mirror of
https://git.FreeBSD.org/src.git
synced 2025-01-05 12:56:08 +00:00
10353 lines
332 KiB
C
10353 lines
332 KiB
C
/* Reload pseudo regs into hard regs for insns that require hard regs.
|
||
Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
|
||
1998, 1999, 2000 Free Software Foundation, Inc.
|
||
|
||
This file is part of GNU CC.
|
||
|
||
GNU CC is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2, or (at your option)
|
||
any later version.
|
||
|
||
GNU CC is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GNU CC; see the file COPYING. If not, write to
|
||
the Free Software Foundation, 59 Temple Place - Suite 330,
|
||
Boston, MA 02111-1307, USA. */
|
||
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
|
||
#include "machmode.h"
|
||
#include "hard-reg-set.h"
|
||
#include "rtl.h"
|
||
#include "obstack.h"
|
||
#include "insn-config.h"
|
||
#include "insn-flags.h"
|
||
#include "insn-codes.h"
|
||
#include "flags.h"
|
||
#include "expr.h"
|
||
#include "regs.h"
|
||
#include "basic-block.h"
|
||
#include "reload.h"
|
||
#include "recog.h"
|
||
#include "output.h"
|
||
#include "real.h"
|
||
#include "toplev.h"
|
||
|
||
#if !defined PREFERRED_STACK_BOUNDARY && defined STACK_BOUNDARY
|
||
#define PREFERRED_STACK_BOUNDARY STACK_BOUNDARY
|
||
#endif
|
||
|
||
/* This file contains the reload pass of the compiler, which is
|
||
run after register allocation has been done. It checks that
|
||
each insn is valid (operands required to be in registers really
|
||
are in registers of the proper class) and fixes up invalid ones
|
||
by copying values temporarily into registers for the insns
|
||
that need them.
|
||
|
||
The results of register allocation are described by the vector
|
||
reg_renumber; the insns still contain pseudo regs, but reg_renumber
|
||
can be used to find which hard reg, if any, a pseudo reg is in.
|
||
|
||
The technique we always use is to free up a few hard regs that are
|
||
called ``reload regs'', and for each place where a pseudo reg
|
||
must be in a hard reg, copy it temporarily into one of the reload regs.
|
||
|
||
Reload regs are allocated locally for every instruction that needs
|
||
reloads. When there are pseudos which are allocated to a register that
|
||
has been chosen as a reload reg, such pseudos must be ``spilled''.
|
||
This means that they go to other hard regs, or to stack slots if no other
|
||
available hard regs can be found. Spilling can invalidate more
|
||
insns, requiring additional need for reloads, so we must keep checking
|
||
until the process stabilizes.
|
||
|
||
For machines with different classes of registers, we must keep track
|
||
of the register class needed for each reload, and make sure that
|
||
we allocate enough reload registers of each class.
|
||
|
||
The file reload.c contains the code that checks one insn for
|
||
validity and reports the reloads that it needs. This file
|
||
is in charge of scanning the entire rtl code, accumulating the
|
||
reload needs, spilling, assigning reload registers to use for
|
||
fixing up each insn, and generating the new insns to copy values
|
||
into the reload registers. */
|
||
|
||
|
||
#ifndef REGISTER_MOVE_COST
|
||
#define REGISTER_MOVE_COST(x, y) 2
|
||
#endif
|
||
|
||
/* During reload_as_needed, element N contains a REG rtx for the hard reg
|
||
into which reg N has been reloaded (perhaps for a previous insn). */
|
||
static rtx *reg_last_reload_reg;
|
||
|
||
/* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn
|
||
for an output reload that stores into reg N. */
|
||
static char *reg_has_output_reload;
|
||
|
||
/* Indicates which hard regs are reload-registers for an output reload
|
||
in the current insn. */
|
||
static HARD_REG_SET reg_is_output_reload;
|
||
|
||
/* Element N is the constant value to which pseudo reg N is equivalent,
|
||
or zero if pseudo reg N is not equivalent to a constant.
|
||
find_reloads looks at this in order to replace pseudo reg N
|
||
with the constant it stands for. */
|
||
rtx *reg_equiv_constant;
|
||
|
||
/* Element N is a memory location to which pseudo reg N is equivalent,
|
||
prior to any register elimination (such as frame pointer to stack
|
||
pointer). Depending on whether or not it is a valid address, this value
|
||
is transferred to either reg_equiv_address or reg_equiv_mem. */
|
||
rtx *reg_equiv_memory_loc;
|
||
|
||
/* Element N is the address of stack slot to which pseudo reg N is equivalent.
|
||
This is used when the address is not valid as a memory address
|
||
(because its displacement is too big for the machine.) */
|
||
rtx *reg_equiv_address;
|
||
|
||
/* Element N is the memory slot to which pseudo reg N is equivalent,
|
||
or zero if pseudo reg N is not equivalent to a memory slot. */
|
||
rtx *reg_equiv_mem;
|
||
|
||
/* Widest width in which each pseudo reg is referred to (via subreg). */
|
||
static int *reg_max_ref_width;
|
||
|
||
/* Element N is the list of insns that initialized reg N from its equivalent
|
||
constant or memory slot. */
|
||
static rtx *reg_equiv_init;
|
||
|
||
/* Vector to remember old contents of reg_renumber before spilling. */
|
||
static short *reg_old_renumber;
|
||
|
||
/* During reload_as_needed, element N contains the last pseudo regno reloaded
|
||
into hard register N. If that pseudo reg occupied more than one register,
|
||
reg_reloaded_contents points to that pseudo for each spill register in
|
||
use; all of these must remain set for an inheritance to occur. */
|
||
static int reg_reloaded_contents[FIRST_PSEUDO_REGISTER];
|
||
|
||
/* During reload_as_needed, element N contains the insn for which
|
||
hard register N was last used. Its contents are significant only
|
||
when reg_reloaded_valid is set for this register. */
|
||
static rtx reg_reloaded_insn[FIRST_PSEUDO_REGISTER];
|
||
|
||
/* Indicate if reg_reloaded_insn / reg_reloaded_contents is valid */
|
||
static HARD_REG_SET reg_reloaded_valid;
|
||
/* Indicate if the register was dead at the end of the reload.
|
||
This is only valid if reg_reloaded_contents is set and valid. */
|
||
static HARD_REG_SET reg_reloaded_dead;
|
||
|
||
/* Number of spill-regs so far; number of valid elements of spill_regs. */
|
||
static int n_spills;
|
||
|
||
/* In parallel with spill_regs, contains REG rtx's for those regs.
|
||
Holds the last rtx used for any given reg, or 0 if it has never
|
||
been used for spilling yet. This rtx is reused, provided it has
|
||
the proper mode. */
|
||
static rtx spill_reg_rtx[FIRST_PSEUDO_REGISTER];
|
||
|
||
/* In parallel with spill_regs, contains nonzero for a spill reg
|
||
that was stored after the last time it was used.
|
||
The precise value is the insn generated to do the store. */
|
||
static rtx spill_reg_store[FIRST_PSEUDO_REGISTER];
|
||
|
||
/* This is the register that was stored with spill_reg_store. This is a
|
||
copy of reload_out / reload_out_reg when the value was stored; if
|
||
reload_out is a MEM, spill_reg_stored_to will be set to reload_out_reg. */
|
||
static rtx spill_reg_stored_to[FIRST_PSEUDO_REGISTER];
|
||
|
||
/* This table is the inverse mapping of spill_regs:
|
||
indexed by hard reg number,
|
||
it contains the position of that reg in spill_regs,
|
||
or -1 for something that is not in spill_regs.
