1
0
mirror of https://git.FreeBSD.org/src.git synced 2024-12-25 11:37:56 +00:00
freebsd/sys/net80211/ieee80211_output.c
Sam Leffler 37c8bda5fa honor IEEE80211_C_TXFRAG; drivers should never get fragmented packets
unless they indicate they're able to handle them

Approved by:	re (blanket wireless)
2007-09-18 21:09:26 +00:00

2307 lines
68 KiB
C

/*-
* Copyright (c) 2001 Atsushi Onoe
* Copyright (c) 2002-2007 Sam Leffler, Errno Consulting
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_inet.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/mbuf.h>
#include <sys/kernel.h>
#include <sys/endian.h>
#include <sys/socket.h>
#include <net/bpf.h>
#include <net/ethernet.h>
#include <net/if.h>
#include <net/if_llc.h>
#include <net/if_media.h>
#include <net/if_vlan_var.h>
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_regdomain.h>
#ifdef INET
#include <netinet/in.h>
#include <netinet/if_ether.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>
#endif
#define ETHER_HEADER_COPY(dst, src) \
memcpy(dst, src, sizeof(struct ether_header))
static struct mbuf *ieee80211_encap_fastframe(struct ieee80211com *ic,
struct mbuf *m1, const struct ether_header *eh1,
struct mbuf *m2, const struct ether_header *eh2);
static int ieee80211_fragment(struct ieee80211com *, struct mbuf *,
u_int hdrsize, u_int ciphdrsize, u_int mtu);
static void ieee80211_tx_mgt_cb(struct ieee80211_node *, void *, int);
#ifdef IEEE80211_DEBUG
/*
* Decide if an outbound management frame should be
* printed when debugging is enabled. This filters some
* of the less interesting frames that come frequently
* (e.g. beacons).
*/
static __inline int
doprint(struct ieee80211com *ic, int subtype)
{
switch (subtype) {
case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
return (ic->ic_opmode == IEEE80211_M_IBSS);
}
return 1;
}
#endif
/*
* Set the direction field and address fields of an outgoing
* non-QoS frame. Note this should be called early on in
* constructing a frame as it sets i_fc[1]; other bits can
* then be or'd in.
*/
static void
ieee80211_send_setup(struct ieee80211com *ic,
struct ieee80211_node *ni,
struct ieee80211_frame *wh,
int type,
const uint8_t sa[IEEE80211_ADDR_LEN],
const uint8_t da[IEEE80211_ADDR_LEN],
const uint8_t bssid[IEEE80211_ADDR_LEN])
{
#define WH4(wh) ((struct ieee80211_frame_addr4 *)wh)
wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type;
if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) {
switch (ic->ic_opmode) {
case IEEE80211_M_STA:
wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
IEEE80211_ADDR_COPY(wh->i_addr1, bssid);
IEEE80211_ADDR_COPY(wh->i_addr2, sa);
IEEE80211_ADDR_COPY(wh->i_addr3, da);
break;
case IEEE80211_M_IBSS:
case IEEE80211_M_AHDEMO:
wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
IEEE80211_ADDR_COPY(wh->i_addr1, da);
IEEE80211_ADDR_COPY(wh->i_addr2, sa);
IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
break;
case IEEE80211_M_HOSTAP:
wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
IEEE80211_ADDR_COPY(wh->i_addr1, da);
IEEE80211_ADDR_COPY(wh->i_addr2, bssid);
IEEE80211_ADDR_COPY(wh->i_addr3, sa);
break;
case IEEE80211_M_WDS:
wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
/* XXX cheat, bssid holds RA */
IEEE80211_ADDR_COPY(wh->i_addr1, bssid);
IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
IEEE80211_ADDR_COPY(wh->i_addr3, da);
IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
break;
case IEEE80211_M_MONITOR: /* NB: to quiet compiler */
break;
}
} else {
wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
IEEE80211_ADDR_COPY(wh->i_addr1, da);
IEEE80211_ADDR_COPY(wh->i_addr2, sa);
IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
}
*(uint16_t *)&wh->i_dur[0] = 0;
/* NB: use non-QoS tid */
*(uint16_t *)&wh->i_seq[0] =
htole16(ni->ni_txseqs[IEEE80211_NONQOS_TID] << IEEE80211_SEQ_SEQ_SHIFT);
ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
#undef WH4
}
/*
* Send a management frame to the specified node. The node pointer
* must have a reference as the pointer will be passed to the driver
* and potentially held for a long time. If the frame is successfully
* dispatched to the driver, then it is responsible for freeing the
* reference (and potentially free'ing up any associated storage).
*/
int
ieee80211_mgmt_output(struct ieee80211com *ic, struct ieee80211_node *ni,
struct mbuf *m, int type)
{
struct ifnet *ifp = ic->ic_ifp;
struct ieee80211_frame *wh;
KASSERT(ni != NULL, ("null node"));
/*
* Yech, hack alert! We want to pass the node down to the
* driver's start routine. If we don't do so then the start
* routine must immediately look it up again and that can
* cause a lock order reversal if, for example, this frame
* is being sent because the station is being timedout and
* the frame being sent is a DEAUTH message. We could stick
* this in an m_tag and tack that on to the mbuf. However
* that's rather expensive to do for every frame so instead
* we stuff it in the rcvif field since outbound frames do
* not (presently) use this.
*/
M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT);
if (m == NULL)
return ENOMEM;
KASSERT(m->m_pkthdr.rcvif == NULL, ("rcvif not null"));
m->m_pkthdr.rcvif = (void *)ni;
wh = mtod(m, struct ieee80211_frame *);
ieee80211_send_setup(ic, ni, wh,
IEEE80211_FC0_TYPE_MGT | type,
ic->ic_myaddr, ni->ni_macaddr, ni->ni_bssid);
if ((m->m_flags & M_LINK0) != 0 && ni->ni_challenge != NULL) {
m->m_flags &= ~M_LINK0;
IEEE80211_DPRINTF(ic, IEEE80211_MSG_AUTH,
"[%s] encrypting frame (%s)\n",
ether_sprintf(wh->i_addr1), __func__);
wh->i_fc[1] |= IEEE80211_FC1_WEP;
}
if (ni->ni_flags & IEEE80211_NODE_QOS) {
/* NB: force all management frames to the highest queue */
M_WME_SETAC(m, WME_AC_VO);
} else
M_WME_SETAC(m, WME_AC_BE);
#ifdef IEEE80211_DEBUG
/* avoid printing too many frames */
if ((ieee80211_msg_debug(ic) && doprint(ic, type)) ||
ieee80211_msg_dumppkts(ic)) {
printf("[%s] send %s on channel %u\n",
ether_sprintf(wh->i_addr1),
ieee80211_mgt_subtype_name[
(type & IEEE80211_FC0_SUBTYPE_MASK) >>
IEEE80211_FC0_SUBTYPE_SHIFT],
ieee80211_chan2ieee(ic, ic->ic_curchan));
}
#endif
IEEE80211_NODE_STAT(ni, tx_mgmt);
IF_ENQUEUE(&ic->ic_mgtq, m);
if_start(ifp);
ifp->if_opackets++;
return 0;
}
/*
* Raw packet transmit stub for legacy drivers.
* Send the packet through the mgt q so we bypass
* the normal encapsulation work.
*/
int
ieee80211_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
const struct ieee80211_bpf_params *params)
{
struct ieee80211com *ic = ni->ni_ic;
struct ifnet *ifp = ic->ic_ifp;
m->m_pkthdr.rcvif = (void *) ni;
IF_ENQUEUE(&ic->ic_mgtq, m);
if_start(ifp);
ifp->if_opackets++;
return 0;
}
/*
* 802.11 output routine. This is (currently) used only to
* connect bpf write calls to the 802.11 layer for injecting
* raw 802.11 frames. Note we locate the ieee80211com from
* the ifnet using a spare field setup at attach time. This
* will go away when the virtual ap support comes in.
*/
int
ieee80211_output(struct ifnet *ifp, struct mbuf *m,
struct sockaddr *dst, struct rtentry *rt0)
{
#define senderr(e) do { error = (e); goto bad;} while (0)
struct ieee80211com *ic = ifp->if_spare2; /* XXX */
struct ieee80211_node *ni = NULL;
struct ieee80211_frame *wh;
int error;
/*
* Hand to the 802.3 code if not tagged as
* a raw 802.11 frame.
*/
if (dst->sa_family != AF_IEEE80211)
return ether_output(ifp, m, dst, rt0);
#ifdef MAC
error = mac_check_ifnet_transmit(ifp, m);
if (error)
senderr(error);
#endif
if (ifp->if_flags & IFF_MONITOR)
senderr(ENETDOWN);
if ((ifp->if_flags & IFF_UP) == 0)
senderr(ENETDOWN);
/* XXX bypass bridge, pfil, carp, etc. */
if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_ack))
senderr(EIO); /* XXX */
wh = mtod(m, struct ieee80211_frame *);
if ((wh->i_fc[0] & IEEE80211_FC0_VERSION_MASK) !=
IEEE80211_FC0_VERSION_0)
senderr(EIO); /* XXX */
/* locate destination node */
switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
case IEEE80211_FC1_DIR_NODS:
case IEEE80211_FC1_DIR_FROMDS:
ni = ieee80211_find_txnode(ic, wh->i_addr1);
break;
case IEEE80211_FC1_DIR_TODS:
case IEEE80211_FC1_DIR_DSTODS:
if (m->m_pkthdr.len < sizeof(struct ieee80211_frame))
senderr(EIO); /* XXX */
ni = ieee80211_find_txnode(ic, wh->i_addr3);
break;
default:
senderr(EIO); /* XXX */
}
if (ni == NULL) {
/*
* Permit packets w/ bpf params through regardless
* (see below about sa_len).
*/
if (dst->sa_len == 0)
senderr(EHOSTUNREACH);
ni = ieee80211_ref_node(ic->ic_bss);
}
/* XXX ctrl frames should go through */
if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
(m->m_flags & M_PWR_SAV) == 0) {
/*
* Station in power save mode; pass the frame
* to the 802.11 layer and continue. We'll get
* the frame back when the time is right.
