1
0
mirror of https://git.FreeBSD.org/src.git synced 2025-01-13 14:40:22 +00:00
freebsd/sys/rpc/rpc_generic.c
Doug Rabson a9148abd9d Implement support for RPCSEC_GSS authentication to both the NFS client
and server. This replaces the RPC implementation of the NFS client and
server with the newer RPC implementation originally developed
(actually ported from the userland sunrpc code) to support the NFS
Lock Manager.  I have tested this code extensively and I believe it is
stable and that performance is at least equal to the legacy RPC
implementation.

The NFS code currently contains support for both the new RPC
implementation and the older legacy implementation inherited from the
original NFS codebase. The default is to use the new implementation -
add the NFS_LEGACYRPC option to fall back to the old code. When I
merge this support back to RELENG_7, I will probably change this so
that users have to 'opt in' to get the new code.

To use RPCSEC_GSS on either client or server, you must build a kernel
which includes the KGSSAPI option and the crypto device. On the
userland side, you must build at least a new libc, mountd, mount_nfs
and gssd. You must install new versions of /etc/rc.d/gssd and
/etc/rc.d/nfsd and add 'gssd_enable=YES' to /etc/rc.conf.

As long as gssd is running, you should be able to mount an NFS
filesystem from a server that requires RPCSEC_GSS authentication. The
mount itself can happen without any kerberos credentials but all
access to the filesystem will be denied unless the accessing user has
a valid ticket file in the standard place (/tmp/krb5cc_<uid>). There
is currently no support for situations where the ticket file is in a
different place, such as when the user logged in via SSH and has
delegated credentials from that login. This restriction is also
present in Solaris and Linux. In theory, we could improve this in
future, possibly using Brooks Davis' implementation of variant
symlinks.

Supporting RPCSEC_GSS on a server is nearly as simple. You must create
service creds for the server in the form 'nfs/<fqdn>@<REALM>' and
install them in /etc/krb5.keytab. The standard heimdal utility ktutil
makes this fairly easy. After the service creds have been created, you
can add a '-sec=krb5' option to /etc/exports and restart both mountd
and nfsd.

The only other difference an administrator should notice is that nfsd
doesn't fork to create service threads any more. In normal operation,
there will be two nfsd processes, one in userland waiting for TCP
connections and one in the kernel handling requests. The latter
process will create as many kthreads as required - these should be
visible via 'top -H'. The code has some support for varying the number
of service threads according to load but initially at least, nfsd uses
a fixed number of threads according to the value supplied to its '-n'
option.

Sponsored by:	Isilon Systems
MFC after:	1 month
2008-11-03 10:38:00 +00:00

876 lines
18 KiB
C

/* $NetBSD: rpc_generic.c,v 1.4 2000/09/28 09:07:04 kleink Exp $ */
/*
* Sun RPC is a product of Sun Microsystems, Inc. and is provided for
* unrestricted use provided that this legend is included on all tape
* media and as a part of the software program in whole or part. Users
* may copy or modify Sun RPC without charge, but are not authorized
* to license or distribute it to anyone else except as part of a product or
* program developed by the user.
*
* SUN RPC IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING THE
* WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR
* PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE.
*
* Sun RPC is provided with no support and without any obligation on the
* part of Sun Microsystems, Inc. to assist in its use, correction,
* modification or enhancement.
*
* SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE
* INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY SUN RPC
* OR ANY PART THEREOF.
*
* In no event will Sun Microsystems, Inc. be liable for any lost revenue
* or profits or other special, indirect and consequential damages, even if
* Sun has been advised of the possibility of such damages.
*
* Sun Microsystems, Inc.
* 2550 Garcia Avenue
* Mountain View, California 94043
*/
/*
* Copyright (c) 1986-1991 by Sun Microsystems Inc.
*/
/* #pragma ident "@(#)rpc_generic.c 1.17 94/04/24 SMI" */
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* rpc_generic.c, Miscl routines for RPC.
