1
0
mirror of https://git.FreeBSD.org/src.git synced 2025-01-02 12:20:51 +00:00
freebsd/usr.sbin/makefs/ffs/mkfs.c
2008-12-19 18:47:46 +00:00

833 lines
26 KiB
C

/* $NetBSD: mkfs.c,v 1.20 2004/06/24 22:30:13 lukem Exp $ */
/*
* Copyright (c) 2002 Networks Associates Technology, Inc.
* All rights reserved.
*
* This software was developed for the FreeBSD Project by Marshall
* Kirk McKusick and Network Associates Laboratories, the Security
* Research Division of Network Associates, Inc. under DARPA/SPAWAR
* contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
* research program
*
* Copyright (c) 1980, 1989, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/time.h>
#include <sys/resource.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <errno.h>
#include "makefs.h"
#include <ufs/ufs/dinode.h>
#include <ufs/ffs/fs.h>
#include "ffs/ufs_bswap.h"
#include "ffs/ufs_inode.h"
#include "ffs/ffs_extern.h"
#include "ffs/newfs_extern.h"
static void initcg(int, time_t, const fsinfo_t *);
static int ilog2(int);
static int count_digits(int);
/*
* make file system for cylinder-group style file systems
*/
#define UMASK 0755
#define POWEROF2(num) (((num) & ((num) - 1)) == 0)
union {
struct fs fs;
char pad[SBLOCKSIZE];
} fsun;
#define sblock fsun.fs
struct csum *fscs;
union {
struct cg cg;
char pad[FFS_MAXBSIZE];
} cgun;
#define acg cgun.cg
char *iobuf;
int iobufsize;
char writebuf[FFS_MAXBSIZE];
static int Oflag; /* format as an 4.3BSD file system */
static int64_t fssize; /* file system size */
static int sectorsize; /* bytes/sector */
static int fsize; /* fragment size */
static int bsize; /* block size */
static int maxbsize; /* maximum clustering */
static int maxblkspercg;
static int minfree; /* free space threshold */
static int opt; /* optimization preference (space or time) */
static int density; /* number of bytes per inode */
static int maxcontig; /* max contiguous blocks to allocate */
static int maxbpg; /* maximum blocks per file in a cyl group */
static int sbsize; /* superblock size */
static int avgfilesize; /* expected average file size */
static int avgfpdir; /* expected number of files per directory */
struct fs *
ffs_mkfs(const char *fsys, const fsinfo_t *fsopts)
{
int fragsperinode, optimalfpg, origdensity, minfpg, lastminfpg;
int32_t cylno, i, csfrags;
long long sizepb;
void *space;
int size, blks;
int nprintcols, printcolwidth;
Oflag = fsopts->version;
fssize = fsopts->size / fsopts->sectorsize;
sectorsize = fsopts->sectorsize;
fsize = fsopts->fsize;
bsize = fsopts->bsize;
maxbsize = fsopts->maxbsize;
maxblkspercg = fsopts->maxblkspercg;
minfree = fsopts->minfree;
opt = fsopts->optimization;
density = fsopts->density;
maxcontig = fsopts->maxcontig;
maxbpg = fsopts->maxbpg;
avgfilesize = fsopts->avgfilesize;
avgfpdir = fsopts->avgfpdir;
sbsize = SBLOCKSIZE;
if (Oflag == 0) {
sblock.fs_old_inodefmt = FS_42INODEFMT;
sblock.fs_maxsymlinklen = 0;
sblock.fs_old_flags = 0;
} else {
sblock.fs_old_inodefmt = FS_44INODEFMT;
sblock.fs_maxsymlinklen = (Oflag == 1 ? MAXSYMLINKLEN_UFS1 :
MAXSYMLINKLEN_UFS2);
sblock.fs_old_flags = FS_FLAGS_UPDATED;
sblock.fs_flags = 0;
}
/*
* Validate the given file system size.
* Verify that its last block can actually be accessed.
* Convert to file system fragment sized units.
