1
0
mirror of https://git.FreeBSD.org/src.git synced 2025-01-17 15:27:36 +00:00
freebsd/sys/netatalk/at_control.c
Robert Watson c1aee61218 Reverse misordered unlock and lock in at_control for netatalk phase I
addresses.

Submitted by:	Russell Cattelan <cattelan at thebarn.com>
Approved by:	re (kib)
2009-08-12 10:44:13 +00:00

887 lines
23 KiB
C

/*-
* Copyright (c) 1990,1991 Regents of The University of Michigan.
* Copyright (c) 2009 Robert N. M. Watson
* All Rights Reserved.
*
* Permission to use, copy, modify, and distribute this software and
* its documentation for any purpose and without fee is hereby granted,
* provided that the above copyright notice appears in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation, and that the name of The University
* of Michigan not be used in advertising or publicity pertaining to
* distribution of the software without specific, written prior
* permission. This software is supplied as is without expressed or
* implied warranties of any kind.
*
* This product includes software developed by the University of
* California, Berkeley and its contributors.
*
* Research Systems Unix Group
* The University of Michigan
* c/o Wesley Craig
* 535 W. William Street
* Ann Arbor, Michigan
* +1-313-764-2278
* netatalk@umich.edu
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sockio.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/priv.h>
#include <sys/rwlock.h>
#include <sys/socket.h>
#include <net/if.h>
#include <net/route.h>
#include <netinet/in.h>
#undef s_net
#include <netinet/if_ether.h>
#include <netatalk/at.h>
#include <netatalk/at_var.h>
#include <netatalk/at_extern.h>
struct rwlock at_ifaddr_rw;
struct at_ifaddrhead at_ifaddrhead;
RW_SYSINIT(at_ifaddr_rw, &at_ifaddr_rw, "at_ifaddr_rw");
static int aa_dorangeroute(struct ifaddr *ifa, u_int first, u_int last,
int cmd);
static int aa_addsingleroute(struct ifaddr *ifa, struct at_addr *addr,
struct at_addr *mask);
static int aa_delsingleroute(struct ifaddr *ifa, struct at_addr *addr,
struct at_addr *mask);
static int aa_dosingleroute(struct ifaddr *ifa, struct at_addr *addr,
struct at_addr *mask, int cmd, int flags);
static int at_scrub(struct ifnet *ifp, struct at_ifaddr *aa);
static int at_ifinit(struct ifnet *ifp, struct at_ifaddr *aa,
struct sockaddr_at *sat);
static int aa_claim_addr(struct ifaddr *ifa, struct sockaddr *gw);
#define sateqaddr(a,b) \
((a)->sat_len == (b)->sat_len && \
(a)->sat_family == (b)->sat_family && \
(a)->sat_addr.s_net == (b)->sat_addr.s_net && \
(a)->sat_addr.s_node == (b)->sat_addr.s_node)
int
at_control(struct socket *so, u_long cmd, caddr_t data, struct ifnet *ifp,
struct thread *td)
{
struct ifreq *ifr = (struct ifreq *)data;
struct sockaddr_at *sat;
struct netrange *nr;
struct at_aliasreq *ifra = (struct at_aliasreq *)data;
struct at_ifaddr *aa;
struct ifaddr *ifa;
int error;
/*
* If we have an ifp, then find the matching at_ifaddr if it exists
*/
aa = NULL;
AT_IFADDR_RLOCK();
if (ifp != NULL) {
TAILQ_FOREACH(aa, &at_ifaddrhead, aa_link) {
if (aa->aa_ifp == ifp)
break;
}
}
if (aa != NULL)
ifa_ref(&aa->aa_ifa);
AT_IFADDR_RUNLOCK();
/*
* In this first switch table we are basically getting ready for
* the second one, by getting the atalk-specific things set up
* so that they start to look more similar to other protocols etc.
*/
error = 0;
switch (cmd) {
case SIOCAIFADDR:
case SIOCDIFADDR:
/*
* If we have an appletalk sockaddr, scan forward of where we
* are now on the at_ifaddr list to find one with a matching
* address on this interface. This may leave aa pointing to
* the first address on the NEXT interface!