*
*/
#include "opt_inet6.h"
#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/module.h>
#include <sys/proc.h>
#include <sys/protosw.h>
#include <sys/sbuf.h>
#include <sys/systm.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/syslog.h>
#include <rpc/rpc.h>
#include <rpc/nettype.h>
#include <rpc/rpc_com.h>
#if __FreeBSD_version < 700000
#define strrchr rindex
#endif
struct handle {
NCONF_HANDLE *nhandle;
int nflag; /* Whether NETPATH or NETCONFIG */
int nettype;
};
static const struct _rpcnettype {
const char *name;
const int type;
} _rpctypelist[] = {
{ "netpath", _RPC_NETPATH },
{ "visible", _RPC_VISIBLE },
{ "circuit_v", _RPC_CIRCUIT_V },
{ "datagram_v", _RPC_DATAGRAM_V },
{ "circuit_n", _RPC_CIRCUIT_N },
{ "datagram_n", _RPC_DATAGRAM_N },
{ "tcp", _RPC_TCP },
{ "udp", _RPC_UDP },
{ 0, _RPC_NONE }
};
struct netid_af {
const char *netid;
int af;
int protocol;
};
static const struct netid_af na_cvt[] = {
{ "udp", AF_INET, IPPROTO_UDP },
{ "tcp", AF_INET, IPPROTO_TCP },
#ifdef INET6
{ "udp6", AF_INET6, IPPROTO_UDP },
{ "tcp6", AF_INET6, IPPROTO_TCP },
#endif
{ "local", AF_LOCAL, 0 }
};
struct rpc_createerr rpc_createerr;
/*
* Find the appropriate buffer size
*/
u_int
/*ARGSUSED*/
__rpc_get_t_size(int af, int proto, int size)
{
int maxsize, defsize;
maxsize = 256 * 1024; /* XXX */
switch (proto) {
case IPPROTO_TCP:
defsize = 64 * 1024; /* XXX */
break;
case IPPROTO_UDP:
defsize = UDPMSGSIZE;
break;
default:
defsize = RPC_MAXDATASIZE;
break;
}
if (size == 0)
return defsize;
/* Check whether the value is within the upper max limit */
return (size > maxsize ? (u_int)maxsize : (u_int)size);
}
/*
* Find the appropriate address buffer size
*/
u_int
__rpc_get_a_size(af)
int af;
{
switch (af) {
case AF_INET:
return sizeof (struct sockaddr_in);
#ifdef INET6
case AF_INET6:
return sizeof (struct sockaddr_in6);
#endif
case AF_LOCAL:
return sizeof (struct sockaddr_un);
default:
break;
}
return ((u_int)RPC_MAXADDRSIZE);
}
#if 0
/*
* Used to ping the NULL procedure for clnt handle.
* Returns NULL if fails, else a non-NULL pointer.
*/
void *
rpc_nullproc(clnt)
CLIENT *clnt;
{
struct timeval TIMEOUT = {25, 0};
if (clnt_call(clnt, NULLPROC, (xdrproc_t) xdr_void, NULL,
(xdrproc_t) xdr_void, NULL, TIMEOUT) != RPC_SUCCESS) {
return (NULL);
}
return ((void *) clnt);
}
#endif
int
__rpc_socket2sockinfo(struct socket *so, struct __rpc_sockinfo *sip)
{
int type, proto;
struct sockaddr *sa;
sa_family_t family;
struct sockopt opt;
int error;
error = so->so_proto->pr_usrreqs->pru_sockaddr(so, &sa);
if (error)
return 0;
sip->si_alen = sa->sa_len;
family = sa->sa_family;
free(sa, M_SONAME);
opt.sopt_dir = SOPT_GET;
opt.sopt_level = SOL_SOCKET;
opt.sopt_name = SO_TYPE;
opt.sopt_val = &type;
opt.sopt_valsize = sizeof type;
opt.sopt_td = NULL;
error = sogetopt(so, &opt);
if (error)
return 0;
/* XXX */
if (family != AF_LOCAL) {
if (type == SOCK_STREAM)
proto = IPPROTO_TCP;
else if (type == SOCK_DGRAM)
proto = IPPROTO_UDP;
else
return 0;
} else
proto = 0;
sip->si_af = family;
sip->si_proto = proto;
sip->si_socktype = type;
return 1;
}
/*
* Linear search, but the number of entries is small.