*/
if (fssize <= 0) {
printf("preposterous size %lld\n", (long long)fssize);
exit(13);
}
ffs_wtfs(fssize - 1, sectorsize, (char *)&sblock, fsopts);
/*
* collect and verify the filesystem density info
*/
sblock.fs_avgfilesize = avgfilesize;
sblock.fs_avgfpdir = avgfpdir;
if (sblock.fs_avgfilesize <= 0)
printf("illegal expected average file size %d\n",
sblock.fs_avgfilesize), exit(14);
if (sblock.fs_avgfpdir <= 0)
printf("illegal expected number of files per directory %d\n",
sblock.fs_avgfpdir), exit(15);
/*
* collect and verify the block and fragment sizes
*/
sblock.fs_bsize = bsize;
sblock.fs_fsize = fsize;
if (!POWEROF2(sblock.fs_bsize)) {
printf("block size must be a power of 2, not %d\n",
sblock.fs_bsize);
exit(16);
}
if (!POWEROF2(sblock.fs_fsize)) {
printf("fragment size must be a power of 2, not %d\n",
sblock.fs_fsize);
exit(17);
}
if (sblock.fs_fsize < sectorsize) {
printf("fragment size %d is too small, minimum is %d\n",
sblock.fs_fsize, sectorsize);
exit(18);
}
if (sblock.fs_bsize < MINBSIZE) {
printf("block size %d is too small, minimum is %d\n",
sblock.fs_bsize, MINBSIZE);
exit(19);
}
if (sblock.fs_bsize > FFS_MAXBSIZE) {
printf("block size %d is too large, maximum is %d\n",
sblock.fs_bsize, FFS_MAXBSIZE);
exit(19);
}
if (sblock.fs_bsize < sblock.fs_fsize) {
printf("block size (%d) cannot be smaller than fragment size (%d)\n",
sblock.fs_bsize, sblock.fs_fsize);
exit(20);
}
if (maxbsize < bsize || !POWEROF2(maxbsize)) {
sblock.fs_maxbsize = sblock.fs_bsize;
printf("Extent size set to %d\n", sblock.fs_maxbsize);
} else if (sblock.fs_maxbsize > FS_MAXCONTIG * sblock.fs_bsize) {
sblock.fs_maxbsize = FS_MAXCONTIG * sblock.fs_bsize;
printf("Extent size reduced to %d\n", sblock.fs_maxbsize);
} else {
sblock.fs_maxbsize = maxbsize;
}
sblock.fs_maxcontig = maxcontig;
if (sblock.fs_maxcontig < sblock.fs_maxbsize / sblock.fs_bsize) {
sblock.fs_maxcontig = sblock.fs_maxbsize / sblock.fs_bsize;
printf("Maxcontig raised to %d\n", sblock.fs_maxbsize);
}
if (sblock.fs_maxcontig > 1)
sblock.fs_contigsumsize = MIN(sblock.fs_maxcontig,FS_MAXCONTIG);
sblock.fs_bmask = ~(sblock.fs_bsize - 1);
sblock.fs_fmask = ~(sblock.fs_fsize - 1);
sblock.fs_qbmask = ~sblock.fs_bmask;
sblock.fs_qfmask = ~sblock.fs_fmask;
for (sblock.fs_bshift = 0, i = sblock.fs_bsize; i > 1; i >>= 1)
sblock.fs_bshift++;
for (sblock.fs_fshift = 0, i = sblock.fs_fsize; i > 1; i >>= 1)
sblock.fs_fshift++;
sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize);
for (sblock.fs_fragshift = 0, i = sblock.fs_frag; i > 1; i >>= 1)
sblock.fs_fragshift++;
if (sblock.fs_frag > MAXFRAG) {
printf("fragment size %d is too small, "
"minimum with block size %d is %d\n",
sblock.fs_fsize, sblock.fs_bsize,
sblock.fs_bsize / MAXFRAG);
exit(21);
}
sblock.fs_fsbtodb = ilog2(sblock.fs_fsize / sectorsize);
sblock.fs_size = fssize = dbtofsb(&sblock, fssize);
if (Oflag <= 1) {
sblock.fs_magic = FS_UFS1_MAGIC;
sblock.fs_sblockloc = SBLOCK_UFS1;
sblock.fs_nindir = sblock.fs_bsize / sizeof(int32_t);
sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs1_dinode);
sblock.fs_maxsymlinklen = ((NDADDR + NIADDR) *
sizeof (int32_t));
sblock.fs_old_inodefmt = FS_44INODEFMT;
sblock.fs_old_cgoffset = 0;
sblock.fs_old_cgmask = 0xffffffff;
sblock.fs_old_size = sblock.fs_size;
sblock.fs_old_rotdelay = 0;
sblock.fs_old_rps = 60;
sblock.fs_old_nspf = sblock.fs_fsize / sectorsize;