*/
if (ifra->ifra_addr.sat_family == AF_APPLETALK) {
struct at_ifaddr *oaa;
AT_IFADDR_RLOCK();
for (oaa = aa; aa; aa = TAILQ_NEXT(aa, aa_link)) {
if (aa->aa_ifp == ifp &&
sateqaddr(&aa->aa_addr, &ifra->ifra_addr))
break;
}
if (oaa != NULL && oaa != aa)
ifa_free(&oaa->aa_ifa);
if (aa != NULL && oaa != aa)
ifa_ref(&aa->aa_ifa);
AT_IFADDR_RUNLOCK();
}
/*
* If we a retrying to delete an addres but didn't find such,
* then rewurn with an error
*/
if (cmd == SIOCDIFADDR && aa == NULL) {
error = EADDRNOTAVAIL;
goto out;
}
/*FALLTHROUGH*/
case SIOCSIFADDR:
/*
* If we are not superuser, then we don't get to do these ops.
*
* XXXRW: Layering?
*/
if (priv_check(td, PRIV_NET_ADDIFADDR)) {
error = EPERM;
goto out;
}
sat = satosat(&ifr->ifr_addr);
nr = (struct netrange *)sat->sat_zero;
if (nr->nr_phase == 1) {
struct at_ifaddr *oaa;
/*
* Look for a phase 1 address on this interface.
* This may leave aa pointing to the first address on
* the NEXT interface!
*/
AT_IFADDR_RLOCK();
for (oaa = aa; aa; aa = TAILQ_NEXT(aa, aa_link)) {
if (aa->aa_ifp == ifp &&
(aa->aa_flags & AFA_PHASE2) == 0)
break;
}
if (oaa != NULL && oaa != aa)
ifa_free(&oaa->aa_ifa);
if (aa != NULL && oaa != aa)
ifa_ref(&aa->aa_ifa);
AT_IFADDR_RUNLOCK();
} else { /* default to phase 2 */
struct at_ifaddr *oaa;
/*
* Look for a phase 2 address on this interface.
* This may leave aa pointing to the first address on
* the NEXT interface!
*/
AT_IFADDR_RLOCK();
for (oaa = aa; aa; aa = TAILQ_NEXT(aa, aa_link)) {
if (aa->aa_ifp == ifp && (aa->aa_flags &
AFA_PHASE2))
break;
}
if (oaa != NULL && oaa != aa)
ifa_free(&oaa->aa_ifa);
if (aa != NULL && oaa != aa)
ifa_ref(&aa->aa_ifa);
AT_IFADDR_RUNLOCK();
}
if (ifp == NULL)
panic("at_control");
/*
* If we failed to find an existing at_ifaddr entry, then we
* allocate a fresh one.
*/
if (aa == NULL) {
aa = malloc(sizeof(struct at_ifaddr), M_IFADDR,
M_NOWAIT | M_ZERO);
if (aa == NULL) {
error = ENOBUFS;
goto out;
}
callout_init(&aa->aa_callout, CALLOUT_MPSAFE);
ifa = (struct ifaddr *)aa;
ifa_init(ifa);
/*
* As the at_ifaddr contains the actual sockaddrs,
* and the ifaddr itself, link them all together
* correctly.
*/
ifa->ifa_addr = (struct sockaddr *)&aa->aa_addr;
ifa->ifa_dstaddr = (struct sockaddr *)&aa->aa_addr;
ifa->ifa_netmask = (struct sockaddr *)&aa->aa_netmask;
/*
* Set/clear the phase 2 bit.
*/
if (nr->nr_phase == 1)
aa->aa_flags &= ~AFA_PHASE2;
else
aa->aa_flags |= AFA_PHASE2;
ifa_ref(&aa->aa_ifa); /* at_ifaddrhead */
AT_IFADDR_WLOCK();
if (!TAILQ_EMPTY(&at_ifaddrhead)) {
/*
* Don't let the loopback be first, since the
* first address is the machine's default
* address for binding. If it is, stick
* ourself in front, otherwise go to the back
* of the list.
