IPSTAT_INC(ips_cantforward);
|
|
m_freem(m);
|
|
return;
|
|
}
|
|
if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
|
|
if (V_ip_mrouter) {
|
|
/*
|
|
* If we are acting as a multicast router, all
|
|
* incoming multicast packets are passed to the
|
|
* kernel-level multicast forwarding function.
|
|
* The packet is returned (relatively) intact; if
|
|
* ip_mforward() returns a non-zero value, the packet
|
|
* must be discarded, else it may be accepted below.
|
|
*/
|
|
if (ip_mforward && ip_mforward(ip, ifp, m, 0) != 0) {
|
|
IPSTAT_INC(ips_cantforward);
|
|
m_freem(m);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* The process-level routing daemon needs to receive
|
|
* all multicast IGMP packets, whether or not this
|
|
* host belongs to their destination groups.
|
|
*/
|
|
if (ip->ip_p == IPPROTO_IGMP)
|
|
goto ours;
|
|
IPSTAT_INC(ips_forward);
|
|
}
|
|
/*
|
|
* Assume the packet is for us, to avoid prematurely taking
|
|
* a lock on the in_multi hash. Protocols must perform
|
|
* their own filtering and update statistics accordingly.
|
|
*/
|
|
goto ours;
|
|
}
|
|
if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
|
|
goto ours;
|
|
if (ip->ip_dst.s_addr == INADDR_ANY)
|
|
goto ours;
|
|
|
|
/*
|
|
* FAITH(Firewall Aided Internet Translator)
|
|
*/
|
|
if (ifp && ifp->if_type == IFT_FAITH) {
|
|
if (V_ip_keepfaith) {
|
|
if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
|
|
goto ours;
|
|
}
|
|
m_freem(m);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Not for us; forward if possible and desirable.
|
|
*/
|
|
if (V_ipforwarding == 0) {
|
|
IPSTAT_INC(ips_cantforward);
|
|
m_freem(m);
|
|
} else {
|
|
#ifdef IPSEC
|
|
if (ip_ipsec_fwd(m))
|
|
goto bad;
|
|
#endif /* IPSEC */
|
|
ip_forward(m, dchg);
|
|
}
|
|
return;
|
|
|
|
ours:
|
|
#ifdef IPSTEALTH
|
|
/*
|
|
* IPSTEALTH: Process non-routing options only
|
|
* if the packet is destined for us.
|
|
*/
|
|
if (V_ipstealth && hlen > sizeof (struct ip) && ip_dooptions(m, 1)) {
|
|
if (ia != NULL)
|
|
ifa_free(&ia->ia_ifa);
|
|
return;
|
|
}
|
|
#endif /* IPSTEALTH */
|
|
|
|
/* Count the packet in the ip address stats */
|
|
if (ia != NULL) {
|
|
ia->ia_ifa.if_ipackets++;
|
|
ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
|
|
ifa_free(&ia->ia_ifa);
|
|
}
|
|
|
|
/*
|
|
* Attempt reassembly; if it succeeds, proceed.
|
|
* ip_reass() will return a different mbuf.
|
|
*/
|
|
if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
|
|
m = ip_reass(m);
|
|
if (m == NULL)
|
|
return;
|
|
ip = mtod(m, struct ip *);
|
|
/* Get the header length of the reassembled packet */
|
|
hlen = ip->ip_hl << 2;
|
|
}
|
|
|
|
/*
|
|
* Further protocols expect the packet length to be w/o the
|
|
* IP header.
|
|
*/
|
|
ip->ip_len -= hlen;
|
|
|
|
#ifdef IPSEC
|
|
/*
|
|
* enforce IPsec policy checking if we are seeing last header.
|
|
* note that we do not visit this with protocols with pcb layer
|
|
* code - like udp/tcp/raw ip.
|
|
*/
|
|
if (ip_ipsec_input(m))
|
|
goto bad;
|
|
#endif /* IPSEC */
|
|
|
|
/*
|
|
* Switch out to protocol's input routine.
|
|
*/
|
|
IPSTAT_INC(ips_delivered);
|
|
|
|
(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
|
|
return;
|
|
bad:
|
|
m_freem(m);
|
|
}
|
|
|
|
/*
|
|
* After maxnipq has been updated, propagate the change to UMA. The UMA zone
|
|
* max has slightly different semantics than the sysctl, for historical
|
|
* reasons.
|
|
*/
|
|
static void
|
|
maxnipq_update(void)
|
|
{
|
|
|
|
/*
|
|
* -1 for unlimited allocation.
|
|
*/
|
|
if (V_maxnipq < 0)
|
|
uma_zone_set_max(V_ipq_zone, 0);
|
|
/*
|
|
* Positive number for specific bound.
|
|
*/
|
|
if (V_maxnipq > 0)
|
|
uma_zone_set_max(V_ipq_zone, V_maxnipq);
|
|
/*
|
|
* Zero specifies no further fragment queue allocation -- set the
|
|
* bound very low, but rely on implementation elsewhere to actually
|
|
* prevent allocation and reclaim current queues.
