mirror of
https://git.FreeBSD.org/src.git
synced 2025-01-08 13:28:05 +00:00
1248 lines
31 KiB
C
1248 lines
31 KiB
C
/* $OpenBSD: crypto.c,v 1.38 2002/06/11 11:14:29 beck Exp $ */
|
|
/*-
|
|
* The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu)
|
|
*
|
|
* This code was written by Angelos D. Keromytis in Athens, Greece, in
|
|
* February 2000. Network Security Technologies Inc. (NSTI) kindly
|
|
* supported the development of this code.
|
|
*
|
|
* Copyright (c) 2000, 2001 Angelos D. Keromytis
|
|
*
|
|
* Permission to use, copy, and modify this software with or without fee
|
|
* is hereby granted, provided that this entire notice is included in
|
|
* all source code copies of any software which is or includes a copy or
|
|
* modification of this software.
|
|
*
|
|
* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
|
|
* IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
|
|
* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
|
|
* MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
|
|
* PURPOSE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#define CRYPTO_TIMING /* enable timing support */
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/eventhandler.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/kthread.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/module.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/sysctl.h>
|
|
|
|
#include <vm/uma.h>
|
|
#include <opencrypto/cryptodev.h>
|
|
#include <opencrypto/xform.h> /* XXX for M_XDATA */
|
|
|
|
/*
|
|
* Crypto drivers register themselves by allocating a slot in the
|
|
* crypto_drivers table with crypto_get_driverid() and then registering
|
|
* each algorithm they support with crypto_register() and crypto_kregister().
|
|
*/
|
|
static struct mtx crypto_drivers_mtx; /* lock on driver table */
|
|
#define CRYPTO_DRIVER_LOCK() mtx_lock(&crypto_drivers_mtx)
|
|
#define CRYPTO_DRIVER_UNLOCK() mtx_unlock(&crypto_drivers_mtx)
|
|
static struct cryptocap *crypto_drivers = NULL;
|
|
static int crypto_drivers_num = 0;
|
|
|
|
/*
|
|
* There are two queues for crypto requests; one for symmetric (e.g.
|
|
* cipher) operations and one for asymmetric (e.g. MOD)operations.
|
|
* A single mutex is used to lock access to both queues. We could
|
|
* have one per-queue but having one simplifies handling of block/unblock
|
|
* operations.
|
|
*/
|
|
static TAILQ_HEAD(,cryptop) crp_q; /* request queues */
|
|
static TAILQ_HEAD(,cryptkop) crp_kq;
|
|
static struct mtx crypto_q_mtx;
|
|
#define CRYPTO_Q_LOCK() mtx_lock(&crypto_q_mtx)
|
|
#define CRYPTO_Q_UNLOCK() mtx_unlock(&crypto_q_mtx)
|
|
|
|
/*
|
|
* There are two queues for processing completed crypto requests; one
|
|
* for the symmetric and one for the asymmetric ops. We only need one
|
|
* but have two to avoid type futzing (cryptop vs. cryptkop). A single
|
|
* mutex is used to lock access to both queues. Note that this lock
|
|
* must be separate from the lock on request queues to insure driver
|
|
* callbacks don't generate lock order reversals.
|
|
*/
|
|
static TAILQ_HEAD(,cryptop) crp_ret_q; /* callback queues */
|
|
static TAILQ_HEAD(,cryptkop) crp_ret_kq;
|
|
static struct mtx crypto_ret_q_mtx;
|
|
#define CRYPTO_RETQ_LOCK() mtx_lock(&crypto_ret_q_mtx)
|
|
#define CRYPTO_RETQ_UNLOCK() mtx_unlock(&crypto_ret_q_mtx)
|
|
|
|
static uma_zone_t cryptop_zone;
|
|
static uma_zone_t cryptodesc_zone;
|
|
|
|
int crypto_userasymcrypto = 1; /* userland may do asym crypto reqs */
|
|
SYSCTL_INT(_kern, OID_AUTO, userasymcrypto, CTLFLAG_RW,
|
|
&crypto_userasymcrypto, 0,
|
|
"Enable/disable user-mode access to asymmetric crypto support");
|
|
int crypto_devallowsoft = 0; /* only use hardware crypto for asym */
|
|
SYSCTL_INT(_kern, OID_AUTO, cryptodevallowsoft, CTLFLAG_RW,
|
|
&crypto_devallowsoft, 0,
|
|
"Enable/disable use of software asym crypto support");
|
|
|
|
MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records");
|
|
|
|
static void crypto_proc(void);
|
|
static struct proc *cryptoproc;
|
|
static void crypto_ret_proc(void);
|
|
static struct proc *cryptoretproc;
|
|
static void crypto_destroy(void);
|
|
static int crypto_invoke(struct cryptop *crp, int hint);
|
|
static int crypto_kinvoke(struct cryptkop *krp, int hint);
|
|
|
|
static struct cryptostats cryptostats;
|
|
SYSCTL_STRUCT(_kern, OID_AUTO, crypto_stats, CTLFLAG_RW, &cryptostats,
|
|
cryptostats, "Crypto system statistics");
|
|
|
|
#ifdef CRYPTO_TIMING
|