*/
if (TAILQ_FIRST(&at_ifaddrhead)->aa_ifp->
if_flags & IFF_LOOPBACK)
TAILQ_INSERT_HEAD(&at_ifaddrhead, aa,
aa_link);
else
TAILQ_INSERT_TAIL(&at_ifaddrhead, aa,
aa_link);
} else
TAILQ_INSERT_HEAD(&at_ifaddrhead, aa,
aa_link);
AT_IFADDR_WUNLOCK();
/*
* and link it all together
*/
aa->aa_ifp = ifp;
ifa_ref(&aa->aa_ifa); /* if_addrhead */
IF_ADDR_LOCK(ifp);
TAILQ_INSERT_TAIL(&ifp->if_addrhead, ifa, ifa_link);
IF_ADDR_UNLOCK(ifp);
} else {
/*
* If we DID find one then we clobber any routes
* dependent on it..
*/
at_scrub(ifp, aa);
}
break;
case SIOCGIFADDR :
sat = satosat(&ifr->ifr_addr);
nr = (struct netrange *)sat->sat_zero;
if (nr->nr_phase == 1) {
struct at_ifaddr *oaa;
/*
* If the request is specifying phase 1, then
* only look at a phase one address
*/
AT_IFADDR_RLOCK();
for (oaa = aa; aa; aa = TAILQ_NEXT(aa, aa_link)) {
if (aa->aa_ifp == ifp &&
(aa->aa_flags & AFA_PHASE2) == 0)
break;
}
if (oaa != NULL && oaa != aa)
ifa_free(&oaa->aa_ifa);
if (aa != NULL && oaa != aa)
ifa_ref(&aa->aa_ifa);
AT_IFADDR_RUNLOCK();
} else {
struct at_ifaddr *oaa;
/*
* default to phase 2
*/
AT_IFADDR_RLOCK();
for (oaa = aa; aa; aa = TAILQ_NEXT(aa, aa_link)) {
if (aa->aa_ifp == ifp && (aa->aa_flags &
AFA_PHASE2))
break;
}
if (oaa != NULL && oaa != aa)
ifa_free(&oaa->aa_ifa);
if (aa != NULL && oaa != aa)
ifa_ref(&aa->aa_ifa);
AT_IFADDR_RUNLOCK();
}
if (aa == NULL) {
error = EADDRNOTAVAIL;
goto out;
}
break;
}
/*
* By the time this switch is run we should be able to assume that
* the "aa" pointer is valid when needed.
*/
switch (cmd) {
case SIOCGIFADDR:
/*
* copy the contents of the sockaddr blindly.
*/
sat = (struct sockaddr_at *)&ifr->ifr_addr;
*sat = aa->aa_addr;
/*
* and do some cleanups
*/
((struct netrange *)&sat->sat_zero)->nr_phase
= (aa->aa_flags & AFA_PHASE2) ? 2 : 1;
((struct netrange *)&sat->sat_zero)->nr_firstnet =
aa->aa_firstnet;
((struct netrange *)&sat->sat_zero)->nr_lastnet =
aa->aa_lastnet;
break;
case SIOCSIFADDR:
error = at_ifinit(ifp, aa,
(struct sockaddr_at *)&ifr->ifr_addr);
goto out;
case SIOCAIFADDR:
if (sateqaddr(&ifra->ifra_addr, &aa->aa_addr)) {
error = 0;
goto out;
}
error = at_ifinit(ifp, aa,
(struct sockaddr_at *)&ifr->ifr_addr);
goto out;
case SIOCDIFADDR:
/*
* remove the ifaddr from the interface
*/
ifa = (struct ifaddr *)aa;
IF_ADDR_LOCK(ifp);
TAILQ_REMOVE(&ifp->if_addrhead, ifa, ifa_link);
IF_ADDR_UNLOCK(ifp);
ifa_free(ifa); /* if_addrhead */
/*
* Now remove the at_ifaddr from the parallel structure
* as well, or we'd be in deep trouble
*/
AT_IFADDR_WLOCK();
TAILQ_REMOVE(&at_ifaddrhead, aa, aa_link);
AT_IFADDR_WUNLOCK();
ifa_free(ifa); /* at_ifaddrhead */
break;
default:
if (ifp == NULL || ifp->if_ioctl == NULL) {
error = EOPNOTSUPP;
goto out;
}
error = ((*ifp->if_ioctl)(ifp, cmd, data));
}
out:
if (aa != NULL)
ifa_free(&aa->aa_ifa);
return (error);
}
/*
* Given an interface and an at_ifaddr (supposedly on that interface)
* remove any routes that depend on this.
