1
0
mirror of https://git.FreeBSD.org/src.git synced 2024-12-20 11:11:24 +00:00
freebsd/sys/pci/if_vr.c
Poul-Henning Kamp 98b2967900 Add VLAN capability.
Submitted by:	Slawa Olhovchenkov <slw@zxy.spb.ru>
2007-04-23 12:19:02 +00:00

1601 lines
38 KiB
C

/*-
* Copyright (c) 1997, 1998
* Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* VIA Rhine fast ethernet PCI NIC driver
*
* Supports various network adapters based on the VIA Rhine
* and Rhine II PCI controllers, including the D-Link DFE530TX.
* Datasheets are available at http://www.via.com.tw.
*
* Written by Bill Paul <wpaul@ctr.columbia.edu>
* Electrical Engineering Department
* Columbia University, New York City
*/
/*
* The VIA Rhine controllers are similar in some respects to the
* the DEC tulip chips, except less complicated. The controller
* uses an MII bus and an external physical layer interface. The
* receiver has a one entry perfect filter and a 64-bit hash table
* multicast filter. Transmit and receive descriptors are similar
* to the tulip.
*
* Some Rhine chips has a serious flaw in its transmit DMA mechanism:
* transmit buffers must be longword aligned. Unfortunately,
* FreeBSD doesn't guarantee that mbufs will be filled in starting
* at longword boundaries, so we have to do a buffer copy before
* transmission.
*/
#ifdef HAVE_KERNEL_OPTION_HEADERS
#include "opt_device_polling.h"
#endif
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/socket.h>
#include <net/if.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net/bpf.h>
#include <vm/vm.h> /* for vtophys */
#include <vm/pmap.h> /* for vtophys */
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/bus.h>
#include <sys/rman.h>
#include <dev/mii/miivar.h>
#include <dev/pci/pcivar.h>
#define VR_USEIOSPACE
#include <pci/if_vrreg.h>
MODULE_DEPEND(vr, pci, 1, 1, 1);
MODULE_DEPEND(vr, ether, 1, 1, 1);
MODULE_DEPEND(vr, miibus, 1, 1, 1);
/* "device miibus" required. See GENERIC if you get errors here. */
#include "miibus_if.h"
/*
* Various supported device vendors/types, their names & quirks
*/
#define VR_Q_NEEDALIGN (1<<0)
#define VR_Q_CSUM (1<<1)
static struct vr_type {
u_int16_t vr_vid;
u_int16_t vr_did;
int vr_quirks;
char *vr_name;
} vr_devs[] = {
{ VIA_VENDORID, VIA_DEVICEID_RHINE,
VR_Q_NEEDALIGN,
"VIA VT3043 Rhine I 10/100BaseTX" },
{ VIA_VENDORID, VIA_DEVICEID_RHINE_II,
VR_Q_NEEDALIGN,
"VIA VT86C100A Rhine II 10/100BaseTX" },
{ VIA_VENDORID, VIA_DEVICEID_RHINE_II_2,
0,
"VIA VT6102 Rhine II 10/100BaseTX" },
{ VIA_VENDORID, VIA_DEVICEID_RHINE_III,
0,
"VIA VT6105 Rhine III 10/100BaseTX" },
{ VIA_VENDORID, VIA_DEVICEID_RHINE_III_M,
VR_Q_CSUM,
"VIA VT6105M Rhine III 10/100BaseTX" },
{ DELTA_VENDORID, DELTA_DEVICEID_RHINE_II,
VR_Q_NEEDALIGN,
"Delta Electronics Rhine II 10/100BaseTX" },
{ ADDTRON_VENDORID, ADDTRON_DEVICEID_RHINE_II,
VR_Q_NEEDALIGN,
"Addtron Technology Rhine II 10/100BaseTX" },
{ 0, 0, 0, NULL }
};
struct vr_list_data {
struct vr_desc vr_rx_list[VR_RX_LIST_CNT];
struct vr_desc vr_tx_list[VR_TX_LIST_CNT];
};
struct vr_softc {
struct ifnet *vr_ifp; /* interface info */
device_t vr_dev;
struct resource *vr_res;
struct resource *vr_irq;
void *vr_intrhand;
device_t vr_miibus;
u_int8_t vr_revid; /* Rhine chip revision */
u_int8_t vr_flags; /* See VR_F_* below */
struct vr_list_data *vr_ldata;
struct callout vr_stat_callout;
struct mtx vr_mtx;
int vr_suspended; /* if 1, sleeping/detaching */
int vr_quirks;
struct vr_desc *vr_rx_head;
struct vr_desc *vr_tx_cons;
struct vr_desc *vr_tx_prod;
#ifdef DEVICE_POLLING
int rxcycles;
#endif
};
static int vr_probe(device_t);
static int vr_attach(device_t);
static int vr_detach(device_t);
static int vr_newbuf(struct vr_desc *, struct mbuf *);
static void vr_rxeof(struct vr_softc *);
static void vr_rxeoc(struct vr_softc *);
static void vr_txeof(struct vr_softc *);
static void vr_tick(void *);
static void vr_intr(void *);
static void vr_start(struct ifnet *);
static void vr_start_locked(struct ifnet *);
static int vr_ioctl(struct ifnet *, u_long, caddr_t);
static void vr_init(void *);
static void vr_init_locked(struct vr_softc *);
static void vr_stop(struct vr_softc *);
static void vr_watchdog(struct ifnet *);
static void vr_shutdown(device_t);
static int vr_ifmedia_upd(struct ifnet *);
static void vr_ifmedia_sts(struct ifnet *, struct ifmediareq *);
static int vr_mii_readreg(const struct vr_softc *, struct vr_mii_frame *);