|
static int crypto_timing = 0;
|
|
SYSCTL_INT(_debug, OID_AUTO, crypto_timing, CTLFLAG_RW,
|
|
&crypto_timing, 0, "Enable/disable crypto timing support");
|
|
#endif
|
|
|
|
static int
|
|
crypto_init(void)
|
|
{
|
|
int error;
|
|
|
|
mtx_init(&crypto_drivers_mtx, "crypto", "crypto driver table",
|
|
MTX_DEF|MTX_QUIET);
|
|
|
|
TAILQ_INIT(&crp_q);
|
|
TAILQ_INIT(&crp_kq);
|
|
mtx_init(&crypto_q_mtx, "crypto", "crypto op queues", MTX_DEF);
|
|
|
|
TAILQ_INIT(&crp_ret_q);
|
|
TAILQ_INIT(&crp_ret_kq);
|
|
mtx_init(&crypto_ret_q_mtx, "crypto", "crypto return queues", MTX_DEF);
|
|
|
|
cryptop_zone = uma_zcreate("cryptop", sizeof (struct cryptop),
|
|
0, 0, 0, 0,
|
|
UMA_ALIGN_PTR, UMA_ZONE_ZINIT);
|
|
cryptodesc_zone = uma_zcreate("cryptodesc", sizeof (struct cryptodesc),
|
|
0, 0, 0, 0,
|
|
UMA_ALIGN_PTR, UMA_ZONE_ZINIT);
|
|
if (cryptodesc_zone == NULL || cryptop_zone == NULL) {
|
|
printf("crypto_init: cannot setup crypto zones\n");
|
|
error = ENOMEM;
|
|
goto bad;
|
|
}
|
|
|
|
crypto_drivers_num = CRYPTO_DRIVERS_INITIAL;
|
|
crypto_drivers = malloc(crypto_drivers_num *
|
|
sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT | M_ZERO);
|
|
if (crypto_drivers == NULL) {
|
|
printf("crypto_init: cannot setup crypto drivers\n");
|
|
error = ENOMEM;
|
|
goto bad;
|
|
}
|
|
|
|
error = kthread_create((void (*)(void *)) crypto_proc, NULL,
|
|
&cryptoproc, 0, 0, "crypto");
|
|
if (error) {
|
|
printf("crypto_init: cannot start crypto thread; error %d",
|
|
error);
|
|
goto bad;
|
|
}
|
|
|
|
error = kthread_create((void (*)(void *)) crypto_ret_proc, NULL,
|
|
&cryptoretproc, 0, 0, "crypto returns");
|
|
if (error) {
|
|
printf("crypto_init: cannot start cryptoret thread; error %d",
|
|
error);
|
|
goto bad;
|
|
}
|
|
return 0;
|
|
bad:
|
|
crypto_destroy();
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Signal a crypto thread to terminate. We use the driver
|
|
* table lock to synchronize the sleep/wakeups so that we
|
|
* are sure the threads have terminated before we release
|
|
* the data structures they use. See crypto_finis below
|
|
* for the other half of this song-and-dance.
|
|
*/
|
|
static void
|
|
crypto_terminate(struct proc **pp, void *q)
|
|
{
|
|
struct proc *p;
|
|
|
|
mtx_assert(&crypto_drivers_mtx, MA_OWNED);
|
|
p = *pp;
|
|
*pp = NULL;
|
|
if (p) {
|
|
wakeup_one(q);
|
|
PROC_LOCK(p); /* NB: insure we don't miss wakeup */
|
|
CRYPTO_DRIVER_UNLOCK(); /* let crypto_finis progress */
|
|
msleep(p, &p->p_mtx, PWAIT, "crypto_destroy", 0);
|
|
PROC_UNLOCK(p);
|
|
CRYPTO_DRIVER_LOCK();
|
|
}
|
|
}
|
|
|
|
static void
|
|
crypto_destroy(void)
|
|
{
|
|
/*
|
|
* Terminate any crypto threads.
|
|
*/
|
|
CRYPTO_DRIVER_LOCK();
|
|
crypto_terminate(&cryptoproc, &crp_q);
|
|
crypto_terminate(&cryptoretproc, &crp_ret_q);
|
|
CRYPTO_DRIVER_UNLOCK();
|
|
|
|
/* XXX flush queues??? */
|
|
|
|
/*
|
|
* Reclaim dynamically allocated resources.
|
|
*/
|
|
if (crypto_drivers != NULL)
|
|
free(crypto_drivers, M_CRYPTO_DATA);
|
|
|
|
if (cryptodesc_zone != NULL)
|
|
uma_zdestroy(cryptodesc_zone);
|
|
if (cryptop_zone != NULL)
|
|
uma_zdestroy(cryptop_zone);
|
|
mtx_destroy(&crypto_q_mtx);
|
|
mtx_destroy(&crypto_ret_q_mtx);
|
|
mtx_destroy(&crypto_drivers_mtx);
|
|
}
|
|
|
|
/*
|
|
* Initialization code, both for static and dynamic loading.
|
|
*/
|
|
static int
|
|
crypto_modevent(module_t mod, int type, void *unused)
|
|
{
|
|
int error = EINVAL;
|
|
|
|
switch (type) {
|
|
case MOD_LOAD:
|
|
error = crypto_init();
|
|
if (error == 0 && bootverbose)
|
|
printf("crypto: <crypto core>\n");
|
|
break;
|
|
case MOD_UNLOAD:
|
|
/*XXX disallow if active sessions */
|
|
error = 0;
|
|
crypto_destroy();
|
|
return 0;
|
|
}
|
|
return error;
|
|
}
|
|
|
|
static moduledata_t crypto_mod = {
|
|
"crypto",
|
|
crypto_modevent,
|
|
0
|
|
};
|
|
MODULE_VERSION(crypto, 1);
|
|
DECLARE_MODULE(crypto, crypto_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
|
|
|
|
/*
|
|
* Create a new session.
|
|
*/
|
|
int
|
|
crypto_newsession(u_int64_t *sid, struct cryptoini *cri, int hard)
|
|
{
|
|
struct cryptoini *cr;
|
|
u_int32_t hid, lid;
|
|
int err = EINVAL;
|
|
|
|
CRYPTO_DRIVER_LOCK();
|
|
|
|
if (crypto_drivers == NULL)
|
|
goto done;
|
|
|
|
/*
|
|
* The algorithm we use here is pretty stupid; just use the
|
|
* first driver that supports all the algorithms we need.
|
|
*
|
|
* XXX We need more smarts here (in real life too, but that's
|
|
* XXX another story altogether).