* Why ifp is needed I'm not sure,
* as aa->at_ifaddr.ifa_ifp should be the same.
*/
static int
at_scrub(struct ifnet *ifp, struct at_ifaddr *aa)
{
int error;
if (aa->aa_flags & AFA_ROUTE) {
if (ifp->if_flags & IFF_LOOPBACK) {
if ((error = aa_delsingleroute(&aa->aa_ifa,
&aa->aa_addr.sat_addr, &aa->aa_netmask.sat_addr))
!= 0)
return (error);
} else if (ifp->if_flags & IFF_POINTOPOINT) {
if ((error = rtinit(&aa->aa_ifa, RTM_DELETE,
RTF_HOST)) != 0)
return (error);
} else if (ifp->if_flags & IFF_BROADCAST) {
error = aa_dorangeroute(&aa->aa_ifa,
ntohs(aa->aa_firstnet), ntohs(aa->aa_lastnet),
RTM_DELETE);
}
aa->aa_ifa.ifa_flags &= ~IFA_ROUTE;
aa->aa_flags &= ~AFA_ROUTE;
}
return (0);
}
/*
* given an at_ifaddr,a sockaddr_at and an ifp,
* bang them all together at high speed and see what happens
*/
static int
at_ifinit(struct ifnet *ifp, struct at_ifaddr *aa, struct sockaddr_at *sat)
{
struct netrange nr, onr;
struct sockaddr_at oldaddr;
int error = 0, i, j;
int netinc, nodeinc, nnets;
u_short net;
/*
* save the old addresses in the at_ifaddr just in case we need them.
*/
oldaddr = aa->aa_addr;
onr.nr_firstnet = aa->aa_firstnet;
onr.nr_lastnet = aa->aa_lastnet;
/*
* take the address supplied as an argument, and add it to the
* at_ifnet (also given). Remember ing to update
* those parts of the at_ifaddr that need special processing
*/
bzero(AA_SAT(aa), sizeof(struct sockaddr_at));
bcopy(sat->sat_zero, &nr, sizeof(struct netrange));
bcopy(sat->sat_zero, AA_SAT(aa)->sat_zero, sizeof(struct netrange));
nnets = ntohs(nr.nr_lastnet) - ntohs(nr.nr_firstnet) + 1;
aa->aa_firstnet = nr.nr_firstnet;
aa->aa_lastnet = nr.nr_lastnet;
/* XXX ALC */
#if 0
printf("at_ifinit: %s: %u.%u range %u-%u phase %d\n",
ifp->if_name,
ntohs(sat->sat_addr.s_net), sat->sat_addr.s_node,
ntohs(aa->aa_firstnet), ntohs(aa->aa_lastnet),
(aa->aa_flags & AFA_PHASE2) ? 2 : 1);
#endif
/*
* We could eliminate the need for a second phase 1 probe (post
* autoconf) if we check whether we're resetting the node. Note
* that phase 1 probes use only nodes, not net.node pairs. Under
* phase 2, both the net and node must be the same.
*/
if (ifp->if_flags & IFF_LOOPBACK) {
AA_SAT(aa)->sat_len = sat->sat_len;
AA_SAT(aa)->sat_family = AF_APPLETALK;
AA_SAT(aa)->sat_addr.s_net = sat->sat_addr.s_net;
AA_SAT(aa)->sat_addr.s_node = sat->sat_addr.s_node;
#if 0
} else if (fp->if_flags & IFF_POINTOPOINT) {
/* unimplemented */
/*
* we'd have to copy the dstaddr field over from the sat
* but it's not clear that it would contain the right info..
*/
#endif
} else {
/*
* We are a normal (probably ethernet) interface.
* apply the new address to the interface structures etc.
* We will probe this address on the net first, before
* applying it to ensure that it is free.. If it is not, then
* we will try a number of other randomly generated addresses
* in this net and then increment the net. etc.etc. until
* we find an unused address.
*/
aa->aa_flags |= AFA_PROBING; /* not loopback we Must probe? */
AA_SAT(aa)->sat_len = sizeof(struct sockaddr_at);
AA_SAT(aa)->sat_family = AF_APPLETALK;
if (aa->aa_flags & AFA_PHASE2) {
if (sat->sat_addr.s_net == ATADDR_ANYNET) {
/*
* If we are phase 2, and the net was not
* specified then we select a random net
* within the supplied netrange.