|
||
|
||
?!? This is no longer accurate. */
|
||
static short spill_reg_order[FIRST_PSEUDO_REGISTER];
|
||
|
||
/* This reg set indicates registers that can't be used as spill registers for
|
||
the currently processed insn. These are the hard registers which are live
|
||
during the insn, but not allocated to pseudos, as well as fixed
|
||
registers. */
|
||
static HARD_REG_SET bad_spill_regs;
|
||
|
||
/* These are the hard registers that can't be used as spill register for any
|
||
insn. This includes registers used for user variables and registers that
|
||
we can't eliminate. A register that appears in this set also can't be used
|
||
to retry register allocation. */
|
||
static HARD_REG_SET bad_spill_regs_global;
|
||
|
||
/* Describes order of use of registers for reloading
|
||
of spilled pseudo-registers. `n_spills' is the number of
|
||
elements that are actually valid; new ones are added at the end.
|
||
|
||
Both spill_regs and spill_reg_order are used on two occasions:
|
||
once during find_reload_regs, where they keep track of the spill registers
|
||
for a single insn, but also during reload_as_needed where they show all
|
||
the registers ever used by reload. For the latter case, the information
|
||
is calculated during finish_spills. */
|
||
static short spill_regs[FIRST_PSEUDO_REGISTER];
|
||
|
||
/* This vector of reg sets indicates, for each pseudo, which hard registers
|
||
may not be used for retrying global allocation because the register was
|
||
formerly spilled from one of them. If we allowed reallocating a pseudo to
|
||
a register that it was already allocated to, reload might not
|
||
terminate. */
|
||
static HARD_REG_SET *pseudo_previous_regs;
|
||
|
||
/* This vector of reg sets indicates, for each pseudo, which hard
|
||
registers may not be used for retrying global allocation because they
|
||
are used as spill registers during one of the insns in which the
|
||
pseudo is live. */
|
||
static HARD_REG_SET *pseudo_forbidden_regs;
|
||
|
||
/* All hard regs that have been used as spill registers for any insn are
|
||
marked in this set. */
|
||
static HARD_REG_SET used_spill_regs;
|
||
|
||
/* Index of last register assigned as a spill register. We allocate in
|
||
a round-robin fashion. */
|
||
static int last_spill_reg;
|
||
|
||
/* Describes order of preference for putting regs into spill_regs.
|
||
Contains the numbers of all the hard regs, in order most preferred first.
|
||
This order is different for each function.
|
||
It is set up by order_regs_for_reload.
|
||
Empty elements at the end contain -1. */
|
||
static short potential_reload_regs[FIRST_PSEUDO_REGISTER];
|
||
|
||
/* Nonzero if indirect addressing is supported on the machine; this means
|
||
that spilling (REG n) does not require reloading it into a register in
|
||
order to do (MEM (REG n)) or (MEM (PLUS (REG n) (CONST_INT c))). The
|
||
value indicates the level of indirect addressing supported, e.g., two
|
||
means that (MEM (MEM (REG n))) is also valid if (REG n) does not get
|
||
a hard register. */
|
||
static char spill_indirect_levels;
|
||
|
||
/* Nonzero if indirect addressing is supported when the innermost MEM is
|
||
of the form (MEM (SYMBOL_REF sym)). It is assumed that the level to
|
||
which these are valid is the same as spill_indirect_levels, above. */
|
||
char indirect_symref_ok;
|
||
|
||
/* Nonzero if an address (plus (reg frame_pointer) (reg ...)) is valid. */
|
||
char double_reg_address_ok;
|
||
|
||
/* Record the stack slot for each spilled hard register. */
|
||
static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER];
|
||
|
||
/* Width allocated so far for that stack slot. */
|
||
static int spill_stack_slot_width[FIRST_PSEUDO_REGISTER];
|
||
|
||
/* Record which pseudos needed to be spilled. */
|
||
static regset spilled_pseudos;
|
||
|
||
/* First uid used by insns created by reload in this function.
|
||
Used in find_equiv_reg. */
|
||
int reload_first_uid;
|
||
|
||
/* Flag set by local-alloc or global-alloc if anything is live in
|
||
a call-clobbered reg across calls. */
|
||
int caller_save_needed;
|
||
|
||
/* Set to 1 while reload_as_needed is operating.
|
||
Required by some machines to handle any generated moves differently. */
|
||
int reload_in_progress = 0;
|
||
|
||
/* These arrays record the insn_code of insns that may be needed to
|
||
perform input and output reloads of special objects. They provide a
|
||
place to pass a scratch register. */
|
||
enum insn_code reload_in_optab[NUM_MACHINE_MODES];
|
||
enum insn_code reload_out_optab[NUM_MACHINE_MODES];
|
||
|
||
/* This obstack is used for allocation of rtl during register elimination.
|
||
The allocated storage can be freed once find_reloads has processed the
|
||
insn. */
|
||
struct obstack reload_obstack;
|
||
|
||
/* Points to the beginning of the reload_obstack. All insn_chain structures
|
||
are allocated first. */
|
||
char *reload_startobj;
|
||
|
||
/* The point after all insn_chain structures. Used to quickly deallocate
|
||
memory used while processing one insn. */
|
||
char *reload_firstobj;
|
||
|
||
#define obstack_chunk_alloc xmalloc
|
||
#define obstack_chunk_free free
|
||
|
||
/* List of labels that must never be deleted. */
|
||
extern rtx forced_labels;
|
||
|
||
/* List of insn_chain instructions, one for every insn that reload needs to
|
||
examine. */
|
||
struct insn_chain *reload_insn_chain;
|
||
|
||
#ifdef TREE_CODE
|
||
extern tree current_function_decl;
|
||
#else
|
||
extern union tree_node *current_function_decl;
|
||
#endif
|
||
|
||
/* List of all insns needing reloads. */
|
||
static struct insn_chain *insns_need_reload;
|
||
|
||
/* This structure is used to record information about register eliminations.
|
||
Each array entry describes one possible way of eliminating a register
|
||
in favor of another. If there is more than one way of eliminating a
|
||
particular register, the most preferred should be specified first. */
|
||
|
||
struct elim_table
|
||
{
|
||
int from; /* Register number to be eliminated. */
|
||
int to; /* Register number used as replacement. */
|
||
int initial_offset; /* Initial difference between values. */
|
||
int can_eliminate; /* Non-zero if this elimination can be done. */
|
||
int can_eliminate_previous; /* Value of CAN_ELIMINATE in previous scan over
|
||
insns made by reload. */
|
||
int offset; /* Current offset between the two regs. */
|
||
int previous_offset; /* Offset at end of previous insn. */
|
||
int ref_outside_mem; /* "to" has been referenced outside a MEM. */
|
||
rtx from_rtx; /* REG rtx for the register to be eliminated.
|
||
We cannot simply compare the number since
|
||
we might then spuriously replace a hard
|
||
register corresponding to a pseudo
|
||
assigned to the reg to be eliminated. */
|
||
rtx to_rtx; /* REG rtx for the replacement. */
|
||
};
|
||
|
||
static struct elim_table * reg_eliminate = 0;
|
||
|
||
/* This is an intermediate structure to initialize the table. It has
|
||
exactly the members provided by ELIMINABLE_REGS. */
|
||
static struct elim_table_1
|
||
{
|
||
int from;
|
||
int to;
|
||
} reg_eliminate_1[] =
|
||
|
||
/* If a set of eliminable registers was specified, define the table from it.