|
|
*/
|
|
|
|
for (hid = 0; hid < crypto_drivers_num; hid++) {
|
|
struct cryptocap *cap = &crypto_drivers[hid];
|
|
/*
|
|
* If it's not initialized or has remaining sessions
|
|
* referencing it, skip.
|
|
*/
|
|
if (cap->cc_newsession == NULL ||
|
|
(cap->cc_flags & CRYPTOCAP_F_CLEANUP))
|
|
continue;
|
|
|
|
/* Hardware required -- ignore software drivers. */
|
|
if (hard > 0 && (cap->cc_flags & CRYPTOCAP_F_SOFTWARE))
|
|
continue;
|
|
/* Software required -- ignore hardware drivers. */
|
|
if (hard < 0 && (cap->cc_flags & CRYPTOCAP_F_SOFTWARE) == 0)
|
|
continue;
|
|
|
|
/* See if all the algorithms are supported. */
|
|
for (cr = cri; cr; cr = cr->cri_next)
|
|
if (cap->cc_alg[cr->cri_alg] == 0)
|
|
break;
|
|
|
|
if (cr == NULL) {
|
|
/* Ok, all algorithms are supported. */
|
|
|
|
/*
|
|
* Can't do everything in one session.
|
|
*
|
|
* XXX Fix this. We need to inject a "virtual" session layer right
|
|
* XXX about here.
|
|
*/
|
|
|
|
/* Call the driver initialization routine. */
|
|
lid = hid; /* Pass the driver ID. */
|
|
err = (*cap->cc_newsession)(cap->cc_arg, &lid, cri);
|
|
if (err == 0) {
|
|
/* XXX assert (hid &~ 0xffffff) == 0 */
|
|
/* XXX assert (cap->cc_flags &~ 0xff) == 0 */
|
|
(*sid) = ((cap->cc_flags & 0xff) << 24) | hid;
|
|
(*sid) <<= 32;
|
|
(*sid) |= (lid & 0xffffffff);
|
|
cap->cc_sessions++;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
done:
|
|
CRYPTO_DRIVER_UNLOCK();
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* Delete an existing session (or a reserved session on an unregistered
|
|
* driver).
|
|
*/
|
|
int
|
|
crypto_freesession(u_int64_t sid)
|
|
{
|
|
u_int32_t hid;
|
|
int err;
|
|
|
|
CRYPTO_DRIVER_LOCK();
|
|
|
|
if (crypto_drivers == NULL) {
|
|
err = EINVAL;
|
|
goto done;
|
|
}
|
|
|
|
/* Determine two IDs. */
|
|
hid = CRYPTO_SESID2HID(sid);
|
|
|
|
if (hid >= crypto_drivers_num) {
|
|
err = ENOENT;
|
|
goto done;
|
|
}
|
|
|
|
if (crypto_drivers[hid].cc_sessions)
|
|
crypto_drivers[hid].cc_sessions--;
|
|
|
|
/* Call the driver cleanup routine, if available. */
|
|
if (crypto_drivers[hid].cc_freesession)
|
|
err = crypto_drivers[hid].cc_freesession(
|
|
crypto_drivers[hid].cc_arg, sid);
|
|
else
|
|
err = 0;
|
|
|
|
/*
|
|
* If this was the last session of a driver marked as invalid,
|
|
* make the entry available for reuse.
|
|
*/
|
|
if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP) &&
|
|
crypto_drivers[hid].cc_sessions == 0)
|
|
bzero(&crypto_drivers[hid], sizeof(struct cryptocap));
|
|
|
|
done:
|
|
CRYPTO_DRIVER_UNLOCK();
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* Return an unused driver id. Used by drivers prior to registering
|
|
* support for the algorithms they handle.
|
|
*/
|
|
int32_t
|
|
crypto_get_driverid(u_int32_t flags)
|
|
{
|
|
struct cryptocap *newdrv;
|
|
int i;
|
|
|
|
CRYPTO_DRIVER_LOCK();
|
|
|
|
for (i = 0; i < crypto_drivers_num; i++)
|
|
if (crypto_drivers[i].cc_process == NULL &&
|
|
(crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP) == 0 &&
|
|
crypto_drivers[i].cc_sessions == 0)
|
|
break;
|
|
|
|
/* Out of entries, allocate some more. */
|
|
if (i == crypto_drivers_num) {
|
|
/* Be careful about wrap-around. */
|
|
if (2 * crypto_drivers_num <= crypto_drivers_num) {
|
|
CRYPTO_DRIVER_UNLOCK();
|
|
printf("crypto: driver count wraparound!\n");
|
|
return -1;
|
|
}
|
|
|
|
newdrv = malloc(2 * crypto_drivers_num *
|
|
sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
|
|
if (newdrv == NULL) {
|
|
CRYPTO_DRIVER_UNLOCK();
|
|
printf("crypto: no space to expand driver table!\n");
|
|
return -1;
|
|
}
|
|
|
|
bcopy(crypto_drivers, newdrv,
|
|
crypto_drivers_num * sizeof(struct cryptocap));
|
|
|
|
crypto_drivers_num *= 2;
|
|
|
|
free(crypto_drivers, M_CRYPTO_DATA);
|
|
crypto_drivers = newdrv;
|
|
}
|
|
|
|
/* NB: state is zero'd on free */
|
|
crypto_drivers[i].cc_sessions = 1; /* Mark */
|
|
crypto_drivers[i].cc_flags = flags;
|
|
if (bootverbose)
|
|
printf("crypto: assign driver %u, flags %u\n", i, flags);
|
|
|
|
CRYPTO_DRIVER_UNLOCK();
|
|
|
|
return i;
|
|
}
|
|
|
|
static struct cryptocap *
|
|
crypto_checkdriver(u_int32_t hid)
|
|
{
|
|
if (crypto_drivers == NULL)
|
|
return NULL;
|
|
return (hid >= crypto_drivers_num ? NULL : &crypto_drivers[hid]);
|
|
}
|
|
|
|
/*
|
|
* Register support for a key-related algorithm. This routine
|
|
* is called once for each algorithm supported a driver.