sblock.fs_old_cpg = 1;
sblock.fs_old_interleave = 1;
sblock.fs_old_trackskew = 0;
sblock.fs_old_cpc = 0;
sblock.fs_old_postblformat = 1;
sblock.fs_old_nrpos = 1;
} else {
sblock.fs_magic = FS_UFS2_MAGIC;
#if 0 /* XXX makefs is used for small filesystems. */
sblock.fs_sblockloc = SBLOCK_UFS2;
#else
sblock.fs_sblockloc = SBLOCK_UFS1;
#endif
sblock.fs_nindir = sblock.fs_bsize / sizeof(int64_t);
sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs2_dinode);
sblock.fs_maxsymlinklen = ((NDADDR + NIADDR) *
sizeof (int64_t));
}
sblock.fs_sblkno =
roundup(howmany(sblock.fs_sblockloc + SBLOCKSIZE, sblock.fs_fsize),
sblock.fs_frag);
sblock.fs_cblkno = (daddr_t)(sblock.fs_sblkno +
roundup(howmany(SBLOCKSIZE, sblock.fs_fsize), sblock.fs_frag));
sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag;
sblock.fs_maxfilesize = sblock.fs_bsize * NDADDR - 1;
for (sizepb = sblock.fs_bsize, i = 0; i < NIADDR; i++) {
sizepb *= NINDIR(&sblock);
sblock.fs_maxfilesize += sizepb;
}
/*
* Calculate the number of blocks to put into each cylinder group.
*
* This algorithm selects the number of blocks per cylinder
* group. The first goal is to have at least enough data blocks
* in each cylinder group to meet the density requirement. Once
* this goal is achieved we try to expand to have at least
* 1 cylinder group. Once this goal is achieved, we pack as
* many blocks into each cylinder group map as will fit.
*
* We start by calculating the smallest number of blocks that we
* can put into each cylinder group. If this is too big, we reduce
* the density until it fits.
*/
origdensity = density;
for (;;) {
fragsperinode = MAX(numfrags(&sblock, density), 1);
minfpg = fragsperinode * INOPB(&sblock);
if (minfpg > sblock.fs_size)
minfpg = sblock.fs_size;
sblock.fs_ipg = INOPB(&sblock);
sblock.fs_fpg = roundup(sblock.fs_iblkno +
sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag);
if (sblock.fs_fpg < minfpg)
sblock.fs_fpg = minfpg;
sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
INOPB(&sblock));
sblock.fs_fpg = roundup(sblock.fs_iblkno +
sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag);
if (sblock.fs_fpg < minfpg)
sblock.fs_fpg = minfpg;
sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
INOPB(&sblock));
if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize)
break;
density -= sblock.fs_fsize;
}
if (density != origdensity)
printf("density reduced from %d to %d\n", origdensity, density);
if (maxblkspercg <= 0 || maxblkspercg >= fssize)
maxblkspercg = fssize - 1;
/*
* Start packing more blocks into the cylinder group until
* it cannot grow any larger, the number of cylinder groups
* drops below 1, or we reach the size requested.
*/
for ( ; sblock.fs_fpg < maxblkspercg; sblock.fs_fpg += sblock.fs_frag) {
sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
INOPB(&sblock));
if (sblock.fs_size / sblock.fs_fpg < 1)
break;
if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize)
continue;
if (CGSIZE(&sblock) == (unsigned long)sblock.fs_bsize)
break;
sblock.fs_fpg -= sblock.fs_frag;
sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
INOPB(&sblock));
break;
}
/*
* Check to be sure that the last cylinder group has enough blocks
* to be viable. If it is too small, reduce the number of blocks
* per cylinder group which will have the effect of moving more
* blocks into the last cylinder group.