|
||
Otherwise, default to the normal case of the frame pointer being
|
||
replaced by the stack pointer. */
|
||
|
||
#ifdef ELIMINABLE_REGS
|
||
ELIMINABLE_REGS;
|
||
#else
|
||
{{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}};
|
||
#endif
|
||
|
||
#define NUM_ELIMINABLE_REGS (sizeof reg_eliminate_1/sizeof reg_eliminate_1[0])
|
||
|
||
/* Record the number of pending eliminations that have an offset not equal
|
||
to their initial offset. If non-zero, we use a new copy of each
|
||
replacement result in any insns encountered. */
|
||
int num_not_at_initial_offset;
|
||
|
||
/* Count the number of registers that we may be able to eliminate. */
|
||
static int num_eliminable;
|
||
/* And the number of registers that are equivalent to a constant that
|
||
can be eliminated to frame_pointer / arg_pointer + constant. */
|
||
static int num_eliminable_invariants;
|
||
|
||
/* For each label, we record the offset of each elimination. If we reach
|
||
a label by more than one path and an offset differs, we cannot do the
|
||
elimination. This information is indexed by the number of the label.
|
||
The first table is an array of flags that records whether we have yet
|
||
encountered a label and the second table is an array of arrays, one
|
||
entry in the latter array for each elimination. */
|
||
|
||
static char *offsets_known_at;
|
||
static int (*offsets_at)[NUM_ELIMINABLE_REGS];
|
||
|
||
/* Number of labels in the current function. */
|
||
|
||
static int num_labels;
|
||
|
||
struct hard_reg_n_uses
|
||
{
|
||
int regno;
|
||
unsigned int uses;
|
||
};
|
||
|
||
static void maybe_fix_stack_asms PROTO((void));
|
||
static void calculate_needs_all_insns PROTO((int));
|
||
static void calculate_needs PROTO((struct insn_chain *));
|
||
static void find_reload_regs PROTO((struct insn_chain *chain,
|
||
FILE *));
|
||
static void find_tworeg_group PROTO((struct insn_chain *, int,
|
||
FILE *));
|
||
static void find_group PROTO((struct insn_chain *, int,
|
||
FILE *));
|
||
static int possible_group_p PROTO((struct insn_chain *, int));
|
||
static void count_possible_groups PROTO((struct insn_chain *, int));
|
||
static int modes_equiv_for_class_p PROTO((enum machine_mode,
|
||
enum machine_mode,
|
||
enum reg_class));
|
||
static void delete_caller_save_insns PROTO((void));
|
||
|
||
static void spill_failure PROTO((rtx));
|
||
static void new_spill_reg PROTO((struct insn_chain *, int, int,
|
||
int, FILE *));
|
||
static void maybe_mark_pseudo_spilled PROTO((int));
|
||
static void delete_dead_insn PROTO((rtx));
|
||
static void alter_reg PROTO((int, int));
|
||
static void set_label_offsets PROTO((rtx, rtx, int));
|
||
static int eliminate_regs_in_insn PROTO((rtx, int));
|
||
static void update_eliminable_offsets PROTO((void));
|
||
static void mark_not_eliminable PROTO((rtx, rtx));
|
||
static void set_initial_elim_offsets PROTO((void));
|
||
static void verify_initial_elim_offsets PROTO((void));
|
||
static void set_initial_label_offsets PROTO((void));
|
||
static void set_offsets_for_label PROTO((rtx));
|
||
static void init_elim_table PROTO((void));
|
||
static void update_eliminables PROTO((HARD_REG_SET *));
|
||
static void spill_hard_reg PROTO((int, FILE *, int));
|
||
static int finish_spills PROTO((int, FILE *));
|
||
static void ior_hard_reg_set PROTO((HARD_REG_SET *, HARD_REG_SET *));
|
||
static void scan_paradoxical_subregs PROTO((rtx));
|
||
static int hard_reg_use_compare PROTO((const GENERIC_PTR, const GENERIC_PTR));
|
||
static void count_pseudo PROTO((struct hard_reg_n_uses *, int));
|
||
static void order_regs_for_reload PROTO((struct insn_chain *));
|
||
static void reload_as_needed PROTO((int));
|
||
static void forget_old_reloads_1 PROTO((rtx, rtx));
|
||
static int reload_reg_class_lower PROTO((const GENERIC_PTR, const GENERIC_PTR));
|
||
static void mark_reload_reg_in_use PROTO((int, int, enum reload_type,
|
||
enum machine_mode));
|
||
static void clear_reload_reg_in_use PROTO((int, int, enum reload_type,
|
||
enum machine_mode));
|
||
static int reload_reg_free_p PROTO((int, int, enum reload_type));
|
||
static int reload_reg_free_for_value_p PROTO((int, int, enum reload_type, rtx, rtx, int, int));
|
||
static int free_for_value_p PROTO((int, enum machine_mode, int,
|
||
enum reload_type, rtx, rtx,
|
||
int, int));
|
||
static int reload_reg_reaches_end_p PROTO((int, int, enum reload_type));
|
||
static int allocate_reload_reg PROTO((struct insn_chain *, int, int,
|
||
int));
|
||
static int conflicts_with_override PROTO((rtx));
|
||
static void choose_reload_regs PROTO((struct insn_chain *));
|
||
static void merge_assigned_reloads PROTO((rtx));
|
||
static void emit_reload_insns PROTO((struct insn_chain *));
|
||
static void delete_output_reload PROTO((rtx, int, int));
|
||
static void delete_address_reloads PROTO((rtx, rtx));
|
||
static void delete_address_reloads_1 PROTO((rtx, rtx, rtx));
|
||
static rtx inc_for_reload PROTO((rtx, rtx, rtx, int));
|
||
static int constraint_accepts_reg_p PROTO((const char *, rtx));
|
||
static void reload_cse_regs_1 PROTO((rtx));
|
||
static void reload_cse_invalidate_regno PROTO((int, enum machine_mode, int));
|
||
static int reload_cse_mem_conflict_p PROTO((rtx, rtx));
|
||
static void reload_cse_invalidate_mem PROTO((rtx));
|
||
static void reload_cse_invalidate_rtx PROTO((rtx, rtx));
|
||
static int reload_cse_regno_equal_p PROTO((int, rtx, enum machine_mode));
|
||
static int reload_cse_noop_set_p PROTO((rtx, rtx));
|
||
static int reload_cse_simplify_set PROTO((rtx, rtx));
|
||
static int reload_cse_simplify_operands PROTO((rtx));
|
||
static void reload_cse_check_clobber PROTO((rtx, rtx));
|
||
static void reload_cse_record_set PROTO((rtx, rtx));
|
||
static void reload_combine PROTO((void));
|
||
static void reload_combine_note_use PROTO((rtx *, rtx));
|
||
static void reload_combine_note_store PROTO((rtx, rtx));
|
||
static void reload_cse_move2add PROTO((rtx));
|
||
static void move2add_note_store PROTO((rtx, rtx));
|
||
#ifdef AUTO_INC_DEC
|
||
static void add_auto_inc_notes PROTO((rtx, rtx));
|
||
#endif
|
||
|
||
/* Initialize the reload pass once per compilation. */
|
||
|
||
void
|
||
init_reload ()
|
||
{
|
||
register int i;
|
||
|
||
/* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack.