static int vr_mii_writereg(const struct vr_softc *, const struct vr_mii_frame *);
static int vr_miibus_readreg(device_t, uint16_t, uint16_t);
static int vr_miibus_writereg(device_t, uint16_t, uint16_t, uint16_t);
static void vr_miibus_statchg(device_t);
static void vr_setcfg(struct vr_softc *, int);
static void vr_setmulti(struct vr_softc *);
static void vr_reset(const struct vr_softc *);
static int vr_list_rx_init(struct vr_softc *);
static int vr_list_tx_init(struct vr_softc *);
#ifdef VR_USEIOSPACE
#define VR_RES SYS_RES_IOPORT
#define VR_RID VR_PCI_LOIO
#else
#define VR_RES SYS_RES_MEMORY
#define VR_RID VR_PCI_LOMEM
#endif
static device_method_t vr_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, vr_probe),
DEVMETHOD(device_attach, vr_attach),
DEVMETHOD(device_detach, vr_detach),
DEVMETHOD(device_shutdown, vr_shutdown),
/* bus interface */
DEVMETHOD(bus_print_child, bus_generic_print_child),
DEVMETHOD(bus_driver_added, bus_generic_driver_added),
/* MII interface */
DEVMETHOD(miibus_readreg, vr_miibus_readreg),
DEVMETHOD(miibus_writereg, vr_miibus_writereg),
DEVMETHOD(miibus_statchg, vr_miibus_statchg),
{ 0, 0 }
};
static driver_t vr_driver = {
"vr",
vr_methods,
sizeof(struct vr_softc)
};
static devclass_t vr_devclass;
DRIVER_MODULE(vr, pci, vr_driver, vr_devclass, 0, 0);
DRIVER_MODULE(miibus, vr, miibus_driver, miibus_devclass, 0, 0);
#define VR_F_RESTART 0x01 /* Restart unit on next tick */
#define VR_LOCK(_sc) mtx_lock(&(_sc)->vr_mtx)
#define VR_UNLOCK(_sc) mtx_unlock(&(_sc)->vr_mtx)
#define VR_LOCK_ASSERT(_sc) mtx_assert(&(_sc)->vr_mtx, MA_OWNED)
/*
* register space access macros
*/
#define CSR_WRITE_4(sc, reg, val) bus_write_4(sc->vr_res, reg, val)
#define CSR_WRITE_2(sc, reg, val) bus_write_2(sc->vr_res, reg, val)
#define CSR_WRITE_1(sc, reg, val) bus_write_1(sc->vr_res, reg, val)
#define CSR_READ_2(sc, reg) bus_read_2(sc->vr_res, reg)
#define CSR_READ_1(sc, reg) bus_read_1(sc->vr_res, reg)
#define VR_SETBIT(sc, reg, x) CSR_WRITE_1(sc, reg, CSR_READ_1(sc, reg) | (x))
#define VR_CLRBIT(sc, reg, x) CSR_WRITE_1(sc, reg, CSR_READ_1(sc, reg) & ~(x))
#define VR_SETBIT16(sc, reg, x) CSR_WRITE_2(sc, reg, CSR_READ_2(sc, reg) | (x))
#define VR_CLRBIT16(sc, reg, x) CSR_WRITE_2(sc, reg, CSR_READ_2(sc, reg) & ~(x))
/*
* Read an PHY register through the MII.
*/
static int
vr_mii_readreg(const struct vr_softc *sc, struct vr_mii_frame *frame)
{
int i;
/* Set the PHY address. */
CSR_WRITE_1(sc, VR_PHYADDR, (CSR_READ_1(sc, VR_PHYADDR)& 0xe0)|
frame->mii_phyaddr);
/* Set the register address. */
CSR_WRITE_1(sc, VR_MIIADDR, frame->mii_regaddr);
VR_SETBIT(sc, VR_MIICMD, VR_MIICMD_READ_ENB);
for (i = 0; i < 10000; i++) {
if ((CSR_READ_1(sc, VR_MIICMD) & VR_MIICMD_READ_ENB) == 0)
break;
DELAY(1);
}
frame->mii_data = CSR_READ_2(sc, VR_MIIDATA);
return (0);
}
/*
* Write to a PHY register through the MII.
*/
static int
vr_mii_writereg(const struct vr_softc *sc, const struct vr_mii_frame *frame)
{
int i;
/* Set the PHY address. */
CSR_WRITE_1(sc, VR_PHYADDR, (CSR_READ_1(sc, VR_PHYADDR)& 0xe0)|
frame->mii_phyaddr);
/* Set the register address and data to write. */
CSR_WRITE_1(sc, VR_MIIADDR, frame->mii_regaddr);
CSR_WRITE_2(sc, VR_MIIDATA, frame->mii_data);
VR_SETBIT(sc, VR_MIICMD, VR_MIICMD_WRITE_ENB);
for (i = 0; i < 10000; i++) {
if ((CSR_READ_1(sc, VR_MIICMD) & VR_MIICMD_WRITE_ENB) == 0)
break;
DELAY(1);
}
return (0);
}
static int
vr_miibus_readreg(device_t dev, uint16_t phy, uint16_t reg)
{
struct vr_mii_frame frame;
struct vr_softc *sc = device_get_softc(dev);
if (sc->vr_revid == REV_ID_VT6102_APOLLO && phy != 1)
return (0);
bzero((char *)&frame, sizeof(frame));
frame.mii_phyaddr = phy;
frame.mii_regaddr = reg;
vr_mii_readreg(sc, &frame);
return (frame.mii_data);
}
static int
vr_miibus_writereg(device_t dev, uint16_t phy, uint16_t reg, uint16_t data)
{
struct vr_mii_frame frame;
struct vr_softc *sc = device_get_softc(dev);
if (sc->vr_revid == REV_ID_VT6102_APOLLO && phy != 1)
return (0);
bzero((char *)&frame, sizeof(frame));
frame.mii_phyaddr = phy;
frame.mii_regaddr = reg;
frame.mii_data = data;
vr_mii_writereg(sc, &frame);
return (0);
}
static void
vr_miibus_statchg(device_t dev)
{
struct mii_data *mii;
struct vr_softc *sc = device_get_softc(dev);
mii = device_get_softc(sc->vr_miibus);
vr_setcfg(sc, mii->mii_media_active);
}
/*
* Program the 64-bit multicast hash filter.
