mirror of
https://git.FreeBSD.org/src.git
synced 2025-01-01 12:19:28 +00:00
758 lines
22 KiB
C
758 lines
22 KiB
C
/* Save and restore call-clobbered registers which are live across a call.
|
||
Copyright (C) 1989, 1992, 94-95, 97, 98, 1999 Free Software Foundation, Inc.
|
||
|
||
This file is part of GNU CC.
|
||
|
||
GNU CC is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2, or (at your option)
|
||
any later version.
|
||
|
||
GNU CC is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GNU CC; see the file COPYING. If not, write to
|
||
the Free Software Foundation, 59 Temple Place - Suite 330,
|
||
Boston, MA 02111-1307, USA. */
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "rtl.h"
|
||
#include "insn-config.h"
|
||
#include "flags.h"
|
||
#include "regs.h"
|
||
#include "hard-reg-set.h"
|
||
#include "recog.h"
|
||
#include "basic-block.h"
|
||
#include "reload.h"
|
||
#include "expr.h"
|
||
#include "toplev.h"
|
||
|
||
#ifndef MAX_MOVE_MAX
|
||
#define MAX_MOVE_MAX MOVE_MAX
|
||
#endif
|
||
|
||
#ifndef MIN_UNITS_PER_WORD
|
||
#define MIN_UNITS_PER_WORD UNITS_PER_WORD
|
||
#endif
|
||
|
||
#define MOVE_MAX_WORDS (MOVE_MAX / UNITS_PER_WORD)
|
||
|
||
/* Modes for each hard register that we can save. The smallest mode is wide
|
||
enough to save the entire contents of the register. When saving the
|
||
register because it is live we first try to save in multi-register modes.
|
||
If that is not possible the save is done one register at a time. */
|
||
|
||
static enum machine_mode
|
||
regno_save_mode[FIRST_PSEUDO_REGISTER][MAX_MOVE_MAX / MIN_UNITS_PER_WORD + 1];
|
||
|
||
/* For each hard register, a place on the stack where it can be saved,
|
||
if needed. */
|
||
|
||
static rtx
|
||
regno_save_mem[FIRST_PSEUDO_REGISTER][MAX_MOVE_MAX / MIN_UNITS_PER_WORD + 1];
|
||
|
||
/* We will only make a register eligible for caller-save if it can be
|
||
saved in its widest mode with a simple SET insn as long as the memory
|
||
address is valid. We record the INSN_CODE is those insns here since
|
||
when we emit them, the addresses might not be valid, so they might not
|
||
be recognized. */
|
||
|
||
static enum insn_code
|
||
reg_save_code[FIRST_PSEUDO_REGISTER][MAX_MOVE_MAX / MIN_UNITS_PER_WORD + 1];
|
||
static enum insn_code
|
||
reg_restore_code[FIRST_PSEUDO_REGISTER][MAX_MOVE_MAX / MIN_UNITS_PER_WORD + 1];
|
||
|
||
/* Set of hard regs currently residing in save area (during insn scan). */
|
||
|
||
static HARD_REG_SET hard_regs_saved;
|
||
|
||
/* Number of registers currently in hard_regs_saved. */
|
||
|
||
static int n_regs_saved;
|
||
|
||
/* Computed by mark_referenced_regs, all regs referenced in a given
|
||
insn. */
|
||
static HARD_REG_SET referenced_regs;
|
||
|
||
/* Computed in mark_set_regs, holds all registers set by the current
|
||
instruction. */
|
||
static HARD_REG_SET this_insn_sets;
|
||
|
||
|
||
static void mark_set_regs PROTO((rtx, rtx));
|
||
static void mark_referenced_regs PROTO((rtx));
|
||
static int insert_save PROTO((struct insn_chain *, int, int,
|
||
HARD_REG_SET *));
|
||
static int insert_restore PROTO((struct insn_chain *, int, int,
|
||
int));
|
||
static void insert_one_insn PROTO((struct insn_chain *, int,
|
||
enum insn_code, rtx));
|
||
|
||
/* Initialize for caller-save.
|
||
|
||
Look at all the hard registers that are used by a call and for which
|
||
regclass.c has not already excluded from being used across a call.