|
||
Set spill_indirect_levels to the number of levels such addressing is
|
||
permitted, zero if it is not permitted at all. */
|
||
|
||
register rtx tem
|
||
= gen_rtx_MEM (Pmode,
|
||
gen_rtx_PLUS (Pmode,
|
||
gen_rtx_REG (Pmode, LAST_VIRTUAL_REGISTER + 1),
|
||
GEN_INT (4)));
|
||
spill_indirect_levels = 0;
|
||
|
||
while (memory_address_p (QImode, tem))
|
||
{
|
||
spill_indirect_levels++;
|
||
tem = gen_rtx_MEM (Pmode, tem);
|
||
}
|
||
|
||
/* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)). */
|
||
|
||
tem = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, "foo"));
|
||
indirect_symref_ok = memory_address_p (QImode, tem);
|
||
|
||
/* See if reg+reg is a valid (and offsettable) address. */
|
||
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
{
|
||
tem = gen_rtx_PLUS (Pmode,
|
||
gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
|
||
gen_rtx_REG (Pmode, i));
|
||
/* This way, we make sure that reg+reg is an offsettable address. */
|
||
tem = plus_constant (tem, 4);
|
||
|
||
if (memory_address_p (QImode, tem))
|
||
{
|
||
double_reg_address_ok = 1;
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Initialize obstack for our rtl allocation. */
|
||
gcc_obstack_init (&reload_obstack);
|
||
reload_startobj = (char *) obstack_alloc (&reload_obstack, 0);
|
||
}
|
||
|
||
/* List of insn chains that are currently unused. */
|
||
static struct insn_chain *unused_insn_chains = 0;
|
||
|
||
/* Allocate an empty insn_chain structure. */
|
||
struct insn_chain *
|
||
new_insn_chain ()
|
||
{
|
||
struct insn_chain *c;
|
||
|
||
if (unused_insn_chains == 0)
|
||
{
|
||
c = (struct insn_chain *)
|
||
obstack_alloc (&reload_obstack, sizeof (struct insn_chain));
|
||
c->live_before = OBSTACK_ALLOC_REG_SET (&reload_obstack);
|
||
c->live_after = OBSTACK_ALLOC_REG_SET (&reload_obstack);
|
||
}
|
||
else
|
||
{
|
||
c = unused_insn_chains;
|
||
unused_insn_chains = c->next;
|
||
}
|
||
c->is_caller_save_insn = 0;
|
||
c->need_operand_change = 0;
|
||
c->need_reload = 0;
|
||
c->need_elim = 0;
|
||
return c;
|
||
}
|
||
|
||
/* Small utility function to set all regs in hard reg set TO which are
|
||
allocated to pseudos in regset FROM. */
|
||
void
|
||
compute_use_by_pseudos (to, from)
|
||
HARD_REG_SET *to;
|
||
regset from;
|
||
{
|
||
int regno;
|
||
EXECUTE_IF_SET_IN_REG_SET
|
||
(from, FIRST_PSEUDO_REGISTER, regno,
|
||
{
|
||
int r = reg_renumber[regno];
|
||
int nregs;
|
||
if (r < 0)
|
||
{
|
||
/* reload_combine uses the information from
|
||
BASIC_BLOCK->global_live_at_start, which might still
|
||
contain registers that have not actually been allocated
|
||
since they have an equivalence. */
|
||
if (! reload_completed)
|
||
abort ();
|
||
}
|
||
else
|
||
{
|
||
nregs = HARD_REGNO_NREGS (r, PSEUDO_REGNO_MODE (regno));
|
||
while (nregs-- > 0)
|
||
SET_HARD_REG_BIT (*to, r + nregs);
|
||
}
|
||
});
|
||
}
|
||
|
||
/* Global variables used by reload and its subroutines. */
|
||
|
||
/* Set during calculate_needs if an insn needs register elimination. */
|
||
static int something_needs_elimination;
|
||
/* Set during calculate_needs if an insn needs an operand changed. */
|
||
int something_needs_operands_changed;
|
||
|
||
/* Nonzero means we couldn't get enough spill regs. */
|
||
static int failure;
|
||
|
||
/* Main entry point for the reload pass.
|
||
|
||
FIRST is the first insn of the function being compiled.
|
||
|
||
GLOBAL nonzero means we were called from global_alloc
|
||
and should attempt to reallocate any pseudoregs that we
|
||
displace from hard regs we will use for reloads.
|
||
If GLOBAL is zero, we do not have enough information to do that,
|
||
so any pseudo reg that is spilled must go to the stack.
|
||
|
||
DUMPFILE is the global-reg debugging dump file stream, or 0.
|
||
If it is nonzero, messages are written to it to describe
|
||
which registers are seized as reload regs, which pseudo regs
|
||
are spilled from them, and where the pseudo regs are reallocated to.
|
||
|
||
Return value is nonzero if reload failed
|
||
and we must not do any more for this function. */
|
||
|
||
int
|
||
reload (first, global, dumpfile)
|
||
rtx first;
|
||
int global;
|
||
FILE *dumpfile;
|
||
{
|
||
register int i;
|
||
register rtx insn;
|
||
register struct elim_table *ep;
|
||
|
||
/* The two pointers used to track the true location of the memory used
|
||
for label offsets. */
|
||
char *real_known_ptr = NULL_PTR;
|
||
int (*real_at_ptr)[NUM_ELIMINABLE_REGS];
|
||
|
||
/* Make sure even insns with volatile mem refs are recognizable. */
|
||
init_recog ();
|
||
|
||
failure = 0;
|
||
|
||
reload_firstobj = (char *) obstack_alloc (&reload_obstack, 0);
|
||
|
||
/* Make sure that the last insn in the chain
|
||
is not something that needs reloading. */
|
||
emit_note (NULL_PTR, NOTE_INSN_DELETED);
|
||
|
||
/* Enable find_equiv_reg to distinguish insns made by reload. */
|
||
reload_first_uid = get_max_uid ();
|
||
|
||
#ifdef SECONDARY_MEMORY_NEEDED
|
||
/* Initialize the secondary memory table. */
|
||
clear_secondary_mem ();
|
||
#endif
|
||
|
||
/* We don't have a stack slot for any spill reg yet. */
|
||
bzero ((char *) spill_stack_slot, sizeof spill_stack_slot);
|
||
bzero ((char *) spill_stack_slot_width, sizeof spill_stack_slot_width);
|
||
|
||
/* Initialize the save area information for caller-save, in case some
|
||
are needed. */
|
||
init_save_areas ();
|
||
|
||
/* Compute which hard registers are now in use
|
||
as homes for pseudo registers.
|
||
This is done here rather than (eg) in global_alloc
|
||
because this point is reached even if not optimizing. */
|
||
for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
|
||
mark_home_live (i);
|
||
|
||
/* A function that receives a nonlocal goto must save all call-saved
|
||
registers. */
|
||
if (current_function_has_nonlocal_label)
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
{
|
||
if (! call_used_regs[i] && ! fixed_regs[i])
|
||
regs_ever_live[i] = 1;
|
||
}
|
||
|
||
/* Find all the pseudo registers that didn't get hard regs
|
||
but do have known equivalent constants or memory slots.
|
||
These include parameters (known equivalent to parameter slots)
|
||
and cse'd or loop-moved constant memory addresses.
|
||
|
||
Record constant equivalents in reg_equiv_constant
|
||
so they will be substituted by find_reloads.
|
||
Record memory equivalents in reg_mem_equiv so they can
|
||
be substituted eventually by altering the REG-rtx's. */
|
||
|
||
reg_equiv_constant = (rtx *) xmalloc (max_regno * sizeof (rtx));
|
||
bzero ((char *) reg_equiv_constant, max_regno * sizeof (rtx));
|
||
reg_equiv_memory_loc = (rtx *) xmalloc (max_regno * sizeof (rtx));
|
||
bzero ((char *) reg_equiv_memory_loc, max_regno * sizeof (rtx));
|
||
reg_equiv_mem = (rtx *) xmalloc (max_regno * sizeof (rtx));
|
||
bzero ((char *) reg_equiv_mem, max_regno * sizeof (rtx));
|
||
reg_equiv_init = (rtx *) xmalloc (max_regno * sizeof (rtx));
|
||
bzero ((char *) reg_equiv_init, max_regno * sizeof (rtx));
|
||
reg_equiv_address = (rtx *) xmalloc (max_regno * sizeof (rtx));
|
||
bzero ((char *) reg_equiv_address, max_regno * sizeof (rtx));
|
||
reg_max_ref_width = (int *) xmalloc (max_regno * sizeof (int));
|
||
bzero ((char *) reg_max_ref_width, max_regno * sizeof (int));
|
||
reg_old_renumber = (short *) xmalloc (max_regno * sizeof (short));
|
||
bcopy ((PTR) reg_renumber, (PTR) reg_old_renumber, max_regno * sizeof (short));
|
||
pseudo_forbidden_regs
|
||
= (HARD_REG_SET *) xmalloc (max_regno * sizeof (HARD_REG_SET));
|
||
pseudo_previous_regs
|
||
= (HARD_REG_SET *) xmalloc (max_regno * sizeof (HARD_REG_SET));
|
||
|
||
CLEAR_HARD_REG_SET (bad_spill_regs_global);
|
||
bzero ((char *) pseudo_previous_regs, max_regno * sizeof (HARD_REG_SET));
|
||
|
||
/* Look for REG_EQUIV notes; record what each pseudo is equivalent to.
