mirror of
https://git.FreeBSD.org/src.git
synced 2025-01-11 14:10:34 +00:00
562 lines
12 KiB
C
562 lines
12 KiB
C
/* Simple data type for positive real numbers for the GNU compiler.
|
|
Copyright (C) 2002, 2003 Free Software Foundation, Inc.
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify it under
|
|
the terms of the GNU General Public License as published by the Free
|
|
Software Foundation; either version 2, or (at your option) any later
|
|
version.
|
|
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GCC; see the file COPYING. If not, write to the Free
|
|
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
|
|
02111-1307, USA. */
|
|
|
|
/* This library supports positive real numbers and 0;
|
|
inf and nan are NOT supported.
|
|
It is written to be simple and fast.
|
|
|
|
Value of sreal is
|
|
x = sig * 2 ^ exp
|
|
where
|
|
sig = significant
|
|
(for < 64-bit machines sig = sig_lo + sig_hi * 2 ^ SREAL_PART_BITS)
|
|
exp = exponent
|
|
|
|
One HOST_WIDE_INT is used for the significant on 64-bit (and more than
|
|
64-bit) machines,
|
|
otherwise two HOST_WIDE_INTs are used for the significant.
|
|
Only a half of significant bits is used (in normalized sreals) so that we do
|
|
not have problems with overflow, for example when c->sig = a->sig * b->sig.
|
|
So the precision for 64-bit and 32-bit machines is 32-bit.
|
|
|
|
Invariant: The numbers are normalized before and after each call of sreal_*.
|
|
|
|
Normalized sreals:
|
|
All numbers (except zero) meet following conditions:
|
|
SREAL_MIN_SIG <= sig && sig <= SREAL_MAX_SIG
|
|
-SREAL_MAX_EXP <= exp && exp <= SREAL_MAX_EXP
|
|
|
|
If the number would be too large, it is set to upper bounds of these
|
|
conditions.
|
|
|
|
If the number is zero or would be too small it meets following conditions:
|
|
sig == 0 && exp == -SREAL_MAX_EXP
|
|
*/
|
|
|
|
#include "config.h"
|
|
#include "system.h"
|
|
#include "coretypes.h"
|
|
#include "tm.h"
|
|
#include "sreal.h"
|
|
|
|
static inline void copy (sreal *, sreal *);
|
|
static inline void shift_right (sreal *, int);
|
|
static void normalize (sreal *);
|
|
|
|
/* Print the content of struct sreal. */
|
|
|
|
void
|
|
dump_sreal (FILE *file, sreal *x)
|
|
{
|
|
#if SREAL_PART_BITS < 32
|
|
fprintf (file, "((" HOST_WIDE_INT_PRINT_UNSIGNED " * 2^16 + "
|
|
HOST_WIDE_INT_PRINT_UNSIGNED ") * 2^%d)",
|
|
x->sig_hi, x->sig_lo, x->exp);
|
|
#else
|
|
fprintf (file, "(" HOST_WIDE_INT_PRINT_UNSIGNED " * 2^%d)", x->sig, x->exp);
|
|
#endif
|
|
}
|
|
|
|
/* Copy the sreal number. */
|
|
|
|
static inline void
|
|
copy (sreal *r, sreal *a)
|
|
{
|
|
#if SREAL_PART_BITS < 32
|
|
r->sig_lo = a->sig_lo;
|
|
r->sig_hi = a->sig_hi;
|
|
#else
|
|
r->sig = a->sig;
|
|
#endif
|
|
r->exp = a->exp;
|
|
}
|
|
|
|
/* Shift X right by S bits. Needed: 0 < S <= SREAL_BITS.