* XXX use /dev/random?
*/
if (nnets != 1)
net = ntohs(nr.nr_firstnet) +
time_second % (nnets - 1);
else
net = ntohs(nr.nr_firstnet);
} else {
/*
* if a net was supplied, then check that it
* is within the netrange. If it is not then
* replace the old values and return an error
*/
if (ntohs(sat->sat_addr.s_net) <
ntohs(nr.nr_firstnet) ||
ntohs(sat->sat_addr.s_net) >
ntohs(nr.nr_lastnet)) {
aa->aa_addr = oldaddr;
aa->aa_firstnet = onr.nr_firstnet;
aa->aa_lastnet = onr.nr_lastnet;
return (EINVAL);
}
/*
* otherwise just use the new net number..
*/
net = ntohs(sat->sat_addr.s_net);
}
} else {
/*
* we must be phase one, so just use whatever we were
* given. I guess it really isn't going to be
* used... RIGHT?
*/
net = ntohs(sat->sat_addr.s_net);
}
/*
* set the node part of the address into the ifaddr.
* If it's not specified, be random about it...
* XXX use /dev/random?
*/
if (sat->sat_addr.s_node == ATADDR_ANYNODE)
AA_SAT(aa)->sat_addr.s_node = time_second;
else
AA_SAT(aa)->sat_addr.s_node = sat->sat_addr.s_node;
/*
* Copy the phase.
*/
AA_SAT(aa)->sat_range.r_netrange.nr_phase =
((aa->aa_flags & AFA_PHASE2) ? 2:1);
/*
* step through the nets in the range
* starting at the (possibly random) start point.
*/
for (i = nnets, netinc = 1; i > 0; net =
ntohs(nr.nr_firstnet) + ((net - ntohs(nr.nr_firstnet) +
netinc) % nnets), i--) {
AA_SAT(aa)->sat_addr.s_net = htons(net);
/*
* using a rather strange stepping method,
* stagger through the possible node addresses
* Once again, starting at the (possibly random)
* initial node address.
*/
for (j = 0, nodeinc = time_second | 1; j < 256;
j++, AA_SAT(aa)->sat_addr.s_node += nodeinc) {
if (AA_SAT(aa)->sat_addr.s_node > 253 ||
AA_SAT(aa)->sat_addr.s_node < 1)
continue;
aa->aa_probcnt = 10;
/*
* start off the probes as an asynchronous
* activity. though why wait 200mSec?
*/
AARPTAB_LOCK();
callout_reset(&aa->aa_callout, hz / 5,
aarpprobe, ifp);
if (msleep(aa, &aarptab_mtx, PPAUSE|PCATCH,
"at_ifinit", 0)) {
AARPTAB_UNLOCK();
/*
* theoretically we shouldn't time
* out here so if we returned with an
* error..
*/
printf("at_ifinit: why did this "
"happen?!\n");
aa->aa_addr = oldaddr;
aa->aa_firstnet = onr.nr_firstnet;
aa->aa_lastnet = onr.nr_lastnet;
return (EINTR);
}
AARPTAB_UNLOCK();
/*
* The async activity should have woken us
* up. We need to see if it was successful
* in finding a free spot, or if we need to
* iterate to the next address to try.
*/
if ((aa->aa_flags & AFA_PROBING) == 0)
break;
}
/*
* of course we need to break out through two loops...
*/
if ((aa->aa_flags & AFA_PROBING) == 0)
break;
/* reset node for next network */
AA_SAT(aa)->sat_addr.s_node = time_second;
}
/*
* if we are still trying to probe, then we have finished all
* the possible addresses, so we need to give up
*/
if (aa->aa_flags & AFA_PROBING) {
aa->aa_addr = oldaddr;
aa->aa_firstnet = onr.nr_firstnet;
aa->aa_lastnet = onr.nr_lastnet;
return (EADDRINUSE);
}
}
/*
* Now that we have selected an address, we need to tell the interface
* about it, just in case it needs to adjust something.
*/
if (ifp->if_ioctl != NULL &&
(error = (*ifp->if_ioctl)(ifp, SIOCSIFADDR, (caddr_t)aa))) {
/*
* of course this could mean that it objects violently
* so if it does, we back out again..