|
||
Also find all paradoxical subregs and find largest such for each pseudo.
|
||
On machines with small register classes, record hard registers that
|
||
are used for user variables. These can never be used for spills.
|
||
Also look for a "constant" NOTE_INSN_SETJMP. This means that all
|
||
caller-saved registers must be marked live. */
|
||
|
||
num_eliminable_invariants = 0;
|
||
for (insn = first; insn; insn = NEXT_INSN (insn))
|
||
{
|
||
rtx set = single_set (insn);
|
||
|
||
if (GET_CODE (insn) == NOTE && CONST_CALL_P (insn)
|
||
&& NOTE_LINE_NUMBER (insn) == NOTE_INSN_SETJMP)
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
if (! call_used_regs[i])
|
||
regs_ever_live[i] = 1;
|
||
|
||
if (set != 0 && GET_CODE (SET_DEST (set)) == REG)
|
||
{
|
||
rtx note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
|
||
if (note
|
||
#ifdef LEGITIMATE_PIC_OPERAND_P
|
||
&& (! function_invariant_p (XEXP (note, 0))
|
||
|| ! flag_pic
|
||
|| LEGITIMATE_PIC_OPERAND_P (XEXP (note, 0)))
|
||
#endif
|
||
)
|
||
{
|
||
rtx x = XEXP (note, 0);
|
||
i = REGNO (SET_DEST (set));
|
||
if (i > LAST_VIRTUAL_REGISTER)
|
||
{
|
||
if (GET_CODE (x) == MEM)
|
||
{
|
||
/* If the operand is a PLUS, the MEM may be shared,
|
||
so make sure we have an unshared copy here. */
|
||
if (GET_CODE (XEXP (x, 0)) == PLUS)
|
||
x = copy_rtx (x);
|
||
|
||
reg_equiv_memory_loc[i] = x;
|
||
}
|
||
else if (function_invariant_p (x))
|
||
{
|
||
if (GET_CODE (x) == PLUS)
|
||
{
|
||
/* This is PLUS of frame pointer and a constant,
|
||
and might be shared. Unshare it. */
|
||
reg_equiv_constant[i] = copy_rtx (x);
|
||
num_eliminable_invariants++;
|
||
}
|
||
else if (x == frame_pointer_rtx
|
||
|| x == arg_pointer_rtx)
|
||
{
|
||
reg_equiv_constant[i] = x;
|
||
num_eliminable_invariants++;
|
||
}
|
||
else if (LEGITIMATE_CONSTANT_P (x))
|
||
reg_equiv_constant[i] = x;
|
||
else
|
||
reg_equiv_memory_loc[i]
|
||
= force_const_mem (GET_MODE (SET_DEST (set)), x);
|
||
}
|
||
else
|
||
continue;
|
||
|
||
/* If this register is being made equivalent to a MEM
|
||
and the MEM is not SET_SRC, the equivalencing insn
|
||
is one with the MEM as a SET_DEST and it occurs later.
|
||
So don't mark this insn now. */
|
||
if (GET_CODE (x) != MEM
|
||
|| rtx_equal_p (SET_SRC (set), x))
|
||
reg_equiv_init[i]
|
||
= gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init[i]);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* If this insn is setting a MEM from a register equivalent to it,
|
||
this is the equivalencing insn. */
|
||
else if (set && GET_CODE (SET_DEST (set)) == MEM
|
||
&& GET_CODE (SET_SRC (set)) == REG
|
||
&& reg_equiv_memory_loc[REGNO (SET_SRC (set))]
|
||
&& rtx_equal_p (SET_DEST (set),
|
||
reg_equiv_memory_loc[REGNO (SET_SRC (set))]))
|
||
reg_equiv_init[REGNO (SET_SRC (set))]
|
||
= gen_rtx_INSN_LIST (VOIDmode, insn,
|
||
reg_equiv_init[REGNO (SET_SRC (set))]);
|
||
|
||
if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
|
||
scan_paradoxical_subregs (PATTERN (insn));
|
||
}
|
||
|
||
init_elim_table ();
|
||
|
||
num_labels = max_label_num () - get_first_label_num ();
|
||
|
||
/* Allocate the tables used to store offset information at labels. */
|
||
/* We used to use alloca here, but the size of what it would try to
|
||
allocate would occasionally cause it to exceed the stack limit and
|
||
cause a core dump. */
|
||
real_known_ptr = xmalloc (num_labels);
|
||
real_at_ptr
|
||
= (int (*)[NUM_ELIMINABLE_REGS])
|
||
xmalloc (num_labels * NUM_ELIMINABLE_REGS * sizeof (int));
|
||
|
||
offsets_known_at = real_known_ptr - get_first_label_num ();
|
||
offsets_at
|
||
= (int (*)[NUM_ELIMINABLE_REGS]) (real_at_ptr - get_first_label_num ());
|
||
|
||
/* Alter each pseudo-reg rtx to contain its hard reg number.
|
||
Assign stack slots to the pseudos that lack hard regs or equivalents.
|
||
Do not touch virtual registers. */
|
||
|
||
for (i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
|
||
alter_reg (i, -1);
|
||
|
||
/* If we have some registers we think can be eliminated, scan all insns to
|
||
see if there is an insn that sets one of these registers to something
|
||
other than itself plus a constant. If so, the register cannot be
|
||
eliminated. Doing this scan here eliminates an extra pass through the
|
||
main reload loop in the most common case where register elimination
|
||
cannot be done. */
|
||
for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn))
|
||
if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
|
||
|| GET_CODE (insn) == CALL_INSN)
|
||
note_stores (PATTERN (insn), mark_not_eliminable);
|
||
|
||
#ifndef REGISTER_CONSTRAINTS
|
||
/* If all the pseudo regs have hard regs,
|
||
except for those that are never referenced,
|
||
we know that no reloads are needed. */
|
||
/* But that is not true if there are register constraints, since
|
||
in that case some pseudos might be in the wrong kind of hard reg. */
|
||
|
||
for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
|
||
if (reg_renumber[i] == -1 && REG_N_REFS (i) != 0)
|
||
break;
|
||
|
||
if (i == max_regno && num_eliminable == 0 && ! caller_save_needed)
|
||
{
|
||
free (real_known_ptr);
|
||
free (real_at_ptr);
|
||
free (reg_equiv_constant);
|
||
free (reg_equiv_memory_loc);
|
||
free (reg_equiv_mem);
|
||
free (reg_equiv_init);
|
||
free (reg_equiv_address);
|
||
free (reg_max_ref_width);
|
||
free (reg_old_renumber);
|
||
free (pseudo_previous_regs);
|
||
free (pseudo_forbidden_regs);
|
||
return 0;
|
||
}
|
||
#endif
|
||
|
||
maybe_fix_stack_asms ();
|
||
|
||
insns_need_reload = 0;
|
||
something_needs_elimination = 0;
|
||
|
||
/* Initialize to -1, which means take the first spill register. */
|
||
last_spill_reg = -1;
|
||
|
||
spilled_pseudos = ALLOCA_REG_SET ();
|
||
|
||
/* Spill any hard regs that we know we can't eliminate. */
|
||
CLEAR_HARD_REG_SET (used_spill_regs);
|
||
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++)
|
||
if (! ep->can_eliminate)
|
||
spill_hard_reg (ep->from, dumpfile, 1);
|
||
|
||
#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
|
||
if (frame_pointer_needed)
|
||
spill_hard_reg (HARD_FRAME_POINTER_REGNUM, dumpfile, 1);
|
||
#endif
|
||
finish_spills (global, dumpfile);
|
||
|
||
/* From now on, we may need to generate moves differently. We may also
|
||
allow modifications of insns which cause them to not be recognized.