*/
optimalfpg = sblock.fs_fpg;
for (;;) {
sblock.fs_ncg = howmany(sblock.fs_size, sblock.fs_fpg);
lastminfpg = roundup(sblock.fs_iblkno +
sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag);
if (sblock.fs_size < lastminfpg) {
printf("Filesystem size %lld < minimum size of %d\n",
(long long)sblock.fs_size, lastminfpg);
exit(28);
}
if (sblock.fs_size % sblock.fs_fpg >= lastminfpg ||
sblock.fs_size % sblock.fs_fpg == 0)
break;
sblock.fs_fpg -= sblock.fs_frag;
sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
INOPB(&sblock));
}
if (optimalfpg != sblock.fs_fpg)
printf("Reduced frags per cylinder group from %d to %d %s\n",
optimalfpg, sblock.fs_fpg, "to enlarge last cyl group");
sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock));
sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock);
if (Oflag <= 1) {
sblock.fs_old_spc = sblock.fs_fpg * sblock.fs_old_nspf;
sblock.fs_old_nsect = sblock.fs_old_spc;
sblock.fs_old_npsect = sblock.fs_old_spc;
sblock.fs_old_ncyl = sblock.fs_ncg;
}
/*
* fill in remaining fields of the super block
*/
sblock.fs_csaddr = cgdmin(&sblock, 0);
sblock.fs_cssize =
fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
/*
* Setup memory for temporary in-core cylgroup summaries.
* Cribbed from ffs_mountfs().
*/
size = sblock.fs_cssize;
blks = howmany(size, sblock.fs_fsize);
if (sblock.fs_contigsumsize > 0)
size += sblock.fs_ncg * sizeof(int32_t);
if ((space = (char *)calloc(1, size)) == NULL)
err(1, "memory allocation error for cg summaries");
sblock.fs_csp = space;
space = (char *)space + sblock.fs_cssize;
if (sblock.fs_contigsumsize > 0) {
int32_t *lp;
sblock.fs_maxcluster = lp = space;
for (i = 0; i < sblock.fs_ncg; i++)
*lp++ = sblock.fs_contigsumsize;
}
sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs));
if (sblock.fs_sbsize > SBLOCKSIZE)
sblock.fs_sbsize = SBLOCKSIZE;
sblock.fs_minfree = minfree;
sblock.fs_maxcontig = maxcontig;
sblock.fs_maxbpg = maxbpg;
sblock.fs_optim = opt;
sblock.fs_cgrotor = 0;
sblock.fs_pendingblocks = 0;
sblock.fs_pendinginodes = 0;
sblock.fs_cstotal.cs_ndir = 0;
sblock.fs_cstotal.cs_nbfree = 0;
sblock.fs_cstotal.cs_nifree = 0;
sblock.fs_cstotal.cs_nffree = 0;
sblock.fs_fmod = 0;
sblock.fs_ronly = 0;
sblock.fs_state = 0;
sblock.fs_clean = FS_ISCLEAN;
sblock.fs_ronly = 0;
sblock.fs_id[0] = start_time.tv_sec;
sblock.fs_id[1] = random();
sblock.fs_fsmnt[0] = '\0';
csfrags = howmany(sblock.fs_cssize, sblock.fs_fsize);
sblock.fs_dsize = sblock.fs_size - sblock.fs_sblkno -
sblock.fs_ncg * (sblock.fs_dblkno - sblock.fs_sblkno);
sblock.fs_cstotal.cs_nbfree =
fragstoblks(&sblock, sblock.fs_dsize) -
howmany(csfrags, sblock.fs_frag);
sblock.fs_cstotal.cs_nffree =
fragnum(&sblock, sblock.fs_size) +
(fragnum(&sblock, csfrags) > 0 ?
sblock.fs_frag - fragnum(&sblock, csfrags) : 0);
sblock.fs_cstotal.cs_nifree = sblock.fs_ncg * sblock.fs_ipg - ROOTINO;
sblock.fs_cstotal.cs_ndir = 0;
sblock.fs_dsize -= csfrags;
sblock.fs_time = start_time.tv_sec;
if (Oflag <= 1) {
sblock.fs_old_time = start_time.tv_sec;
sblock.fs_old_dsize = sblock.fs_dsize;
sblock.fs_old_csaddr = sblock.fs_csaddr;
sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir;
sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree;
sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree;
sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree;
}
/*
* Dump out summary information about file system.
*/
#define B2MBFACTOR (1 / (1024.0 * 1024.0))
printf("%s: %.1fMB (%lld sectors) block size %d, "
"fragment size %d\n",
fsys, (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
(long long)fsbtodb(&sblock, sblock.fs_size),
sblock.fs_bsize, sblock.fs_fsize);
printf("\tusing %d cylinder groups of %.2fMB, %d blks, "
"%d inodes.\n",
sblock.fs_ncg,
(float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
sblock.fs_fpg / sblock.fs_frag, sblock.fs_ipg);
#undef B2MBFACTOR
/*
* Now determine how wide each column will be, and calculate how
* many columns will fit in a 76 char line. 76 is the width of the
* subwindows in sysinst.