*/
ieee80211_pwrsave(ni, m);
error = 0;
goto reclaim;
}
/* calculate priority so drivers can find the tx queue */
/* XXX assumes an 802.3 frame */
if (ieee80211_classify(ic, m, ni))
senderr(EIO); /* XXX */
BPF_MTAP(ifp, m);
/*
* NB: DLT_IEEE802_11_RADIO identifies the parameters are
* present by setting the sa_len field of the sockaddr (yes,
* this is a hack).
* NB: we assume sa_data is suitably aligned to cast.
*/
return ic->ic_raw_xmit(ni, m, (const struct ieee80211_bpf_params *)
(dst->sa_len ? dst->sa_data : NULL));
bad:
if (m != NULL)
m_freem(m);
reclaim:
if (ni != NULL)
ieee80211_free_node(ni);
return error;
#undef senderr
}
/*
* Send a null data frame to the specified node.
*
* NB: the caller is assumed to have setup a node reference
* for use; this is necessary to deal with a race condition
* when probing for inactive stations.
*/
int
ieee80211_send_nulldata(struct ieee80211_node *ni)
{
struct ieee80211com *ic = ni->ni_ic;
struct ifnet *ifp = ic->ic_ifp;
struct mbuf *m;
struct ieee80211_frame *wh;
MGETHDR(m, M_NOWAIT, MT_DATA);
if (m == NULL) {
/* XXX debug msg */
ieee80211_unref_node(&ni);
ic->ic_stats.is_tx_nobuf++;
return ENOMEM;
}
MH_ALIGN(m, sizeof(struct ieee80211_frame));
m->m_pkthdr.rcvif = (void *) ni;
wh = mtod(m, struct ieee80211_frame *);
ieee80211_send_setup(ic, ni, wh,
IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA,
ic->ic_myaddr, ni->ni_macaddr, ni->ni_bssid);
/* NB: power management bit is never sent by an AP */
if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
ic->ic_opmode != IEEE80211_M_HOSTAP &&
ic->ic_opmode != IEEE80211_M_WDS)
wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT;
m->m_len = m->m_pkthdr.len = sizeof(struct ieee80211_frame);
M_WME_SETAC(m, WME_AC_BE);
IEEE80211_NODE_STAT(ni, tx_data);
IEEE80211_DPRINTF(ic, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
"[%s] send null data frame on channel %u, pwr mgt %s\n",
ether_sprintf(ni->ni_macaddr),
ieee80211_chan2ieee(ic, ic->ic_curchan),
wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis");
IF_ENQUEUE(&ic->ic_mgtq, m); /* cheat */
if_start(ifp);
return 0;
}
/*
* Assign priority to a frame based on any vlan tag assigned
* to the station and/or any Diffserv setting in an IP header.
* Finally, if an ACM policy is setup (in station mode) it's
* applied.
*/
int
ieee80211_classify(struct ieee80211com *ic, struct mbuf *m, struct ieee80211_node *ni)
{
int v_wme_ac, d_wme_ac, ac;
#ifdef INET
struct ether_header *eh;
#endif
if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) {
ac = WME_AC_BE;
goto done;
}
/*
* If node has a vlan tag then all traffic
* to it must have a matching tag.
*/
v_wme_ac = 0;
if (ni->ni_vlan != 0) {
if ((m->m_flags & M_VLANTAG) == 0) {
IEEE80211_NODE_STAT(ni, tx_novlantag);
return 1;
}
if (EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) !=
EVL_VLANOFTAG(ni->ni_vlan)) {
IEEE80211_NODE_STAT(ni, tx_vlanmismatch);
return 1;
}
/* map vlan priority to AC */
switch (EVL_PRIOFTAG(ni->ni_vlan)) {
case 1:
case 2:
v_wme_ac = WME_AC_BK;
break;
case 0:
case 3:
v_wme_ac = WME_AC_BE;
break;
case 4:
case 5:
v_wme_ac = WME_AC_VI;
break;
case 6:
case 7:
v_wme_ac = WME_AC_VO;
break;
}
}
#ifdef INET
eh = mtod(m, struct ether_header *);
if (eh->ether_type == htons(ETHERTYPE_IP)) {
const struct ip *ip = (struct ip *)
(mtod(m, uint8_t *) + sizeof (*eh));
/*
* IP frame, map the TOS field.
*/
switch (ip->ip_tos) {
case 0x08:
case 0x20:
d_wme_ac = WME_AC_BK; /* background */
break;
case 0x28:
case 0xa0:
d_wme_ac = WME_AC_VI; /* video */
break;
case 0x30: /* voice */
case 0xe0:
case 0x88: /* XXX UPSD */
case 0xb8:
d_wme_ac = WME_AC_VO;
break;
default:
d_wme_ac = WME_AC_BE;
break;
}
} else {
#endif /* INET */
d_wme_ac = WME_AC_BE;
#ifdef INET
}
#endif
/*
* Use highest priority AC.
*/
if (v_wme_ac > d_wme_ac)
ac = v_wme_ac;
else
ac = d_wme_ac;
/*
* Apply ACM policy.
*/
if (ic->ic_opmode == IEEE80211_M_STA) {
static const int acmap[4] = {
WME_AC_BK, /* WME_AC_BE */
WME_AC_BK, /* WME_AC_BK */
WME_AC_BE, /* WME_AC_VI */
WME_AC_VI, /* WME_AC_VO */
};
while (ac != WME_AC_BK &&
ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm)
ac = acmap[ac];
}
done:
M_WME_SETAC(m, ac);
return 0;
}
/*
* Insure there is sufficient contiguous space to encapsulate the
* 802.11 data frame. If room isn't already there, arrange for it.
* Drivers and cipher modules assume we have done the necessary work
* and fail rudely if they don't find the space they need.
*/
static struct mbuf *
ieee80211_mbuf_adjust(struct ieee80211com *ic, int hdrsize,
struct ieee80211_key *key, struct mbuf *m)
{
#define TO_BE_RECLAIMED (sizeof(struct ether_header) - sizeof(struct llc))
int needed_space = ic->ic_headroom + hdrsize;
if (key != NULL) {
/* XXX belongs in crypto code? */
needed_space += key->wk_cipher->ic_header;
/* XXX frags */
/*
* When crypto is being done in the host we must insure
* the data are writable for the cipher routines; clone
* a writable mbuf chain.
* XXX handle SWMIC specially
*/
if (key->wk_flags & (IEEE80211_KEY_SWCRYPT|IEEE80211_KEY_SWMIC)) {
m = m_unshare(m, M_NOWAIT);
if (m == NULL) {
IEEE80211_DPRINTF(ic, IEEE80211_MSG_OUTPUT,
"%s: cannot get writable mbuf\n", __func__);
ic->ic_stats.is_tx_nobuf++; /* XXX new stat */
return NULL;
}
}
}
/*
* We know we are called just before stripping an Ethernet
* header and prepending an LLC header. This means we know
* there will be
* sizeof(struct ether_header) - sizeof(struct llc)
* bytes recovered to which we need additional space for the
* 802.11 header and any crypto header.
*/
/* XXX check trailing space and copy instead? */
if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) {
struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type);
if (n == NULL) {
IEEE80211_DPRINTF(ic, IEEE80211_MSG_OUTPUT,
"%s: cannot expand storage\n", __func__);
ic->ic_stats.is_tx_nobuf++;
m_freem(m);
return NULL;
}
KASSERT(needed_space <= MHLEN,
("not enough room, need %u got %zu\n", needed_space, MHLEN));
/*
* Setup new mbuf to have leading space to prepend the
* 802.11 header and any crypto header bits that are
* required (the latter are added when the driver calls
* back to ieee80211_crypto_encap to do crypto encapsulation).
*/
/* NB: must be first 'cuz it clobbers m_data */
m_move_pkthdr(n, m);
n->m_len = 0; /* NB: m_gethdr does not set */
n->m_data += needed_space;
/*
* Pull up Ethernet header to create the expected layout.
* We could use m_pullup but that's overkill (i.e. we don't
* need the actual data) and it cannot fail so do it inline
* for speed.
*/
/* NB: struct ether_header is known to be contiguous */
n->m_len += sizeof(struct ether_header);
m->m_len -= sizeof(struct ether_header);
m->m_data += sizeof(struct ether_header);
/*
* Replace the head of the chain.
*/
n->m_next = m;
m = n;
}
return m;
#undef TO_BE_RECLAIMED
}
/*
* Return the transmit key to use in sending a unicast frame.
* If a unicast key is set we use that. When no unicast key is set
* we fall back to the default transmit key.
*/
static __inline struct ieee80211_key *
ieee80211_crypto_getucastkey(struct ieee80211com *ic, struct ieee80211_node *ni)
{
if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) {
if (ic->ic_def_txkey == IEEE80211_KEYIX_NONE ||
IEEE80211_KEY_UNDEFINED(&ic->ic_nw_keys[ic->ic_def_txkey]))
return NULL;
return &ic->ic_nw_keys[ic->ic_def_txkey];
} else {
return &ni->ni_ucastkey;
}
}
/*
* Return the transmit key to use in sending a multicast frame.
* Multicast traffic always uses the group key which is installed as
* the default tx key.
*/
static __inline struct ieee80211_key *
ieee80211_crypto_getmcastkey(struct ieee80211com *ic, struct ieee80211_node *ni)
{
if (ic->ic_def_txkey == IEEE80211_KEYIX_NONE ||
IEEE80211_KEY_UNDEFINED(&ic->ic_nw_keys[ic->ic_def_txkey]))
return NULL;
return &ic->ic_nw_keys[ic->ic_def_txkey];
}
/*
* Encapsulate an outbound data frame. The mbuf chain is updated.
* If an error is encountered NULL is returned. The caller is required
* to provide a node reference and pullup the ethernet header in the
* first mbuf.
*/
struct mbuf *
ieee80211_encap(struct ieee80211com *ic, struct mbuf *m,
struct ieee80211_node *ni)
{
struct ether_header eh;
struct ieee80211_frame *wh;
struct ieee80211_key *key;
struct llc *llc;
int hdrsize, datalen, addqos, txfrag, isff;
/*
* Copy existing Ethernet header to a safe place. The
* rest of the code assumes it's ok to strip it when
* reorganizing state for the final encapsulation.
*/
KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!"));
memcpy(&eh, mtod(m, caddr_t), sizeof(struct ether_header));
/*
* Insure space for additional headers. First identify
* transmit key to use in calculating any buffer adjustments
* required. This is also used below to do privacy
* encapsulation work. Then calculate the 802.11 header
* size and any padding required by the driver.