|
|
*/
|
|
if (V_maxnipq == 0)
|
|
uma_zone_set_max(V_ipq_zone, 1);
|
|
}
|
|
|
|
static void
|
|
ipq_zone_change(void *tag)
|
|
{
|
|
|
|
if (V_maxnipq > 0 && V_maxnipq < (nmbclusters / 32)) {
|
|
V_maxnipq = nmbclusters / 32;
|
|
maxnipq_update();
|
|
}
|
|
}
|
|
|
|
static int
|
|
sysctl_maxnipq(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
int error, i;
|
|
|
|
i = V_maxnipq;
|
|
error = sysctl_handle_int(oidp, &i, 0, req);
|
|
if (error || !req->newptr)
|
|
return (error);
|
|
|
|
/*
|
|
* XXXRW: Might be a good idea to sanity check the argument and place
|
|
* an extreme upper bound.
|
|
*/
|
|
if (i < -1)
|
|
return (EINVAL);
|
|
V_maxnipq = i;
|
|
maxnipq_update();
|
|
return (0);
|
|
}
|
|
|
|
SYSCTL_PROC(_net_inet_ip, OID_AUTO, maxfragpackets, CTLTYPE_INT|CTLFLAG_RW,
|
|
NULL, 0, sysctl_maxnipq, "I",
|
|
"Maximum number of IPv4 fragment reassembly queue entries");
|
|
|
|
/*
|
|
* Take incoming datagram fragment and try to reassemble it into
|
|
* whole datagram. If the argument is the first fragment or one
|
|
* in between the function will return NULL and store the mbuf
|
|
* in the fragment chain. If the argument is the last fragment
|
|
* the packet will be reassembled and the pointer to the new
|
|
* mbuf returned for further processing. Only m_tags attached
|
|
* to the first packet/fragment are preserved.
|
|
* The IP header is *NOT* adjusted out of iplen.
|
|
*/
|
|
struct mbuf *
|
|
ip_reass(struct mbuf *m)
|
|
{
|
|
struct ip *ip;
|
|
struct mbuf *p, *q, *nq, *t;
|
|
struct ipq *fp = NULL;
|
|
struct ipqhead *head;
|
|
int i, hlen, next;
|
|
u_int8_t ecn, ecn0;
|
|
u_short hash;
|
|
|
|
/* If maxnipq or maxfragsperpacket are 0, never accept fragments. */
|
|
if (V_maxnipq == 0 || V_maxfragsperpacket == 0) {
|
|
IPSTAT_INC(ips_fragments);
|
|
IPSTAT_INC(ips_fragdropped);
|
|
m_freem(m);
|
|
return (NULL);
|
|
}
|
|
|
|
ip = mtod(m, struct ip *);
|
|
hlen = ip->ip_hl << 2;
|
|
|
|
hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
|
|
head = &V_ipq[hash];
|
|
IPQ_LOCK();
|
|
|
|
/*
|
|
* Look for queue of fragments
|
|
* of this datagram.
|
|
*/
|
|
TAILQ_FOREACH(fp, head, ipq_list)
|
|
if (ip->ip_id == fp->ipq_id &&
|
|
ip->ip_src.s_addr == fp->ipq_src.s_addr &&
|
|
ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
|
|
#ifdef MAC
|
|
mac_ipq_match(m, fp) &&
|
|
#endif
|
|
ip->ip_p == fp->ipq_p)
|
|
goto found;
|
|
|
|
fp = NULL;
|
|
|
|
/*
|
|
* Attempt to trim the number of allocated fragment queues if it
|
|
* exceeds the administrative limit.
|
|
*/
|
|
if ((V_nipq > V_maxnipq) && (V_maxnipq > 0)) {
|
|
/*
|
|
* drop something from the tail of the current queue
|
|
* before proceeding further
|
|
*/
|
|
struct ipq *q = TAILQ_LAST(head, ipqhead);
|
|
if (q == NULL) { /* gak */
|
|
for (i = 0; i < IPREASS_NHASH; i++) {
|
|
struct ipq *r = TAILQ_LAST(&V_ipq[i], ipqhead);
|
|
if (r) {
|
|
IPSTAT_ADD(ips_fragtimeout,
|
|
r->ipq_nfrags);
|
|
ip_freef(&V_ipq[i], r);
|
|
break;
|
|
}
|
|
}
|
|
} else {
|
|
IPSTAT_ADD(ips_fragtimeout, q->ipq_nfrags);
|
|
ip_freef(head, q);
|
|
}
|
|
}
|
|
|
|
found:
|
|
/*
|
|
* Adjust ip_len to not reflect header,
|
|
* convert offset of this to bytes.
|
|
*/
|
|
ip->ip_len -= hlen;
|
|
if (ip->ip_off & IP_MF) {
|
|
/*
|
|
* Make sure that fragments have a data length
|
|
* that's a non-zero multiple of 8 bytes.
|
|
*/
|
|
if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
|
|
IPSTAT_INC(ips_toosmall); /* XXX */
|
|
goto dropfrag;
|
|
}
|
|
m->m_flags |= M_FRAG;
|
|
} else
|
|
m->m_flags &= ~M_FRAG;
|
|
ip->ip_off <<= 3;
|
|
|
|
|
|
/*
|
|
* Attempt reassembly; if it succeeds, proceed.
|
|
* ip_reass() will return a different mbuf.
|
|
*/
|
|
IPSTAT_INC(ips_fragments);
|
|
m->m_pkthdr.header = ip;
|
|
|
|
/* Previous ip_reass() started here. */
|
|
/*
|
|
* Presence of header sizes in mbufs
|
|
* would confuse code below.