*/
static void
vr_setmulti(struct vr_softc *sc)
{
struct ifnet *ifp = sc->vr_ifp;
int h = 0;
uint32_t hashes[2] = { 0, 0 };
struct ifmultiaddr *ifma;
uint8_t rxfilt;
int mcnt = 0;
VR_LOCK_ASSERT(sc);
rxfilt = CSR_READ_1(sc, VR_RXCFG);
if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
rxfilt |= VR_RXCFG_RX_MULTI;
CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
CSR_WRITE_4(sc, VR_MAR0, 0xFFFFFFFF);
CSR_WRITE_4(sc, VR_MAR1, 0xFFFFFFFF);
return;
}
/* First, zero out all the existing hash bits. */
CSR_WRITE_4(sc, VR_MAR0, 0);
CSR_WRITE_4(sc, VR_MAR1, 0);
/* Now program new ones. */
IF_ADDR_LOCK(ifp);
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
if (h < 32)
hashes[0] |= (1 << h);
else
hashes[1] |= (1 << (h - 32));
mcnt++;
}
IF_ADDR_UNLOCK(ifp);
if (mcnt)
rxfilt |= VR_RXCFG_RX_MULTI;
else
rxfilt &= ~VR_RXCFG_RX_MULTI;
CSR_WRITE_4(sc, VR_MAR0, hashes[0]);
CSR_WRITE_4(sc, VR_MAR1, hashes[1]);
CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
}
/*
* In order to fiddle with the
* 'full-duplex' and '100Mbps' bits in the netconfig register, we
* first have to put the transmit and/or receive logic in the idle state.
*/
static void
vr_setcfg(struct vr_softc *sc, int media)
{
int restart = 0;
VR_LOCK_ASSERT(sc);
if (CSR_READ_2(sc, VR_COMMAND) & (VR_CMD_TX_ON|VR_CMD_RX_ON)) {
restart = 1;
VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_TX_ON|VR_CMD_RX_ON));
}
if ((media & IFM_GMASK) == IFM_FDX)
VR_SETBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
else
VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
if (restart)
VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_RX_ON);
}
static void
vr_reset(const struct vr_softc *sc)
{
register int i;
/*VR_LOCK_ASSERT(sc);*/ /* XXX: Called during attach w/o lock. */
VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RESET);
for (i = 0; i < VR_TIMEOUT; i++) {
DELAY(10);
if (!(CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RESET))
break;
}
if (i == VR_TIMEOUT) {
if (sc->vr_revid < REV_ID_VT3065_A)
device_printf(sc->vr_dev, "reset never completed!\n");
else {
/* Use newer force reset command */
device_printf(sc->vr_dev, "Using force reset command.\n");
VR_SETBIT(sc, VR_MISC_CR1, VR_MISCCR1_FORSRST);
}
}
/* Wait a little while for the chip to get its brains in order. */
DELAY(1000);
}
/*
* Probe for a VIA Rhine chip. Check the PCI vendor and device
* IDs against our list and return a match or NULL
*/
static struct vr_type *
vr_match(device_t dev)
{
struct vr_type *t = vr_devs;
for (t = vr_devs; t->vr_name != NULL; t++)
if ((pci_get_vendor(dev) == t->vr_vid) &&
(pci_get_device(dev) == t->vr_did))
return (t);
return (NULL);
}
/*
* Probe for a VIA Rhine chip. Check the PCI vendor and device
* IDs against our list and return a device name if we find a match.
*/
static int
vr_probe(device_t dev)
{
struct vr_type *t;
t = vr_match(dev);
if (t != NULL) {
device_set_desc(dev, t->vr_name);
return (BUS_PROBE_DEFAULT);
}
return (ENXIO);
}
/*
* Attach the interface. Allocate softc structures, do ifmedia
* setup and ethernet/BPF attach.
*/
static int
vr_attach(device_t dev)
{
int i;
u_char eaddr[ETHER_ADDR_LEN];
struct vr_softc *sc;
struct ifnet *ifp;
int error = 0, rid;
struct vr_type *t;
sc = device_get_softc(dev);
sc->vr_dev = dev;
t = vr_match(dev);
KASSERT(t != NULL, ("Lost if_vr device match"));
sc->vr_quirks = t->vr_quirks;
device_printf(dev, "Quirks: 0x%x\n", sc->vr_quirks);
mtx_init(&sc->vr_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
MTX_DEF);
callout_init_mtx(&sc->vr_stat_callout, &sc->vr_mtx, 0);
/*
* Map control/status registers.
*/
pci_enable_busmaster(dev);
sc->vr_revid = pci_read_config(dev, VR_PCI_REVID, 4) & 0x000000FF;
rid = VR_RID;
sc->vr_res = bus_alloc_resource_any(dev, VR_RES, &rid, RF_ACTIVE);
if (sc->vr_res == NULL) {
device_printf(dev, "couldn't map ports/memory\n");
error = ENXIO;
goto fail;
}
/* Allocate interrupt */
rid = 0;
sc->vr_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
RF_SHAREABLE | RF_ACTIVE);
if (sc->vr_irq == NULL) {
device_printf(dev, "couldn't map interrupt\n");
error = ENXIO;
goto fail;
}
/* Allocate ifnet structure. */
ifp = sc->vr_ifp = if_alloc(IFT_ETHER);
if (ifp == NULL) {
device_printf(dev, "can not if_alloc()\n");
error = ENOSPC;
goto fail;
}
ifp->if_softc = sc;
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
ifp->if_mtu = ETHERMTU;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = vr_ioctl;
ifp->if_start = vr_start;
ifp->if_watchdog = vr_watchdog;
ifp->if_init = vr_init;
IFQ_SET_MAXLEN(&ifp->if_snd, VR_TX_LIST_CNT - 1);
ifp->if_snd.ifq_maxlen = VR_TX_LIST_CNT - 1;
IFQ_SET_READY(&ifp->if_snd);
if (sc->vr_quirks & VR_Q_CSUM) {
ifp->if_hwassist = (CSUM_IP | CSUM_TCP | CSUM_UDP);
ifp->if_capabilities |= IFCAP_HWCSUM;
}
ifp->if_capabilities |= IFCAP_VLAN_MTU;
ifp->if_capenable = ifp->if_capabilities;
if (ifp->if_capenable & IFCAP_TXCSUM)
ifp->if_hwassist = (CSUM_IP | CSUM_TCP | CSUM_UDP);
else
ifp->if_hwassist = 0;
#ifdef DEVICE_POLLING
ifp->if_capabilities |= IFCAP_POLLING;
#endif
/*
* Windows may put the chip in suspend mode when it
* shuts down. Be sure to kick it in the head to wake it
* up again.