*
* Note key may be NULL if we fall back to the default
* transmit key and that is not set. In that case the
* buffer may not be expanded as needed by the cipher
* routines, but they will/should discard it.
*/
if (ic->ic_flags & IEEE80211_F_PRIVACY) {
if (ic->ic_opmode == IEEE80211_M_STA ||
!IEEE80211_IS_MULTICAST(eh.ether_dhost))
key = ieee80211_crypto_getucastkey(ic, ni);
else
key = ieee80211_crypto_getmcastkey(ic, ni);
if (key == NULL && eh.ether_type != htons(ETHERTYPE_PAE)) {
IEEE80211_DPRINTF(ic, IEEE80211_MSG_CRYPTO,
"[%s] no default transmit key (%s) deftxkey %u\n",
ether_sprintf(eh.ether_dhost), __func__,
ic->ic_def_txkey);
ic->ic_stats.is_tx_nodefkey++;
goto bad;
}
} else
key = NULL;
/* XXX 4-address format */
/*
* XXX Some ap's don't handle QoS-encapsulated EAPOL
* frames so suppress use. This may be an issue if other
* ap's require all data frames to be QoS-encapsulated
* once negotiated in which case we'll need to make this
* configurable.
*/
addqos = (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT)) &&
eh.ether_type != htons(ETHERTYPE_PAE);
if (addqos)
hdrsize = sizeof(struct ieee80211_qosframe);
else
hdrsize = sizeof(struct ieee80211_frame);
if (ic->ic_flags & IEEE80211_F_DATAPAD)
hdrsize = roundup(hdrsize, sizeof(uint32_t));
if ((isff = m->m_flags & M_FF) != 0) {
struct mbuf *m2;
struct ether_header eh2;
/*
* Fast frame encapsulation. There must be two packets
* chained with m_nextpkt. We do header adjustment for
* each, add the tunnel encapsulation, and then concatenate
* the mbuf chains to form a single frame for transmission.
*/
m2 = m->m_nextpkt;
if (m2 == NULL) {
IEEE80211_DPRINTF(ic, IEEE80211_MSG_SUPERG,
"%s: only one frame\n", __func__);
goto bad;
}
m->m_nextpkt = NULL;
/*
* Include fast frame headers in adjusting header
* layout; this allocates space according to what
* ieee80211_encap_fastframe will do.
*/
m = ieee80211_mbuf_adjust(ic,
hdrsize + sizeof(struct llc) + sizeof(uint32_t) + 2 +
sizeof(struct ether_header),
key, m);
if (m == NULL) {
/* NB: ieee80211_mbuf_adjust handles msgs+statistics */
m_freem(m2);
goto bad;
}
/*
* Copy second frame's Ethernet header out of line
* and adjust for encapsulation headers. Note that
* we make room for padding in case there isn't room
* at the end of first frame.
*/
KASSERT(m2->m_len >= sizeof(eh2), ("no ethernet header!"));
memcpy(&eh2, mtod(m2, caddr_t), sizeof(struct ether_header));
m2 = ieee80211_mbuf_adjust(ic,
ATH_FF_MAX_HDR_PAD + sizeof(struct ether_header),
NULL, m2);
if (m2 == NULL) {
/* NB: ieee80211_mbuf_adjust handles msgs+statistics */
goto bad;
}
m = ieee80211_encap_fastframe(ic, m, &eh, m2, &eh2);
if (m == NULL)
goto bad;
} else {
/*
* Normal frame.
*/
m = ieee80211_mbuf_adjust(ic, hdrsize, key, m);
if (m == NULL) {
/* NB: ieee80211_mbuf_adjust handles msgs+statistics */
goto bad;
}
/* NB: this could be optimized 'cuz of ieee80211_mbuf_adjust */
m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
llc = mtod(m, struct llc *);
llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
llc->llc_control = LLC_UI;
llc->llc_snap.org_code[0] = 0;
llc->llc_snap.org_code[1] = 0;
llc->llc_snap.org_code[2] = 0;
llc->llc_snap.ether_type = eh.ether_type;
}
datalen = m->m_pkthdr.len; /* NB: w/o 802.11 header */
M_PREPEND(m, hdrsize, M_DONTWAIT);
if (m == NULL) {
ic->ic_stats.is_tx_nobuf++;
goto bad;
}
wh = mtod(m, struct ieee80211_frame *);
wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA;
*(uint16_t *)wh->i_dur = 0;
switch (ic->ic_opmode) {
case IEEE80211_M_STA:
wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid);
IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
break;
case IEEE80211_M_IBSS:
case IEEE80211_M_AHDEMO:
wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
/*
* NB: always use the bssid from ic_bss as the
* neighbor's may be stale after an ibss merge
*/
IEEE80211_ADDR_COPY(wh->i_addr3, ic->ic_bss->ni_bssid);
break;
case IEEE80211_M_HOSTAP:
wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid);
IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost);
break;
case IEEE80211_M_MONITOR:
case IEEE80211_M_WDS:
goto bad;
}
if (m->m_flags & M_MORE_DATA)
wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
if (addqos) {
struct ieee80211_qosframe *qwh =
(struct ieee80211_qosframe *) wh;
int ac, tid;
ac = M_WME_GETAC(m);
/* map from access class/queue to 11e header priorty value */
tid = WME_AC_TO_TID(ac);
qwh->i_qos[0] = tid & IEEE80211_QOS_TID;
/*
* Check if A-MPDU tx aggregation is setup or if we
* should try to enable it. The sta must be associated
* with HT and A-MPDU enabled for use. On the first
* frame that goes out We issue an ADDBA request and
* wait for a reply. The frame being encapsulated
* will go out w/o using A-MPDU, or possibly it might
* be collected by the driver and held/retransmit.
* ieee80211_ampdu_request handles staggering requests
* in case the receiver NAK's us or we are otherwise
* unable to establish a BA stream.
*/
if ((ni->ni_flags & IEEE80211_NODE_HT) &&
(ic->ic_flags_ext & IEEE80211_FEXT_AMPDU_TX)) {
struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[ac];
if (IEEE80211_AMPDU_RUNNING(tap)) {
/*
* Operational, mark frame for aggregation.
*/
qwh->i_qos[0] |= IEEE80211_QOS_ACKPOLICY_BA;
} else if (!IEEE80211_AMPDU_REQUESTED(tap)) {
/*
* Not negotiated yet, request service.
*/
ieee80211_ampdu_request(ni, tap);
}
}
/* XXX works even when BA marked above */
if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy)
qwh->i_qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
qwh->i_qos[1] = 0;
qwh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS;
*(uint16_t *)wh->i_seq =
htole16(ni->ni_txseqs[tid] << IEEE80211_SEQ_SEQ_SHIFT);
ni->ni_txseqs[tid]++;
} else {
*(uint16_t *)wh->i_seq =
htole16(ni->ni_txseqs[IEEE80211_NONQOS_TID] << IEEE80211_SEQ_SEQ_SHIFT);
ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
}
/* check if xmit fragmentation is required */
txfrag = (m->m_pkthdr.len > ic->ic_fragthreshold &&
!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
(ic->ic_caps & IEEE80211_C_TXFRAG) &&
!isff); /* NB: don't fragment ff's */
if (key != NULL) {
/*
* IEEE 802.1X: send EAPOL frames always in the clear.
* WPA/WPA2: encrypt EAPOL keys when pairwise keys are set.
*/
if (eh.ether_type != htons(ETHERTYPE_PAE) ||
((ic->ic_flags & IEEE80211_F_WPA) &&
(ic->ic_opmode == IEEE80211_M_STA ?
!IEEE80211_KEY_UNDEFINED(key) :
!IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)))) {
wh->i_fc[1] |= IEEE80211_FC1_WEP;
if (!ieee80211_crypto_enmic(ic, key, m, txfrag)) {
IEEE80211_DPRINTF(ic, IEEE80211_MSG_OUTPUT,
"[%s] enmic failed, discard frame\n",
ether_sprintf(eh.ether_dhost));
ic->ic_stats.is_crypto_enmicfail++;
goto bad;
}
}
}
/*
* NB: frag flags may leak from above; they should only
* be set on return to the caller if we fragment at
* the 802.11 layer.
*/
m->m_flags &= ~(M_FRAG | M_FIRSTFRAG);
if (txfrag && !ieee80211_fragment(ic, m, hdrsize,
key != NULL ? key->wk_cipher->ic_header : 0, ic->ic_fragthreshold))
goto bad;
IEEE80211_NODE_STAT(ni, tx_data);
if (IEEE80211_IS_MULTICAST(wh->i_addr1))
IEEE80211_NODE_STAT(ni, tx_mcast);
else
IEEE80211_NODE_STAT(ni, tx_ucast);
IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen);
return m;
bad:
if (m != NULL)
m_freem(m);
return NULL;
}
/*
* Do Ethernet-LLC encapsulation for each payload in a fast frame
* tunnel encapsulation. The frame is assumed to have an Ethernet
* header at the front that must be stripped before prepending the
* LLC followed by the Ethernet header passed in (with an Ethernet
* type that specifies the payload size).
*/
static struct mbuf *
ieee80211_encap1(struct ieee80211com *ic, struct mbuf *m,
const struct ether_header *eh)
{
struct llc *llc;
uint16_t payload;
/* XXX optimize by combining m_adj+M_PREPEND */
m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
llc = mtod(m, struct llc *);
llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
llc->llc_control = LLC_UI;
llc->llc_snap.org_code[0] = 0;
llc->llc_snap.org_code[1] = 0;
llc->llc_snap.org_code[2] = 0;
llc->llc_snap.ether_type = eh->ether_type;
payload = m->m_pkthdr.len; /* NB: w/o Ethernet header */
M_PREPEND(m, sizeof(struct ether_header), M_DONTWAIT);
if (m == NULL) { /* XXX cannot happen */
IEEE80211_DPRINTF(ic, IEEE80211_MSG_SUPERG,
"%s: no space for ether_header\n", __func__);
ic->ic_stats.is_tx_nobuf++;
return NULL;
}
ETHER_HEADER_COPY(mtod(m, void *), eh);
mtod(m, struct ether_header *)->ether_type = htons(payload);
return m;
}
/*
* Do fast frame tunnel encapsulation. The two frames and
* Ethernet headers are supplied. The caller is assumed to
* have arrange for space in the mbuf chains for encapsulating
* headers (to avoid major mbuf fragmentation).