|
|
*/
|
|
m->m_data += hlen;
|
|
m->m_len -= hlen;
|
|
|
|
/*
|
|
* If first fragment to arrive, create a reassembly queue.
|
|
*/
|
|
if (fp == NULL) {
|
|
fp = uma_zalloc(V_ipq_zone, M_NOWAIT);
|
|
if (fp == NULL)
|
|
goto dropfrag;
|
|
#ifdef MAC
|
|
if (mac_ipq_init(fp, M_NOWAIT) != 0) {
|
|
uma_zfree(V_ipq_zone, fp);
|
|
fp = NULL;
|
|
goto dropfrag;
|
|
}
|
|
mac_ipq_create(m, fp);
|
|
#endif
|
|
TAILQ_INSERT_HEAD(head, fp, ipq_list);
|
|
V_nipq++;
|
|
fp->ipq_nfrags = 1;
|
|
fp->ipq_ttl = IPFRAGTTL;
|
|
fp->ipq_p = ip->ip_p;
|
|
fp->ipq_id = ip->ip_id;
|
|
fp->ipq_src = ip->ip_src;
|
|
fp->ipq_dst = ip->ip_dst;
|
|
fp->ipq_frags = m;
|
|
m->m_nextpkt = NULL;
|
|
goto done;
|
|
} else {
|
|
fp->ipq_nfrags++;
|
|
#ifdef MAC
|
|
mac_ipq_update(m, fp);
|
|
#endif
|
|
}
|
|
|
|
#define GETIP(m) ((struct ip*)((m)->m_pkthdr.header))
|
|
|
|
/*
|
|
* Handle ECN by comparing this segment with the first one;
|
|
* if CE is set, do not lose CE.
|
|
* drop if CE and not-ECT are mixed for the same packet.
|
|
*/
|
|
ecn = ip->ip_tos & IPTOS_ECN_MASK;
|
|
ecn0 = GETIP(fp->ipq_frags)->ip_tos & IPTOS_ECN_MASK;
|
|
if (ecn == IPTOS_ECN_CE) {
|
|
if (ecn0 == IPTOS_ECN_NOTECT)
|
|
goto dropfrag;
|
|
if (ecn0 != IPTOS_ECN_CE)
|
|
GETIP(fp->ipq_frags)->ip_tos |= IPTOS_ECN_CE;
|
|
}
|
|
if (ecn == IPTOS_ECN_NOTECT && ecn0 != IPTOS_ECN_NOTECT)
|
|
goto dropfrag;
|
|
|
|
/*
|
|
* Find a segment which begins after this one does.
|
|
*/
|
|
for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
|
|
if (GETIP(q)->ip_off > ip->ip_off)
|
|
break;
|
|
|
|
/*
|
|
* If there is a preceding segment, it may provide some of
|
|
* our data already. If so, drop the data from the incoming
|
|
* segment. If it provides all of our data, drop us, otherwise
|
|
* stick new segment in the proper place.
|
|
*
|
|
* If some of the data is dropped from the the preceding
|
|
* segment, then it's checksum is invalidated.
|
|
*/
|
|
if (p) {
|
|
i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
|
|
if (i > 0) {
|
|
if (i >= ip->ip_len)
|
|
goto dropfrag;
|
|
m_adj(m, i);
|
|
m->m_pkthdr.csum_flags = 0;
|
|
ip->ip_off += i;
|
|
ip->ip_len -= i;
|
|
}
|
|
m->m_nextpkt = p->m_nextpkt;
|
|
p->m_nextpkt = m;
|
|
} else {
|
|
m->m_nextpkt = fp->ipq_frags;
|
|
fp->ipq_frags = m;
|
|
}
|
|
|
|
/*
|
|
* While we overlap succeeding segments trim them or,
|
|
* if they are completely covered, dequeue them.
|
|
*/
|
|
for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
|
|
q = nq) {
|
|
i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off;
|
|
if (i < GETIP(q)->ip_len) {
|
|
GETIP(q)->ip_len -= i;
|
|
GETIP(q)->ip_off += i;
|
|
m_adj(q, i);
|
|
q->m_pkthdr.csum_flags = 0;
|
|
break;
|
|
}
|
|
nq = q->m_nextpkt;
|
|
m->m_nextpkt = nq;
|
|
IPSTAT_INC(ips_fragdropped);
|
|
fp->ipq_nfrags--;
|
|
m_freem(q);
|
|
}
|
|
|
|
/*
|
|
* Check for complete reassembly and perform frag per packet
|
|
* limiting.
|
|
*
|
|
* Frag limiting is performed here so that the nth frag has
|
|
* a chance to complete the packet before we drop the packet.
|
|
* As a result, n+1 frags are actually allowed per packet, but
|
|
* only n will ever be stored. (n = maxfragsperpacket.)
|
|
*
|
|
*/
|
|
next = 0;
|
|
for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
|
|
if (GETIP(q)->ip_off != next) {
|
|
if (fp->ipq_nfrags > V_maxfragsperpacket) {
|
|
IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
|
|
ip_freef(head, fp);
|
|
}
|
|
goto done;
|
|
}
|
|
next += GETIP(q)->ip_len;
|
|
}
|
|
/* Make sure the last packet didn't have the IP_MF flag */
|
|
if (p->m_flags & M_FRAG) {
|
|
if (fp->ipq_nfrags > V_maxfragsperpacket) {
|
|
IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
|
|
ip_freef(head, fp);
|
|
}
|
|
goto done;
|
|
}
|
|
|
|
/*
|
|
* Reassembly is complete. Make sure the packet is a sane size.