*/
VR_CLRBIT(sc, VR_STICKHW, (VR_STICKHW_DS0|VR_STICKHW_DS1));
/* Reset the adapter. */
vr_reset(sc);
/*
* Turn on bit2 (MIION) in PCI configuration register 0x53 during
* initialization and disable AUTOPOLL.
*/
pci_write_config(dev, VR_PCI_MODE,
pci_read_config(dev, VR_PCI_MODE, 4) | (VR_MODE3_MIION << 24), 4);
VR_CLRBIT(sc, VR_MIICMD, VR_MIICMD_AUTOPOLL);
/*
* Get station address. The way the Rhine chips work,
* you're not allowed to directly access the EEPROM once
* they've been programmed a special way. Consequently,
* we need to read the node address from the PAR0 and PAR1
* registers.
*/
VR_SETBIT(sc, VR_EECSR, VR_EECSR_LOAD);
DELAY(200);
for (i = 0; i < ETHER_ADDR_LEN; i++)
eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i);
sc->vr_ldata = contigmalloc(sizeof(struct vr_list_data), M_DEVBUF,
M_NOWAIT | M_ZERO, 0, 0xffffffff, PAGE_SIZE, 0);
if (sc->vr_ldata == NULL) {
device_printf(dev, "no memory for list buffers!\n");
error = ENXIO;
goto fail;
}
/* Do MII setup. */
if (mii_phy_probe(dev, &sc->vr_miibus,
vr_ifmedia_upd, vr_ifmedia_sts)) {
device_printf(dev, "MII without any phy!\n");
error = ENXIO;
goto fail;
}
/* Call MI attach routine. */
ether_ifattach(ifp, eaddr);
sc->vr_suspended = 0;
/* Hook interrupt last to avoid having to lock softc */
error = bus_setup_intr(dev, sc->vr_irq, INTR_TYPE_NET | INTR_MPSAFE,
NULL, vr_intr, sc, &sc->vr_intrhand);
if (error) {
device_printf(dev, "couldn't set up irq\n");
ether_ifdetach(ifp);
goto fail;
}
fail:
if (error)
vr_detach(dev);
return (error);
}
/*
* Shutdown hardware and free up resources. This can be called any
* time after the mutex has been initialized. It is called in both
* the error case in attach and the normal detach case so it needs
* to be careful about only freeing resources that have actually been
* allocated.
*/
static int
vr_detach(device_t dev)
{
struct vr_softc *sc = device_get_softc(dev);
struct ifnet *ifp = sc->vr_ifp;
KASSERT(mtx_initialized(&sc->vr_mtx), ("vr mutex not initialized"));
#ifdef DEVICE_POLLING
if (ifp->if_capenable & IFCAP_POLLING)
ether_poll_deregister(ifp);
#endif
/* These should only be active if attach succeeded */
if (device_is_attached(dev)) {
VR_LOCK(sc);
sc->vr_suspended = 1;
vr_stop(sc);
VR_UNLOCK(sc);
callout_drain(&sc->vr_stat_callout);
ether_ifdetach(ifp);
}
if (sc->vr_miibus)
device_delete_child(dev, sc->vr_miibus);
bus_generic_detach(dev);
if (sc->vr_intrhand)
bus_teardown_intr(dev, sc->vr_irq, sc->vr_intrhand);
if (sc->vr_irq)
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->vr_irq);
if (sc->vr_res)
bus_release_resource(dev, VR_RES, VR_RID, sc->vr_res);
if (ifp)
if_free(ifp);
if (sc->vr_ldata)
contigfree(sc->vr_ldata, sizeof(struct vr_list_data), M_DEVBUF);
mtx_destroy(&sc->vr_mtx);
return (0);
}
/*
* Initialize the transmit descriptors.
*/
static int
vr_list_tx_init(struct vr_softc *sc)
{
struct vr_list_data *ld;
int i;
ld = sc->vr_ldata;
for (i = 0; i < VR_TX_LIST_CNT; i++) {
if (i == (VR_TX_LIST_CNT - 1)) {
ld->vr_tx_list[i].vr_next =
&ld->vr_tx_list[0];
ld->vr_tx_list[i].vr_nextphys =
vtophys(&ld->vr_tx_list[0]);
} else {
ld->vr_tx_list[i].vr_next =
&ld->vr_tx_list[i + 1];
ld->vr_tx_list[i].vr_nextphys =
vtophys(&ld->vr_tx_list[i + 1]);
}
}
sc->vr_tx_cons = sc->vr_tx_prod = &ld->vr_tx_list[0];
return (0);
}
/*
* Initialize the RX descriptors and allocate mbufs for them. Note that
* we arrange the descriptors in a closed ring, so that the last descriptor
* points back to the first.
*/
static int
vr_list_rx_init(struct vr_softc *sc)
{
struct vr_list_data *ld;
int i;
VR_LOCK_ASSERT(sc);
ld = sc->vr_ldata;
for (i = 0; i < VR_RX_LIST_CNT; i++) {
if (vr_newbuf(&ld->vr_rx_list[i], NULL) == ENOBUFS)
return (ENOBUFS);
if (i == (VR_RX_LIST_CNT - 1)) {
ld->vr_rx_list[i].vr_next = &ld->vr_rx_list[0];
ld->vr_rx_list[i].vr_nextphys =
vtophys(&ld->vr_rx_list[0]);
} else {
ld->vr_rx_list[i].vr_next =
&ld->vr_rx_list[i + 1];
ld->vr_rx_list[i].vr_nextphys =
vtophys(&ld->vr_rx_list[i + 1]);
}
}
sc->vr_rx_head = &ld->vr_rx_list[0];
return (0);
}
/*
* Initialize an RX descriptor and attach an MBUF cluster.