*
* The encapsulated frame is returned or NULL if there is a
* problem (should not happen).
*/
static struct mbuf *
ieee80211_encap_fastframe(struct ieee80211com *ic,
struct mbuf *m1, const struct ether_header *eh1,
struct mbuf *m2, const struct ether_header *eh2)
{
struct llc *llc;
struct mbuf *m;
int pad;
/*
* First, each frame gets a standard encapsulation.
*/
m1 = ieee80211_encap1(ic, m1, eh1);
if (m1 == NULL) {
m_freem(m2);
return NULL;
}
m2 = ieee80211_encap1(ic, m2, eh2);
if (m2 == NULL) {
m_freem(m1);
return NULL;
}
/*
* Pad leading frame to a 4-byte boundary. If there
* is space at the end of the first frame, put it
* there; otherwise prepend to the front of the second
* frame. We know doing the second will always work
* because we reserve space above. We prefer appending
* as this typically has better DMA alignment properties.
*/
for (m = m1; m->m_next != NULL; m = m->m_next)
;
pad = roundup2(m1->m_pkthdr.len, 4) - m1->m_pkthdr.len;
if (pad) {
if (M_TRAILINGSPACE(m) < pad) { /* prepend to second */
m2->m_data -= pad;
m2->m_len += pad;
m2->m_pkthdr.len += pad;
} else { /* append to first */
m->m_len += pad;
m1->m_pkthdr.len += pad;
}
}
/*
* Now, stick 'em together and prepend the tunnel headers;
* first the Atheros tunnel header (all zero for now) and
* then a special fast frame LLC.
*
* XXX optimize by prepending together
*/
m->m_next = m2; /* NB: last mbuf from above */
m1->m_pkthdr.len += m2->m_pkthdr.len;
M_PREPEND(m1, sizeof(uint32_t)+2, M_DONTWAIT);
if (m1 == NULL) { /* XXX cannot happen */
IEEE80211_DPRINTF(ic, IEEE80211_MSG_SUPERG,
"%s: no space for tunnel header\n", __func__);
ic->ic_stats.is_tx_nobuf++;
return NULL;
}
memset(mtod(m1, void *), 0, sizeof(uint32_t)+2);
M_PREPEND(m1, sizeof(struct llc), M_DONTWAIT);
if (m1 == NULL) { /* XXX cannot happen */
IEEE80211_DPRINTF(ic, IEEE80211_MSG_SUPERG,
"%s: no space for llc header\n", __func__);
ic->ic_stats.is_tx_nobuf++;
return NULL;
}
llc = mtod(m1, struct llc *);
llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
llc->llc_control = LLC_UI;
llc->llc_snap.org_code[0] = ATH_FF_SNAP_ORGCODE_0;
llc->llc_snap.org_code[1] = ATH_FF_SNAP_ORGCODE_1;
llc->llc_snap.org_code[2] = ATH_FF_SNAP_ORGCODE_2;
llc->llc_snap.ether_type = htons(ATH_FF_ETH_TYPE);
ic->ic_stats.is_ff_encap++;
return m1;
}
/*
* Fragment the frame according to the specified mtu.
* The size of the 802.11 header (w/o padding) is provided
* so we don't need to recalculate it. We create a new
* mbuf for each fragment and chain it through m_nextpkt;
* we might be able to optimize this by reusing the original
* packet's mbufs but that is significantly more complicated.
*/
static int
ieee80211_fragment(struct ieee80211com *ic, struct mbuf *m0,
u_int hdrsize, u_int ciphdrsize, u_int mtu)
{
struct ieee80211_frame *wh, *whf;
struct mbuf *m, *prev, *next;
u_int totalhdrsize, fragno, fragsize, off, remainder, payload;
KASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?"));
KASSERT(m0->m_pkthdr.len > mtu,
("pktlen %u mtu %u", m0->m_pkthdr.len, mtu));
wh = mtod(m0, struct ieee80211_frame *);
/* NB: mark the first frag; it will be propagated below */
wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG;
totalhdrsize = hdrsize + ciphdrsize;
fragno = 1;
off = mtu - ciphdrsize;
remainder = m0->m_pkthdr.len - off;
prev = m0;
do {
fragsize = totalhdrsize + remainder;
if (fragsize > mtu)
fragsize = mtu;
KASSERT(fragsize < MCLBYTES,
("fragment size %u too big!", fragsize));
if (fragsize > MHLEN)
m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
else
m = m_gethdr(M_DONTWAIT, MT_DATA);
if (m == NULL)
goto bad;
/* leave room to prepend any cipher header */
m_align(m, fragsize - ciphdrsize);
/*
* Form the header in the fragment. Note that since
* we mark the first fragment with the MORE_FRAG bit
* it automatically is propagated to each fragment; we
* need only clear it on the last fragment (done below).
*/
whf = mtod(m, struct ieee80211_frame *);
memcpy(whf, wh, hdrsize);
*(uint16_t *)&whf->i_seq[0] |= htole16(
(fragno & IEEE80211_SEQ_FRAG_MASK) <<
IEEE80211_SEQ_FRAG_SHIFT);
fragno++;
payload = fragsize - totalhdrsize;
/* NB: destination is known to be contiguous */
m_copydata(m0, off, payload, mtod(m, uint8_t *) + hdrsize);
m->m_len = hdrsize + payload;
m->m_pkthdr.len = hdrsize + payload;
m->m_flags |= M_FRAG;
/* chain up the fragment */
prev->m_nextpkt = m;
prev = m;
/* deduct fragment just formed */
remainder -= payload;
off += payload;
} while (remainder != 0);
whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG;
/* strip first mbuf now that everything has been copied */
m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize)));
m0->m_flags |= M_FIRSTFRAG | M_FRAG;
ic->ic_stats.is_tx_fragframes++;
ic->ic_stats.is_tx_frags += fragno-1;
return 1;
bad:
/* reclaim fragments but leave original frame for caller to free */
for (m = m0->m_nextpkt; m != NULL; m = next) {
next = m->m_nextpkt;
m->m_nextpkt = NULL; /* XXX paranoid */
m_freem(m);
}
m0->m_nextpkt = NULL;
return 0;
}
/*
* Add a supported rates element id to a frame.
*/
static uint8_t *
ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs)
{
int nrates;
*frm++ = IEEE80211_ELEMID_RATES;
nrates = rs->rs_nrates;
if (nrates > IEEE80211_RATE_SIZE)
nrates = IEEE80211_RATE_SIZE;
*frm++ = nrates;
memcpy(frm, rs->rs_rates, nrates);
return frm + nrates;
}
/*
* Add an extended supported rates element id to a frame.
*/
static uint8_t *
ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs)
{
/*
* Add an extended supported rates element if operating in 11g mode.
*/
if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
*frm++ = IEEE80211_ELEMID_XRATES;
*frm++ = nrates;
memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
frm += nrates;
}
return frm;
}
/*
* Add an ssid elemet to a frame.
*/
static uint8_t *
ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len)
{
*frm++ = IEEE80211_ELEMID_SSID;
*frm++ = len;
memcpy(frm, ssid, len);
return frm + len;
}
/*
* Add an erp element to a frame.