*/
int
__rpc_nconf2sockinfo(const struct netconfig *nconf, struct __rpc_sockinfo *sip)
{
int i;
for (i = 0; i < (sizeof na_cvt) / (sizeof (struct netid_af)); i++)
if (strcmp(na_cvt[i].netid, nconf->nc_netid) == 0 || (
strcmp(nconf->nc_netid, "unix") == 0 &&
strcmp(na_cvt[i].netid, "local") == 0)) {
sip->si_af = na_cvt[i].af;
sip->si_proto = na_cvt[i].protocol;
sip->si_socktype =
__rpc_seman2socktype((int)nconf->nc_semantics);
if (sip->si_socktype == -1)
return 0;
sip->si_alen = __rpc_get_a_size(sip->si_af);
return 1;
}
return 0;
}
struct socket *
__rpc_nconf2socket(const struct netconfig *nconf)
{
struct __rpc_sockinfo si;
struct socket *so;
int error;
if (!__rpc_nconf2sockinfo(nconf, &si))
return 0;
so = NULL;
error = socreate(si.si_af, &so, si.si_socktype, si.si_proto,
curthread->td_ucred, curthread);
if (error)
return NULL;
else
return so;
}
char *
taddr2uaddr(const struct netconfig *nconf, const struct netbuf *nbuf)
{
struct __rpc_sockinfo si;
if (!__rpc_nconf2sockinfo(nconf, &si))
return NULL;
return __rpc_taddr2uaddr_af(si.si_af, nbuf);
}
struct netbuf *
uaddr2taddr(const struct netconfig *nconf, const char *uaddr)
{
struct __rpc_sockinfo si;
if (!__rpc_nconf2sockinfo(nconf, &si))
return NULL;
return __rpc_uaddr2taddr_af(si.si_af, uaddr);
}
char *
__rpc_taddr2uaddr_af(int af, const struct netbuf *nbuf)
{
char *ret;
struct sbuf sb;
struct sockaddr_in *sin;
struct sockaddr_un *sun;
char namebuf[INET_ADDRSTRLEN];
#ifdef INET6
struct sockaddr_in6 *sin6;
char namebuf6[INET6_ADDRSTRLEN];
#endif
u_int16_t port;
sbuf_new(&sb, NULL, 0, SBUF_AUTOEXTEND);
switch (af) {
case AF_INET:
sin = nbuf->buf;
if (__rpc_inet_ntop(af, &sin->sin_addr, namebuf, sizeof namebuf)
== NULL)
return NULL;
port = ntohs(sin->sin_port);
if (sbuf_printf(&sb, "%s.%u.%u", namebuf,
((uint32_t)port) >> 8,
port & 0xff) < 0)
return NULL;
break;
#ifdef INET6
case AF_INET6:
sin6 = nbuf->buf;
if (__rpc_inet_ntop(af, &sin6->sin6_addr, namebuf6, sizeof namebuf6)
== NULL)
return NULL;
port = ntohs(sin6->sin6_port);
if (sbuf_printf(&sb, "%s.%u.%u", namebuf6,
((uint32_t)port) >> 8,
port & 0xff) < 0)
return NULL;
break;
#endif
case AF_LOCAL:
sun = nbuf->buf;
if (sbuf_printf(&sb, "%.*s", (int)(sun->sun_len -
offsetof(struct sockaddr_un, sun_path)),
sun->sun_path) < 0)
return (NULL);
break;
default:
return NULL;
}
sbuf_finish(&sb);
ret = strdup(sbuf_data(&sb), M_RPC);
sbuf_delete(&sb);
return ret;
}
struct netbuf *
__rpc_uaddr2taddr_af(int af, const char *uaddr)
{
struct netbuf *ret = NULL;
char *addrstr, *p;
unsigned port, portlo, porthi;
struct sockaddr_in *sin;
#ifdef INET6
struct sockaddr_in6 *sin6;
#endif
struct sockaddr_un *sun;
port = 0;
sin = NULL;
addrstr = strdup(uaddr, M_RPC);
if (addrstr == NULL)
return NULL;
/*
* AF_LOCAL addresses are expected to be absolute
* pathnames, anything else will be AF_INET or AF_INET6.