|
||
|
||
Ensure that we can find a mode to save the register and that there is a
|
||
simple insn to save and restore the register. This latter check avoids
|
||
problems that would occur if we tried to save the MQ register of some
|
||
machines directly into memory. */
|
||
|
||
void
|
||
init_caller_save ()
|
||
{
|
||
char *first_obj = (char *) oballoc (0);
|
||
rtx addr_reg;
|
||
int offset;
|
||
rtx address;
|
||
int i, j;
|
||
|
||
/* First find all the registers that we need to deal with and all
|
||
the modes that they can have. If we can't find a mode to use,
|
||
we can't have the register live over calls. */
|
||
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
{
|
||
if (call_used_regs[i] && ! call_fixed_regs[i])
|
||
{
|
||
for (j = 1; j <= MOVE_MAX_WORDS; j++)
|
||
{
|
||
regno_save_mode[i][j] = HARD_REGNO_CALLER_SAVE_MODE (i, j);
|
||
if (regno_save_mode[i][j] == VOIDmode && j == 1)
|
||
{
|
||
call_fixed_regs[i] = 1;
|
||
SET_HARD_REG_BIT (call_fixed_reg_set, i);
|
||
}
|
||
}
|
||
}
|
||
else
|
||
regno_save_mode[i][1] = VOIDmode;
|
||
}
|
||
|
||
/* The following code tries to approximate the conditions under which
|
||
we can easily save and restore a register without scratch registers or
|
||
other complexities. It will usually work, except under conditions where
|
||
the validity of an insn operand is dependent on the address offset.
|
||
No such cases are currently known.
|
||
|
||
We first find a typical offset from some BASE_REG_CLASS register.
|
||
This address is chosen by finding the first register in the class
|
||
and by finding the smallest power of two that is a valid offset from
|
||
that register in every mode we will use to save registers. */
|
||
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
if (TEST_HARD_REG_BIT (reg_class_contents[(int) BASE_REG_CLASS], i))
|
||
break;
|
||
|
||
if (i == FIRST_PSEUDO_REGISTER)
|
||
abort ();
|
||
|
||
addr_reg = gen_rtx_REG (Pmode, i);
|
||
|
||
for (offset = 1 << (HOST_BITS_PER_INT / 2); offset; offset >>= 1)
|
||
{
|
||
address = gen_rtx_PLUS (Pmode, addr_reg, GEN_INT (offset));
|
||
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
if (regno_save_mode[i][1] != VOIDmode
|
||
&& ! strict_memory_address_p (regno_save_mode[i][1], address))
|
||
break;
|
||
|
||
if (i == FIRST_PSEUDO_REGISTER)
|
||
break;
|
||
}
|
||
|
||
/* If we didn't find a valid address, we must use register indirect. */
|
||
if (offset == 0)
|
||
address = addr_reg;
|
||
|
||
/* Next we try to form an insn to save and restore the register. We
|
||
see if such an insn is recognized and meets its constraints. */
|
||
|
||
start_sequence ();
|
||
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
for (j = 1; j <= MOVE_MAX_WORDS; j++)
|
||
if (regno_save_mode[i][j] != VOIDmode)
|
||
{
|
||
rtx mem = gen_rtx_MEM (regno_save_mode[i][j], address);
|
||
rtx reg = gen_rtx_REG (regno_save_mode[i][j], i);
|
||
rtx savepat = gen_rtx_SET (VOIDmode, mem, reg);
|
||
rtx restpat = gen_rtx_SET (VOIDmode, reg, mem);
|
||
rtx saveinsn = emit_insn (savepat);
|
||
rtx restinsn = emit_insn (restpat);
|
||
int ok;
|
||
|
||
reg_save_code[i][j] = recog_memoized (saveinsn);
|
||
reg_restore_code[i][j] = recog_memoized (restinsn);
|
||
|
||
/* Now extract both insns and see if we can meet their
|
||
constraints. */
|
||
ok = (reg_save_code[i][j] != (enum insn_code)-1
|
||
&& reg_restore_code[i][j] != (enum insn_code)-1);
|
||
if (ok)
|
||
{
|
||
extract_insn (saveinsn);
|
||
ok = constrain_operands (1);
|
||
extract_insn (restinsn);
|
||
ok &= constrain_operands (1);
|
||
}
|
||
|
||
if (! ok)
|
||
{
|
||
regno_save_mode[i][j] = VOIDmode;
|
||
if (j == 1)
|
||
{
|
||
call_fixed_regs[i] = 1;
|
||
SET_HARD_REG_BIT (call_fixed_reg_set, i);
|
||
}
|
||
}
|
||
}
|
||
|
||
end_sequence ();
|
||
|
||
obfree (first_obj);
|
||
}
|
||
|
||
/* Initialize save areas by showing that we haven't allocated any yet. */
|
||
|
||
void
|
||
init_save_areas ()
|
||
{
|
||
int i, j;
|
||
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
for (j = 1; j <= MOVE_MAX_WORDS; j++)
|
||
regno_save_mem[i][j] = 0;
|
||
}
|
||
|
||
/* Allocate save areas for any hard registers that might need saving.