|
|
When the most significant bit shifted out is 1, add 1 to X (rounding). */
|
|
|
|
static inline void
|
|
shift_right (sreal *x, int s)
|
|
{
|
|
#ifdef ENABLE_CHECKING
|
|
if (s <= 0 || s > SREAL_BITS)
|
|
abort ();
|
|
if (x->exp + s > SREAL_MAX_EXP)
|
|
{
|
|
/* Exponent should never be so large because shift_right is used only by
|
|
sreal_add and sreal_sub ant thus the number cannot be shifted out from
|
|
exponent range. */
|
|
abort ();
|
|
}
|
|
#endif
|
|
|
|
x->exp += s;
|
|
|
|
#if SREAL_PART_BITS < 32
|
|
if (s > SREAL_PART_BITS)
|
|
{
|
|
s -= SREAL_PART_BITS;
|
|
x->sig_hi += (uhwi) 1 << (s - 1);
|
|
x->sig_lo = x->sig_hi >> s;
|
|
x->sig_hi = 0;
|
|
}
|
|
else
|
|
{
|
|
x->sig_lo += (uhwi) 1 << (s - 1);
|
|
if (x->sig_lo & ((uhwi) 1 << SREAL_PART_BITS))
|
|
{
|
|
x->sig_hi++;
|
|
x->sig_lo -= (uhwi) 1 << SREAL_PART_BITS;
|
|
}
|
|
x->sig_lo >>= s;
|
|
x->sig_lo |= (x->sig_hi & (((uhwi) 1 << s) - 1)) << (SREAL_PART_BITS - s);
|
|
x->sig_hi >>= s;
|
|
}
|
|
#else
|
|
x->sig += (uhwi) 1 << (s - 1);
|
|
x->sig >>= s;
|
|
#endif
|
|
}
|
|
|
|
/* Normalize *X. */
|
|
|
|
static void
|
|
normalize (sreal *x)
|
|
{
|
|
#if SREAL_PART_BITS < 32
|
|
int shift;
|
|
HOST_WIDE_INT mask;
|
|
|
|
if (x->sig_lo == 0 && x->sig_hi == 0)
|
|
{
|
|
x->exp = -SREAL_MAX_EXP;
|
|
}
|
|
else if (x->sig_hi < SREAL_MIN_SIG)
|
|
{
|
|
if (x->sig_hi == 0)
|
|
{
|
|
/* Move lower part of significant to higher part. */
|
|
x->sig_hi = x->sig_lo;
|
|
x->sig_lo = 0;
|
|
x->exp -= SREAL_PART_BITS;
|
|
}
|
|
shift = 0;
|
|
while (x->sig_hi < SREAL_MIN_SIG)
|
|
{
|
|
x->sig_hi <<= 1;
|
|
x->exp--;
|
|
shift++;
|
|
}
|
|
/* Check underflow. */
|
|
if (x->exp < -SREAL_MAX_EXP)
|
|
{
|
|
x->exp = -SREAL_MAX_EXP;
|
|
x->sig_hi = 0;
|
|
x->sig_lo = 0;
|
|
}
|
|
else if (shift)
|
|
{
|
|
mask = (1 << SREAL_PART_BITS) - (1 << (SREAL_PART_BITS - shift));
|
|
x->sig_hi |= (x->sig_lo & mask) >> (SREAL_PART_BITS - shift);
|
|
x->sig_lo = (x->sig_lo << shift) & (((uhwi) 1 << SREAL_PART_BITS) - 1);
|
|
}
|
|
}
|
|
else if (x->sig_hi > SREAL_MAX_SIG)
|
|
{
|
|
unsigned HOST_WIDE_INT tmp = x->sig_hi;
|
|
|
|
/* Find out how many bits will be shifted. */
|
|
shift = 0;
|
|
do
|
|
{
|
|
tmp >>= 1;
|
|
shift++;
|
|
}
|
|
while (tmp > SREAL_MAX_SIG);
|
|
|
|
/* Round the number. */
|
|
x->sig_lo += (uhwi) 1 << (shift - 1);
|
|
|
|
x->sig_lo >>= shift;
|
|
x->sig_lo += ((x->sig_hi & (((uhwi) 1 << shift) - 1))
|
|