*/
static uint8_t *
ieee80211_add_erp(uint8_t *frm, struct ieee80211com *ic)
{
uint8_t erp;
*frm++ = IEEE80211_ELEMID_ERP;
*frm++ = 1;
erp = 0;
if (ic->ic_nonerpsta != 0)
erp |= IEEE80211_ERP_NON_ERP_PRESENT;
if (ic->ic_flags & IEEE80211_F_USEPROT)
erp |= IEEE80211_ERP_USE_PROTECTION;
if (ic->ic_flags & IEEE80211_F_USEBARKER)
erp |= IEEE80211_ERP_LONG_PREAMBLE;
*frm++ = erp;
return frm;
}
static uint8_t *
ieee80211_setup_wpa_ie(struct ieee80211com *ic, uint8_t *ie)
{
#define WPA_OUI_BYTES 0x00, 0x50, 0xf2
#define ADDSHORT(frm, v) do { \
frm[0] = (v) & 0xff; \
frm[1] = (v) >> 8; \
frm += 2; \
} while (0)
#define ADDSELECTOR(frm, sel) do { \
memcpy(frm, sel, 4); \
frm += 4; \
} while (0)
static const uint8_t oui[4] = { WPA_OUI_BYTES, WPA_OUI_TYPE };
static const uint8_t cipher_suite[][4] = {
{ WPA_OUI_BYTES, WPA_CSE_WEP40 }, /* NB: 40-bit */
{ WPA_OUI_BYTES, WPA_CSE_TKIP },
{ 0x00, 0x00, 0x00, 0x00 }, /* XXX WRAP */
{ WPA_OUI_BYTES, WPA_CSE_CCMP },
{ 0x00, 0x00, 0x00, 0x00 }, /* XXX CKIP */
{ WPA_OUI_BYTES, WPA_CSE_NULL },
};
static const uint8_t wep104_suite[4] =
{ WPA_OUI_BYTES, WPA_CSE_WEP104 };
static const uint8_t key_mgt_unspec[4] =
{ WPA_OUI_BYTES, WPA_ASE_8021X_UNSPEC };
static const uint8_t key_mgt_psk[4] =
{ WPA_OUI_BYTES, WPA_ASE_8021X_PSK };
const struct ieee80211_rsnparms *rsn = &ic->ic_bss->ni_rsn;
uint8_t *frm = ie;
uint8_t *selcnt;
*frm++ = IEEE80211_ELEMID_VENDOR;
*frm++ = 0; /* length filled in below */
memcpy(frm, oui, sizeof(oui)); /* WPA OUI */
frm += sizeof(oui);
ADDSHORT(frm, WPA_VERSION);
/* XXX filter out CKIP */
/* multicast cipher */
if (rsn->rsn_mcastcipher == IEEE80211_CIPHER_WEP &&
rsn->rsn_mcastkeylen >= 13)
ADDSELECTOR(frm, wep104_suite);
else
ADDSELECTOR(frm, cipher_suite[rsn->rsn_mcastcipher]);
/* unicast cipher list */
selcnt = frm;
ADDSHORT(frm, 0); /* selector count */
if (rsn->rsn_ucastcipherset & (1<<IEEE80211_CIPHER_AES_CCM)) {
selcnt[0]++;
ADDSELECTOR(frm, cipher_suite[IEEE80211_CIPHER_AES_CCM]);
}
if (rsn->rsn_ucastcipherset & (1<<IEEE80211_CIPHER_TKIP)) {
selcnt[0]++;
ADDSELECTOR(frm, cipher_suite[IEEE80211_CIPHER_TKIP]);
}
/* authenticator selector list */
selcnt = frm;
ADDSHORT(frm, 0); /* selector count */
if (rsn->rsn_keymgmtset & WPA_ASE_8021X_UNSPEC) {
selcnt[0]++;
ADDSELECTOR(frm, key_mgt_unspec);
}
if (rsn->rsn_keymgmtset & WPA_ASE_8021X_PSK) {
selcnt[0]++;
ADDSELECTOR(frm, key_mgt_psk);
}
/* optional capabilities */
if (rsn->rsn_caps != 0 && rsn->rsn_caps != RSN_CAP_PREAUTH)
ADDSHORT(frm, rsn->rsn_caps);
/* calculate element length */
ie[1] = frm - ie - 2;
KASSERT(ie[1]+2 <= sizeof(struct ieee80211_ie_wpa),
("WPA IE too big, %u > %zu",
ie[1]+2, sizeof(struct ieee80211_ie_wpa)));
return frm;
#undef ADDSHORT
#undef ADDSELECTOR
#undef WPA_OUI_BYTES
}
static uint8_t *
ieee80211_setup_rsn_ie(struct ieee80211com *ic, uint8_t *ie)
{
#define RSN_OUI_BYTES 0x00, 0x0f, 0xac
#define ADDSHORT(frm, v) do { \
frm[0] = (v) & 0xff; \
frm[1] = (v) >> 8; \
frm += 2; \
} while (0)
#define ADDSELECTOR(frm, sel) do { \
memcpy(frm, sel, 4); \
frm += 4; \
} while (0)
static const uint8_t cipher_suite[][4] = {
{ RSN_OUI_BYTES, RSN_CSE_WEP40 }, /* NB: 40-bit */
{ RSN_OUI_BYTES, RSN_CSE_TKIP },
{ RSN_OUI_BYTES, RSN_CSE_WRAP },
{ RSN_OUI_BYTES, RSN_CSE_CCMP },
{ 0x00, 0x00, 0x00, 0x00 }, /* XXX CKIP */
{ RSN_OUI_BYTES, RSN_CSE_NULL },
};
static const uint8_t wep104_suite[4] =
{ RSN_OUI_BYTES, RSN_CSE_WEP104 };
static const uint8_t key_mgt_unspec[4] =
{ RSN_OUI_BYTES, RSN_ASE_8021X_UNSPEC };
static const uint8_t key_mgt_psk[4] =
{ RSN_OUI_BYTES, RSN_ASE_8021X_PSK };
const struct ieee80211_rsnparms *rsn = &ic->ic_bss->ni_rsn;
uint8_t *frm = ie;
uint8_t *selcnt;
*frm++ = IEEE80211_ELEMID_RSN;
*frm++ = 0; /* length filled in below */
ADDSHORT(frm, RSN_VERSION);
/* XXX filter out CKIP */
/* multicast cipher */
if (rsn->rsn_mcastcipher == IEEE80211_CIPHER_WEP &&
rsn->rsn_mcastkeylen >= 13)
ADDSELECTOR(frm, wep104_suite);
else
ADDSELECTOR(frm, cipher_suite[rsn->rsn_mcastcipher]);
/* unicast cipher list */
selcnt = frm;
ADDSHORT(frm, 0); /* selector count */
if (rsn->rsn_ucastcipherset & (1<<IEEE80211_CIPHER_AES_CCM)) {
selcnt[0]++;
ADDSELECTOR(frm, cipher_suite[IEEE80211_CIPHER_AES_CCM]);
}
if (rsn->rsn_ucastcipherset & (1<<IEEE80211_CIPHER_TKIP)) {
selcnt[0]++;
ADDSELECTOR(frm, cipher_suite[IEEE80211_CIPHER_TKIP]);
}
/* authenticator selector list */
selcnt = frm;
ADDSHORT(frm, 0); /* selector count */
if (rsn->rsn_keymgmtset & WPA_ASE_8021X_UNSPEC) {
selcnt[0]++;
ADDSELECTOR(frm, key_mgt_unspec);
}
if (rsn->rsn_keymgmtset & WPA_ASE_8021X_PSK) {
selcnt[0]++;
ADDSELECTOR(frm, key_mgt_psk);
}
/* optional capabilities */
ADDSHORT(frm, rsn->rsn_caps);
/* XXX PMKID */
/* calculate element length */
ie[1] = frm - ie - 2;
KASSERT(ie[1]+2 <= sizeof(struct ieee80211_ie_wpa),
("RSN IE too big, %u > %zu",
ie[1]+2, sizeof(struct ieee80211_ie_wpa)));
return frm;
#undef ADDSELECTOR
#undef ADDSHORT
#undef RSN_OUI_BYTES
}
/*
* Add a WPA/RSN element to a frame.
*/
static uint8_t *
ieee80211_add_wpa(uint8_t *frm, struct ieee80211com *ic)
{
KASSERT(ic->ic_flags & IEEE80211_F_WPA, ("no WPA/RSN!"));
if (ic->ic_flags & IEEE80211_F_WPA2)
frm = ieee80211_setup_rsn_ie(ic, frm);
if (ic->ic_flags & IEEE80211_F_WPA1)
frm = ieee80211_setup_wpa_ie(ic, frm);
return frm;
}
#define WME_OUI_BYTES 0x00, 0x50, 0xf2
/*
* Add a WME information element to a frame.
*/
static uint8_t *
ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme)
{
static const struct ieee80211_wme_info info = {
.wme_id = IEEE80211_ELEMID_VENDOR,
.wme_len = sizeof(struct ieee80211_wme_info) - 2,
.wme_oui = { WME_OUI_BYTES },
.wme_type = WME_OUI_TYPE,
.wme_subtype = WME_INFO_OUI_SUBTYPE,
.wme_version = WME_VERSION,
.wme_info = 0,
};
memcpy(frm, &info, sizeof(info));
return frm + sizeof(info);
}
/*
* Add a WME parameters element to a frame.
*/
static uint8_t *
ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme)
{
#define SM(_v, _f) (((_v) << _f##_S) & _f)
#define ADDSHORT(frm, v) do { \
frm[0] = (v) & 0xff; \
frm[1] = (v) >> 8; \
frm += 2; \
} while (0)
/* NB: this works 'cuz a param has an info at the front */
static const struct ieee80211_wme_info param = {
.wme_id = IEEE80211_ELEMID_VENDOR,
.wme_len = sizeof(struct ieee80211_wme_param) - 2,
.wme_oui = { WME_OUI_BYTES },
.wme_type = WME_OUI_TYPE,
.wme_subtype = WME_PARAM_OUI_SUBTYPE,
.wme_version = WME_VERSION,
};
int i;
memcpy(frm, &param, sizeof(param));
frm += __offsetof(struct ieee80211_wme_info, wme_info);
*frm++ = wme->wme_bssChanParams.cap_info; /* AC info */
*frm++ = 0; /* reserved field */
for (i = 0; i < WME_NUM_AC; i++) {
const struct wmeParams *ac =
&wme->wme_bssChanParams.cap_wmeParams[i];
*frm++ = SM(i, WME_PARAM_ACI)
| SM(ac->wmep_acm, WME_PARAM_ACM)
| SM(ac->wmep_aifsn, WME_PARAM_AIFSN)
;
*frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX)
| SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN)
;
ADDSHORT(frm, ac->wmep_txopLimit);
}
return frm;
#undef SM
#undef ADDSHORT
}
#undef WME_OUI_BYTES
#define ATH_OUI_BYTES 0x00, 0x03, 0x7f
/*
* Add a WME information element to a frame.
*/
static uint8_t *
ieee80211_add_ath(uint8_t *frm, uint8_t caps, uint16_t defkeyix)
{
static const struct ieee80211_ath_ie info = {
.ath_id = IEEE80211_ELEMID_VENDOR,
.ath_len = sizeof(struct ieee80211_ath_ie) - 2,
.ath_oui = { ATH_OUI_BYTES },
.ath_oui_type = ATH_OUI_TYPE,
.ath_oui_subtype= ATH_OUI_SUBTYPE,
.ath_version = ATH_OUI_VERSION,
};
struct ieee80211_ath_ie *ath = (struct ieee80211_ath_ie *) frm;
memcpy(frm, &info, sizeof(info));
ath->ath_capability = caps;
ath->ath_defkeyix[0] = (defkeyix & 0xff);
ath->ath_defkeyix[1] = ((defkeyix >> 8) & 0xff);
return frm + sizeof(info);
}
#undef ATH_OUI_BYTES
/*
* Send a probe request frame with the specified ssid
* and any optional information element data.
*/
int
ieee80211_send_probereq(struct ieee80211_node *ni,
const uint8_t sa[IEEE80211_ADDR_LEN],
const uint8_t da[IEEE80211_ADDR_LEN],
const uint8_t bssid[IEEE80211_ADDR_LEN],
const uint8_t *ssid, size_t ssidlen,
const void *optie, size_t optielen)
{
struct ieee80211com *ic = ni->ni_ic;
struct ieee80211_frame *wh;
const struct ieee80211_rateset *rs;
struct mbuf *m;
uint8_t *frm;
/*
* Hold a reference on the node so it doesn't go away until after
* the xmit is complete all the way in the driver. On error we
* will remove our reference.