|
|
*/
|
|
int
|
|
crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags,
|
|
int (*kprocess)(void*, struct cryptkop *, int),
|
|
void *karg)
|
|
{
|
|
struct cryptocap *cap;
|
|
int err;
|
|
|
|
CRYPTO_DRIVER_LOCK();
|
|
|
|
cap = crypto_checkdriver(driverid);
|
|
if (cap != NULL &&
|
|
(CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) {
|
|
/*
|
|
* XXX Do some performance testing to determine placing.
|
|
* XXX We probably need an auxiliary data structure that
|
|
* XXX describes relative performances.
|
|
*/
|
|
|
|
cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
|
|
if (bootverbose)
|
|
printf("crypto: driver %u registers key alg %u flags %u\n"
|
|
, driverid
|
|
, kalg
|
|
, flags
|
|
);
|
|
|
|
if (cap->cc_kprocess == NULL) {
|
|
cap->cc_karg = karg;
|
|
cap->cc_kprocess = kprocess;
|
|
}
|
|
err = 0;
|
|
} else
|
|
err = EINVAL;
|
|
|
|
CRYPTO_DRIVER_UNLOCK();
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* Register support for a non-key-related algorithm. This routine
|
|
* is called once for each such algorithm supported by a driver.
|
|
*/
|
|
int
|
|
crypto_register(u_int32_t driverid, int alg, u_int16_t maxoplen,
|
|
u_int32_t flags,
|
|
int (*newses)(void*, u_int32_t*, struct cryptoini*),
|
|
int (*freeses)(void*, u_int64_t),
|
|
int (*process)(void*, struct cryptop *, int),
|
|
void *arg)
|
|
{
|
|
struct cryptocap *cap;
|
|
int err;
|
|
|
|
CRYPTO_DRIVER_LOCK();
|
|
|
|
cap = crypto_checkdriver(driverid);
|
|
/* NB: algorithms are in the range [1..max] */
|
|
if (cap != NULL &&
|
|
(CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX)) {
|
|
/*
|
|
* XXX Do some performance testing to determine placing.
|
|
* XXX We probably need an auxiliary data structure that
|
|
* XXX describes relative performances.
|
|
*/
|
|
|
|
cap->cc_alg[alg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
|
|
cap->cc_max_op_len[alg] = maxoplen;
|
|
if (bootverbose)
|
|
printf("crypto: driver %u registers alg %u flags %u maxoplen %u\n"
|
|
, driverid
|
|
, alg
|
|
, flags
|
|
, maxoplen
|
|
);
|
|
|
|
if (cap->cc_process == NULL) {
|
|
cap->cc_arg = arg;
|
|
cap->cc_newsession = newses;
|
|
cap->cc_process = process;
|
|
cap->cc_freesession = freeses;
|
|
cap->cc_sessions = 0; /* Unmark */
|
|
}
|
|
err = 0;
|
|
} else
|
|
err = EINVAL;
|
|
|
|
CRYPTO_DRIVER_UNLOCK();
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* Unregister a crypto driver. If there are pending sessions using it,
|
|
* leave enough information around so that subsequent calls using those
|
|
* sessions will correctly detect the driver has been unregistered and
|
|
* reroute requests.
|
|
*/
|
|
int
|
|
crypto_unregister(u_int32_t driverid, int alg)
|
|
{
|
|
int i, err;
|
|
u_int32_t ses;
|
|
struct cryptocap *cap;
|
|
|
|
CRYPTO_DRIVER_LOCK();
|
|
|
|
cap = crypto_checkdriver(driverid);
|
|
if (cap != NULL &&
|
|
(CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX) &&
|
|
cap->cc_alg[alg] != 0) {
|
|
cap->cc_alg[alg] = 0;
|
|
cap->cc_max_op_len[alg] = 0;
|
|
|
|
/* Was this the last algorithm ? */
|
|
for (i = 1; i <= CRYPTO_ALGORITHM_MAX; i++)
|
|
if (cap->cc_alg[i] != 0)
|
|
break;
|
|
|
|
if (i == CRYPTO_ALGORITHM_MAX + 1) {
|
|
ses = cap->cc_sessions;
|
|
bzero(cap, sizeof(struct cryptocap));
|
|
if (ses != 0) {
|
|
/*
|
|
* If there are pending sessions, just mark as invalid.
|
|
*/
|
|
cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
|
|
cap->cc_sessions = ses;
|
|
}
|
|
}
|
|
err = 0;
|
|
} else
|
|
err = EINVAL;
|
|
|
|
CRYPTO_DRIVER_UNLOCK();
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* Unregister all algorithms associated with a crypto driver.
|
|
* If there are pending sessions using it, leave enough information
|
|
* around so that subsequent calls using those sessions will
|
|
* correctly detect the driver has been unregistered and reroute
|
|
* requests.
|
|
*/
|
|
int
|
|
crypto_unregister_all(u_int32_t driverid)
|
|
{
|
|
int i, err;
|
|
u_int32_t ses;
|
|
struct cryptocap *cap;
|
|
|
|
CRYPTO_DRIVER_LOCK();
|
|
|
|
cap = crypto_checkdriver(driverid);
|
|
if (cap != NULL) {
|
|
for (i = CRYPTO_ALGORITHM_MIN; i <= CRYPTO_ALGORITHM_MAX; i++) {
|
|
cap->cc_alg[i] = 0;
|
|
cap->cc_max_op_len[i] = 0;
|
|
}
|
|
ses = cap->cc_sessions;
|
|
bzero(cap, sizeof(struct cryptocap));
|
|
if (ses != 0) {
|
|
/*
|
|
* If there are pending sessions, just mark as invalid.