|
||
Any such modifications will be cleaned up during reload itself. */
|
||
reload_in_progress = 1;
|
||
|
||
/* This loop scans the entire function each go-round
|
||
and repeats until one repetition spills no additional hard regs. */
|
||
for (;;)
|
||
{
|
||
int something_changed;
|
||
int did_spill;
|
||
struct insn_chain *chain;
|
||
|
||
HOST_WIDE_INT starting_frame_size;
|
||
|
||
/* Round size of stack frame to BIGGEST_ALIGNMENT. This must be done
|
||
here because the stack size may be a part of the offset computation
|
||
for register elimination, and there might have been new stack slots
|
||
created in the last iteration of this loop. */
|
||
assign_stack_local (BLKmode, 0, 0);
|
||
|
||
starting_frame_size = get_frame_size ();
|
||
|
||
set_initial_elim_offsets ();
|
||
set_initial_label_offsets ();
|
||
|
||
/* For each pseudo register that has an equivalent location defined,
|
||
try to eliminate any eliminable registers (such as the frame pointer)
|
||
assuming initial offsets for the replacement register, which
|
||
is the normal case.
|
||
|
||
If the resulting location is directly addressable, substitute
|
||
the MEM we just got directly for the old REG.
|
||
|
||
If it is not addressable but is a constant or the sum of a hard reg
|
||
and constant, it is probably not addressable because the constant is
|
||
out of range, in that case record the address; we will generate
|
||
hairy code to compute the address in a register each time it is
|
||
needed. Similarly if it is a hard register, but one that is not
|
||
valid as an address register.
|
||
|
||
If the location is not addressable, but does not have one of the
|
||
above forms, assign a stack slot. We have to do this to avoid the
|
||
potential of producing lots of reloads if, e.g., a location involves
|
||
a pseudo that didn't get a hard register and has an equivalent memory
|
||
location that also involves a pseudo that didn't get a hard register.
|
||
|
||
Perhaps at some point we will improve reload_when_needed handling
|
||
so this problem goes away. But that's very hairy. */
|
||
|
||
for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
|
||
if (reg_renumber[i] < 0 && reg_equiv_memory_loc[i])
|
||
{
|
||
rtx x = eliminate_regs (reg_equiv_memory_loc[i], 0, NULL_RTX);
|
||
|
||
if (strict_memory_address_p (GET_MODE (regno_reg_rtx[i]),
|
||
XEXP (x, 0)))
|
||
reg_equiv_mem[i] = x, reg_equiv_address[i] = 0;
|
||
else if (CONSTANT_P (XEXP (x, 0))
|
||
|| (GET_CODE (XEXP (x, 0)) == REG
|
||
&& REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
|
||
|| (GET_CODE (XEXP (x, 0)) == PLUS
|
||
&& GET_CODE (XEXP (XEXP (x, 0), 0)) == REG
|
||
&& (REGNO (XEXP (XEXP (x, 0), 0))
|
||
< FIRST_PSEUDO_REGISTER)
|
||
&& CONSTANT_P (XEXP (XEXP (x, 0), 1))))
|
||
reg_equiv_address[i] = XEXP (x, 0), reg_equiv_mem[i] = 0;
|
||
else
|
||
{
|
||
/* Make a new stack slot. Then indicate that something
|
||
changed so we go back and recompute offsets for
|
||
eliminable registers because the allocation of memory
|
||
below might change some offset. reg_equiv_{mem,address}
|
||
will be set up for this pseudo on the next pass around
|
||
the loop. */
|
||
reg_equiv_memory_loc[i] = 0;
|
||
reg_equiv_init[i] = 0;
|
||
alter_reg (i, -1);
|
||
}
|
||
}
|
||
|
||
if (caller_save_needed)
|
||
setup_save_areas ();
|
||
|
||
/* If we allocated another stack slot, redo elimination bookkeeping. */
|
||
if (starting_frame_size != get_frame_size ())
|
||
continue;
|
||
|
||
if (caller_save_needed)
|
||
{
|
||
save_call_clobbered_regs ();
|
||
/* That might have allocated new insn_chain structures. */
|
||
reload_firstobj = (char *) obstack_alloc (&reload_obstack, 0);
|
||
}
|
||
|
||
calculate_needs_all_insns (global);
|
||
|
||
CLEAR_REG_SET (spilled_pseudos);
|
||
did_spill = 0;
|
||
|
||
something_changed = 0;
|
||
|
||
/* If we allocated any new memory locations, make another pass
|
||
since it might have changed elimination offsets. */
|
||
if (starting_frame_size != get_frame_size ())
|
||
something_changed = 1;
|
||
|
||
{
|
||
HARD_REG_SET to_spill;
|
||
CLEAR_HARD_REG_SET (to_spill);
|
||
update_eliminables (&to_spill);
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
if (TEST_HARD_REG_BIT (to_spill, i))
|
||
{
|
||
spill_hard_reg (i, dumpfile, 1);
|
||
did_spill = 1;
|
||
|
||
/* Regardless of the state of spills, if we previously had
|
||
a register that we thought we could eliminate, but no can
|
||
not eliminate, we must run another pass.
|
||
|
||
Consider pseudos which have an entry in reg_equiv_* which
|
||
reference an eliminable register. We must make another pass
|
||
to update reg_equiv_* so that we do not substitute in the
|
||
old value from when we thought the elimination could be
|
||
performed. */
|
||
something_changed = 1;
|
||
}
|
||
}
|
||
|
||
CLEAR_HARD_REG_SET (used_spill_regs);
|
||
/* Try to satisfy the needs for each insn. */
|
||
for (chain = insns_need_reload; chain != 0;
|
||
chain = chain->next_need_reload)
|
||
find_reload_regs (chain, dumpfile);
|
||
|
||
if (failure)
|
||
goto failed;
|
||
|
||
if (insns_need_reload != 0 || did_spill)
|
||
something_changed |= finish_spills (global, dumpfile);
|
||
|
||
if (! something_changed)
|
||
break;
|
||
|
||
if (caller_save_needed)
|
||
delete_caller_save_insns ();
|
||
}
|
||
|
||
/* If global-alloc was run, notify it of any register eliminations we have
|
||
done. */
|
||
if (global)
|
||
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++)
|
||
if (ep->can_eliminate)
|
||
mark_elimination (ep->from, ep->to);
|
||
|
||
/* If a pseudo has no hard reg, delete the insns that made the equivalence.