|
|
*/
|
|
q = fp->ipq_frags;
|
|
ip = GETIP(q);
|
|
if (next + (ip->ip_hl << 2) > IP_MAXPACKET) {
|
|
IPSTAT_INC(ips_toolong);
|
|
IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
|
|
ip_freef(head, fp);
|
|
goto done;
|
|
}
|
|
|
|
/*
|
|
* Concatenate fragments.
|
|
*/
|
|
m = q;
|
|
t = m->m_next;
|
|
m->m_next = NULL;
|
|
m_cat(m, t);
|
|
nq = q->m_nextpkt;
|
|
q->m_nextpkt = NULL;
|
|
for (q = nq; q != NULL; q = nq) {
|
|
nq = q->m_nextpkt;
|
|
q->m_nextpkt = NULL;
|
|
m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
|
|
m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
|
|
m_cat(m, q);
|
|
}
|
|
/*
|
|
* In order to do checksumming faster we do 'end-around carry' here
|
|
* (and not in for{} loop), though it implies we are not going to
|
|
* reassemble more than 64k fragments.
|
|
*/
|
|
m->m_pkthdr.csum_data =
|
|
(m->m_pkthdr.csum_data & 0xffff) + (m->m_pkthdr.csum_data >> 16);
|
|
#ifdef MAC
|
|
mac_ipq_reassemble(fp, m);
|
|
mac_ipq_destroy(fp);
|
|
#endif
|
|
|
|
/*
|
|
* Create header for new ip packet by modifying header of first
|
|
* packet; dequeue and discard fragment reassembly header.
|
|
* Make header visible.
|
|
*/
|
|
ip->ip_len = (ip->ip_hl << 2) + next;
|
|
ip->ip_src = fp->ipq_src;
|
|
ip->ip_dst = fp->ipq_dst;
|
|
TAILQ_REMOVE(head, fp, ipq_list);
|
|
V_nipq--;
|
|
uma_zfree(V_ipq_zone, fp);
|
|
m->m_len += (ip->ip_hl << 2);
|
|
m->m_data -= (ip->ip_hl << 2);
|
|
/* some debugging cruft by sklower, below, will go away soon */
|
|
if (m->m_flags & M_PKTHDR) /* XXX this should be done elsewhere */
|
|
m_fixhdr(m);
|
|
IPSTAT_INC(ips_reassembled);
|
|
IPQ_UNLOCK();
|
|
return (m);
|
|
|
|
dropfrag:
|
|
IPSTAT_INC(ips_fragdropped);
|
|
if (fp != NULL)
|
|
fp->ipq_nfrags--;
|
|
m_freem(m);
|
|
done:
|
|
IPQ_UNLOCK();
|
|
return (NULL);
|
|
|
|
#undef GETIP
|
|
}
|
|
|
|
/*
|
|
* Free a fragment reassembly header and all
|
|
* associated datagrams.
|
|
*/
|
|
static void
|
|
ip_freef(struct ipqhead *fhp, struct ipq *fp)
|
|
{
|
|
struct mbuf *q;
|
|
|
|
IPQ_LOCK_ASSERT();
|
|
|
|
while (fp->ipq_frags) {
|
|
q = fp->ipq_frags;
|
|
fp->ipq_frags = q->m_nextpkt;
|
|
m_freem(q);
|
|
}
|
|
TAILQ_REMOVE(fhp, fp, ipq_list);
|
|
uma_zfree(V_ipq_zone, fp);
|
|
V_nipq--;
|
|
}
|
|
|
|
/*
|
|
* IP timer processing;
|
|
* if a timer expires on a reassembly
|
|
* queue, discard it.
|
|
*/
|
|
void
|
|
ip_slowtimo(void)
|
|
{
|
|
VNET_ITERATOR_DECL(vnet_iter);
|
|
struct ipq *fp;
|
|
int i;
|
|
|
|
VNET_LIST_RLOCK_NOSLEEP();
|
|
IPQ_LOCK();
|
|
VNET_FOREACH(vnet_iter) {
|
|
CURVNET_SET(vnet_iter);
|
|
for (i = 0; i < IPREASS_NHASH; i++) {
|
|
for(fp = TAILQ_FIRST(&V_ipq[i]); fp;) {
|
|
struct ipq *fpp;
|
|
|
|
fpp = fp;
|
|
fp = TAILQ_NEXT(fp, ipq_list);
|
|
if(--fpp->ipq_ttl == 0) {
|
|
IPSTAT_ADD(ips_fragtimeout,
|
|
fpp->ipq_nfrags);
|
|
ip_freef(&V_ipq[i], fpp);
|
|
}
|
|
}
|
|
}
|
|
/*
|
|
* If we are over the maximum number of fragments
|
|
* (due to the limit being lowered), drain off
|
|
* enough to get down to the new limit.