|
|
*/
|
|
cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
|
|
cap->cc_sessions = ses;
|
|
}
|
|
err = 0;
|
|
} else
|
|
err = EINVAL;
|
|
|
|
CRYPTO_DRIVER_UNLOCK();
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* Clear blockage on a driver. The what parameter indicates whether
|
|
* the driver is now ready for cryptop's and/or cryptokop's.
|
|
*/
|
|
int
|
|
crypto_unblock(u_int32_t driverid, int what)
|
|
{
|
|
struct cryptocap *cap;
|
|
int needwakeup, err;
|
|
|
|
CRYPTO_Q_LOCK();
|
|
cap = crypto_checkdriver(driverid);
|
|
if (cap != NULL) {
|
|
needwakeup = 0;
|
|
if (what & CRYPTO_SYMQ) {
|
|
needwakeup |= cap->cc_qblocked;
|
|
cap->cc_qblocked = 0;
|
|
}
|
|
if (what & CRYPTO_ASYMQ) {
|
|
needwakeup |= cap->cc_kqblocked;
|
|
cap->cc_kqblocked = 0;
|
|
}
|
|
if (needwakeup)
|
|
wakeup_one(&crp_q);
|
|
err = 0;
|
|
} else
|
|
err = EINVAL;
|
|
CRYPTO_Q_UNLOCK();
|
|
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* Add a crypto request to a queue, to be processed by the kernel thread.
|
|
*/
|
|
int
|
|
crypto_dispatch(struct cryptop *crp)
|
|
{
|
|
u_int32_t hid = CRYPTO_SESID2HID(crp->crp_sid);
|
|
int result;
|
|
|
|
cryptostats.cs_ops++;
|
|
|
|
#ifdef CRYPTO_TIMING
|
|
if (crypto_timing)
|
|
binuptime(&crp->crp_tstamp);
|
|
#endif
|
|
|
|
CRYPTO_Q_LOCK();
|
|
if ((crp->crp_flags & CRYPTO_F_BATCH) == 0) {
|
|
struct cryptocap *cap;
|
|
/*
|
|
* Caller marked the request to be processed
|
|
* immediately; dispatch it directly to the
|
|
* driver unless the driver is currently blocked.
|
|
*/
|
|
cap = crypto_checkdriver(hid);
|
|
if (cap && !cap->cc_qblocked) {
|
|
result = crypto_invoke(crp, 0);
|
|
if (result == ERESTART) {
|
|
/*
|
|
* The driver ran out of resources, mark the
|
|
* driver ``blocked'' for cryptop's and put
|
|
* the request on the queue.
|
|
*
|
|
* XXX ops are placed at the tail so their
|
|
* order is preserved but this can place them
|
|
* behind batch'd ops.
|
|
*/
|
|
crypto_drivers[hid].cc_qblocked = 1;
|
|
TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
|
|
cryptostats.cs_blocks++;
|
|
result = 0;
|
|
}
|
|
} else {
|
|
/*
|
|
* The driver is blocked, just queue the op until
|
|
* it unblocks and the kernel thread gets kicked.
|
|
*/
|
|
TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
|
|
result = 0;
|
|
}
|
|
} else {
|
|
int wasempty;
|
|
/*
|
|
* Caller marked the request as ``ok to delay'';
|
|
* queue it for the dispatch thread. This is desirable
|
|
* when the operation is low priority and/or suitable
|
|
* for batching.
|
|
*/
|
|
wasempty = TAILQ_EMPTY(&crp_q);
|
|
TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
|
|
if (wasempty)
|
|
wakeup_one(&crp_q);
|
|
result = 0;
|
|
}
|
|
CRYPTO_Q_UNLOCK();
|
|
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* Add an asymetric crypto request to a queue,
|
|
* to be processed by the kernel thread.
|
|
*/
|
|
int
|
|
crypto_kdispatch(struct cryptkop *krp)
|
|
{
|
|
struct cryptocap *cap;
|
|
int result;
|
|
|
|
cryptostats.cs_kops++;
|
|
|
|
CRYPTO_Q_LOCK();
|
|
cap = crypto_checkdriver(krp->krp_hid);
|
|
if (cap && !cap->cc_kqblocked) {
|
|
result = crypto_kinvoke(krp, 0);
|
|
if (result == ERESTART) {
|
|
/*
|
|
* The driver ran out of resources, mark the
|
|
* driver ``blocked'' for cryptkop's and put
|
|
* the request back in the queue. It would
|
|
* best to put the request back where we got
|
|
* it but that's hard so for now we put it
|
|
* at the front. This should be ok; putting
|
|
* it at the end does not work.
|
|
*/
|
|
crypto_drivers[krp->krp_hid].cc_kqblocked = 1;
|
|
TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next);
|
|
cryptostats.cs_kblocks++;
|
|
}
|
|
} else {
|
|
/*
|
|
* The driver is blocked, just queue the op until
|
|
* it unblocks and the kernel thread gets kicked.
|
|
*/
|
|
TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next);
|
|
result = 0;
|
|
}
|
|
CRYPTO_Q_UNLOCK();
|
|
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* Dispatch an assymetric crypto request to the appropriate crypto devices.