|
||
If that insn didn't set the register (i.e., it copied the register to
|
||
memory), just delete that insn instead of the equivalencing insn plus
|
||
anything now dead. If we call delete_dead_insn on that insn, we may
|
||
delete the insn that actually sets the register if the register dies
|
||
there and that is incorrect. */
|
||
|
||
for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
|
||
{
|
||
if (reg_renumber[i] < 0 && reg_equiv_init[i] != 0)
|
||
{
|
||
rtx list;
|
||
for (list = reg_equiv_init[i]; list; list = XEXP (list, 1))
|
||
{
|
||
rtx equiv_insn = XEXP (list, 0);
|
||
if (GET_CODE (equiv_insn) == NOTE)
|
||
continue;
|
||
if (reg_set_p (regno_reg_rtx[i], PATTERN (equiv_insn)))
|
||
delete_dead_insn (equiv_insn);
|
||
else
|
||
{
|
||
PUT_CODE (equiv_insn, NOTE);
|
||
NOTE_SOURCE_FILE (equiv_insn) = 0;
|
||
NOTE_LINE_NUMBER (equiv_insn) = NOTE_INSN_DELETED;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Use the reload registers where necessary
|
||
by generating move instructions to move the must-be-register
|
||
values into or out of the reload registers. */
|
||
|
||
if (insns_need_reload != 0 || something_needs_elimination
|
||
|| something_needs_operands_changed)
|
||
{
|
||
int old_frame_size = get_frame_size ();
|
||
|
||
reload_as_needed (global);
|
||
|
||
if (old_frame_size != get_frame_size ())
|
||
abort ();
|
||
|
||
if (num_eliminable)
|
||
verify_initial_elim_offsets ();
|
||
}
|
||
|
||
/* If we were able to eliminate the frame pointer, show that it is no
|
||
longer live at the start of any basic block. If it ls live by
|
||
virtue of being in a pseudo, that pseudo will be marked live
|
||
and hence the frame pointer will be known to be live via that
|
||
pseudo. */
|
||
|
||
if (! frame_pointer_needed)
|
||
for (i = 0; i < n_basic_blocks; i++)
|
||
CLEAR_REGNO_REG_SET (BASIC_BLOCK (i)->global_live_at_start,
|
||
HARD_FRAME_POINTER_REGNUM);
|
||
|
||
/* Come here (with failure set nonzero) if we can't get enough spill regs
|
||
and we decide not to abort about it. */
|
||
failed:
|
||
|
||
reload_in_progress = 0;
|
||
|
||
/* Now eliminate all pseudo regs by modifying them into
|
||
their equivalent memory references.
|
||
The REG-rtx's for the pseudos are modified in place,
|
||
so all insns that used to refer to them now refer to memory.
|
||
|
||
For a reg that has a reg_equiv_address, all those insns
|
||
were changed by reloading so that no insns refer to it any longer;
|
||
but the DECL_RTL of a variable decl may refer to it,
|
||
and if so this causes the debugging info to mention the variable. */
|
||
|
||
for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
|
||
{
|
||
rtx addr = 0;
|
||
int in_struct = 0;
|
||
int is_scalar;
|
||
int is_readonly = 0;
|
||
|
||
if (reg_equiv_memory_loc[i])
|
||
{
|
||
in_struct = MEM_IN_STRUCT_P (reg_equiv_memory_loc[i]);
|
||
is_scalar = MEM_SCALAR_P (reg_equiv_memory_loc[i]);
|
||
is_readonly = RTX_UNCHANGING_P (reg_equiv_memory_loc[i]);
|
||
}
|
||
|
||
if (reg_equiv_mem[i])
|
||
addr = XEXP (reg_equiv_mem[i], 0);
|
||
|
||
if (reg_equiv_address[i])
|
||
addr = reg_equiv_address[i];
|
||
|
||
if (addr)
|
||
{
|
||
if (reg_renumber[i] < 0)
|
||
{
|
||
rtx reg = regno_reg_rtx[i];
|
||
XEXP (reg, 0) = addr;
|
||
REG_USERVAR_P (reg) = 0;
|
||
RTX_UNCHANGING_P (reg) = is_readonly;
|
||
MEM_IN_STRUCT_P (reg) = in_struct;
|
||
MEM_SCALAR_P (reg) = is_scalar;
|
||
/* We have no alias information about this newly created
|
||
MEM. */
|
||
MEM_ALIAS_SET (reg) = 0;
|
||
PUT_CODE (reg, MEM);
|
||
}
|
||
else if (reg_equiv_mem[i])
|
||
XEXP (reg_equiv_mem[i], 0) = addr;
|
||
}
|
||
}
|
||
|
||
/* We must set reload_completed now since the cleanup_subreg_operands call
|
||
below will re-recognize each insn and reload may have generated insns
|
||
which are only valid during and after reload. */
|
||
reload_completed = 1;
|
||
|
||
/* Make a pass over all the insns and delete all USEs which we
|
||
inserted only to tag a REG_EQUAL note on them. Remove all
|
||
REG_DEAD and REG_UNUSED notes. Delete all CLOBBER insns and
|
||
simplify (subreg (reg)) operands. Also remove all REG_RETVAL and
|
||
REG_LIBCALL notes since they are no longer useful or accurate.
|
||
Strip and regenerate REG_INC notes that may have been moved
|
||
around. */
|
||
|
||
for (insn = first; insn; insn = NEXT_INSN (insn))
|
||
if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
|
||
{
|
||
rtx *pnote;
|
||
|
||
if ((GET_CODE (PATTERN (insn)) == USE
|
||
&& find_reg_note (insn, REG_EQUAL, NULL_RTX))
|
||
|| GET_CODE (PATTERN (insn)) == CLOBBER)
|
||
{
|
||
PUT_CODE (insn, NOTE);
|
||
NOTE_SOURCE_FILE (insn) = 0;
|
||
NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
|
||
continue;
|
||
}
|
||
|
||
pnote = ®_NOTES (insn);
|
||
while (*pnote != 0)
|
||
{
|
||
if (REG_NOTE_KIND (*pnote) == REG_DEAD
|
||
|| REG_NOTE_KIND (*pnote) == REG_UNUSED
|
||
|| REG_NOTE_KIND (*pnote) == REG_INC
|
||
|| REG_NOTE_KIND (*pnote) == REG_RETVAL
|
||
|| REG_NOTE_KIND (*pnote) == REG_LIBCALL)
|
||
*pnote = XEXP (*pnote, 1);
|
||
else
|
||
pnote = &XEXP (*pnote, 1);
|
||
}
|
||
|
||
#ifdef AUTO_INC_DEC
|
||
add_auto_inc_notes (insn, PATTERN (insn));
|
||
#endif
|
||
|
||
/* And simplify (subreg (reg)) if it appears as an operand. */
|
||
cleanup_subreg_operands (insn);
|
||
}
|
||
|
||
/* If we are doing stack checking, give a warning if this function's
|
||
frame size is larger than we expect. */
|
||
if (flag_stack_check && ! STACK_CHECK_BUILTIN)
|
||
{
|
||
HOST_WIDE_INT size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE;
|
||
static int verbose_warned = 0;
|
||
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
if (regs_ever_live[i] && ! fixed_regs[i] && call_used_regs[i])
|
||
size += UNITS_PER_WORD;
|
||
|
||
if (size > STACK_CHECK_MAX_FRAME_SIZE)
|
||
{
|
||
warning ("frame size too large for reliable stack checking");
|
||
if (! verbose_warned)
|
||
{
|
||
warning ("try reducing the number of local variables");
|
||
verbose_warned = 1;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Indicate that we no longer have known memory locations or constants. */
|
||
if (reg_equiv_constant)
|
||
free (reg_equiv_constant);
|
||
reg_equiv_constant = 0;
|
||
if (reg_equiv_memory_loc)
|
||
free (reg_equiv_memory_loc);
|
||
reg_equiv_memory_loc = 0;
|
||
|
||
if (real_known_ptr)
|
||
free (real_known_ptr);
|
||
if (real_at_ptr)
|
||
free (real_at_ptr);
|
||
|
||
free (reg_equiv_mem);
|
||
free (reg_equiv_init);
|
||
free (reg_equiv_address);
|
||
free (reg_max_ref_width);
|
||
free (reg_old_renumber);
|
||
free (pseudo_previous_regs);
|
||
free (pseudo_forbidden_regs);
|
||
|
||
FREE_REG_SET (spilled_pseudos);
|
||
|
||
CLEAR_HARD_REG_SET (used_spill_regs);
|
||
for (i = 0; i < n_spills; i++)
|
||
SET_HARD_REG_BIT (used_spill_regs, spill_regs[i]);
|
||
|
||
/* Free all the insn_chain structures at once. */
|
||
obstack_free (&reload_obstack, reload_startobj);
|
||
unused_insn_chains = 0;
|
||
|
||
return failure;
|
||
}
|
||
|
||
/* Yet another special case. Unfortunately, reg-stack forces people to
|
||
write incorrect clobbers in asm statements. These clobbers must not
|
||
cause the register to appear in bad_spill_regs, otherwise we'll call
|
||
fatal_insn later. We clear the corresponding regnos in the live
|
||
register sets to avoid this.