*/
printcolwidth = count_digits(
fsbtodb(&sblock, cgsblock(&sblock, sblock.fs_ncg -1)));
nprintcols = 76 / (printcolwidth + 2);
/*
* allocate space for superblock, cylinder group map, and
* two sets of inode blocks.
*/
if (sblock.fs_bsize < SBLOCKSIZE)
iobufsize = SBLOCKSIZE + 3 * sblock.fs_bsize;
else
iobufsize = 4 * sblock.fs_bsize;
if ((iobuf = malloc(iobufsize)) == 0) {
printf("Cannot allocate I/O buffer\n");
exit(38);
}
memset(iobuf, 0, iobufsize);
/*
* Make a copy of the superblock into the buffer that we will be
* writing out in each cylinder group.
*/
memcpy(writebuf, &sblock, sbsize);
if (fsopts->needswap)
ffs_sb_swap(&sblock, (struct fs*)writebuf);
memcpy(iobuf, writebuf, SBLOCKSIZE);
printf("super-block backups (for fsck -b #) at:");
for (cylno = 0; cylno < sblock.fs_ncg; cylno++) {
initcg(cylno, start_time.tv_sec, fsopts);
if (cylno % nprintcols == 0)
printf("\n");
printf(" %*lld,", printcolwidth,
(long long)fsbtodb(&sblock, cgsblock(&sblock, cylno)));
fflush(stdout);
}
printf("\n");
/*
* Now construct the initial file system,
* then write out the super-block.
*/
sblock.fs_time = start_time.tv_sec;
if (Oflag <= 1) {
sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir;
sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree;
sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree;
sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree;
}
if (fsopts->needswap)
sblock.fs_flags |= FS_SWAPPED;
ffs_write_superblock(&sblock, fsopts);
return (&sblock);
}
/*
* Write out the superblock and its duplicates,
* and the cylinder group summaries
*/
void
ffs_write_superblock(struct fs *fs, const fsinfo_t *fsopts)
{
int cylno, size, blks, i, saveflag;
void *space;
char *wrbuf;
saveflag = fs->fs_flags & FS_INTERNAL;
fs->fs_flags &= ~FS_INTERNAL;
memcpy(writebuf, &sblock, sbsize);
if (fsopts->needswap)
ffs_sb_swap(fs, (struct fs*)writebuf);
ffs_wtfs(fs->fs_sblockloc / sectorsize, sbsize, writebuf, fsopts);
/* Write out the duplicate super blocks */
for (cylno = 0; cylno < fs->fs_ncg; cylno++)
ffs_wtfs(fsbtodb(fs, cgsblock(fs, cylno)),
sbsize, writebuf, fsopts);
/* Write out the cylinder group summaries */
size = fs->fs_cssize;
blks = howmany(size, fs->fs_fsize);
space = (void *)fs->fs_csp;
if ((wrbuf = malloc(size)) == NULL)
err(1, "ffs_write_superblock: malloc %d", size);
for (i = 0; i < blks; i+= fs->fs_frag) {
size = fs->fs_bsize;
if (i + fs->fs_frag > blks)
size = (blks - i) * fs->fs_fsize;
if (fsopts->needswap)
ffs_csum_swap((struct csum *)space,
(struct csum *)wrbuf, size);
else
memcpy(wrbuf, space, (u_int)size);
ffs_wtfs(fsbtodb(fs, fs->fs_csaddr + i), size, wrbuf, fsopts);
space = (char *)space + size;
}
free(wrbuf);
fs->fs_flags |= saveflag;
}
/*
* Initialize a cylinder group.
*/
static void
initcg(int cylno, time_t utime, const fsinfo_t *fsopts)
{
daddr_t cbase, dmax;
int32_t i, j, d, dlower, dupper, blkno;
struct ufs1_dinode *dp1;
struct ufs2_dinode *dp2;
int start;
/*
* Determine block bounds for cylinder group.
* Allow space for super block summary information in first
* cylinder group.