|
|
*/
|
|
static int
|
|
crypto_kinvoke(struct cryptkop *krp, int hint)
|
|
{
|
|
u_int32_t hid;
|
|
int error;
|
|
|
|
mtx_assert(&crypto_q_mtx, MA_OWNED);
|
|
|
|
/* Sanity checks. */
|
|
if (krp == NULL)
|
|
return EINVAL;
|
|
if (krp->krp_callback == NULL) {
|
|
free(krp, M_XDATA); /* XXX allocated in cryptodev */
|
|
return EINVAL;
|
|
}
|
|
|
|
for (hid = 0; hid < crypto_drivers_num; hid++) {
|
|
if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) &&
|
|
!crypto_devallowsoft)
|
|
continue;
|
|
if (crypto_drivers[hid].cc_kprocess == NULL)
|
|
continue;
|
|
if ((crypto_drivers[hid].cc_kalg[krp->krp_op] &
|
|
CRYPTO_ALG_FLAG_SUPPORTED) == 0)
|
|
continue;
|
|
break;
|
|
}
|
|
if (hid < crypto_drivers_num) {
|
|
krp->krp_hid = hid;
|
|
error = crypto_drivers[hid].cc_kprocess(
|
|
crypto_drivers[hid].cc_karg, krp, hint);
|
|
} else
|
|
error = ENODEV;
|
|
|
|
if (error) {
|
|
krp->krp_status = error;
|
|
crypto_kdone(krp);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CRYPTO_TIMING
|
|
static void
|
|
crypto_tstat(struct cryptotstat *ts, struct bintime *bt)
|
|
{
|
|
struct bintime now, delta;
|
|
struct timespec t;
|
|
uint64_t u;
|
|
|
|
binuptime(&now);
|
|
u = now.frac;
|
|
delta.frac = now.frac - bt->frac;
|
|
delta.sec = now.sec - bt->sec;
|
|
if (u < delta.frac)
|
|
delta.sec--;
|
|
bintime2timespec(&delta, &t);
|
|
timespecadd(&ts->acc, &t);
|
|
if (timespeccmp(&t, &ts->min, <))
|
|
ts->min = t;
|
|
if (timespeccmp(&t, &ts->max, >))
|
|
ts->max = t;
|
|
ts->count++;
|
|
|
|
*bt = now;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Dispatch a crypto request to the appropriate crypto devices.
|
|
*/
|
|
static int
|
|
crypto_invoke(struct cryptop *crp, int hint)
|
|
{
|
|
u_int32_t hid;
|
|
int (*process)(void*, struct cryptop *, int);
|
|
|
|
#ifdef CRYPTO_TIMING
|
|
if (crypto_timing)
|
|
crypto_tstat(&cryptostats.cs_invoke, &crp->crp_tstamp);
|
|
#endif
|
|
/* Sanity checks. */
|
|
if (crp == NULL)
|
|
return EINVAL;
|
|
if (crp->crp_callback == NULL) {
|
|
crypto_freereq(crp);
|
|
return EINVAL;
|
|
}
|
|
if (crp->crp_desc == NULL) {
|
|
crp->crp_etype = EINVAL;
|
|
crypto_done(crp);
|
|
return 0;
|
|
}
|
|
|
|
hid = CRYPTO_SESID2HID(crp->crp_sid);
|
|
if (hid < crypto_drivers_num) {
|
|
if (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP)
|
|
crypto_freesession(crp->crp_sid);
|
|
process = crypto_drivers[hid].cc_process;
|
|
} else {
|
|
process = NULL;
|
|
}
|
|
|
|
if (process == NULL) {
|
|
struct cryptodesc *crd;
|
|
u_int64_t nid;
|
|
|
|
/*
|
|
* Driver has unregistered; migrate the session and return
|
|
* an error to the caller so they'll resubmit the op.
|
|
*/
|
|
for (crd = crp->crp_desc; crd->crd_next; crd = crd->crd_next)
|
|
crd->CRD_INI.cri_next = &(crd->crd_next->CRD_INI);
|
|
|
|
if (crypto_newsession(&nid, &(crp->crp_desc->CRD_INI), 0) == 0)
|
|
crp->crp_sid = nid;
|
|
|
|
crp->crp_etype = EAGAIN;
|
|
crypto_done(crp);
|
|
return 0;
|
|
} else {
|
|
/*
|
|
* Invoke the driver to process the request.
|
|
*/
|
|
return (*process)(crypto_drivers[hid].cc_arg, crp, hint);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Release a set of crypto descriptors.
|
|
*/
|
|
void
|
|
crypto_freereq(struct cryptop *crp)
|
|
{
|
|
struct cryptodesc *crd;
|
|
|
|
if (crp == NULL)
|
|
return;
|
|
|
|
while ((crd = crp->crp_desc) != NULL) {
|
|
crp->crp_desc = crd->crd_next;
|
|
uma_zfree(cryptodesc_zone, crd);
|
|
}
|
|
|
|
uma_zfree(cryptop_zone, crp);
|
|
}
|
|
|
|
/*
|
|
* Acquire a set of crypto descriptors.
|
|
*/
|
|
struct cryptop *
|
|
crypto_getreq(int num)
|
|
{
|
|
struct cryptodesc *crd;
|
|
struct cryptop *crp;
|
|
|
|
crp = uma_zalloc(cryptop_zone, M_NOWAIT|M_ZERO);
|
|
if (crp != NULL) {
|
|
while (num--) {
|
|
crd = uma_zalloc(cryptodesc_zone, M_NOWAIT|M_ZERO);
|
|
if (crd == NULL) {
|
|
crypto_freereq(crp);
|
|
return NULL;
|
|
}
|
|
|
|
crd->crd_next = crp->crp_desc;
|
|
crp->crp_desc = crd;
|
|
}
|
|
}
|
|
return crp;
|
|
}
|
|
|
|
/*
|
|
* Invoke the callback on behalf of the driver.
|
|
*/
|
|
void
|
|
crypto_done(struct cryptop *crp)
|
|
{
|
|
KASSERT((crp->crp_flags & CRYPTO_F_DONE) == 0,
|
|
("crypto_done: op already done, flags 0x%x", crp->crp_flags));
|
|
crp->crp_flags |= CRYPTO_F_DONE;
|
|
if (crp->crp_etype != 0)
|
|
cryptostats.cs_errs++;
|
|
#ifdef CRYPTO_TIMING
|
|
if (crypto_timing)
|
|
crypto_tstat(&cryptostats.cs_done, &crp->crp_tstamp);
|
|
#endif
|
|
/*
|
|
* CBIMM means unconditionally do the callback immediately;
|
|
* CBIFSYNC means do the callback immediately only if the
|
|
* operation was done synchronously. Both are used to avoid
|
|
* doing extraneous context switches; the latter is mostly
|
|
* used with the software crypto driver.