<< (SREAL_PART_BITS - shift));
|
|
x->sig_hi >>= shift;
|
|
x->exp += shift;
|
|
if (x->sig_lo & ((uhwi) 1 << SREAL_PART_BITS))
|
|
{
|
|
x->sig_lo -= (uhwi) 1 << SREAL_PART_BITS;
|
|
x->sig_hi++;
|
|
if (x->sig_hi > SREAL_MAX_SIG)
|
|
{
|
|
/* x->sig_hi was SREAL_MAX_SIG before increment
|
|
so now last bit is zero. */
|
|
x->sig_hi >>= 1;
|
|
x->sig_lo >>= 1;
|
|
x->exp++;
|
|
}
|
|
}
|
|
|
|
/* Check overflow. */
|
|
if (x->exp > SREAL_MAX_EXP)
|
|
{
|
|
x->exp = SREAL_MAX_EXP;
|
|
x->sig_hi = SREAL_MAX_SIG;
|
|
x->sig_lo = SREAL_MAX_SIG;
|
|
}
|
|
}
|
|
#else
|
|
if (x->sig == 0)
|
|
{
|
|
x->exp = -SREAL_MAX_EXP;
|
|
}
|
|
else if (x->sig < SREAL_MIN_SIG)
|
|
{
|
|
do
|
|
{
|
|
x->sig <<= 1;
|
|
x->exp--;
|
|
}
|
|
while (x->sig < SREAL_MIN_SIG);
|
|
|
|
/* Check underflow. */
|
|
if (x->exp < -SREAL_MAX_EXP)
|
|
{
|
|
x->exp = -SREAL_MAX_EXP;
|
|
x->sig = 0;
|
|
}
|
|
}
|
|
else if (x->sig > SREAL_MAX_SIG)
|
|
{
|
|
int last_bit;
|
|
do
|
|
{
|
|
last_bit = x->sig & 1;
|
|
x->sig >>= 1;
|
|
x->exp++;
|
|
}
|
|
while (x->sig > SREAL_MAX_SIG);
|
|
|
|
/* Round the number. */
|
|
x->sig += last_bit;
|
|
if (x->sig > SREAL_MAX_SIG)
|
|
{
|
|
x->sig >>= 1;
|
|
x->exp++;
|
|
}
|
|
|
|
/* Check overflow. */
|
|
if (x->exp > SREAL_MAX_EXP)
|
|
{
|
|
x->exp = SREAL_MAX_EXP;
|
|
x->sig = SREAL_MAX_SIG;
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/* Set *R to SIG * 2 ^ EXP. Return R. */
|
|
|
|
sreal *
|
|
sreal_init (sreal *r, unsigned HOST_WIDE_INT sig, signed int exp)
|
|
{
|
|
#if SREAL_PART_BITS < 32
|
|
r->sig_lo = 0;
|
|
r->sig_hi = sig;
|
|
r->exp = exp - 16;
|
|
#else
|
|
r->sig = sig;
|
|
r->exp = exp;
|
|
#endif
|
|
normalize (r);
|
|
return r;
|
|
}
|
|
|
|
/* Return integer value of *R. */
|
|
|
|
HOST_WIDE_INT
|
|
sreal_to_int (sreal *r)
|
|
{
|
|
#if SREAL_PART_BITS < 32
|
|
if (r->exp <= -SREAL_BITS)
|
|
return 0;
|
|
if (r->exp >= 0)
|
|
return MAX_HOST_WIDE_INT;
|
|
return ((r->sig_hi << SREAL_PART_BITS) + r->sig_lo) >> -r->exp;
|
|
#else
|
|
if (r->exp <= -SREAL_BITS)
|
|
return 0;
|
|
if (r->exp >= SREAL_PART_BITS)
|
|
return MAX_HOST_WIDE_INT;
|
|
if (r->exp > 0)
|
|
return r->sig << r->exp;
|
|
if (r->exp < 0)
|
|
return r->sig >> -r->exp;
|
|
return r->sig;
|
|
#endif
|
|
}
|
|
|
|
/* Compare *A and *B. Return -1 if *A < *B, 1 if *A > *B and 0 if *A == *B. */
|
|
|
|
int
|
|
sreal_compare (sreal *a, sreal *b)
|
|
{
|
|
if (a->exp > b->exp)
|
|
return 1;
|
|
if (a->exp < b->exp)