*/
cbase = cgbase(&sblock, cylno);
dmax = cbase + sblock.fs_fpg;
if (dmax > sblock.fs_size)
dmax = sblock.fs_size;
dlower = cgsblock(&sblock, cylno) - cbase;
dupper = cgdmin(&sblock, cylno) - cbase;
if (cylno == 0)
dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
memset(&acg, 0, sblock.fs_cgsize);
acg.cg_time = utime;
acg.cg_magic = CG_MAGIC;
acg.cg_cgx = cylno;
acg.cg_niblk = sblock.fs_ipg;
acg.cg_initediblk = sblock.fs_ipg < 2 * INOPB(&sblock) ?
sblock.fs_ipg : 2 * INOPB(&sblock);
acg.cg_ndblk = dmax - cbase;
if (sblock.fs_contigsumsize > 0)
acg.cg_nclusterblks = acg.cg_ndblk >> sblock.fs_fragshift;
start = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield);
if (Oflag == 2) {
acg.cg_iusedoff = start;
} else {
if (cylno == sblock.fs_ncg - 1)
acg.cg_old_ncyl = howmany(acg.cg_ndblk,
sblock.fs_fpg / sblock.fs_old_cpg);
else
acg.cg_old_ncyl = sblock.fs_old_cpg;
acg.cg_old_time = acg.cg_time;
acg.cg_time = 0;
acg.cg_old_niblk = acg.cg_niblk;
acg.cg_niblk = 0;
acg.cg_initediblk = 0;
acg.cg_old_btotoff = start;
acg.cg_old_boff = acg.cg_old_btotoff +
sblock.fs_old_cpg * sizeof(int32_t);
acg.cg_iusedoff = acg.cg_old_boff +
sblock.fs_old_cpg * sizeof(u_int16_t);
}
acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, CHAR_BIT);
if (sblock.fs_contigsumsize <= 0) {
acg.cg_nextfreeoff = acg.cg_freeoff +
howmany(sblock.fs_fpg, CHAR_BIT);
} else {
acg.cg_clustersumoff = acg.cg_freeoff +
howmany(sblock.fs_fpg, CHAR_BIT) - sizeof(int32_t);
acg.cg_clustersumoff =
roundup(acg.cg_clustersumoff, sizeof(int32_t));
acg.cg_clusteroff = acg.cg_clustersumoff +
(sblock.fs_contigsumsize + 1) * sizeof(int32_t);
acg.cg_nextfreeoff = acg.cg_clusteroff +
howmany(fragstoblks(&sblock, sblock.fs_fpg), CHAR_BIT);
}
if (acg.cg_nextfreeoff > sblock.fs_cgsize) {
printf("Panic: cylinder group too big\n");
exit(37);
}
acg.cg_cs.cs_nifree += sblock.fs_ipg;
if (cylno == 0)
for (i = 0; i < ROOTINO; i++) {
setbit(cg_inosused_swap(&acg, 0), i);
acg.cg_cs.cs_nifree--;
}
if (cylno > 0) {
/*
* In cylno 0, beginning space is reserved
* for boot and super blocks.
*/
for (d = 0, blkno = 0; d < dlower;) {
ffs_setblock(&sblock, cg_blksfree_swap(&acg, 0), blkno);
if (sblock.fs_contigsumsize > 0)
setbit(cg_clustersfree_swap(&acg, 0), blkno);
acg.cg_cs.cs_nbfree++;
d += sblock.fs_frag;
blkno++;
}
}
if ((i = (dupper & (sblock.fs_frag - 1))) != 0) {
acg.cg_frsum[sblock.fs_frag - i]++;
for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
setbit(cg_blksfree_swap(&acg, 0), dupper);
acg.cg_cs.cs_nffree++;
}
}
for (d = dupper, blkno = dupper >> sblock.fs_fragshift;
d + sblock.fs_frag <= acg.cg_ndblk; ) {
ffs_setblock(&sblock, cg_blksfree_swap(&acg, 0), blkno);
if (sblock.fs_contigsumsize > 0)
setbit(cg_clustersfree_swap(&acg, 0), blkno);
acg.cg_cs.cs_nbfree++;
d += sblock.fs_frag;
blkno++;
}
if (d < acg.cg_ndblk) {
acg.cg_frsum[acg.cg_ndblk - d]++;
for (; d < acg.cg_ndblk; d++) {
setbit(cg_blksfree_swap(&acg, 0), d);
acg.cg_cs.cs_nffree++;
}
}
if (sblock.fs_contigsumsize > 0) {
int32_t *sump = cg_clustersum_swap(&acg, 0);
u_char *mapp = cg_clustersfree_swap(&acg, 0);
int map = *mapp++;
int bit = 1;
int run = 0;
for (i = 0; i < acg.cg_nclusterblks; i++) {
if ((map & bit) != 0) {
run++;
} else if (run != 0) {
if (run > sblock.fs_contigsumsize)
run = sblock.fs_contigsumsize;
sump[run]++;
run = 0;
}
if ((i & (CHAR_BIT - 1)) != (CHAR_BIT - 1)) {
bit <<= 1;
} else {
map = *mapp++;
bit = 1;
}
}
if (run != 0) {
if (run > sblock.fs_contigsumsize)
run = sblock.fs_contigsumsize;
sump[run]++;
}
}
sblock.fs_cs(&sblock, cylno) = acg.cg_cs;
/*
* Write out the duplicate super block, the cylinder group map
* and two blocks worth of inodes in a single write.