*/
IEEE80211_DPRINTF(ic, IEEE80211_MSG_NODE,
"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
__func__, __LINE__,
ni, ether_sprintf(ni->ni_macaddr),
ieee80211_node_refcnt(ni)+1);
ieee80211_ref_node(ni);
/*
* prreq frame format
* [tlv] ssid
* [tlv] supported rates
* [tlv] extended supported rates
* [tlv] user-specified ie's
*/
m = ieee80211_getmgtframe(&frm,
ic->ic_headroom + sizeof(struct ieee80211_frame),
2 + IEEE80211_NWID_LEN
+ 2 + IEEE80211_RATE_SIZE
+ 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
+ (optie != NULL ? optielen : 0)
);
if (m == NULL) {
ic->ic_stats.is_tx_nobuf++;
ieee80211_free_node(ni);
return ENOMEM;
}
frm = ieee80211_add_ssid(frm, ssid, ssidlen);
rs = ieee80211_get_suprates(ic, ic->ic_curchan);
frm = ieee80211_add_rates(frm, rs);
frm = ieee80211_add_xrates(frm, rs);
if (optie != NULL) {
memcpy(frm, optie, optielen);
frm += optielen;
}
m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT);
if (m == NULL)
return ENOMEM;
KASSERT(m->m_pkthdr.rcvif == NULL, ("rcvif not null"));
m->m_pkthdr.rcvif = (void *)ni;
wh = mtod(m, struct ieee80211_frame *);
ieee80211_send_setup(ic, ni, wh,
IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ,
sa, da, bssid);
/* XXX power management? */
IEEE80211_NODE_STAT(ni, tx_probereq);
IEEE80211_NODE_STAT(ni, tx_mgmt);
IEEE80211_DPRINTF(ic, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
"[%s] send probe req on channel %u\n",
ether_sprintf(wh->i_addr1),
ieee80211_chan2ieee(ic, ic->ic_curchan));
IF_ENQUEUE(&ic->ic_mgtq, m);
if_start(ic->ic_ifp);
return 0;
}
/*
* Calculate capability information for mgt frames.
*/
static uint16_t
getcapinfo(struct ieee80211com *ic, struct ieee80211_channel *chan)
{
uint16_t capinfo;
KASSERT(ic->ic_opmode != IEEE80211_M_STA, ("station mode"));
if (ic->ic_opmode == IEEE80211_M_HOSTAP)
capinfo = IEEE80211_CAPINFO_ESS;
else if (ic->ic_opmode == IEEE80211_M_IBSS)
capinfo = IEEE80211_CAPINFO_IBSS;
else
capinfo = 0;
if (ic->ic_flags & IEEE80211_F_PRIVACY)
capinfo |= IEEE80211_CAPINFO_PRIVACY;
if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
IEEE80211_IS_CHAN_2GHZ(chan))
capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
if (ic->ic_flags & IEEE80211_F_SHSLOT)
capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
return capinfo;
}
/*
* Send a management frame. The node is for the destination (or ic_bss
* when in station mode). Nodes other than ic_bss have their reference
* count bumped to reflect our use for an indeterminant time.
*/
int
ieee80211_send_mgmt(struct ieee80211com *ic, struct ieee80211_node *ni,
int type, int arg)
{
#define senderr(_x, _v) do { ic->ic_stats._v++; ret = _x; goto bad; } while (0)
struct mbuf *m;
uint8_t *frm;
uint16_t capinfo;
int has_challenge, is_shared_key, ret, status;
KASSERT(ni != NULL, ("null node"));
/*
* Hold a reference on the node so it doesn't go away until after
* the xmit is complete all the way in the driver. On error we
* will remove our reference.
*/
IEEE80211_DPRINTF(ic, IEEE80211_MSG_NODE,
"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
__func__, __LINE__,
ni, ether_sprintf(ni->ni_macaddr),
ieee80211_node_refcnt(ni)+1);
ieee80211_ref_node(ni);
switch (type) {
case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
/*
* probe response frame format
* [8] time stamp
* [2] beacon interval
* [2] cabability information
* [tlv] ssid
* [tlv] supported rates
* [tlv] parameter set (FH/DS)
* [tlv] parameter set (IBSS)
* [tlv] extended rate phy (ERP)
* [tlv] extended supported rates
* [tlv] WPA
* [tlv] WME (optional)
* [tlv] HT capabilities
* [tlv] HT information
* [tlv] Vendor OUI HT capabilities (optional)
* [tlv] Vendor OUI HT information (optional)
* [tlv] Atheros capabilities
*/
m = ieee80211_getmgtframe(&frm,
ic->ic_headroom + sizeof(struct ieee80211_frame),
8
+ sizeof(uint16_t)
+ sizeof(uint16_t)
+ 2 + IEEE80211_NWID_LEN
+ 2 + IEEE80211_RATE_SIZE
+ 7 /* max(7,3) */
+ 6
+ 3
+ 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
/* XXX !WPA1+WPA2 fits w/o a cluster */
+ (ic->ic_flags & IEEE80211_F_WPA ?
2*sizeof(struct ieee80211_ie_wpa) : 0)
+ sizeof(struct ieee80211_wme_param)
/* XXX check for cluster requirement */
+ 2*sizeof(struct ieee80211_ie_htcap) + 4
+ 2*sizeof(struct ieee80211_ie_htinfo) + 4
+ sizeof(struct ieee80211_ath_ie)
);
if (m == NULL)
senderr(ENOMEM, is_tx_nobuf);
memset(frm, 0, 8); /* timestamp should be filled later */
frm += 8;
*(uint16_t *)frm = htole16(ic->ic_bss->ni_intval);
frm += 2;
capinfo = getcapinfo(ic, ic->ic_curchan);
*(uint16_t *)frm = htole16(capinfo);
frm += 2;
frm = ieee80211_add_ssid(frm, ic->ic_bss->ni_essid,
ic->ic_bss->ni_esslen);
frm = ieee80211_add_rates(frm, &ni->ni_rates);
if (IEEE80211_IS_CHAN_FHSS(ic->ic_curchan)) {
*frm++ = IEEE80211_ELEMID_FHPARMS;
*frm++ = 5;
*frm++ = ni->ni_fhdwell & 0x00ff;
*frm++ = (ni->ni_fhdwell >> 8) & 0x00ff;
*frm++ = IEEE80211_FH_CHANSET(
ieee80211_chan2ieee(ic, ic->ic_curchan));
*frm++ = IEEE80211_FH_CHANPAT(
ieee80211_chan2ieee(ic, ic->ic_curchan));
*frm++ = ni->ni_fhindex;
} else {
*frm++ = IEEE80211_ELEMID_DSPARMS;
*frm++ = 1;
*frm++ = ieee80211_chan2ieee(ic, ic->ic_curchan);
}
if (ic->ic_opmode == IEEE80211_M_IBSS) {
*frm++ = IEEE80211_ELEMID_IBSSPARMS;
*frm++ = 2;
*frm++ = 0; *frm++ = 0; /* TODO: ATIM window */
}
if (ic->ic_flags & IEEE80211_F_WPA)
frm = ieee80211_add_wpa(frm, ic);
if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan))
frm = ieee80211_add_erp(frm, ic);
frm = ieee80211_add_xrates(frm, &ni->ni_rates);
if (ic->ic_flags & IEEE80211_F_WME)
frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
if (IEEE80211_IS_CHAN_HT(ic->ic_curchan)) {
frm = ieee80211_add_htcap(frm, ni);
frm = ieee80211_add_htinfo(frm, ni);
if (ic->ic_flags_ext & IEEE80211_FEXT_HTCOMPAT) {
frm = ieee80211_add_htcap_vendor(frm, ni);
frm = ieee80211_add_htinfo_vendor(frm, ni);
}
}
if (ni->ni_ath_ie != NULL)
frm = ieee80211_add_ath(frm, ni->ni_ath_flags,
ni->ni_ath_defkeyix);
m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
break;
case IEEE80211_FC0_SUBTYPE_AUTH:
status = arg >> 16;
arg &= 0xffff;
has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE ||
arg == IEEE80211_AUTH_SHARED_RESPONSE) &&
ni->ni_challenge != NULL);
/*
* Deduce whether we're doing open authentication or
* shared key authentication. We do the latter if
* we're in the middle of a shared key authentication
* handshake or if we're initiating an authentication
* request and configured to use shared key.
*/
is_shared_key = has_challenge ||
arg >= IEEE80211_AUTH_SHARED_RESPONSE ||
(arg == IEEE80211_AUTH_SHARED_REQUEST &&
ic->ic_bss->ni_authmode == IEEE80211_AUTH_SHARED);
m = ieee80211_getmgtframe(&frm,
ic->ic_headroom + sizeof(struct ieee80211_frame),
3 * sizeof(uint16_t)
+ (has_challenge && status == IEEE80211_STATUS_SUCCESS ?
sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0)
);
if (m == NULL)
senderr(ENOMEM, is_tx_nobuf);
((uint16_t *)frm)[0] =
(is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED)
: htole16(IEEE80211_AUTH_ALG_OPEN);
((uint16_t *)frm)[1] = htole16(arg); /* sequence number */
((uint16_t *)frm)[2] = htole16(status);/* status */
if (has_challenge && status == IEEE80211_STATUS_SUCCESS) {
((uint16_t *)frm)[3] =
htole16((IEEE80211_CHALLENGE_LEN << 8) |
IEEE80211_ELEMID_CHALLENGE);
memcpy(&((uint16_t *)frm)[4], ni->ni_challenge,
IEEE80211_CHALLENGE_LEN);
m->m_pkthdr.len = m->m_len =
4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN;
if (arg == IEEE80211_AUTH_SHARED_RESPONSE) {
IEEE80211_DPRINTF(ic, IEEE80211_MSG_AUTH,
"[%s] request encrypt frame (%s)\n",
ether_sprintf(ni->ni_macaddr), __func__);
m->m_flags |= M_LINK0; /* WEP-encrypt, please */
}
} else
m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t);
/* XXX not right for shared key */
if (status == IEEE80211_STATUS_SUCCESS)
IEEE80211_NODE_STAT(ni, tx_auth);
else
IEEE80211_NODE_STAT(ni, tx_auth_fail);
if (ic->ic_opmode == IEEE80211_M_STA)
ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
(void *) ic->ic_state);
break;
case IEEE80211_FC0_SUBTYPE_DEAUTH:
IEEE80211_DPRINTF(ic, IEEE80211_MSG_AUTH,
"[%s] send station deauthenticate (reason %d)\n",
ether_sprintf(ni->ni_macaddr), arg);
m = ieee80211_getmgtframe(&frm,
ic->ic_headroom + sizeof(struct ieee80211_frame),
sizeof(uint16_t));
if (m == NULL)
senderr(ENOMEM, is_tx_nobuf);
*(uint16_t *)frm = htole16(arg); /* reason */
m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
IEEE80211_NODE_STAT(ni, tx_deauth);
IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg);
ieee80211_node_unauthorize(ni); /* port closed */
break;
case IEEE80211_FC0_SUBTYPE_ASSOC_REQ:
case IEEE80211_FC0_SUBTYPE_REASSOC_REQ:
/*
* asreq frame format
* [2] capability information
* [2] listen interval
* [6*] current AP address (reassoc only)
* [tlv] ssid
* [tlv] supported rates
* [tlv] extended supported rates
* [tlv] WME
* [tlv] HT capabilities
* [tlv] Vendor OUI HT capabilities (optional)
* [tlv] Atheros capabilities (if negotiated)
* [tlv] user-specified ie's
*/
m = ieee80211_getmgtframe(&frm,
ic->ic_headroom + sizeof(struct ieee80211_frame),
sizeof(uint16_t)
+ sizeof(uint16_t)
+ IEEE80211_ADDR_LEN
+ 2 + IEEE80211_NWID_LEN
+ 2 + IEEE80211_RATE_SIZE
+ 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
+ sizeof(struct ieee80211_wme_info)
+ 2*sizeof(struct ieee80211_ie_htcap) + 4
+ sizeof(struct ieee80211_ath_ie)
+ (ic->ic_opt_ie != NULL ? ic->ic_opt_ie_len : 0)
);
if (m == NULL)
senderr(ENOMEM, is_tx_nobuf);
KASSERT(ic->ic_opmode == IEEE80211_M_STA,
("wrong mode %u", ic->ic_opmode));
capinfo = IEEE80211_CAPINFO_ESS;
if (ic->ic_flags & IEEE80211_F_PRIVACY)
capinfo |= IEEE80211_CAPINFO_PRIVACY;
/*
* NB: Some 11a AP's reject the request when
* short premable is set.