*/
if (*addrstr != '/') {
p = strrchr(addrstr, '.');
if (p == NULL)
goto out;
portlo = (unsigned)strtol(p + 1, NULL, 10);
*p = '\0';
p = strrchr(addrstr, '.');
if (p == NULL)
goto out;
porthi = (unsigned)strtol(p + 1, NULL, 10);
*p = '\0';
port = (porthi << 8) | portlo;
}
ret = (struct netbuf *)malloc(sizeof *ret, M_RPC, M_WAITOK);
if (ret == NULL)
goto out;
switch (af) {
case AF_INET:
sin = (struct sockaddr_in *)malloc(sizeof *sin, M_RPC,
M_WAITOK);
if (sin == NULL)
goto out;
memset(sin, 0, sizeof *sin);
sin->sin_family = AF_INET;
sin->sin_port = htons(port);
if (__rpc_inet_pton(AF_INET, addrstr, &sin->sin_addr) <= 0) {
free(sin, M_RPC);
free(ret, M_RPC);
ret = NULL;
goto out;
}
sin->sin_len = ret->maxlen = ret->len = sizeof *sin;
ret->buf = sin;
break;
#ifdef INET6
case AF_INET6:
sin6 = (struct sockaddr_in6 *)malloc(sizeof *sin6, M_RPC,
M_WAITOK);
if (sin6 == NULL)
goto out;
memset(sin6, 0, sizeof *sin6);
sin6->sin6_family = AF_INET6;
sin6->sin6_port = htons(port);
if (__rpc_inet_pton(AF_INET6, addrstr, &sin6->sin6_addr) <= 0) {
free(sin6, M_RPC);
free(ret, M_RPC);
ret = NULL;
goto out;
}
sin6->sin6_len = ret->maxlen = ret->len = sizeof *sin6;
ret->buf = sin6;
break;
#endif
case AF_LOCAL:
sun = (struct sockaddr_un *)malloc(sizeof *sun, M_RPC,
M_WAITOK);
if (sun == NULL)
goto out;
memset(sun, 0, sizeof *sun);
sun->sun_family = AF_LOCAL;
strncpy(sun->sun_path, addrstr, sizeof(sun->sun_path) - 1);
ret->len = ret->maxlen = sun->sun_len = SUN_LEN(sun);
ret->buf = sun;
break;
default:
break;
}
out:
free(addrstr, M_RPC);
return ret;
}
int
__rpc_seman2socktype(int semantics)
{
switch (semantics) {
case NC_TPI_CLTS:
return SOCK_DGRAM;
case NC_TPI_COTS_ORD:
return SOCK_STREAM;
case NC_TPI_RAW:
return SOCK_RAW;
default:
break;
}
return -1;
}
int
__rpc_socktype2seman(int socktype)
{
switch (socktype) {
case SOCK_DGRAM:
return NC_TPI_CLTS;
case SOCK_STREAM:
return NC_TPI_COTS_ORD;
case SOCK_RAW:
return NC_TPI_RAW;
default:
break;
}
return -1;
}
/*
* Returns the type of the network as defined in <rpc/nettype.h>
* If nettype is NULL, it defaults to NETPATH.
*/
static int
getnettype(const char *nettype)
{
int i;
if ((nettype == NULL) || (nettype[0] == 0)) {
return (_RPC_NETPATH); /* Default */
}
#if 0
nettype = strlocase(nettype);
#endif
for (i = 0; _rpctypelist[i].name; i++)
if (strcasecmp(nettype, _rpctypelist[i].name) == 0) {
return (_rpctypelist[i].type);
}
return (_rpctypelist[i].type);
}
/*
* For the given nettype (tcp or udp only), return the first structure found.
* This should be freed by calling freenetconfigent()
*/
struct netconfig *
__rpc_getconfip(const char *nettype)
{
char *netid;
static char *netid_tcp = (char *) NULL;
static char *netid_udp = (char *) NULL;
struct netconfig *dummy;
if (!netid_udp && !netid_tcp) {
struct netconfig *nconf;
void *confighandle;
if (!(confighandle = setnetconfig())) {
log(LOG_ERR, "rpc: failed to open " NETCONFIG);
return (NULL);
}
while ((nconf = getnetconfig(confighandle)) != NULL) {
if (strcmp(nconf->nc_protofmly, NC_INET) == 0) {
if (strcmp(nconf->nc_proto, NC_TCP) == 0) {
netid_tcp = strdup(nconf->nc_netid,
M_RPC);
} else
if (strcmp(nconf->nc_proto, NC_UDP) == 0) {
netid_udp = strdup(nconf->nc_netid,
M_RPC);
}
}
}
endnetconfig(confighandle);
}
if (strcmp(nettype, "udp") == 0)
netid = netid_udp;
else if (strcmp(nettype, "tcp") == 0)
netid = netid_tcp;
else {
return (NULL);
}
if ((netid == NULL) || (netid[0] == 0)) {
return (NULL);
}
dummy = getnetconfigent(netid);
return (dummy);
}
/*
* Returns the type of the nettype, which should then be used with
* __rpc_getconf().