|
|
*/
|
|
if (V_maxnipq >= 0 && V_nipq > V_maxnipq) {
|
|
for (i = 0; i < IPREASS_NHASH; i++) {
|
|
while (V_nipq > V_maxnipq &&
|
|
!TAILQ_EMPTY(&V_ipq[i])) {
|
|
IPSTAT_ADD(ips_fragdropped,
|
|
TAILQ_FIRST(&V_ipq[i])->ipq_nfrags);
|
|
ip_freef(&V_ipq[i],
|
|
TAILQ_FIRST(&V_ipq[i]));
|
|
}
|
|
}
|
|
}
|
|
CURVNET_RESTORE();
|
|
}
|
|
IPQ_UNLOCK();
|
|
VNET_LIST_RUNLOCK_NOSLEEP();
|
|
}
|
|
|
|
/*
|
|
* Drain off all datagram fragments.
|
|
*/
|
|
void
|
|
ip_drain(void)
|
|
{
|
|
VNET_ITERATOR_DECL(vnet_iter);
|
|
int i;
|
|
|
|
VNET_LIST_RLOCK_NOSLEEP();
|
|
IPQ_LOCK();
|
|
VNET_FOREACH(vnet_iter) {
|
|
CURVNET_SET(vnet_iter);
|
|
for (i = 0; i < IPREASS_NHASH; i++) {
|
|
while(!TAILQ_EMPTY(&V_ipq[i])) {
|
|
IPSTAT_ADD(ips_fragdropped,
|
|
TAILQ_FIRST(&V_ipq[i])->ipq_nfrags);
|
|
ip_freef(&V_ipq[i], TAILQ_FIRST(&V_ipq[i]));
|
|
}
|
|
}
|
|
CURVNET_RESTORE();
|
|
}
|
|
IPQ_UNLOCK();
|
|
VNET_LIST_RUNLOCK_NOSLEEP();
|
|
in_rtqdrain();
|
|
}
|
|
|
|
/*
|
|
* The protocol to be inserted into ip_protox[] must be already registered
|
|
* in inetsw[], either statically or through pf_proto_register().
|
|
*/
|
|
int
|
|
ipproto_register(u_char ipproto)
|
|
{
|
|
struct protosw *pr;
|
|
|
|
/* Sanity checks. */
|
|
if (ipproto == 0)
|
|
return (EPROTONOSUPPORT);
|
|
|
|
/*
|
|
* The protocol slot must not be occupied by another protocol
|
|
* already. An index pointing to IPPROTO_RAW is unused.
|
|
*/
|
|
pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
|
|
if (pr == NULL)
|
|
return (EPFNOSUPPORT);
|
|
if (ip_protox[ipproto] != pr - inetsw) /* IPPROTO_RAW */
|
|
return (EEXIST);
|
|
|
|
/* Find the protocol position in inetsw[] and set the index. */
|
|
for (pr = inetdomain.dom_protosw;
|
|
pr < inetdomain.dom_protoswNPROTOSW; pr++) {
|
|
if (pr->pr_domain->dom_family == PF_INET &&
|
|
pr->pr_protocol && pr->pr_protocol == ipproto) {
|
|
/* Be careful to only index valid IP protocols. */
|
|
if (pr->pr_protocol < IPPROTO_MAX) {
|
|
ip_protox[pr->pr_protocol] = pr - inetsw;
|
|
return (0);
|
|
} else
|
|
return (EINVAL);
|
|
}
|
|
}
|
|
return (EPROTONOSUPPORT);
|
|
}
|
|
|
|
int
|
|
ipproto_unregister(u_char ipproto)
|
|
{
|
|
struct protosw *pr;
|
|
|
|
/* Sanity checks. */
|
|
if (ipproto == 0)
|
|
return (EPROTONOSUPPORT);
|
|
|
|
/* Check if the protocol was indeed registered. */
|
|
pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
|
|
if (pr == NULL)
|
|
return (EPFNOSUPPORT);
|
|
if (ip_protox[ipproto] == pr - inetsw) /* IPPROTO_RAW */
|
|
return (ENOENT);
|
|
|
|
/* Reset the protocol slot to IPPROTO_RAW. */
|
|
ip_protox[ipproto] = pr - inetsw;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Given address of next destination (final or next hop), return (referenced)
|
|
* internet address info of interface to be used to get there.
|
|
*/
|
|
struct in_ifaddr *
|
|
ip_rtaddr(struct in_addr dst, u_int fibnum)
|
|
{
|
|
struct route sro;
|
|
struct sockaddr_in *sin;
|
|
struct in_ifaddr *ia;
|
|
|
|
bzero(&sro, sizeof(sro));
|
|
sin = (struct sockaddr_in *)&sro.ro_dst;
|
|
sin->sin_family = AF_INET;
|
|
sin->sin_len = sizeof(*sin);
|
|
sin->sin_addr = dst;
|
|
in_rtalloc_ign(&sro, 0, fibnum);
|
|
|
|
if (sro.ro_rt == NULL)
|
|
return (NULL);
|
|
|
|
ia = ifatoia(sro.ro_rt->rt_ifa);
|
|
ifa_ref(&ia->ia_ifa);
|
|
RTFREE(sro.ro_rt);
|
|
return (ia);
|
|
}
|
|
|
|
u_char inetctlerrmap[PRC_NCMDS] = {
|
|
0, 0, 0, 0,
|
|
0, EMSGSIZE, EHOSTDOWN, EHOSTUNREACH,
|
|
EHOSTUNREACH, EHOSTUNREACH, ECONNREFUSED, ECONNREFUSED,
|
|
EMSGSIZE, EHOSTUNREACH, 0, 0,
|
|
0, 0, EHOSTUNREACH, 0,
|
|
ENOPROTOOPT, ECONNREFUSED
|
|
};
|
|
|
|
/*
|
|
* Forward a packet. If some error occurs return the sender
|
|
* an icmp packet. Note we can't always generate a meaningful
|
|
* icmp message because icmp doesn't have a large enough repertoire
|
|
* of codes and types.