* Note: the length fields are only 11 bits wide, which means the
* largest size we can specify is 2047. This is important because
* MCLBYTES is 2048, so we have to subtract one otherwise we'll
* overflow the field and make a mess.
*/
static int
vr_newbuf(struct vr_desc *c, struct mbuf *m)
{
struct mbuf *m_new = NULL;
if (m == NULL) {
m_new = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
if (m_new == NULL)
return (ENOBUFS);
} else {
m_new = m;
m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
m_new->m_data = m_new->m_ext.ext_buf;
}
m_adj(m_new, sizeof(uint64_t));
c->vr_mbuf = m_new;
c->vr_status = VR_RXSTAT;
c->vr_data = vtophys(mtod(m_new, caddr_t));
c->vr_ctl = VR_RXCTL | VR_RXLEN;
return (0);
}
/*
* A frame has been uploaded: pass the resulting mbuf chain up to
* the higher level protocols.
*/
static void
vr_rxeof(struct vr_softc *sc)
{
struct mbuf *m, *m0;
struct ifnet *ifp;
struct vr_desc *cur_rx;
int total_len = 0;
uint32_t rxstat, rxctl;
VR_LOCK_ASSERT(sc);
ifp = sc->vr_ifp;
while (!((rxstat = sc->vr_rx_head->vr_status) &
VR_RXSTAT_OWN)) {
#ifdef DEVICE_POLLING
if (ifp->if_capenable & IFCAP_POLLING) {
if (sc->rxcycles <= 0)
break;
sc->rxcycles--;
}
#endif
m0 = NULL;
cur_rx = sc->vr_rx_head;
sc->vr_rx_head = cur_rx->vr_next;
m = cur_rx->vr_mbuf;
/*
* If an error occurs, update stats, clear the
* status word and leave the mbuf cluster in place:
* it should simply get re-used next time this descriptor
* comes up in the ring.
*/
if (rxstat & VR_RXSTAT_RXERR) {
ifp->if_ierrors++;
device_printf(sc->vr_dev,
"rx error (%02x):", rxstat & 0x000000ff);
if (rxstat & VR_RXSTAT_CRCERR)
printf(" crc error");
if (rxstat & VR_RXSTAT_FRAMEALIGNERR)
printf(" frame alignment error\n");
if (rxstat & VR_RXSTAT_FIFOOFLOW)
printf(" FIFO overflow");
if (rxstat & VR_RXSTAT_GIANT)
printf(" received giant packet");
if (rxstat & VR_RXSTAT_RUNT)
printf(" received runt packet");
if (rxstat & VR_RXSTAT_BUSERR)
printf(" system bus error");
if (rxstat & VR_RXSTAT_BUFFERR)
printf("rx buffer error");
printf("\n");
vr_newbuf(cur_rx, m);
continue;
}
/* No errors; receive the packet. */
total_len = VR_RXBYTES(cur_rx->vr_status);
if (ifp->if_capenable & IFCAP_RXCSUM) {
rxctl = cur_rx->vr_ctl;
if ((rxctl & VR_RXCTL_GOODIP) == VR_RXCTL_GOODIP)
m->m_pkthdr.csum_flags |=
CSUM_IP_CHECKED | CSUM_IP_VALID;
if ((rxctl & VR_RXCTL_GOODTCPUDP)) {
m->m_pkthdr.csum_flags |=
CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
m->m_pkthdr.csum_data = 0xffff;
}
}
/*
* XXX The VIA Rhine chip includes the CRC with every
* received frame, and there's no way to turn this
* behavior off (at least, I can't find anything in
* the manual that explains how to do it) so we have
* to trim off the CRC manually.
*/
total_len -= ETHER_CRC_LEN;
m0 = m_devget(mtod(m, char *), total_len, ETHER_ALIGN, ifp,
NULL);
vr_newbuf(cur_rx, m);
if (m0 == NULL) {
ifp->if_ierrors++;
continue;
}
m = m0;
ifp->if_ipackets++;
VR_UNLOCK(sc);
(*ifp->if_input)(ifp, m);
VR_LOCK(sc);
}
}
static void
vr_rxeoc(struct vr_softc *sc)
{
struct ifnet *ifp = sc->vr_ifp;
int i;
VR_LOCK_ASSERT(sc);
ifp->if_ierrors++;
VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
DELAY(10000);
/* Wait for receiver to stop */
for (i = 0x400;
i && (CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RX_ON);
i--) {
;
}
if (!i) {
device_printf(sc->vr_dev, "rx shutdown error!\n");
sc->vr_flags |= VR_F_RESTART;
return;
}
vr_rxeof(sc);
CSR_WRITE_4(sc, VR_RXADDR, vtophys(sc->vr_rx_head));
VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_GO);
}
/*
* A frame was downloaded to the chip. It's safe for us to clean up
* the list buffers.
*/
static void
vr_txeof(struct vr_softc *sc)
{
struct vr_desc *cur_tx;
struct ifnet *ifp = sc->vr_ifp;
VR_LOCK_ASSERT(sc);
/*
* Go through our tx list and free mbufs for those
* frames that have been transmitted.