|
||
We take a conservative approach here and look for call-clobbered hard
|
||
registers that are assigned to pseudos that cross calls. This may
|
||
overestimate slightly (especially if some of these registers are later
|
||
used as spill registers), but it should not be significant.
|
||
|
||
Future work:
|
||
|
||
In the fallback case we should iterate backwards across all possible
|
||
modes for the save, choosing the largest available one instead of
|
||
falling back to the smallest mode immediately. (eg TF -> DF -> SF).
|
||
|
||
We do not try to use "move multiple" instructions that exist
|
||
on some machines (such as the 68k moveml). It could be a win to try
|
||
and use them when possible. The hard part is doing it in a way that is
|
||
machine independent since they might be saving non-consecutive
|
||
registers. (imagine caller-saving d0,d1,a0,a1 on the 68k) */
|
||
|
||
void
|
||
setup_save_areas ()
|
||
{
|
||
int i, j, k;
|
||
HARD_REG_SET hard_regs_used;
|
||
|
||
/* Allocate space in the save area for the largest multi-register
|
||
pseudos first, then work backwards to single register
|
||
pseudos. */
|
||
|
||
/* Find and record all call-used hard-registers in this function. */
|
||
CLEAR_HARD_REG_SET (hard_regs_used);
|
||
for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
|
||
if (reg_renumber[i] >= 0 && REG_N_CALLS_CROSSED (i) > 0)
|
||
{
|
||
int regno = reg_renumber[i];
|
||
int endregno
|
||
= regno + HARD_REGNO_NREGS (regno, GET_MODE (regno_reg_rtx[i]));
|
||
int nregs = endregno - regno;
|
||
|
||
for (j = 0; j < nregs; j++)
|
||
{
|
||
if (call_used_regs[regno+j])
|
||
SET_HARD_REG_BIT (hard_regs_used, regno+j);
|
||
}
|
||
}
|
||
|
||
/* Now run through all the call-used hard-registers and allocate
|
||
space for them in the caller-save area. Try to allocate space
|
||
in a manner which allows multi-register saves/restores to be done. */
|
||
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
for (j = MOVE_MAX_WORDS; j > 0; j--)
|
||
{
|
||
int do_save = 1;
|
||
|
||
/* If no mode exists for this size, try another. Also break out
|
||
if we have already saved this hard register. */
|
||
if (regno_save_mode[i][j] == VOIDmode || regno_save_mem[i][1] != 0)
|
||
continue;
|
||
|
||
/* See if any register in this group has been saved. */
|
||
for (k = 0; k < j; k++)
|
||
if (regno_save_mem[i + k][1])
|
||
{
|
||
do_save = 0;
|
||
break;
|
||
}
|
||
if (! do_save)
|
||
continue;
|
||
|
||
for (k = 0; k < j; k++)
|
||
if (! TEST_HARD_REG_BIT (hard_regs_used, i + k))
|
||
{
|
||
do_save = 0;
|
||
break;
|
||
}
|
||
if (! do_save)
|
||
continue;
|
||
|
||
/* We have found an acceptable mode to store in. */
|
||
regno_save_mem[i][j]
|
||
= assign_stack_local (regno_save_mode[i][j],
|
||
GET_MODE_SIZE (regno_save_mode[i][j]), 0);
|
||
|
||
/* Setup single word save area just in case... */
|
||
for (k = 0; k < j; k++)
|
||
{
|
||
/* This should not depend on WORDS_BIG_ENDIAN.