|
|
*
|
|
* If not forwarding, just drop the packet. This could be confusing
|
|
* if ipforwarding was zero but some routing protocol was advancing
|
|
* us as a gateway to somewhere. However, we must let the routing
|
|
* protocol deal with that.
|
|
*
|
|
* The srcrt parameter indicates whether the packet is being forwarded
|
|
* via a source route.
|
|
*/
|
|
void
|
|
ip_forward(struct mbuf *m, int srcrt)
|
|
{
|
|
struct ip *ip = mtod(m, struct ip *);
|
|
struct in_ifaddr *ia;
|
|
struct mbuf *mcopy;
|
|
struct in_addr dest;
|
|
struct route ro;
|
|
int error, type = 0, code = 0, mtu = 0;
|
|
|
|
if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) {
|
|
IPSTAT_INC(ips_cantforward);
|
|
m_freem(m);
|
|
return;
|
|
}
|
|
#ifdef IPSTEALTH
|
|
if (!V_ipstealth) {
|
|
#endif
|
|
if (ip->ip_ttl <= IPTTLDEC) {
|
|
icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS,
|
|
0, 0);
|
|
return;
|
|
}
|
|
#ifdef IPSTEALTH
|
|
}
|
|
#endif
|
|
|
|
ia = ip_rtaddr(ip->ip_dst, M_GETFIB(m));
|
|
#ifndef IPSEC
|
|
/*
|
|
* 'ia' may be NULL if there is no route for this destination.
|
|
* In case of IPsec, Don't discard it just yet, but pass it to
|
|
* ip_output in case of outgoing IPsec policy.
|
|
*/
|
|
if (!srcrt && ia == NULL) {
|
|
icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0, 0);
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Save the IP header and at most 8 bytes of the payload,
|
|
* in case we need to generate an ICMP message to the src.
|
|
*
|
|
* XXX this can be optimized a lot by saving the data in a local
|
|
* buffer on the stack (72 bytes at most), and only allocating the
|
|
* mbuf if really necessary. The vast majority of the packets
|
|
* are forwarded without having to send an ICMP back (either
|
|
* because unnecessary, or because rate limited), so we are
|
|
* really we are wasting a lot of work here.
|
|
*
|
|
* We don't use m_copy() because it might return a reference
|
|
* to a shared cluster. Both this function and ip_output()
|
|
* assume exclusive access to the IP header in `m', so any
|
|
* data in a cluster may change before we reach icmp_error().
|
|
*/
|
|
MGETHDR(mcopy, M_DONTWAIT, m->m_type);
|
|
if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, M_DONTWAIT)) {
|
|
/*
|
|
* It's probably ok if the pkthdr dup fails (because
|
|
* the deep copy of the tag chain failed), but for now
|
|
* be conservative and just discard the copy since
|
|
* code below may some day want the tags.
|
|
*/
|
|
m_free(mcopy);
|
|
mcopy = NULL;
|
|
}
|
|
if (mcopy != NULL) {
|
|
mcopy->m_len = min(ip->ip_len, M_TRAILINGSPACE(mcopy));
|
|
mcopy->m_pkthdr.len = mcopy->m_len;
|
|
m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
|
|
}
|
|
|
|
#ifdef IPSTEALTH
|
|
if (!V_ipstealth) {
|
|
#endif
|
|
ip->ip_ttl -= IPTTLDEC;
|
|
#ifdef IPSTEALTH
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* If forwarding packet using same interface that it came in on,
|
|
* perhaps should send a redirect to sender to shortcut a hop.
|
|
* Only send redirect if source is sending directly to us,
|
|
* and if packet was not source routed (or has any options).
|
|
* Also, don't send redirect if forwarding using a default route
|
|
* or a route modified by a redirect.
|
|
*/
|
|
dest.s_addr = 0;
|
|
if (!srcrt && V_ipsendredirects &&
|
|
ia != NULL && ia->ia_ifp == m->m_pkthdr.rcvif) {
|
|
struct sockaddr_in *sin;
|
|
struct rtentry *rt;
|
|
|
|
bzero(&ro, sizeof(ro));
|
|
sin = (struct sockaddr_in *)&ro.ro_dst;
|
|
sin->sin_family = AF_INET;
|
|
sin->sin_len = sizeof(*sin);
|
|
sin->sin_addr = ip->ip_dst;
|
|
in_rtalloc_ign(&ro, 0, M_GETFIB(m));
|
|
|
|
rt = ro.ro_rt;
|
|
|
|
if (rt && (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
|
|
satosin(rt_key(rt))->sin_addr.s_addr != 0) {
|
|
#define RTA(rt) ((struct in_ifaddr *)(rt->rt_ifa))
|
|
u_long src = ntohl(ip->ip_src.s_addr);
|
|
|
|
if (RTA(rt) &&
|
|
(src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
|
|
if (rt->rt_flags & RTF_GATEWAY)
|
|
dest.s_addr = satosin(rt->rt_gateway)->sin_addr.s_addr;
|
|
else
|
|
dest.s_addr = ip->ip_dst.s_addr;
|
|
/* Router requirements says to only send host redirects */
|
|
type = ICMP_REDIRECT;
|
|
code = ICMP_REDIRECT_HOST;
|
|
}
|
|
}
|
|
if (rt)
|
|
RTFREE(rt);
|
|
}
|
|
|
|
/*
|
|
* Try to cache the route MTU from ip_output so we can consider it for
|
|
* the ICMP_UNREACH_NEEDFRAG "Next-Hop MTU" field described in RFC1191.