*/
cur_tx = sc->vr_tx_cons;
while (cur_tx != sc->vr_tx_prod) {
uint32_t txstat;
int i;
txstat = cur_tx->vr_status;
if ((txstat & VR_TXSTAT_ABRT) ||
(txstat & VR_TXSTAT_UDF)) {
for (i = 0x400;
i && (CSR_READ_2(sc, VR_COMMAND) & VR_CMD_TX_ON);
i--)
; /* Wait for chip to shutdown */
if (!i) {
device_printf(sc->vr_dev, "tx shutdown timeout\n");
sc->vr_flags |= VR_F_RESTART;
break;
}
atomic_set_acq_32(&cur_tx->vr_status, VR_TXSTAT_OWN);
CSR_WRITE_4(sc, VR_TXADDR, vtophys(cur_tx));
break;
}
if (txstat & VR_TXSTAT_OWN)
break;
if (txstat & VR_TXSTAT_ERRSUM) {
ifp->if_oerrors++;
if (txstat & VR_TXSTAT_DEFER)
ifp->if_collisions++;
if (txstat & VR_TXSTAT_LATECOLL)
ifp->if_collisions++;
}
ifp->if_collisions +=(txstat & VR_TXSTAT_COLLCNT) >> 3;
ifp->if_opackets++;
if (cur_tx->vr_mbuf != NULL)
m_freem(cur_tx->vr_mbuf);
cur_tx->vr_mbuf = NULL;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
cur_tx = cur_tx->vr_next;
}
sc->vr_tx_cons = cur_tx;
if (cur_tx->vr_mbuf == NULL)
ifp->if_timer = 0;
}
static void
vr_tick(void *xsc)
{
struct vr_softc *sc = xsc;
struct mii_data *mii;
VR_LOCK_ASSERT(sc);
if (sc->vr_flags & VR_F_RESTART) {
device_printf(sc->vr_dev, "restarting\n");
vr_stop(sc);
vr_reset(sc);
vr_init_locked(sc);
sc->vr_flags &= ~VR_F_RESTART;
}
mii = device_get_softc(sc->vr_miibus);
mii_tick(mii);
callout_reset(&sc->vr_stat_callout, hz, vr_tick, sc);
}
#ifdef DEVICE_POLLING
static poll_handler_t vr_poll;
static poll_handler_t vr_poll_locked;
static void
vr_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
{
struct vr_softc *sc = ifp->if_softc;
VR_LOCK(sc);
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
vr_poll_locked(ifp, cmd, count);
VR_UNLOCK(sc);
}
static void
vr_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count)
{
struct vr_softc *sc = ifp->if_softc;
VR_LOCK_ASSERT(sc);
sc->rxcycles = count;
vr_rxeof(sc);
vr_txeof(sc);
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
vr_start_locked(ifp);
if (cmd == POLL_AND_CHECK_STATUS) {
uint16_t status;
/* Also check status register. */
status = CSR_READ_2(sc, VR_ISR);
if (status)
CSR_WRITE_2(sc, VR_ISR, status);
if ((status & VR_INTRS) == 0)
return;
if (status & VR_ISR_RX_DROPPED) {
if_printf(ifp, "rx packet lost\n");
ifp->if_ierrors++;
}
if ((status & VR_ISR_RX_ERR) || (status & VR_ISR_RX_NOBUF) ||
(status & VR_ISR_RX_NOBUF) || (status & VR_ISR_RX_OFLOW)) {
if_printf(ifp, "receive error (%04x)", status);
if (status & VR_ISR_RX_NOBUF)
printf(" no buffers");
if (status & VR_ISR_RX_OFLOW)
printf(" overflow");
if (status & VR_ISR_RX_DROPPED)
printf(" packet lost");
printf("\n");
vr_rxeoc(sc);
}
if ((status & VR_ISR_BUSERR) ||
(status & VR_ISR_TX_UNDERRUN)) {
vr_reset(sc);
vr_init_locked(sc);
return;
}
if ((status & VR_ISR_UDFI) ||
(status & VR_ISR_TX_ABRT2) ||
(status & VR_ISR_TX_ABRT)) {
ifp->if_oerrors++;
if (sc->vr_tx_cons->vr_mbuf != NULL) {
VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON);
VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO);
}
}
}
}
#endif /* DEVICE_POLLING */
static void
vr_intr(void *arg)
{
struct vr_softc *sc = arg;
struct ifnet *ifp = sc->vr_ifp;
uint16_t status;
VR_LOCK(sc);
if (sc->vr_suspended) {
/*
* Forcibly disable interrupts.
* XXX: Mobile VIA based platforms may need
* interrupt re-enable on resume.
*/
CSR_WRITE_2(sc, VR_IMR, 0x0000);
goto done_locked;
}
#ifdef DEVICE_POLLING
if (ifp->if_capenable & IFCAP_POLLING)
goto done_locked;
#endif
/* Suppress unwanted interrupts. */
if (!(ifp->if_flags & IFF_UP)) {
vr_stop(sc);
goto done_locked;
}
/* Disable interrupts. */
CSR_WRITE_2(sc, VR_IMR, 0x0000);
for (;;) {
status = CSR_READ_2(sc, VR_ISR);
if (status)
CSR_WRITE_2(sc, VR_ISR, status);
if ((status & VR_INTRS) == 0)
break;
if (status & VR_ISR_RX_OK)
vr_rxeof(sc);
if (status & VR_ISR_RX_DROPPED) {
device_printf(sc->vr_dev, "rx packet lost\n");
ifp->if_ierrors++;
}
if ((status & VR_ISR_RX_ERR) || (status & VR_ISR_RX_NOBUF) ||
(status & VR_ISR_RX_NOBUF) || (status & VR_ISR_RX_OFLOW)) {
device_printf(sc->vr_dev, "receive error (%04x)", status);
if (status & VR_ISR_RX_NOBUF)
printf(" no buffers");
if (status & VR_ISR_RX_OFLOW)
printf(" overflow");
if (status & VR_ISR_RX_DROPPED)
printf(" packet lost");
printf("\n");
vr_rxeoc(sc);
}
if ((status & VR_ISR_BUSERR) || (status & VR_ISR_TX_UNDERRUN)) {
vr_reset(sc);
vr_init_locked(sc);
break;
}
if ((status & VR_ISR_TX_OK) || (status & VR_ISR_TX_ABRT) ||
(status & VR_ISR_TX_ABRT2) || (status & VR_ISR_UDFI)) {
vr_txeof(sc);
if ((status & VR_ISR_UDFI) ||
(status & VR_ISR_TX_ABRT2) ||
(status & VR_ISR_TX_ABRT)) {
ifp->if_oerrors++;
if (sc->vr_tx_cons->vr_mbuf != NULL) {
VR_SETBIT16(sc, VR_COMMAND,
VR_CMD_TX_ON);
VR_SETBIT16(sc, VR_COMMAND,
VR_CMD_TX_GO);
}
}
}
}
/* Re-enable interrupts. */
CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
vr_start_locked(ifp);
done_locked:
VR_UNLOCK(sc);
}
/*
* Main transmit routine. To avoid having to do mbuf copies, we put pointers
* to the mbuf data regions directly in the transmit lists. We also save a
* copy of the pointers since the transmit list fragment pointers are
* physical addresses.