*/
aa->aa_addr = oldaddr;
aa->aa_firstnet = onr.nr_firstnet;
aa->aa_lastnet = onr.nr_lastnet;
return (error);
}
/*
* set up the netmask part of the at_ifaddr
* and point the appropriate pointer in the ifaddr to it.
* probably pointless, but what the heck.. XXX
*/
bzero(&aa->aa_netmask, sizeof(aa->aa_netmask));
aa->aa_netmask.sat_len = sizeof(struct sockaddr_at);
aa->aa_netmask.sat_family = AF_APPLETALK;
aa->aa_netmask.sat_addr.s_net = 0xffff;
aa->aa_netmask.sat_addr.s_node = 0;
aa->aa_ifa.ifa_netmask =(struct sockaddr *) &(aa->aa_netmask); /* XXX */
/*
* Initialize broadcast (or remote p2p) address
*/
bzero(&aa->aa_broadaddr, sizeof(aa->aa_broadaddr));
aa->aa_broadaddr.sat_len = sizeof(struct sockaddr_at);
aa->aa_broadaddr.sat_family = AF_APPLETALK;
aa->aa_ifa.ifa_metric = ifp->if_metric;
if (ifp->if_flags & IFF_BROADCAST) {
aa->aa_broadaddr.sat_addr.s_net = htons(0);
aa->aa_broadaddr.sat_addr.s_node = 0xff;
aa->aa_ifa.ifa_broadaddr = (struct sockaddr *)
&aa->aa_broadaddr;
/* add the range of routes needed */
error = aa_dorangeroute(&aa->aa_ifa, ntohs(aa->aa_firstnet),
ntohs(aa->aa_lastnet), RTM_ADD);
} else if (ifp->if_flags & IFF_POINTOPOINT) {
struct at_addr rtaddr, rtmask;
bzero(&rtaddr, sizeof(rtaddr));
bzero(&rtmask, sizeof(rtmask));
/* fill in the far end if we know it here XXX */
aa->aa_ifa.ifa_dstaddr = (struct sockaddr *) &aa->aa_dstaddr;
error = aa_addsingleroute(&aa->aa_ifa, &rtaddr, &rtmask);
} else if (ifp->if_flags & IFF_LOOPBACK) {
struct at_addr rtaddr, rtmask;
bzero(&rtaddr, sizeof(rtaddr));
bzero(&rtmask, sizeof(rtmask));
rtaddr.s_net = AA_SAT(aa)->sat_addr.s_net;
rtaddr.s_node = AA_SAT(aa)->sat_addr.s_node;
rtmask.s_net = 0xffff;
/* XXX should not be so.. should be HOST route */
rtmask.s_node = 0x0;
error = aa_addsingleroute(&aa->aa_ifa, &rtaddr, &rtmask);
}
/*
* set the address of our "check if this addr is ours" routine.
*/
aa->aa_ifa.ifa_claim_addr = aa_claim_addr;
/*
* of course if we can't add these routes we back out, but it's
* getting risky by now XXX
*/
if (error) {
at_scrub(ifp, aa);
aa->aa_addr = oldaddr;
aa->aa_firstnet = onr.nr_firstnet;
aa->aa_lastnet = onr.nr_lastnet;
return (error);
}
/*
* note that the address has a route associated with it....
*/
aa->aa_ifa.ifa_flags |= IFA_ROUTE;
aa->aa_flags |= AFA_ROUTE;
return (0);
}
/*
* check whether a given address is a broadcast address for us..
*/
int
at_broadcast(struct sockaddr_at *sat)
{
struct at_ifaddr *aa;
AT_IFADDR_LOCK_ASSERT();
/*
* If the node is not right, it can't be a broadcast
*/
if (sat->sat_addr.s_node != ATADDR_BCAST)
return (0);
/*
* If the node was right then if the net is right, it's a broadcast
*/
if (sat->sat_addr.s_net == ATADDR_ANYNET)
return (1);
/*
* failing that, if the net is one we have, it's a broadcast as well.
*/
TAILQ_FOREACH(aa, &at_ifaddrhead, aa_link) {
if ((aa->aa_ifp->if_flags & IFF_BROADCAST)
&& (ntohs(sat->sat_addr.s_net) >= ntohs(aa->aa_firstnet)
&& ntohs(sat->sat_addr.s_net) <= ntohs(aa->aa_lastnet)))
return (1);
}
return (0);
}
/*
* aa_dorangeroute()
*
* Add a route for a range of networks from bot to top - 1.