|
||
The order of words in regs is the same as in memory. */
|
||
rtx temp = gen_rtx_MEM (regno_save_mode[i+k][1],
|
||
XEXP (regno_save_mem[i][j], 0));
|
||
|
||
regno_save_mem[i+k][1]
|
||
= adj_offsettable_operand (temp, k * UNITS_PER_WORD);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Find the places where hard regs are live across calls and save them. */
|
||
void
|
||
save_call_clobbered_regs ()
|
||
{
|
||
struct insn_chain *chain, *next;
|
||
|
||
CLEAR_HARD_REG_SET (hard_regs_saved);
|
||
n_regs_saved = 0;
|
||
|
||
for (chain = reload_insn_chain; chain != 0; chain = next)
|
||
{
|
||
rtx insn = chain->insn;
|
||
enum rtx_code code = GET_CODE (insn);
|
||
|
||
next = chain->next;
|
||
|
||
if (chain->is_caller_save_insn)
|
||
abort ();
|
||
|
||
if (GET_RTX_CLASS (code) == 'i')
|
||
{
|
||
/* If some registers have been saved, see if INSN references
|
||
any of them. We must restore them before the insn if so. */
|
||
|
||
if (n_regs_saved)
|
||
{
|
||
int regno;
|
||
|
||
if (code == JUMP_INSN)
|
||
/* Restore all registers if this is a JUMP_INSN. */
|
||
COPY_HARD_REG_SET (referenced_regs, hard_regs_saved);
|
||
else
|
||
{
|
||
CLEAR_HARD_REG_SET (referenced_regs);
|
||
mark_referenced_regs (PATTERN (insn));
|
||
AND_HARD_REG_SET (referenced_regs, hard_regs_saved);
|
||
}
|
||
|
||
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
|
||
if (TEST_HARD_REG_BIT (referenced_regs, regno))
|
||
regno += insert_restore (chain, 1, regno, MOVE_MAX_WORDS);
|
||
}
|
||
|
||
if (code == CALL_INSN)
|
||
{
|
||
rtx x;
|
||
int regno, nregs;
|
||
HARD_REG_SET hard_regs_to_save;
|
||
|
||
/* Use the register life information in CHAIN to compute which
|
||
regs are live before the call. */
|
||
REG_SET_TO_HARD_REG_SET (hard_regs_to_save, chain->live_before);
|
||
compute_use_by_pseudos (&hard_regs_to_save, chain->live_before);
|
||
|
||
/* Record all registers set in this call insn. These don't need
|
||
to be saved. */
|
||
CLEAR_HARD_REG_SET (this_insn_sets);
|
||
note_stores (PATTERN (insn), mark_set_regs);
|
||
|
||
/* Compute which hard regs must be saved before this call. */
|
||
AND_COMPL_HARD_REG_SET (hard_regs_to_save, call_fixed_reg_set);
|
||
AND_COMPL_HARD_REG_SET (hard_regs_to_save, this_insn_sets);
|
||
AND_COMPL_HARD_REG_SET (hard_regs_to_save, hard_regs_saved);
|
||
AND_HARD_REG_SET (hard_regs_to_save, call_used_reg_set);
|
||
|
||
/* Registers used for function parameters need not be saved. */
|
||
for (x = CALL_INSN_FUNCTION_USAGE (insn); x != 0;
|
||
x = XEXP (x, 1))
|
||
{
|
||
rtx y;
|
||
|
||
if (GET_CODE (XEXP (x, 0)) != USE)
|
||
continue;
|
||
y = XEXP (XEXP (x, 0), 0);
|
||
if (GET_CODE (y) != REG)
|
||
abort ();
|
||
regno = REGNO (y);
|
||
if (REGNO (y) >= FIRST_PSEUDO_REGISTER)
|
||
abort ();
|
||
nregs = HARD_REGNO_NREGS (regno, GET_MODE (y));
|
||
while (nregs-- > 0)
|
||
CLEAR_HARD_REG_BIT (hard_regs_to_save, regno + nregs);
|
||
}
|
||
|
||
/* Neither do registers for which we find a death note. */
|
||
for (x = REG_NOTES (insn); x != 0; x = XEXP (x, 1))
|
||
{
|
||
rtx y = XEXP (x, 0);
|
||
|
||
if (REG_NOTE_KIND (x) != REG_DEAD)
|
||
continue;
|
||
if (GET_CODE (y) != REG)
|
||
abort ();
|
||
regno = REGNO (y);
|
||
|
||
if (regno >= FIRST_PSEUDO_REGISTER)
|
||
regno = reg_renumber[regno];
|
||
if (regno < 0)
|
||
continue;
|
||
nregs = HARD_REGNO_NREGS (regno, GET_MODE (y));
|
||
while (nregs-- > 0)
|
||
CLEAR_HARD_REG_BIT (hard_regs_to_save, regno + nregs);
|
||
}
|
||
|
||
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
|
||
if (TEST_HARD_REG_BIT (hard_regs_to_save, regno))
|
||