*/
static void
vr_start(struct ifnet *ifp)
{
struct vr_softc *sc = ifp->if_softc;
VR_LOCK(sc);
vr_start_locked(ifp);
VR_UNLOCK(sc);
}
static void
vr_start_locked(struct ifnet *ifp)
{
struct vr_softc *sc = ifp->if_softc;
struct mbuf *m, *m_head;
struct vr_desc *cur_tx, *n_tx;
struct vr_desc *f = NULL;
uint32_t cval;
if (ifp->if_drv_flags & IFF_DRV_OACTIVE)
return;
for (cur_tx = sc->vr_tx_prod;
cur_tx->vr_next != sc->vr_tx_cons; ) {
IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
if (m_head == NULL)
break;
VR_LOCK_ASSERT(sc);
/*
* Some VIA Rhine wants packet buffers to be longword
* aligned, but very often our mbufs aren't. Rather than
* waste time trying to decide when to copy and when not
* to copy, just do it all the time.
*/
if (sc->vr_quirks & VR_Q_NEEDALIGN) {
m = m_defrag(m_head, M_DONTWAIT);
if (m == NULL) {
/* Rollback, send what we were able to encap. */
IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
break;
}
m_head = m;
}
/*
* The Rhine chip doesn't auto-pad, so we have to make
* sure to pad short frames out to the minimum frame length
* ourselves.
*/
if (m_head->m_pkthdr.len < VR_MIN_FRAMELEN) {
if (m_head->m_next != NULL)
m_head = m_defrag(m_head, M_DONTWAIT);
m_head->m_pkthdr.len += VR_MIN_FRAMELEN - m_head->m_len;
m_head->m_len = m_head->m_pkthdr.len;
/* XXX: bzero the padding bytes */
}
n_tx = cur_tx;
for (m = m_head; m != NULL; m = m->m_next) {
if (m->m_len == 0)
continue;
if (n_tx->vr_next == sc->vr_tx_cons) {
IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
sc->vr_tx_prod = cur_tx;
return;
}
KASSERT(n_tx->vr_mbuf == NULL, ("if_vr_tx overrun"));
f = n_tx;
f->vr_data = vtophys(mtod(m, caddr_t));
cval = m->m_len;
cval |= VR_TXCTL_TLINK;
if ((ifp->if_capenable & IFCAP_TXCSUM) &&
m_head->m_pkthdr.csum_flags) {
if (m_head->m_pkthdr.csum_flags & CSUM_IP)
cval |= VR_TXCTL_IPCSUM;
if (m_head->m_pkthdr.csum_flags & CSUM_TCP)
cval |= VR_TXCTL_TCPCSUM;
if (m_head->m_pkthdr.csum_flags & CSUM_UDP)
cval |= VR_TXCTL_UDPCSUM;
}
if (m == m_head)
cval |= VR_TXCTL_FIRSTFRAG;
f->vr_ctl = cval;
f->vr_status = 0;
n_tx = n_tx->vr_next;
}
KASSERT(f != NULL, ("if_vr: no packet processed"));
f->vr_ctl |= VR_TXCTL_LASTFRAG|VR_TXCTL_FINT;
cur_tx->vr_mbuf = m_head;
atomic_set_acq_32(&cur_tx->vr_status, VR_TXSTAT_OWN);
/* Tell the chip to start transmitting. */
VR_SETBIT16(sc, VR_COMMAND, /*VR_CMD_TX_ON|*/ VR_CMD_TX_GO);
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
ifp->if_timer = 5;
/*
* If there's a BPF listener, bounce a copy of this frame
* to him.
*/
BPF_MTAP(ifp, m_head);
cur_tx = n_tx;
}
sc->vr_tx_prod = cur_tx;
}
static void
vr_init(void *xsc)
{
struct vr_softc *sc = xsc;
VR_LOCK(sc);
vr_init_locked(sc);
VR_UNLOCK(sc);
}
static void
vr_init_locked(struct vr_softc *sc)
{
struct ifnet *ifp = sc->vr_ifp;
struct mii_data *mii;
int i;
VR_LOCK_ASSERT(sc);
mii = device_get_softc(sc->vr_miibus);
/* Cancel pending I/O and free all RX/TX buffers. */
vr_stop(sc);
vr_reset(sc);
/* Set our station address. */
for (i = 0; i < ETHER_ADDR_LEN; i++)
CSR_WRITE_1(sc, VR_PAR0 + i, IF_LLADDR(sc->vr_ifp)[i]);
/* Set DMA size. */
VR_CLRBIT(sc, VR_BCR0, VR_BCR0_DMA_LENGTH);
VR_SETBIT(sc, VR_BCR0, VR_BCR0_DMA_STORENFWD);
/*
* BCR0 and BCR1 can override the RXCFG and TXCFG registers,
* so we must set both.
*/
VR_CLRBIT(sc, VR_BCR0, VR_BCR0_RX_THRESH);
VR_SETBIT(sc, VR_BCR0, VR_BCR0_RXTHRESH128BYTES);
VR_CLRBIT(sc, VR_BCR1, VR_BCR1_TX_THRESH);
VR_SETBIT(sc, VR_BCR1, VR_BCR1_TXTHRESHSTORENFWD);
VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_THRESH);
VR_SETBIT(sc, VR_RXCFG, VR_RXTHRESH_128BYTES);
VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TX_THRESH);
VR_SETBIT(sc, VR_TXCFG, VR_TXTHRESH_STORENFWD);
/* Init circular RX list. */
if (vr_list_rx_init(sc) == ENOBUFS) {
device_printf(sc->vr_dev,
"initialization failed: no memory for rx buffers\n");
vr_stop(sc);
return;
}
/* Init tx descriptors. */
vr_list_tx_init(sc);
/* If we want promiscuous mode, set the allframes bit. */
if (ifp->if_flags & IFF_PROMISC)
VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
else
VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
/* Set capture broadcast bit to capture broadcast frames. */
if (ifp->if_flags & IFF_BROADCAST)
VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
else
VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
/*
* Program the multicast filter, if necessary.