|
|
*/
|
|
if ((crp->crp_flags & CRYPTO_F_CBIMM) ||
|
|
((crp->crp_flags & CRYPTO_F_CBIFSYNC) &&
|
|
(CRYPTO_SESID2CAPS(crp->crp_sid) & CRYPTOCAP_F_SYNC))) {
|
|
/*
|
|
* Do the callback directly. This is ok when the
|
|
* callback routine does very little (e.g. the
|
|
* /dev/crypto callback method just does a wakeup).
|
|
*/
|
|
#ifdef CRYPTO_TIMING
|
|
if (crypto_timing) {
|
|
/*
|
|
* NB: We must copy the timestamp before
|
|
* doing the callback as the cryptop is
|
|
* likely to be reclaimed.
|
|
*/
|
|
struct bintime t = crp->crp_tstamp;
|
|
crypto_tstat(&cryptostats.cs_cb, &t);
|
|
crp->crp_callback(crp);
|
|
crypto_tstat(&cryptostats.cs_finis, &t);
|
|
} else
|
|
#endif
|
|
crp->crp_callback(crp);
|
|
} else {
|
|
int wasempty;
|
|
/*
|
|
* Normal case; queue the callback for the thread.
|
|
*/
|
|
CRYPTO_RETQ_LOCK();
|
|
wasempty = TAILQ_EMPTY(&crp_ret_q);
|
|
TAILQ_INSERT_TAIL(&crp_ret_q, crp, crp_next);
|
|
|
|
if (wasempty)
|
|
wakeup_one(&crp_ret_q); /* shared wait channel */
|
|
CRYPTO_RETQ_UNLOCK();
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Invoke the callback on behalf of the driver.
|
|
*/
|
|
void
|
|
crypto_kdone(struct cryptkop *krp)
|
|
{
|
|
int wasempty;
|
|
|
|
if (krp->krp_status != 0)
|
|
cryptostats.cs_kerrs++;
|
|
CRYPTO_RETQ_LOCK();
|
|
wasempty = TAILQ_EMPTY(&crp_ret_kq);
|
|
TAILQ_INSERT_TAIL(&crp_ret_kq, krp, krp_next);
|
|
|
|
if (wasempty)
|
|
wakeup_one(&crp_ret_q); /* shared wait channel */
|
|
CRYPTO_RETQ_UNLOCK();
|
|
}
|
|
|
|
int
|
|
crypto_getfeat(int *featp)
|
|
{
|
|
int hid, kalg, feat = 0;
|
|
|
|
if (!crypto_userasymcrypto)
|
|
goto out;
|
|
|
|
CRYPTO_DRIVER_LOCK();
|
|
for (hid = 0; hid < crypto_drivers_num; hid++) {
|
|
if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) &&
|
|
!crypto_devallowsoft) {
|
|
continue;
|
|
}
|
|
if (crypto_drivers[hid].cc_kprocess == NULL)
|
|
continue;
|
|
for (kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++)
|
|
if ((crypto_drivers[hid].cc_kalg[kalg] &
|
|
CRYPTO_ALG_FLAG_SUPPORTED) != 0)
|
|
feat |= 1 << kalg;
|
|
}
|
|
CRYPTO_DRIVER_UNLOCK();
|
|
out:
|
|
*featp = feat;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Terminate a thread at module unload. The process that
|
|
* initiated this is waiting for us to signal that we're gone;
|
|
* wake it up and exit. We use the driver table lock to insure
|
|
* we don't do the wakeup before they're waiting. There is no
|
|
* race here because the waiter sleeps on the proc lock for the
|
|
* thread so it gets notified at the right time because of an
|
|
* extra wakeup that's done in exit1().
|
|
*/
|
|
static void
|
|
crypto_finis(void *chan)
|
|
{
|
|
CRYPTO_DRIVER_LOCK();
|
|
wakeup_one(chan);
|
|
CRYPTO_DRIVER_UNLOCK();
|
|
kthread_exit(0);
|
|
}
|
|
|
|
/*
|
|
* Crypto thread, dispatches crypto requests.
|
|
*/
|
|
static void
|
|
crypto_proc(void)
|
|
{
|
|
struct cryptop *crp, *submit;
|
|
struct cryptkop *krp;
|
|
struct cryptocap *cap;
|
|
int result, hint;
|
|
|
|
CRYPTO_Q_LOCK();
|
|
for (;;) {
|
|
/*
|
|
* Find the first element in the queue that can be
|
|
* processed and look-ahead to see if multiple ops
|
|
* are ready for the same driver.
|
|
*/
|
|
submit = NULL;
|
|
hint = 0;
|
|
TAILQ_FOREACH(crp, &crp_q, crp_next) {
|
|
u_int32_t hid = CRYPTO_SESID2HID(crp->crp_sid);
|
|
cap = crypto_checkdriver(hid);
|
|
if (cap == NULL || cap->cc_process == NULL) {
|
|
/* Op needs to be migrated, process it. */
|
|
if (submit == NULL)
|
|
submit = crp;
|
|
break;
|
|
}
|
|
if (!cap->cc_qblocked) {
|
|
if (submit != NULL) {
|
|
/*
|
|
* We stop on finding another op,
|
|
* regardless whether its for the same
|
|
* driver or not. We could keep
|
|
* searching the queue but it might be
|
|
* better to just use a per-driver
|
|
* queue instead.