regno += insert_save (chain, 1, regno, &hard_regs_to_save);
|
||
|
||
/* Must recompute n_regs_saved. */
|
||
n_regs_saved = 0;
|
||
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
|
||
if (TEST_HARD_REG_BIT (hard_regs_saved, regno))
|
||
n_regs_saved++;
|
||
}
|
||
}
|
||
|
||
if (chain->next == 0 || chain->next->block > chain->block)
|
||
{
|
||
int regno;
|
||
/* At the end of the basic block, we must restore any registers that
|
||
remain saved. If the last insn in the block is a JUMP_INSN, put
|
||
the restore before the insn, otherwise, put it after the insn. */
|
||
|
||
if (n_regs_saved)
|
||
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
|
||
if (TEST_HARD_REG_BIT (hard_regs_saved, regno))
|
||
regno += insert_restore (chain, GET_CODE (insn) == JUMP_INSN,
|
||
regno, MOVE_MAX_WORDS);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Here from note_stores when an insn stores a value in a register.
|
||
Set the proper bit or bits in this_insn_sets. All pseudos that have
|
||
been assigned hard regs have had their register number changed already,
|
||
so we can ignore pseudos. */
|
||
static void
|
||
mark_set_regs (reg, setter)
|
||
rtx reg;
|
||
rtx setter ATTRIBUTE_UNUSED;
|
||
{
|
||
register int regno, endregno, i;
|
||
enum machine_mode mode = GET_MODE (reg);
|
||
int word = 0;
|
||
|
||
if (GET_CODE (reg) == SUBREG)
|
||
{
|
||
word = SUBREG_WORD (reg);
|
||
reg = SUBREG_REG (reg);
|
||
}
|
||
|
||
if (GET_CODE (reg) != REG || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
|
||
return;
|
||
|
||
regno = REGNO (reg) + word;
|
||
endregno = regno + HARD_REGNO_NREGS (regno, mode);
|
||
|
||
for (i = regno; i < endregno; i++)
|
||
SET_HARD_REG_BIT (this_insn_sets, i);
|
||
}
|
||
|
||
/* Walk X and record all referenced registers in REFERENCED_REGS. */
|
||
static void
|
||
mark_referenced_regs (x)
|
||
rtx x;
|
||
{
|
||
enum rtx_code code = GET_CODE (x);
|
||
char *fmt;
|
||
int i, j;
|
||
|
||
if (code == SET)
|
||
mark_referenced_regs (SET_SRC (x));
|
||
if (code == SET || code == CLOBBER)
|
||
{
|
||
x = SET_DEST (x);
|
||
code = GET_CODE (x);
|
||
if (code == REG || code == PC || code == CC0
|
||
|| (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG))
|
||
return;
|
||
}
|
||
if (code == MEM || code == SUBREG)
|
||
{
|
||
x = XEXP (x, 0);
|
||
code = GET_CODE (x);
|
||
}
|
||
|
||
if (code == REG)
|
||
{
|
||
int regno = REGNO (x);
|
||
int hardregno = (regno < FIRST_PSEUDO_REGISTER ? regno
|
||
: reg_renumber[regno]);
|
||
|
||
if (hardregno >= 0)
|
||
{
|
||
int nregs = HARD_REGNO_NREGS (hardregno, GET_MODE (x));
|
||
while (nregs-- > 0)
|
||
SET_HARD_REG_BIT (referenced_regs, hardregno + nregs);
|
||
}
|
||
/* If this is a pseudo that did not get a hard register, scan its
|
||
memory location, since it might involve the use of another
|
||
register, which might be saved. */
|
||
else if (reg_equiv_mem[regno] != 0)
|
||
mark_referenced_regs (XEXP (reg_equiv_mem[regno], 0));
|
||
else if (reg_equiv_address[regno] != 0)
|
||
mark_referenced_regs (reg_equiv_address[regno]);
|
||
return;
|
||
}
|
||
|
||
fmt = GET_RTX_FORMAT (code);
|
||
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
||
{
|
||
if (fmt[i] == 'e')
|
||
mark_referenced_regs (XEXP (x, i));
|
||
else if (fmt[i] == 'E')
|
||
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
|
||
mark_referenced_regs (XVECEXP (x, i, j));
|
||
}
|
||
}
|
||
|
||
/* Insert a sequence of insns to restore. Place these insns in front of
|
||
CHAIN if BEFORE_P is nonzero, behind the insn otherwise. MAXRESTORE is
|
||
the maximum number of registers which should be restored during this call.