|
|
*/
|
|
bzero(&ro, sizeof(ro));
|
|
|
|
error = ip_output(m, NULL, &ro, IP_FORWARDING, NULL, NULL);
|
|
|
|
if (error == EMSGSIZE && ro.ro_rt)
|
|
mtu = ro.ro_rt->rt_rmx.rmx_mtu;
|
|
if (ro.ro_rt)
|
|
RTFREE(ro.ro_rt);
|
|
|
|
if (error)
|
|
IPSTAT_INC(ips_cantforward);
|
|
else {
|
|
IPSTAT_INC(ips_forward);
|
|
if (type)
|
|
IPSTAT_INC(ips_redirectsent);
|
|
else {
|
|
if (mcopy)
|
|
m_freem(mcopy);
|
|
if (ia != NULL)
|
|
ifa_free(&ia->ia_ifa);
|
|
return;
|
|
}
|
|
}
|
|
if (mcopy == NULL) {
|
|
if (ia != NULL)
|
|
ifa_free(&ia->ia_ifa);
|
|
return;
|
|
}
|
|
|
|
switch (error) {
|
|
|
|
case 0: /* forwarded, but need redirect */
|
|
/* type, code set above */
|
|
break;
|
|
|
|
case ENETUNREACH:
|
|
case EHOSTUNREACH:
|
|
case ENETDOWN:
|
|
case EHOSTDOWN:
|
|
default:
|
|
type = ICMP_UNREACH;
|
|
code = ICMP_UNREACH_HOST;
|
|
break;
|
|
|
|
case EMSGSIZE:
|
|
type = ICMP_UNREACH;
|
|
code = ICMP_UNREACH_NEEDFRAG;
|
|
|
|
#ifdef IPSEC
|
|
/*
|
|
* If IPsec is configured for this path,
|
|
* override any possibly mtu value set by ip_output.
|
|
*/
|
|
mtu = ip_ipsec_mtu(m, mtu);
|
|
#endif /* IPSEC */
|
|
/*
|
|
* If the MTU was set before make sure we are below the
|
|
* interface MTU.
|
|
* If the MTU wasn't set before use the interface mtu or
|
|
* fall back to the next smaller mtu step compared to the
|
|
* current packet size.
|
|
*/
|
|
if (mtu != 0) {
|
|
if (ia != NULL)
|
|
mtu = min(mtu, ia->ia_ifp->if_mtu);
|
|
} else {
|
|
if (ia != NULL)
|
|
mtu = ia->ia_ifp->if_mtu;
|
|
else
|
|
mtu = ip_next_mtu(ip->ip_len, 0);
|
|
}
|
|
IPSTAT_INC(ips_cantfrag);
|
|
break;
|
|
|
|
case ENOBUFS:
|
|
/*
|
|
* A router should not generate ICMP_SOURCEQUENCH as
|
|
* required in RFC1812 Requirements for IP Version 4 Routers.
|
|
* Source quench could be a big problem under DoS attacks,
|
|
* or if the underlying interface is rate-limited.
|
|
* Those who need source quench packets may re-enable them
|
|
* via the net.inet.ip.sendsourcequench sysctl.
|
|
*/
|
|
if (V_ip_sendsourcequench == 0) {
|
|
m_freem(mcopy);
|
|
if (ia != NULL)
|
|
ifa_free(&ia->ia_ifa);
|
|
return;
|
|
} else {
|
|
type = ICMP_SOURCEQUENCH;
|
|
code = 0;
|
|
}
|
|
break;
|
|
|
|
case EACCES: /* ipfw denied packet */
|
|
m_freem(mcopy);
|
|
if (ia != NULL)
|
|
ifa_free(&ia->ia_ifa);
|
|
return;
|
|
}
|
|
if (ia != NULL)
|
|
ifa_free(&ia->ia_ifa);
|
|
icmp_error(mcopy, type, code, dest.s_addr, mtu);
|
|
}
|
|
|
|
void
|
|
ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
|
|
struct mbuf *m)
|
|
{
|
|
|
|
if (inp->inp_socket->so_options & (SO_BINTIME | SO_TIMESTAMP)) {
|
|
struct bintime bt;
|
|
|
|
bintime(&bt);
|
|
if (inp->inp_socket->so_options & SO_BINTIME) {
|
|
*mp = sbcreatecontrol((caddr_t) &bt, sizeof(bt),
|
|
SCM_BINTIME, SOL_SOCKET);
|
|
if (*mp)
|
|
mp = &(*mp)->m_next;
|
|
}
|
|
if (inp->inp_socket->so_options & SO_TIMESTAMP) {
|
|
struct timeval tv;
|
|
|
|
bintime2timeval(&bt, &tv);
|
|
*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
|
|
SCM_TIMESTAMP, SOL_SOCKET);
|
|
if (*mp)
|
|
mp = &(*mp)->m_next;
|
|
}
|
|
}
|
|
if (inp->inp_flags & INP_RECVDSTADDR) {
|
|
*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
|
|
sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
|
|
if (*mp)
|
|
mp = &(*mp)->m_next;
|
|
}
|
|
if (inp->inp_flags & INP_RECVTTL) {
|
|
*mp = sbcreatecontrol((caddr_t) &ip->ip_ttl,
|
|
sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
|
|
if (*mp)
|
|
mp = &(*mp)->m_next;
|
|
}
|
|
#ifdef notyet
|
|
/* XXX
|
|
* Moving these out of udp_input() made them even more broken
|
|
* than they already were.