*/
if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
(ic->ic_caps & IEEE80211_C_SHSLOT))
capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
*(uint16_t *)frm = htole16(capinfo);
frm += 2;
KASSERT(ic->ic_bss->ni_intval != 0,
("beacon interval is zero!"));
*(uint16_t *)frm = htole16(howmany(ic->ic_lintval,
ic->ic_bss->ni_intval));
frm += 2;
if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) {
IEEE80211_ADDR_COPY(frm, ic->ic_bss->ni_bssid);
frm += IEEE80211_ADDR_LEN;
}
frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen);
frm = ieee80211_add_rates(frm, &ni->ni_rates);
frm = ieee80211_add_xrates(frm, &ni->ni_rates);
if ((ic->ic_flags & IEEE80211_F_WME) && ni->ni_wme_ie != NULL)
frm = ieee80211_add_wme_info(frm, &ic->ic_wme);
if (IEEE80211_IS_CHAN_HT(ic->ic_curchan)) {
frm = ieee80211_add_htcap(frm, ni);
if (ic->ic_flags_ext & IEEE80211_FEXT_HTCOMPAT)
frm = ieee80211_add_htcap_vendor(frm, ni);
}
if (IEEE80211_ATH_CAP(ic, ni, IEEE80211_F_ATHEROS))
frm = ieee80211_add_ath(frm,
IEEE80211_ATH_CAP(ic, ni, IEEE80211_F_ATHEROS),
(ic->ic_flags & IEEE80211_F_WPA) == 0 &&
ni->ni_authmode != IEEE80211_AUTH_8021X &&
ic->ic_def_txkey != IEEE80211_KEYIX_NONE ?
ic->ic_def_txkey : 0x7fff);
if (ic->ic_opt_ie != NULL) {
memcpy(frm, ic->ic_opt_ie, ic->ic_opt_ie_len);
frm += ic->ic_opt_ie_len;
}
m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
(void *) ic->ic_state);
break;
case IEEE80211_FC0_SUBTYPE_ASSOC_RESP:
case IEEE80211_FC0_SUBTYPE_REASSOC_RESP:
/*
* asresp frame format
* [2] capability information
* [2] status
* [2] association ID
* [tlv] supported rates
* [tlv] extended supported rates
* [tlv] WME (if enabled and STA enabled)
* [tlv] HT capabilities (standard or vendor OUI)
* [tlv] HT information (standard or vendor OUI)
* [tlv] Atheros capabilities (if enabled and STA enabled)
*/
m = ieee80211_getmgtframe(&frm,
ic->ic_headroom + sizeof(struct ieee80211_frame),
sizeof(uint16_t)
+ sizeof(uint16_t)
+ sizeof(uint16_t)
+ 2 + IEEE80211_RATE_SIZE
+ 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
+ sizeof(struct ieee80211_wme_param)
+ sizeof(struct ieee80211_ie_htcap) + 4
+ sizeof(struct ieee80211_ie_htinfo) + 4
+ sizeof(struct ieee80211_ath_ie)
);
if (m == NULL)
senderr(ENOMEM, is_tx_nobuf);
capinfo = getcapinfo(ic, ic->ic_curchan);
*(uint16_t *)frm = htole16(capinfo);
frm += 2;
*(uint16_t *)frm = htole16(arg); /* status */
frm += 2;
if (arg == IEEE80211_STATUS_SUCCESS) {
*(uint16_t *)frm = htole16(ni->ni_associd);
IEEE80211_NODE_STAT(ni, tx_assoc);
} else
IEEE80211_NODE_STAT(ni, tx_assoc_fail);
frm += 2;
frm = ieee80211_add_rates(frm, &ni->ni_rates);
frm = ieee80211_add_xrates(frm, &ni->ni_rates);
if ((ic->ic_flags & IEEE80211_F_WME) && ni->ni_wme_ie != NULL)
frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
if (IEEE80211_IS_CHAN_HT(ic->ic_curchan)) {
/* NB: respond according to what we received */
if (ni->ni_flags & IEEE80211_NODE_HTCOMPAT) {
frm = ieee80211_add_htcap_vendor(frm, ni);
frm = ieee80211_add_htinfo_vendor(frm, ni);
} else {
frm = ieee80211_add_htcap(frm, ni);
frm = ieee80211_add_htinfo(frm, ni);
}
}
if (IEEE80211_ATH_CAP(ic, ni, IEEE80211_F_ATHEROS))
frm = ieee80211_add_ath(frm,
IEEE80211_ATH_CAP(ic, ni, IEEE80211_F_ATHEROS),
ni->ni_ath_defkeyix);
m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
break;
case IEEE80211_FC0_SUBTYPE_DISASSOC:
IEEE80211_DPRINTF(ic, IEEE80211_MSG_ASSOC,
"[%s] send station disassociate (reason %d)\n",
ether_sprintf(ni->ni_macaddr), arg);
m = ieee80211_getmgtframe(&frm,
ic->ic_headroom + sizeof(struct ieee80211_frame),
sizeof(uint16_t));
if (m == NULL)
senderr(ENOMEM, is_tx_nobuf);
*(uint16_t *)frm = htole16(arg); /* reason */
m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
IEEE80211_NODE_STAT(ni, tx_disassoc);
IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg);
break;
default:
IEEE80211_DPRINTF(ic, IEEE80211_MSG_ANY,
"[%s] invalid mgmt frame type %u\n",
ether_sprintf(ni->ni_macaddr), type);
senderr(EINVAL, is_tx_unknownmgt);
/* NOTREACHED */
}
ret = ieee80211_mgmt_output(ic, ni, m, type);
if (ret != 0)
goto bad;
return 0;
bad:
ieee80211_free_node(ni);
return ret;
#undef senderr
}
static void
ieee80211_tx_mgt_timeout(void *arg)
{
struct ieee80211_node *ni = arg;
struct ieee80211com *ic = ni->ni_ic;
if (ic->ic_state != IEEE80211_S_INIT &&
(ic->ic_flags & IEEE80211_F_SCAN) == 0) {
/*
* NB: it's safe to specify a timeout as the reason here;
* it'll only be used in the right state.
*/
ieee80211_new_state(ic, IEEE80211_S_SCAN,
IEEE80211_SCAN_FAIL_TIMEOUT);
}
}
static void
ieee80211_tx_mgt_cb(struct ieee80211_node *ni, void *arg, int status)
{
struct ieee80211com *ic = ni->ni_ic;
enum ieee80211_state ostate = (enum ieee80211_state) arg;
/*
* Frame transmit completed; arrange timer callback. If
* transmit was successfuly we wait for response. Otherwise
* we arrange an immediate callback instead of doing the
* callback directly since we don't know what state the driver
* is in (e.g. what locks it is holding). This work should
* not be too time-critical and not happen too often so the
* added overhead is acceptable.
*
* XXX what happens if !acked but response shows up before callback?
*/
if (ic->ic_state == ostate)
callout_reset(&ic->ic_mgtsend,
status == 0 ? IEEE80211_TRANS_WAIT*hz : 0,
ieee80211_tx_mgt_timeout, ni);
}
/*
* Allocate a beacon frame and fillin the appropriate bits.
*/
struct mbuf *
ieee80211_beacon_alloc(struct ieee80211_node *ni,
struct ieee80211_beacon_offsets *bo)
{
struct ieee80211com *ic = ni->ni_ic;
struct ifnet *ifp = ic->ic_ifp;
struct ieee80211_frame *wh;
struct mbuf *m;
int pktlen;
uint8_t *frm;
uint16_t capinfo;
struct ieee80211_rateset *rs;
/*
* beacon frame format
* [8] time stamp
* [2] beacon interval
* [2] cabability information
* [tlv] ssid
* [tlv] supported rates
* [3] parameter set (DS)
* [tlv] parameter set (IBSS/TIM)
* [tlv] country code
* [tlv] extended rate phy (ERP)
* [tlv] extended supported rates
* [tlv] WME parameters
* [tlv] WPA/RSN parameters
* [tlv] HT capabilities
* [tlv] HT information
* [tlv] Vendor OUI HT capabilities (optional)
* [tlv] Vendor OUI HT information (optional)
* XXX Vendor-specific OIDs (e.g. Atheros)
* NB: we allocate the max space required for the TIM bitmap.