|
||
It should never be less than 1 since we only work with entire registers.
|
||
|
||
Note that we have verified in init_caller_save that we can do this
|
||
with a simple SET, so use it. Set INSN_CODE to what we save there
|
||
since the address might not be valid so the insn might not be recognized.
|
||
These insns will be reloaded and have register elimination done by
|
||
find_reload, so we need not worry about that here.
|
||
|
||
Return the extra number of registers saved. */
|
||
|
||
static int
|
||
insert_restore (chain, before_p, regno, maxrestore)
|
||
struct insn_chain *chain;
|
||
int before_p;
|
||
int regno;
|
||
int maxrestore;
|
||
{
|
||
int i;
|
||
rtx pat = NULL_RTX;
|
||
enum insn_code code = CODE_FOR_nothing;
|
||
int numregs = 0;
|
||
|
||
/* A common failure mode if register status is not correct in the RTL
|
||
is for this routine to be called with a REGNO we didn't expect to
|
||
save. That will cause us to write an insn with a (nil) SET_DEST
|
||
or SET_SRC. Instead of doing so and causing a crash later, check
|
||
for this common case and abort here instead. This will remove one
|
||
step in debugging such problems. */
|
||
|
||
if (regno_save_mem[regno][1] == 0)
|
||
abort ();
|
||
|
||
/* Get the pattern to emit and update our status.
|
||
|
||
See if we can restore `maxrestore' registers at once. Work
|
||
backwards to the single register case. */
|
||
for (i = maxrestore; i > 0; i--)
|
||
{
|
||
int j, k;
|
||
int ok = 1;
|
||
|
||
if (regno_save_mem[regno][i] == 0)
|
||
continue;
|
||
|
||
for (j = 0; j < i; j++)
|
||
if (! TEST_HARD_REG_BIT (hard_regs_saved, regno + j))
|
||
{
|
||
ok = 0;
|
||
break;
|
||
}
|
||
/* Must do this one restore at a time */
|
||
if (! ok)
|
||
continue;
|
||
|
||
pat = gen_rtx_SET (VOIDmode,
|
||
gen_rtx_REG (GET_MODE (regno_save_mem[regno][i]),
|
||
regno),
|
||
regno_save_mem[regno][i]);
|
||
code = reg_restore_code[regno][i];
|
||
|
||
/* Clear status for all registers we restored. */
|
||
for (k = 0; k < i; k++)
|
||
{
|
||
CLEAR_HARD_REG_BIT (hard_regs_saved, regno + k);
|
||
n_regs_saved--;
|
||
}
|
||
|
||
numregs = i;
|
||
break;
|
||
}
|
||
|
||
insert_one_insn (chain, before_p, code, pat);
|
||
|
||
/* Tell our callers how many extra registers we saved/restored */
|
||
return numregs - 1;
|
||
}
|
||
|
||
/* Like insert_restore above, but save registers instead. */
|
||
static int
|
||
insert_save (chain, before_p, regno, to_save)
|
||
struct insn_chain *chain;
|
||
int before_p;
|
||
int regno;
|
||
HARD_REG_SET *to_save;
|
||
{
|
||
int i;
|
||
rtx pat = NULL_RTX;
|
||
enum insn_code code = CODE_FOR_nothing;
|
||
int numregs = 0;
|
||
|
||
/* A common failure mode if register status is not correct in the RTL
|
||
is for this routine to be called with a REGNO we didn't expect to
|
||
save. That will cause us to write an insn with a (nil) SET_DEST
|
||
or SET_SRC. Instead of doing so and causing a crash later, check
|
||
for this common case and abort here instead. This will remove one
|
||
step in debugging such problems. */
|
||
|
||
if (regno_save_mem[regno][1] == 0)
|
||
abort ();
|
||
|
||
/* Get the pattern to emit and update our status.