|
|
*/
|
|
if (CRYPTO_SESID2HID(submit->crp_sid) == hid)
|
|
hint = CRYPTO_HINT_MORE;
|
|
break;
|
|
} else {
|
|
submit = crp;
|
|
if ((submit->crp_flags & CRYPTO_F_BATCH) == 0)
|
|
break;
|
|
/* keep scanning for more are q'd */
|
|
}
|
|
}
|
|
}
|
|
if (submit != NULL) {
|
|
TAILQ_REMOVE(&crp_q, submit, crp_next);
|
|
result = crypto_invoke(submit, hint);
|
|
if (result == ERESTART) {
|
|
/*
|
|
* The driver ran out of resources, mark the
|
|
* driver ``blocked'' for cryptop's and put
|
|
* the request back in the queue. It would
|
|
* best to put the request back where we got
|
|
* it but that's hard so for now we put it
|
|
* at the front. This should be ok; putting
|
|
* it at the end does not work.
|
|
*/
|
|
/* XXX validate sid again? */
|
|
crypto_drivers[CRYPTO_SESID2HID(submit->crp_sid)].cc_qblocked = 1;
|
|
TAILQ_INSERT_HEAD(&crp_q, submit, crp_next);
|
|
cryptostats.cs_blocks++;
|
|
}
|
|
}
|
|
|
|
/* As above, but for key ops */
|
|
TAILQ_FOREACH(krp, &crp_kq, krp_next) {
|
|
cap = crypto_checkdriver(krp->krp_hid);
|
|
if (cap == NULL || cap->cc_kprocess == NULL) {
|
|
/* Op needs to be migrated, process it. */
|
|
break;
|
|
}
|
|
if (!cap->cc_kqblocked)
|
|
break;
|
|
}
|
|
if (krp != NULL) {
|
|
TAILQ_REMOVE(&crp_kq, krp, krp_next);
|
|
result = crypto_kinvoke(krp, 0);
|
|
if (result == ERESTART) {
|
|
/*
|
|
* The driver ran out of resources, mark the
|
|
* driver ``blocked'' for cryptkop's and put
|
|
* the request back in the queue. It would
|
|
* best to put the request back where we got
|
|
* it but that's hard so for now we put it
|
|
* at the front. This should be ok; putting
|
|
* it at the end does not work.
|
|
*/
|
|
/* XXX validate sid again? */
|
|
crypto_drivers[krp->krp_hid].cc_kqblocked = 1;
|
|
TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
|
|
cryptostats.cs_kblocks++;
|
|
}
|
|
}
|
|
|
|
if (submit == NULL && krp == NULL) {
|
|
/*
|
|
* Nothing more to be processed. Sleep until we're
|
|
* woken because there are more ops to process.
|
|
* This happens either by submission or by a driver
|
|
* becoming unblocked and notifying us through
|
|
* crypto_unblock. Note that when we wakeup we
|
|
* start processing each queue again from the
|
|
* front. It's not clear that it's important to
|
|
* preserve this ordering since ops may finish
|
|
* out of order if dispatched to different devices
|
|
* and some become blocked while others do not.
|
|
*/
|
|
msleep(&crp_q, &crypto_q_mtx, PWAIT, "crypto_wait", 0);
|
|
if (cryptoproc == NULL)
|
|
break;
|
|
cryptostats.cs_intrs++;
|
|
}
|
|
}
|
|
CRYPTO_Q_UNLOCK();
|
|
|
|
crypto_finis(&crp_q);
|
|
}
|
|
|
|
/*
|
|
* Crypto returns thread, does callbacks for processed crypto requests.
|
|
* Callbacks are done here, rather than in the crypto drivers, because
|
|
* callbacks typically are expensive and would slow interrupt handling.
|
|
*/
|
|
static void
|
|
crypto_ret_proc(void)
|
|
{
|
|
struct cryptop *crpt;
|
|
struct cryptkop *krpt;
|
|
|
|
CRYPTO_RETQ_LOCK();
|
|
for (;;) {
|
|
/* Harvest return q's for completed ops */
|
|
crpt = TAILQ_FIRST(&crp_ret_q);
|
|
if (crpt != NULL)
|
|
TAILQ_REMOVE(&crp_ret_q, crpt, crp_next);
|
|
|
|
krpt = TAILQ_FIRST(&crp_ret_kq);
|
|
if (krpt != NULL)
|
|
TAILQ_REMOVE(&crp_ret_kq, krpt, krp_next);
|
|
|
|
if (crpt != NULL || krpt != NULL) {
|
|
CRYPTO_RETQ_UNLOCK();
|
|
/*
|
|
* Run callbacks unlocked.
|
|
*/
|
|
if (crpt != NULL) {
|
|
#ifdef CRYPTO_TIMING
|
|
if (crypto_timing) {
|
|
/*
|
|
* NB: We must copy the timestamp before
|
|
* doing the callback as the cryptop is
|
|
* likely to be reclaimed.
|
|
*/
|
|
struct bintime t = crpt->crp_tstamp;
|
|
crypto_tstat(&cryptostats.cs_cb, &t);
|
|
crpt->crp_callback(crpt);
|
|
crypto_tstat(&cryptostats.cs_finis, &t);
|
|
} else
|
|
#endif
|
|
crpt->crp_callback(crpt);
|
|
}
|
|
if (krpt != NULL)
|
|
krpt->krp_callback(krpt);
|
|
CRYPTO_RETQ_LOCK();
|
|
} else {
|
|
/*
|
|
* Nothing more to be processed. Sleep until we're
|
|
* woken because there are more returns to process.
|
|
*/
|
|
msleep(&crp_ret_q, &crypto_ret_q_mtx, PWAIT,
|
|
"crypto_ret_wait", 0);
|
|
if (cryptoretproc == NULL)
|
|
break;
|
|
cryptostats.cs_rets++;
|
|
}
|
|
}
|
|
CRYPTO_RETQ_UNLOCK();
|
|
|
|
crypto_finis(&crp_ret_q);
|
|
}
|