*/
rs = &ni->ni_rates;
pktlen = 8 /* time stamp */
+ sizeof(uint16_t) /* beacon interval */
+ sizeof(uint16_t) /* capabilities */
+ 2 + ni->ni_esslen /* ssid */
+ 2 + IEEE80211_RATE_SIZE /* supported rates */
+ 2 + 1 /* DS parameters */
+ 2 + 4 + ic->ic_tim_len /* DTIM/IBSSPARMS */
+ sizeof(struct ieee80211_country_ie) /* country code */
+ 2 + 1 /* ERP */
+ 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
+ (ic->ic_caps & IEEE80211_C_WME ? /* WME */
sizeof(struct ieee80211_wme_param) : 0)
+ (ic->ic_caps & IEEE80211_C_WPA ? /* WPA 1+2 */
2*sizeof(struct ieee80211_ie_wpa) : 0)
/* XXX conditional? */
+ 4+2*sizeof(struct ieee80211_ie_htcap)/* HT caps */
+ 4+2*sizeof(struct ieee80211_ie_htinfo)/* HT info */
;
m = ieee80211_getmgtframe(&frm,
ic->ic_headroom + sizeof(struct ieee80211_frame), pktlen);
if (m == NULL) {
IEEE80211_DPRINTF(ic, IEEE80211_MSG_ANY,
"%s: cannot get buf; size %u\n", __func__, pktlen);
ic->ic_stats.is_tx_nobuf++;
return NULL;
}
memset(frm, 0, 8); /* XXX timestamp is set by hardware/driver */
frm += 8;
*(uint16_t *)frm = htole16(ni->ni_intval);
frm += 2;
capinfo = getcapinfo(ic, ni->ni_chan);
bo->bo_caps = (uint16_t *)frm;
*(uint16_t *)frm = htole16(capinfo);
frm += 2;
*frm++ = IEEE80211_ELEMID_SSID;
if ((ic->ic_flags & IEEE80211_F_HIDESSID) == 0) {
*frm++ = ni->ni_esslen;
memcpy(frm, ni->ni_essid, ni->ni_esslen);
frm += ni->ni_esslen;
} else
*frm++ = 0;
frm = ieee80211_add_rates(frm, rs);
if (!IEEE80211_IS_CHAN_FHSS(ic->ic_bsschan)) {
*frm++ = IEEE80211_ELEMID_DSPARMS;
*frm++ = 1;
*frm++ = ieee80211_chan2ieee(ic, ic->ic_bsschan);
}
bo->bo_tim = frm;
if (ic->ic_opmode == IEEE80211_M_IBSS) {
*frm++ = IEEE80211_ELEMID_IBSSPARMS;
*frm++ = 2;
*frm++ = 0; *frm++ = 0; /* TODO: ATIM window */
bo->bo_tim_len = 0;
} else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm;
tie->tim_ie = IEEE80211_ELEMID_TIM;
tie->tim_len = 4; /* length */
tie->tim_count = 0; /* DTIM count */
tie->tim_period = ic->ic_dtim_period; /* DTIM period */
tie->tim_bitctl = 0; /* bitmap control */
tie->tim_bitmap[0] = 0; /* Partial Virtual Bitmap */
frm += sizeof(struct ieee80211_tim_ie);
bo->bo_tim_len = 1;
}
bo->bo_tim_trailer = frm;
if (ic->ic_flags & IEEE80211_F_DOTH)
frm = ieee80211_add_countryie(frm, ic,
ic->ic_countrycode, ic->ic_location);
if (ic->ic_flags & IEEE80211_F_WME) {
bo->bo_wme = frm;
frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
} else
bo->bo_wme = NULL;
if (ic->ic_flags & IEEE80211_F_WPA)
frm = ieee80211_add_wpa(frm, ic);
if (IEEE80211_IS_CHAN_ANYG(ic->ic_bsschan)) {
bo->bo_erp = frm;
frm = ieee80211_add_erp(frm, ic);
} else
bo->bo_erp = NULL;
frm = ieee80211_add_xrates(frm, rs);
if (IEEE80211_IS_CHAN_HT(ic->ic_bsschan)) {
frm = ieee80211_add_htcap(frm, ni);
bo->bo_htinfo = frm;
frm = ieee80211_add_htinfo(frm, ni);
if (ic->ic_flags_ext & IEEE80211_FEXT_HTCOMPAT) {
frm = ieee80211_add_htcap_vendor(frm, ni);
frm = ieee80211_add_htinfo_vendor(frm, ni);
}
} else
bo->bo_htinfo = NULL;
bo->bo_tim_trailer_len = frm - bo->bo_tim_trailer;
m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT);
KASSERT(m != NULL, ("no space for 802.11 header?"));
wh = mtod(m, struct ieee80211_frame *);
wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
IEEE80211_FC0_SUBTYPE_BEACON;
wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
*(uint16_t *)wh->i_dur = 0;
IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid);
*(uint16_t *)wh->i_seq = 0;
return m;
}
/*
* Update the dynamic parts of a beacon frame based on the current state.
*/
int
ieee80211_beacon_update(struct ieee80211_node *ni,
struct ieee80211_beacon_offsets *bo, struct mbuf *m, int mcast)
{
struct ieee80211com *ic = ni->ni_ic;
int len_changed = 0;
uint16_t capinfo;
IEEE80211_BEACON_LOCK(ic);
/* XXX faster to recalculate entirely or just changes? */
capinfo = getcapinfo(ic, ni->ni_chan);
*bo->bo_caps = htole16(capinfo);
if (ic->ic_flags & IEEE80211_F_WME) {
struct ieee80211_wme_state *wme = &ic->ic_wme;
/*
* Check for agressive mode change. When there is
* significant high priority traffic in the BSS
* throttle back BE traffic by using conservative
* parameters. Otherwise BE uses agressive params
* to optimize performance of legacy/non-QoS traffic.
*/
if (wme->wme_flags & WME_F_AGGRMODE) {
if (wme->wme_hipri_traffic >
wme->wme_hipri_switch_thresh) {
IEEE80211_DPRINTF(ic, IEEE80211_MSG_WME,
"%s: traffic %u, disable aggressive mode\n",
__func__, wme->wme_hipri_traffic);
wme->wme_flags &= ~WME_F_AGGRMODE;
ieee80211_wme_updateparams_locked(ic);
wme->wme_hipri_traffic =
wme->wme_hipri_switch_hysteresis;
} else
wme->wme_hipri_traffic = 0;
} else {
if (wme->wme_hipri_traffic <=
wme->wme_hipri_switch_thresh) {
IEEE80211_DPRINTF(ic, IEEE80211_MSG_WME,
"%s: traffic %u, enable aggressive mode\n",
__func__, wme->wme_hipri_traffic);
wme->wme_flags |= WME_F_AGGRMODE;
ieee80211_wme_updateparams_locked(ic);
wme->wme_hipri_traffic = 0;
} else
wme->wme_hipri_traffic =
wme->wme_hipri_switch_hysteresis;
}
if (isset(bo->bo_flags, IEEE80211_BEACON_WME)) {
(void) ieee80211_add_wme_param(bo->bo_wme, wme);
clrbit(bo->bo_flags, IEEE80211_BEACON_WME);
}
}
if (isset(bo->bo_flags, IEEE80211_BEACON_HTINFO)) {
ieee80211_ht_update_beacon(ic, bo);
clrbit(bo->bo_flags, IEEE80211_BEACON_HTINFO);
}
if (ic->ic_opmode == IEEE80211_M_HOSTAP) { /* NB: no IBSS support*/
struct ieee80211_tim_ie *tie =
(struct ieee80211_tim_ie *) bo->bo_tim;
if (isset(bo->bo_flags, IEEE80211_BEACON_TIM)) {
u_int timlen, timoff, i;
/*
* ATIM/DTIM needs updating. If it fits in the
* current space allocated then just copy in the
* new bits. Otherwise we need to move any trailing
* data to make room. Note that we know there is
* contiguous space because ieee80211_beacon_allocate
* insures there is space in the mbuf to write a
* maximal-size virtual bitmap (based on ic_max_aid).
*/
/*
* Calculate the bitmap size and offset, copy any
* trailer out of the way, and then copy in the
* new bitmap and update the information element.
* Note that the tim bitmap must contain at least
* one byte and any offset must be even.
*/
if (ic->ic_ps_pending != 0) {
timoff = 128; /* impossibly large */
for (i = 0; i < ic->ic_tim_len; i++)
if (ic->ic_tim_bitmap[i]) {
timoff = i &~ 1;
break;
}
KASSERT(timoff != 128, ("tim bitmap empty!"));
for (i = ic->ic_tim_len-1; i >= timoff; i--)
if (ic->ic_tim_bitmap[i])
break;
timlen = 1 + (i - timoff);
} else {
timoff = 0;
timlen = 1;
}
if (timlen != bo->bo_tim_len) {
/* copy up/down trailer */
int adjust = tie->tim_bitmap+timlen
- bo->bo_tim_trailer;
ovbcopy(bo->bo_tim_trailer,
bo->bo_tim_trailer+adjust,
bo->bo_tim_trailer_len);
bo->bo_tim_trailer += adjust;
bo->bo_wme += adjust;
bo->bo_erp += adjust;
bo->bo_htinfo += adjust;
bo->bo_tim_len = timlen;
/* update information element */
tie->tim_len = 3 + timlen;
tie->tim_bitctl = timoff;
len_changed = 1;
}
memcpy(tie->tim_bitmap, ic->ic_tim_bitmap + timoff,
bo->bo_tim_len);
clrbit(bo->bo_flags, IEEE80211_BEACON_TIM);
IEEE80211_DPRINTF(ic, IEEE80211_MSG_POWER,
"%s: TIM updated, pending %u, off %u, len %u\n",
__func__, ic->ic_ps_pending, timoff, timlen);
}
/* count down DTIM period */
if (tie->tim_count == 0)
tie->tim_count = tie->tim_period - 1;
else
tie->tim_count--;
/* update state for buffered multicast frames on DTIM */
if (mcast && tie->tim_count == 0)
tie->tim_bitctl |= 1;
else
tie->tim_bitctl &= ~1;
if (isset(bo->bo_flags, IEEE80211_BEACON_ERP)) {
/*
* ERP element needs updating.
*/
(void) ieee80211_add_erp(bo->bo_erp, ic);
clrbit(bo->bo_flags, IEEE80211_BEACON_ERP);
}
}
IEEE80211_BEACON_UNLOCK(ic);
return len_changed;
}