*
* For simplicity in the kernel, we don't support the NETPATH
* environment variable. We behave as userland would then NETPATH is
* unset, i.e. iterate over all visible entries in netconfig.
*/
void *
__rpc_setconf(nettype)
const char *nettype;
{
struct handle *handle;
handle = (struct handle *) malloc(sizeof (struct handle),
M_RPC, M_WAITOK);
switch (handle->nettype = getnettype(nettype)) {
case _RPC_NETPATH:
case _RPC_CIRCUIT_N:
case _RPC_DATAGRAM_N:
if (!(handle->nhandle = setnetconfig()))
goto failed;
handle->nflag = TRUE;
break;
case _RPC_VISIBLE:
case _RPC_CIRCUIT_V:
case _RPC_DATAGRAM_V:
case _RPC_TCP:
case _RPC_UDP:
if (!(handle->nhandle = setnetconfig())) {
log(LOG_ERR, "rpc: failed to open " NETCONFIG);
goto failed;
}
handle->nflag = FALSE;
break;
default:
goto failed;
}
return (handle);
failed:
free(handle, M_RPC);
return (NULL);
}
/*
* Returns the next netconfig struct for the given "net" type.
* __rpc_setconf() should have been called previously.
*/
struct netconfig *
__rpc_getconf(void *vhandle)
{
struct handle *handle;
struct netconfig *nconf;
handle = (struct handle *)vhandle;
if (handle == NULL) {
return (NULL);
}
for (;;) {
if (handle->nflag) {
nconf = getnetconfig(handle->nhandle);
if (nconf && !(nconf->nc_flag & NC_VISIBLE))
continue;
} else {
nconf = getnetconfig(handle->nhandle);
}
if (nconf == NULL)
break;
if ((nconf->nc_semantics != NC_TPI_CLTS) &&
(nconf->nc_semantics != NC_TPI_COTS) &&
(nconf->nc_semantics != NC_TPI_COTS_ORD))
continue;
switch (handle->nettype) {
case _RPC_VISIBLE:
if (!(nconf->nc_flag & NC_VISIBLE))
continue;
/* FALLTHROUGH */
case _RPC_NETPATH: /* Be happy */
break;
case _RPC_CIRCUIT_V:
if (!(nconf->nc_flag & NC_VISIBLE))
continue;
/* FALLTHROUGH */
case _RPC_CIRCUIT_N:
if ((nconf->nc_semantics != NC_TPI_COTS) &&
(nconf->nc_semantics != NC_TPI_COTS_ORD))
continue;
break;
case _RPC_DATAGRAM_V:
if (!(nconf->nc_flag & NC_VISIBLE))
continue;
/* FALLTHROUGH */
case _RPC_DATAGRAM_N:
if (nconf->nc_semantics != NC_TPI_CLTS)
continue;
break;
case _RPC_TCP:
if (((nconf->nc_semantics != NC_TPI_COTS) &&
(nconf->nc_semantics != NC_TPI_COTS_ORD)) ||
(strcmp(nconf->nc_protofmly, NC_INET)
#ifdef INET6
&& strcmp(nconf->nc_protofmly, NC_INET6))
#else
)
#endif
||
strcmp(nconf->nc_proto, NC_TCP))
continue;
break;
case _RPC_UDP:
if ((nconf->nc_semantics != NC_TPI_CLTS) ||
(strcmp(nconf->nc_protofmly, NC_INET)
#ifdef INET6
&& strcmp(nconf->nc_protofmly, NC_INET6))
#else
)
#endif
||
strcmp(nconf->nc_proto, NC_UDP))
continue;
break;
}
break;
}
return (nconf);
}
void
__rpc_endconf(vhandle)
void * vhandle;
{
struct handle *handle;
handle = (struct handle *) vhandle;
if (handle == NULL) {
return;
}
endnetconfig(handle->nhandle);
free(handle, M_RPC);
}
int
__rpc_sockisbound(struct socket *so)
{
struct sockaddr *sa;
int error, bound;
error = so->so_proto->pr_usrreqs->pru_sockaddr(so, &sa);
if (error)
return (0);
switch (sa->sa_family) {
case AF_INET:
bound = (((struct sockaddr_in *) sa)->sin_port != 0);
break;
#ifdef INET6
case AF_INET6:
bound = (((struct sockaddr_in6 *) sa)->sin6_port != 0);
break;
#endif
case AF_LOCAL:
/* XXX check this */
bound = (((struct sockaddr_un *) sa)->sun_path[0] != '\0');
break;
default:
bound = FALSE;
break;
}
free(sa, M_SONAME);
return bound;
}
/*
* Implement XDR-style API for RPC call.