|
|
return -1;
|
|
#if SREAL_PART_BITS < 32
|
|
if (a->sig_hi > b->sig_hi)
|
|
return 1;
|
|
if (a->sig_hi < b->sig_hi)
|
|
return -1;
|
|
if (a->sig_lo > b->sig_lo)
|
|
return 1;
|
|
if (a->sig_lo < b->sig_lo)
|
|
return -1;
|
|
#else
|
|
if (a->sig > b->sig)
|
|
return 1;
|
|
if (a->sig < b->sig)
|
|
return -1;
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
/* *R = *A + *B. Return R. */
|
|
|
|
sreal *
|
|
sreal_add (sreal *r, sreal *a, sreal *b)
|
|
{
|
|
int dexp;
|
|
sreal tmp;
|
|
sreal *bb;
|
|
|
|
if (sreal_compare (a, b) < 0)
|
|
{
|
|
sreal *swap;
|
|
swap = a;
|
|
a = b;
|
|
b = swap;
|
|
}
|
|
|
|
dexp = a->exp - b->exp;
|
|
r->exp = a->exp;
|
|
if (dexp > SREAL_BITS)
|
|
{
|
|
#if SREAL_PART_BITS < 32
|
|
r->sig_hi = a->sig_hi;
|
|
r->sig_lo = a->sig_lo;
|
|
#else
|
|
r->sig = a->sig;
|
|
#endif
|
|
return r;
|
|
}
|
|
|
|
if (dexp == 0)
|
|
bb = b;
|
|
else
|
|
{
|
|
copy (&tmp, b);
|
|
shift_right (&tmp, dexp);
|
|
bb = &tmp;
|
|
}
|
|
|
|
#if SREAL_PART_BITS < 32
|
|
r->sig_hi = a->sig_hi + bb->sig_hi;
|
|
r->sig_lo = a->sig_lo + bb->sig_lo;
|
|
if (r->sig_lo & ((uhwi) 1 << SREAL_PART_BITS))
|
|
{
|
|
r->sig_hi++;
|
|
r->sig_lo -= (uhwi) 1 << SREAL_PART_BITS;
|
|
}
|
|
#else
|
|
r->sig = a->sig + bb->sig;
|
|
#endif
|
|
normalize (r);
|
|
return r;
|
|
}
|
|
|
|
/* *R = *A - *B. Return R. */
|
|
|
|
sreal *
|
|
sreal_sub (sreal *r, sreal *a, sreal *b)
|
|
{
|
|
int dexp;
|
|
sreal tmp;
|
|
sreal *bb;
|
|
|
|
if (sreal_compare (a, b) < 0)
|
|
{
|
|
abort ();
|
|
}
|
|
|
|
dexp = a->exp - b->exp;
|
|
r->exp = a->exp;
|
|
if (dexp > SREAL_BITS)
|
|
{
|
|
#if SREAL_PART_BITS < 32
|
|
r->sig_hi = a->sig_hi;
|
|
r->sig_lo = a->sig_lo;
|
|
#else
|
|
r->sig = a->sig;
|
|
#endif
|
|
return r;
|
|
}
|
|
if (dexp == 0)
|
|
bb = b;
|
|
else
|
|
{
|
|
copy (&tmp, b);
|
|
shift_right (&tmp, dexp);
|
|
bb = &tmp;
|
|
}
|
|
|
|
#if SREAL_PART_BITS < 32
|
|
if (a->sig_lo < bb->sig_lo)
|
|
{
|
|
r->sig_hi = a->sig_hi - bb->sig_hi - 1;
|
|
r->sig_lo = a->sig_lo + ((uhwi) 1 << SREAL_PART_BITS) - bb->sig_lo;
|
|
}
|
|
else
|
|
{
|
|
r->sig_hi = a->sig_hi - bb->sig_hi;
|
|
r->sig_lo = a->sig_lo - bb->sig_lo;
|
|
}
|
|
#else
|
|
r->sig = a->sig - bb->sig;
|
|
#endif
|
|
normalize (r);
|
|
return r;
|
|
}
|
|
|
|
/* *R = *A * *B. Return R. */
|
|
|
|
sreal *
|
|
sreal_mul (sreal *r, sreal *a, sreal *b)
|
|
{
|
|
#if SREAL_PART_BITS < 32
|
|
if (a->sig_hi < SREAL_MIN_SIG || b->sig_hi < SREAL_MIN_SIG)