*/
start = sblock.fs_bsize > SBLOCKSIZE ? sblock.fs_bsize : SBLOCKSIZE;
memcpy(&iobuf[start], &acg, sblock.fs_cgsize);
if (fsopts->needswap)
ffs_cg_swap(&acg, (struct cg*)&iobuf[start], &sblock);
start += sblock.fs_bsize;
dp1 = (struct ufs1_dinode *)(&iobuf[start]);
dp2 = (struct ufs2_dinode *)(&iobuf[start]);
for (i = 0; i < acg.cg_initediblk; i++) {
if (sblock.fs_magic == FS_UFS1_MAGIC) {
/* No need to swap, it'll stay random */
dp1->di_gen = random();
dp1++;
} else {
dp2->di_gen = random();
dp2++;
}
}
ffs_wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)), iobufsize, iobuf,
fsopts);
/*
* For the old file system, we have to initialize all the inodes.
*/
if (Oflag <= 1) {
for (i = 2 * sblock.fs_frag;
i < sblock.fs_ipg / INOPF(&sblock);
i += sblock.fs_frag) {
dp1 = (struct ufs1_dinode *)(&iobuf[start]);
for (j = 0; j < INOPB(&sblock); j++) {
dp1->di_gen = random();
dp1++;
}
ffs_wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i),
sblock.fs_bsize, &iobuf[start], fsopts);
}
}
}
/*
* read a block from the file system
*/
void
ffs_rdfs(daddr_t bno, int size, void *bf, const fsinfo_t *fsopts)
{
int n;
off_t offset;
offset = bno;
offset *= fsopts->sectorsize;
if (lseek(fsopts->fd, offset, SEEK_SET) < 0)
err(1, "ffs_rdfs: seek error for sector %lld: %s\n",
(long long)bno, strerror(errno));
n = read(fsopts->fd, bf, size);
if (n == -1) {
abort();
err(1, "ffs_rdfs: read error bno %lld size %d", (long long)bno,
size);
}
else if (n != size)
errx(1, "ffs_rdfs: read error for sector %lld: %s\n",
(long long)bno, strerror(errno));
}
/*
* write a block to the file system
*/
void
ffs_wtfs(daddr_t bno, int size, void *bf, const fsinfo_t *fsopts)
{
int n;
off_t offset;
offset = bno;
offset *= fsopts->sectorsize;
if (lseek(fsopts->fd, offset, SEEK_SET) < 0)
err(1, "wtfs: seek error for sector %lld: %s\n",
(long long)bno, strerror(errno));
n = write(fsopts->fd, bf, size);
if (n == -1)
err(1, "wtfs: write error for sector %lld: %s\n",
(long long)bno, strerror(errno));
else if (n != size)
errx(1, "wtfs: write error for sector %lld: %s\n",
(long long)bno, strerror(errno));
}
/* Determine how many digits are needed to print a given integer */
static int
count_digits(int num)
{
int ndig;
for(ndig = 1; num > 9; num /=10, ndig++);
return (ndig);
}
static int
ilog2(int val)
{
u_int n;
for (n = 0; n < sizeof(n) * CHAR_BIT; n++)
if (1 << n == val)
return (n);
errx(1, "ilog2: %d is not a power of 2\n", val);
}