* Algorithm:
*
* Split the range into two subranges such that the middle
* of the two ranges is the point where the highest bit of difference
* between the two addresses makes its transition.
* Each of the upper and lower ranges might not exist, or might be
* representable by 1 or more netmasks. In addition, if both
* ranges can be represented by the same netmask, then they can be merged
* by using the next higher netmask..
*/
static int
aa_dorangeroute(struct ifaddr *ifa, u_int bot, u_int top, int cmd)
{
u_int mask1;
struct at_addr addr;
struct at_addr mask;
int error;
/*
* slight sanity check
*/
if (bot > top) return (EINVAL);
addr.s_node = 0;
mask.s_node = 0;
/*
* just start out with the lowest boundary
* and keep extending the mask till it's too big.
*/
while (bot <= top) {
mask1 = 1;
while (((bot & ~mask1) >= bot) && ((bot | mask1) <= top)) {
mask1 <<= 1;
mask1 |= 1;
}
mask1 >>= 1;
mask.s_net = htons(~mask1);
addr.s_net = htons(bot);
if (cmd == RTM_ADD) {
error = aa_addsingleroute(ifa,&addr,&mask);
if (error) {
/* XXX clean up? */
return (error);
}
} else
error = aa_delsingleroute(ifa,&addr,&mask);
bot = (bot | mask1) + 1;
}
return (0);
}
static int
aa_addsingleroute(struct ifaddr *ifa, struct at_addr *addr,
struct at_addr *mask)
{
#if 0
printf("aa_addsingleroute: %x.%x mask %x.%x ...\n",
ntohs(addr->s_net), addr->s_node, ntohs(mask->s_net),
mask->s_node);
#endif
return (aa_dosingleroute(ifa, addr, mask, RTM_ADD, RTF_UP));
}
static int
aa_delsingleroute(struct ifaddr *ifa, struct at_addr *addr,
struct at_addr *mask)
{
return (aa_dosingleroute(ifa, addr, mask, RTM_DELETE, 0));
}
static int
aa_dosingleroute(struct ifaddr *ifa, struct at_addr *at_addr,
struct at_addr *at_mask, int cmd, int flags)
{
struct sockaddr_at addr, mask;
bzero(&addr, sizeof(addr));
bzero(&mask, sizeof(mask));
addr.sat_family = AF_APPLETALK;
addr.sat_len = sizeof(struct sockaddr_at);
addr.sat_addr.s_net = at_addr->s_net;
addr.sat_addr.s_node = at_addr->s_node;
mask.sat_family = AF_APPLETALK;
mask.sat_len = sizeof(struct sockaddr_at);
mask.sat_addr.s_net = at_mask->s_net;
mask.sat_addr.s_node = at_mask->s_node;
if (at_mask->s_node)
flags |= RTF_HOST;
return (rtrequest(cmd, (struct sockaddr *) &addr,
(flags & RTF_HOST)?(ifa->ifa_dstaddr):(ifa->ifa_addr),
(struct sockaddr *) &mask, flags, NULL));
}
static int
aa_claim_addr(struct ifaddr *ifa, struct sockaddr *gw0)
{
struct sockaddr_at *addr = (struct sockaddr_at *)ifa->ifa_addr;
struct sockaddr_at *gw = (struct sockaddr_at *)gw0;
switch (gw->sat_range.r_netrange.nr_phase) {
case 1:
if(addr->sat_range.r_netrange.nr_phase == 1)
return (1);
case 0:
case 2:
/*
* if it's our net (including 0),
* or netranges are valid, and we are in the range,
* then it's ours.
*/
if ((addr->sat_addr.s_net == gw->sat_addr.s_net)
|| ((addr->sat_range.r_netrange.nr_lastnet)
&& (ntohs(gw->sat_addr.s_net) >=
ntohs(addr->sat_range.r_netrange.nr_firstnet))
&& (ntohs(gw->sat_addr.s_net) <=
ntohs(addr->sat_range.r_netrange.nr_lastnet))))
return (1);
break;
default:
printf("atalk: bad phase\n");
}
return (0);
}