|
|
{
|
|
r->sig_lo = 0;
|
|
r->sig_hi = 0;
|
|
r->exp = -SREAL_MAX_EXP;
|
|
}
|
|
else
|
|
{
|
|
unsigned HOST_WIDE_INT tmp1, tmp2, tmp3;
|
|
if (sreal_compare (a, b) < 0)
|
|
{
|
|
sreal *swap;
|
|
swap = a;
|
|
a = b;
|
|
b = swap;
|
|
}
|
|
|
|
r->exp = a->exp + b->exp + SREAL_PART_BITS;
|
|
|
|
tmp1 = a->sig_lo * b->sig_lo;
|
|
tmp2 = a->sig_lo * b->sig_hi;
|
|
tmp3 = a->sig_hi * b->sig_lo + (tmp1 >> SREAL_PART_BITS);
|
|
|
|
r->sig_hi = a->sig_hi * b->sig_hi;
|
|
r->sig_hi += (tmp2 >> SREAL_PART_BITS) + (tmp3 >> SREAL_PART_BITS);
|
|
tmp2 &= ((uhwi) 1 << SREAL_PART_BITS) - 1;
|
|
tmp3 &= ((uhwi) 1 << SREAL_PART_BITS) - 1;
|
|
tmp1 = tmp2 + tmp3;
|
|
|
|
r->sig_lo = tmp1 & (((uhwi) 1 << SREAL_PART_BITS) - 1);
|
|
r->sig_hi += tmp1 >> SREAL_PART_BITS;
|
|
|
|
normalize (r);
|
|
}
|
|
#else
|
|
if (a->sig < SREAL_MIN_SIG || b->sig < SREAL_MIN_SIG)
|
|
{
|
|
r->sig = 0;
|
|
r->exp = -SREAL_MAX_EXP;
|
|
}
|
|
else
|
|
{
|
|
r->sig = a->sig * b->sig;
|
|
r->exp = a->exp + b->exp;
|
|
normalize (r);
|
|
}
|
|
#endif
|
|
return r;
|
|
}
|
|
|
|
/* *R = *A / *B. Return R. */
|
|
|
|
sreal *
|
|
sreal_div (sreal *r, sreal *a, sreal *b)
|
|
{
|
|
#if SREAL_PART_BITS < 32
|
|
unsigned HOST_WIDE_INT tmp, tmp1, tmp2;
|
|
|
|
if (b->sig_hi < SREAL_MIN_SIG)
|
|
{
|
|
abort ();
|
|
}
|
|
else if (a->sig_hi < SREAL_MIN_SIG)
|
|
{
|
|
r->sig_hi = 0;
|
|
r->sig_lo = 0;
|
|
r->exp = -SREAL_MAX_EXP;
|
|
}
|
|
else
|
|
{
|
|
/* Since division by the whole number is pretty ugly to write
|
|
we are dividing by first 3/4 of bits of number. */
|
|
|
|
tmp1 = (a->sig_hi << SREAL_PART_BITS) + a->sig_lo;
|
|
tmp2 = ((b->sig_hi << (SREAL_PART_BITS / 2))
|
|
+ (b->sig_lo >> (SREAL_PART_BITS / 2)));
|
|
if (b->sig_lo & ((uhwi) 1 << ((SREAL_PART_BITS / 2) - 1)))
|
|
tmp2++;
|
|
|
|
r->sig_lo = 0;
|
|
tmp = tmp1 / tmp2;
|
|
tmp1 = (tmp1 % tmp2) << (SREAL_PART_BITS / 2);
|
|
r->sig_hi = tmp << SREAL_PART_BITS;
|
|
|
|
tmp = tmp1 / tmp2;
|
|
tmp1 = (tmp1 % tmp2) << (SREAL_PART_BITS / 2);
|
|
r->sig_hi += tmp << (SREAL_PART_BITS / 2);
|
|
|
|
tmp = tmp1 / tmp2;
|
|
r->sig_hi += tmp;
|
|
|
|
r->exp = a->exp - b->exp - SREAL_BITS - SREAL_PART_BITS / 2;
|
|
normalize (r);
|
|
}
|
|
#else
|
|
if (b->sig == 0)
|
|
{
|
|
abort ();
|
|
}
|
|
else
|
|
{
|
|
r->sig = (a->sig << SREAL_PART_BITS) / b->sig;
|
|
r->exp = a->exp - b->exp - SREAL_PART_BITS;
|
|
normalize (r);
|
|
}
|
|
#endif
|
|
return r;
|
|
}
|