*/
enum clnt_stat
clnt_call_private(
CLIENT *cl, /* client handle */
struct rpc_callextra *ext, /* call metadata */
rpcproc_t proc, /* procedure number */
xdrproc_t xargs, /* xdr routine for args */
void *argsp, /* pointer to args */
xdrproc_t xresults, /* xdr routine for results */
void *resultsp, /* pointer to results */
struct timeval utimeout) /* seconds to wait before giving up */
{
XDR xdrs;
struct mbuf *mreq;
struct mbuf *mrep;
enum clnt_stat stat;
MGET(mreq, M_WAIT, MT_DATA);
MCLGET(mreq, M_WAIT);
mreq->m_len = 0;
xdrmbuf_create(&xdrs, mreq, XDR_ENCODE);
if (!xargs(&xdrs, argsp)) {
m_freem(mreq);
return (RPC_CANTENCODEARGS);
}
XDR_DESTROY(&xdrs);
stat = CLNT_CALL_MBUF(cl, ext, proc, mreq, &mrep, utimeout);
m_freem(mreq);
if (stat == RPC_SUCCESS) {
xdrmbuf_create(&xdrs, mrep, XDR_DECODE);
if (!xresults(&xdrs, resultsp)) {
XDR_DESTROY(&xdrs);
return (RPC_CANTDECODERES);
}
XDR_DESTROY(&xdrs);
}
return (stat);
}
/*
* Bind a socket to a privileged IP port
*/
int
bindresvport(struct socket *so, struct sockaddr *sa)
{
int old, error, af;
bool_t freesa = FALSE;
struct sockaddr_in *sin;
#ifdef INET6
struct sockaddr_in6 *sin6;
#endif
struct sockopt opt;
int proto, portrange, portlow;
u_int16_t *portp;
socklen_t salen;
if (sa == NULL) {
error = so->so_proto->pr_usrreqs->pru_sockaddr(so, &sa);
if (error)
return (error);
freesa = TRUE;
af = sa->sa_family;
salen = sa->sa_len;
memset(sa, 0, sa->sa_len);
} else {
af = sa->sa_family;
salen = sa->sa_len;
}
switch (af) {
case AF_INET:
proto = IPPROTO_IP;
portrange = IP_PORTRANGE;
portlow = IP_PORTRANGE_LOW;
sin = (struct sockaddr_in *)sa;
portp = &sin->sin_port;
break;
#ifdef INET6
case AF_INET6:
proto = IPPROTO_IPV6;
portrange = IPV6_PORTRANGE;
portlow = IPV6_PORTRANGE_LOW;
sin6 = (struct sockaddr_in6 *)sa;
portp = &sin6->sin6_port;
break;
#endif
default:
return (EPFNOSUPPORT);
}
sa->sa_family = af;
sa->sa_len = salen;
if (*portp == 0) {
bzero(&opt, sizeof(opt));
opt.sopt_dir = SOPT_GET;
opt.sopt_level = proto;
opt.sopt_name = portrange;
opt.sopt_val = &old;
opt.sopt_valsize = sizeof(old);
error = sogetopt(so, &opt);
if (error)
goto out;
opt.sopt_dir = SOPT_SET;
opt.sopt_val = &portlow;
error = sosetopt(so, &opt);
if (error)
goto out;
}
error = sobind(so, sa, curthread);
if (*portp == 0) {
if (error) {
opt.sopt_dir = SOPT_SET;
opt.sopt_val = &old;
sosetopt(so, &opt);
}
}
out:
if (freesa)
free(sa, M_SONAME);
return (error);
}
/*
* Kernel module glue
*/
static int
krpc_modevent(module_t mod, int type, void *data)
{
return (0);
}
static moduledata_t krpc_mod = {
"krpc",
krpc_modevent,
NULL,
};
DECLARE_MODULE(krpc, krpc_mod, SI_SUB_VFS, SI_ORDER_ANY);
/* So that loader and kldload(2) can find us, wherever we are.. */
MODULE_VERSION(krpc, 1);