|
|
*/
|
|
/* options were tossed already */
|
|
if (inp->inp_flags & INP_RECVOPTS) {
|
|
*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
|
|
sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
|
|
if (*mp)
|
|
mp = &(*mp)->m_next;
|
|
}
|
|
/* ip_srcroute doesn't do what we want here, need to fix */
|
|
if (inp->inp_flags & INP_RECVRETOPTS) {
|
|
*mp = sbcreatecontrol((caddr_t) ip_srcroute(m),
|
|
sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
|
|
if (*mp)
|
|
mp = &(*mp)->m_next;
|
|
}
|
|
#endif
|
|
if (inp->inp_flags & INP_RECVIF) {
|
|
struct ifnet *ifp;
|
|
struct sdlbuf {
|
|
struct sockaddr_dl sdl;
|
|
u_char pad[32];
|
|
} sdlbuf;
|
|
struct sockaddr_dl *sdp;
|
|
struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
|
|
|
|
if (((ifp = m->m_pkthdr.rcvif))
|
|
&& ( ifp->if_index && (ifp->if_index <= V_if_index))) {
|
|
sdp = (struct sockaddr_dl *)ifp->if_addr->ifa_addr;
|
|
/*
|
|
* Change our mind and don't try copy.
|
|
*/
|
|
if ((sdp->sdl_family != AF_LINK)
|
|
|| (sdp->sdl_len > sizeof(sdlbuf))) {
|
|
goto makedummy;
|
|
}
|
|
bcopy(sdp, sdl2, sdp->sdl_len);
|
|
} else {
|
|
makedummy:
|
|
sdl2->sdl_len
|
|
= offsetof(struct sockaddr_dl, sdl_data[0]);
|
|
sdl2->sdl_family = AF_LINK;
|
|
sdl2->sdl_index = 0;
|
|
sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
|
|
}
|
|
*mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
|
|
IP_RECVIF, IPPROTO_IP);
|
|
if (*mp)
|
|
mp = &(*mp)->m_next;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* XXXRW: Multicast routing code in ip_mroute.c is generally MPSAFE, but the
|
|
* ip_rsvp and ip_rsvp_on variables need to be interlocked with rsvp_on
|
|
* locking. This code remains in ip_input.c as ip_mroute.c is optionally
|
|
* compiled.
|
|
*/
|
|
int
|
|
ip_rsvp_init(struct socket *so)
|
|
{
|
|
|
|
if (so->so_type != SOCK_RAW ||
|
|
so->so_proto->pr_protocol != IPPROTO_RSVP)
|
|
return EOPNOTSUPP;
|
|
|
|
if (V_ip_rsvpd != NULL)
|
|
return EADDRINUSE;
|
|
|
|
V_ip_rsvpd = so;
|
|
/*
|
|
* This may seem silly, but we need to be sure we don't over-increment
|
|
* the RSVP counter, in case something slips up.
|
|
*/
|
|
if (!V_ip_rsvp_on) {
|
|
V_ip_rsvp_on = 1;
|
|
V_rsvp_on++;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
ip_rsvp_done(void)
|
|
{
|
|
|
|
V_ip_rsvpd = NULL;
|
|
/*
|
|
* This may seem silly, but we need to be sure we don't over-decrement
|
|
* the RSVP counter, in case something slips up.
|
|
*/
|
|
if (V_ip_rsvp_on) {
|
|
V_ip_rsvp_on = 0;
|
|
V_rsvp_on--;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
rsvp_input(struct mbuf *m, int off) /* XXX must fixup manually */
|
|
{
|
|
|
|
if (rsvp_input_p) { /* call the real one if loaded */
|
|
rsvp_input_p(m, off);
|
|
return;
|
|
}
|
|
|
|
/* Can still get packets with rsvp_on = 0 if there is a local member
|
|
* of the group to which the RSVP packet is addressed. But in this
|
|
* case we want to throw the packet away.
|
|
*/
|
|
|
|
if (!V_rsvp_on) {
|
|
m_freem(m);
|
|
return;
|
|
}
|
|
|
|
if (V_ip_rsvpd != NULL) {
|
|
rip_input(m, off);
|
|
return;
|
|
}
|
|
/* Drop the packet */
|
|
m_freem(m);
|
|
}
|