*/
vr_setmulti(sc);
/*
* Load the address of the RX list.
*/
CSR_WRITE_4(sc, VR_RXADDR, vtophys(sc->vr_rx_head));
/* Enable receiver and transmitter. */
CSR_WRITE_2(sc, VR_COMMAND, VR_CMD_TX_NOPOLL|VR_CMD_START|
VR_CMD_TX_ON|VR_CMD_RX_ON|
VR_CMD_RX_GO);
CSR_WRITE_4(sc, VR_TXADDR, vtophys(&sc->vr_ldata->vr_tx_list[0]));
CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
#ifdef DEVICE_POLLING
/*
* Disable interrupts if we are polling.
*/
if (ifp->if_capenable & IFCAP_POLLING)
CSR_WRITE_2(sc, VR_IMR, 0);
else
#endif
/*
* Enable interrupts.
*/
CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
mii_mediachg(mii);
ifp->if_drv_flags |= IFF_DRV_RUNNING;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
callout_reset(&sc->vr_stat_callout, hz, vr_tick, sc);
}
/*
* Set media options.
*/
static int
vr_ifmedia_upd(struct ifnet *ifp)
{
struct vr_softc *sc = ifp->if_softc;
if (ifp->if_flags & IFF_UP)
vr_init(sc);
return (0);
}
/*
* Report current media status.
*/
static void
vr_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct vr_softc *sc = ifp->if_softc;
struct mii_data *mii;
mii = device_get_softc(sc->vr_miibus);
VR_LOCK(sc);
mii_pollstat(mii);
VR_UNLOCK(sc);
ifmr->ifm_active = mii->mii_media_active;
ifmr->ifm_status = mii->mii_media_status;
}
static int
vr_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
{
struct vr_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *) data;
struct mii_data *mii;
int error = 0;
switch (command) {
case SIOCSIFFLAGS:
VR_LOCK(sc);
if (ifp->if_flags & IFF_UP) {
vr_init_locked(sc);
} else {
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
vr_stop(sc);
}
VR_UNLOCK(sc);
error = 0;
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
VR_LOCK(sc);
vr_setmulti(sc);
VR_UNLOCK(sc);
error = 0;
break;
case SIOCGIFMEDIA:
case SIOCSIFMEDIA:
mii = device_get_softc(sc->vr_miibus);
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
break;
case SIOCSIFCAP:
#ifdef DEVICE_POLLING
if (ifr->ifr_reqcap & IFCAP_POLLING &&
!(ifp->if_capenable & IFCAP_POLLING)) {
error = ether_poll_register(vr_poll, ifp);
if (error)
return(error);
VR_LOCK(sc);
/* Disable interrupts */
CSR_WRITE_2(sc, VR_IMR, 0x0000);
ifp->if_capenable |= IFCAP_POLLING;
VR_UNLOCK(sc);
return (error);
}
if (!(ifr->ifr_reqcap & IFCAP_POLLING) &&
ifp->if_capenable & IFCAP_POLLING) {
error = ether_poll_deregister(ifp);
/* Enable interrupts. */
VR_LOCK(sc);
CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
ifp->if_capenable &= ~IFCAP_POLLING;
VR_UNLOCK(sc);
return (error);
}
#endif /* DEVICE_POLLING */
ifp->if_capenable = ifr->ifr_reqcap;
if (ifp->if_capenable & IFCAP_TXCSUM)
ifp->if_hwassist = (CSUM_IP | CSUM_TCP | CSUM_UDP);
else
ifp->if_hwassist = 0;
break;
default:
error = ether_ioctl(ifp, command, data);
break;
}
return (error);
}
static void
vr_watchdog(struct ifnet *ifp)
{
struct vr_softc *sc = ifp->if_softc;
VR_LOCK(sc);
ifp->if_oerrors++;
if_printf(ifp, "watchdog timeout\n");
vr_stop(sc);
vr_reset(sc);
vr_init_locked(sc);
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
vr_start_locked(ifp);
VR_UNLOCK(sc);
}
/*
* Stop the adapter and free any mbufs allocated to the
* RX and TX lists.
*/
static void
vr_stop(struct vr_softc *sc)
{
register int i;
struct ifnet *ifp;
VR_LOCK_ASSERT(sc);
ifp = sc->vr_ifp;
ifp->if_timer = 0;
callout_stop(&sc->vr_stat_callout);
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
VR_SETBIT16(sc, VR_COMMAND, VR_CMD_STOP);
VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_RX_ON|VR_CMD_TX_ON));
CSR_WRITE_2(sc, VR_IMR, 0x0000);
CSR_WRITE_4(sc, VR_TXADDR, 0x00000000);
CSR_WRITE_4(sc, VR_RXADDR, 0x00000000);
/*
* Free data in the RX lists.
*/
for (i = 0; i < VR_RX_LIST_CNT; i++)
if (sc->vr_ldata->vr_rx_list[i].vr_mbuf != NULL)
m_freem(sc->vr_ldata->vr_rx_list[i].vr_mbuf);
bzero((char *)&sc->vr_ldata->vr_rx_list,
sizeof(sc->vr_ldata->vr_rx_list));
/*
* Free the TX list buffers.
*/
for (i = 0; i < VR_TX_LIST_CNT; i++)
if (sc->vr_ldata->vr_tx_list[i].vr_mbuf != NULL)
m_freem(sc->vr_ldata->vr_tx_list[i].vr_mbuf);
bzero((char *)&sc->vr_ldata->vr_tx_list,
sizeof(sc->vr_ldata->vr_tx_list));
}
/*
* Stop all chip I/O so that the kernel's probe routines don't
* get confused by errant DMAs when rebooting.
*/
static void
vr_shutdown(device_t dev)
{
vr_detach(dev);
}