|
||
|
||
See if we can save several registers with a single instruction.
|
||
Work backwards to the single register case. */
|
||
for (i = MOVE_MAX_WORDS; i > 0; i--)
|
||
{
|
||
int j, k;
|
||
int ok = 1;
|
||
if (regno_save_mem[regno][i] == 0)
|
||
continue;
|
||
|
||
for (j = 0; j < i; j++)
|
||
if (! TEST_HARD_REG_BIT (*to_save, regno + j))
|
||
{
|
||
ok = 0;
|
||
break;
|
||
}
|
||
/* Must do this one save at a time */
|
||
if (! ok)
|
||
continue;
|
||
|
||
pat = gen_rtx_SET (VOIDmode, regno_save_mem[regno][i],
|
||
gen_rtx_REG (GET_MODE (regno_save_mem[regno][i]),
|
||
regno));
|
||
code = reg_save_code[regno][i];
|
||
|
||
/* Set hard_regs_saved for all the registers we saved. */
|
||
for (k = 0; k < i; k++)
|
||
{
|
||
SET_HARD_REG_BIT (hard_regs_saved, regno + k);
|
||
n_regs_saved++;
|
||
}
|
||
|
||
numregs = i;
|
||
break;
|
||
}
|
||
|
||
insert_one_insn (chain, before_p, code, pat);
|
||
|
||
/* Tell our callers how many extra registers we saved/restored */
|
||
return numregs - 1;
|
||
}
|
||
|
||
/* Emit a new caller-save insn and set the code. */
|
||
static void
|
||
insert_one_insn (chain, before_p, code, pat)
|
||
struct insn_chain *chain;
|
||
int before_p;
|
||
enum insn_code code;
|
||
rtx pat;
|
||
{
|
||
rtx insn = chain->insn;
|
||
struct insn_chain *new;
|
||
|
||
#ifdef HAVE_cc0
|
||
/* If INSN references CC0, put our insns in front of the insn that sets
|
||
CC0. This is always safe, since the only way we could be passed an
|
||
insn that references CC0 is for a restore, and doing a restore earlier
|
||
isn't a problem. We do, however, assume here that CALL_INSNs don't
|
||
reference CC0. Guard against non-INSN's like CODE_LABEL. */
|
||
|
||
if ((GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN)
|
||
&& before_p
|
||
&& reg_referenced_p (cc0_rtx, PATTERN (insn)))
|
||
chain = chain->prev, insn = chain->insn;
|
||
#endif
|
||
|
||
new = new_insn_chain ();
|
||
if (before_p)
|
||
{
|
||
new->prev = chain->prev;
|
||
if (new->prev != 0)
|
||
new->prev->next = new;
|
||
else
|
||
reload_insn_chain = new;
|
||
|
||
chain->prev = new;
|
||
new->next = chain;
|
||
new->insn = emit_insn_before (pat, insn);
|
||
/* ??? It would be nice if we could exclude the already / still saved
|
||
registers from the live sets. */
|
||
COPY_REG_SET (new->live_before, chain->live_before);
|
||
COPY_REG_SET (new->live_after, chain->live_before);
|
||
if (chain->insn == BLOCK_HEAD (chain->block))
|
||
BLOCK_HEAD (chain->block) = new->insn;
|
||
}
|
||
else
|
||
{
|
||
new->next = chain->next;
|
||
if (new->next != 0)
|
||
new->next->prev = new;
|
||
chain->next = new;
|
||
new->prev = chain;
|
||
new->insn = emit_insn_after (pat, insn);
|
||
/* ??? It would be nice if we could exclude the already / still saved
|
||
registers from the live sets, and observe REG_UNUSED notes. */
|
||
COPY_REG_SET (new->live_before, chain->live_after);
|
||
COPY_REG_SET (new->live_after, chain->live_after);
|
||
if (chain->insn == BLOCK_END (chain->block))
|
||
BLOCK_END (chain->block) = new->insn;
|
||
}
|
||
new->block = chain->block;
|
||
new->is_caller_save_insn = 1;
|
||
|
||
INSN_CODE (new->insn) = code;
|
||
}
|