|
||
The whole thing is rather sick, I'm afraid. */
|
||
static void
|
||
maybe_fix_stack_asms ()
|
||
{
|
||
#ifdef STACK_REGS
|
||
char *constraints[MAX_RECOG_OPERANDS];
|
||
enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
|
||
struct insn_chain *chain;
|
||
|
||
for (chain = reload_insn_chain; chain != 0; chain = chain->next)
|
||
{
|
||
int i, noperands;
|
||
HARD_REG_SET clobbered, allowed;
|
||
rtx pat;
|
||
|
||
if (GET_RTX_CLASS (GET_CODE (chain->insn)) != 'i'
|
||
|| (noperands = asm_noperands (PATTERN (chain->insn))) < 0)
|
||
continue;
|
||
pat = PATTERN (chain->insn);
|
||
if (GET_CODE (pat) != PARALLEL)
|
||
continue;
|
||
|
||
CLEAR_HARD_REG_SET (clobbered);
|
||
CLEAR_HARD_REG_SET (allowed);
|
||
|
||
/* First, make a mask of all stack regs that are clobbered. */
|
||
for (i = 0; i < XVECLEN (pat, 0); i++)
|
||
{
|
||
rtx t = XVECEXP (pat, 0, i);
|
||
if (GET_CODE (t) == CLOBBER && STACK_REG_P (XEXP (t, 0)))
|
||
SET_HARD_REG_BIT (clobbered, REGNO (XEXP (t, 0)));
|
||
}
|
||
|
||
/* Get the operand values and constraints out of the insn. */
|
||
decode_asm_operands (pat, recog_operand, recog_operand_loc,
|
||
constraints, operand_mode);
|
||
|
||
/* For every operand, see what registers are allowed. */
|
||
for (i = 0; i < noperands; i++)
|
||
{
|
||
char *p = constraints[i];
|
||
/* For every alternative, we compute the class of registers allowed
|
||
for reloading in CLS, and merge its contents into the reg set
|
||
ALLOWED. */
|
||
int cls = (int) NO_REGS;
|
||
|
||
for (;;)
|
||
{
|
||
char c = *p++;
|
||
|
||
if (c == '\0' || c == ',' || c == '#')
|
||
{
|
||
/* End of one alternative - mark the regs in the current
|
||
class, and reset the class. */
|
||
IOR_HARD_REG_SET (allowed, reg_class_contents[cls]);
|
||
cls = NO_REGS;
|
||
if (c == '#')
|
||
do {
|
||
c = *p++;
|
||
} while (c != '\0' && c != ',');
|
||
if (c == '\0')
|
||
break;
|
||
continue;
|
||
}
|
||
|
||
switch (c)
|
||
{
|
||
case '=': case '+': case '*': case '%': case '?': case '!':
|
||
case '0': case '1': case '2': case '3': case '4': case 'm':
|
||
case '<': case '>': case 'V': case 'o': case '&': case 'E':
|
||
case 'F': case 's': case 'i': case 'n': case 'X': case 'I':
|
||
case 'J': case 'K': case 'L': case 'M': case 'N': case 'O':
|
||
case 'P':
|
||
#ifdef EXTRA_CONSTRAINT
|
||
case 'Q': case 'R': case 'S': case 'T': case 'U':
|
||
#endif
|
||
break;
|
||
|
||
case 'p':
|
||
cls = (int) reg_class_subunion[cls][(int) BASE_REG_CLASS];
|
||
break;
|
||
|
||
case 'g':
|
||
case 'r':
|
||
cls = (int) reg_class_subunion[cls][(int) GENERAL_REGS];
|
||
break;
|
||
|
||
default:
|
||
cls = (int) reg_class_subunion[cls][(int) REG_CLASS_FROM_LETTER (c)];
|
||
|
||
}
|
||
}
|
||
}
|
||
/* Those of the registers which are clobbered, but allowed by the
|
||
constraints, must be usable as reload registers. So clear them
|
||
out of the life information. */
|
||
AND_HARD_REG_SET (allowed, clobbered);
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
if (TEST_HARD_REG_BIT (allowed, i))
|
||
{
|
||
CLEAR_REGNO_REG_SET (chain->live_before, i);
|
||
CLEAR_REGNO_REG_SET (chain->live_after, i);
|
||
}
|
||
}
|
||
|
||
#endif
|
||
}
|
||
|
||
|
||
/* Walk the chain of insns, and determine for each whether it needs reloads
|
||
and/or eliminations. Build the corresponding insns_need_reload list, and
|
||
set something_needs_elimination as appropriate. */
|
||
static void
|
||
calculate_needs_all_insns (global)
|
||
int global;
|
||
{
|
||
struct insn_chain **pprev_reload = &insns_need_reload;
|
||
struct insn_chain **pchain;
|
||
|
||
something_needs_elimination = 0;
|
||
|
||
for (pchain = &reload_insn_chain; *pchain != 0; pchain = &(*pchain)->next)
|
||
{
|
||
rtx insn;
|
||
struct insn_chain *chain;
|
||
|
||
chain = *pchain;
|
||
insn = chain->insn;
|
||
|
||
/* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
|
||
include REG_LABEL), we need to see what effects this has on the
|
||
known offsets at labels. */
|
||
|
||
if (GET_CODE (insn) == CODE_LABEL || GET_CODE (insn) == JUMP_INSN
|
||
|| (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
|
||
&& REG_NOTES (insn) != 0))
|
||
set_label_offsets (insn, insn, 0);
|
||
|
||
if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
|
||
{
|
||
rtx old_body = PATTERN (insn);
|
||
int old_code = INSN_CODE (insn);
|
||
rtx old_notes = REG_NOTES (insn);
|
||
int did_elimination = 0;
|
||
int operands_changed = 0;
|
||
rtx set = single_set (insn);
|
||
|
||
/* Skip insns that only set an equivalence. */
|
||
if (set && GET_CODE (SET_DEST (set)) == REG
|
||
&& reg_renumber[REGNO (SET_DEST (set))] < 0
|
||
&& reg_equiv_constant[REGNO (SET_DEST (set))])
|
||
{
|
||
/* Must clear out the shortcuts, in case they were set last
|
||
time through. */
|
||
chain->need_elim = 0;
|
||
chain->need_reload = 0;
|
||
chain->need_operand_change = 0;
|
||
continue;
|
||
}
|
||
|
||
/* If needed, eliminate any eliminable registers. */
|
||
if (num_eliminable || num_eliminable_invariants)
|
||
did_elimination = eliminate_regs_in_insn (insn, 0);
|
||
|
||
/* Analyze the instruction. */
|
||
operands_changed = find_reloads (insn, 0, spill_indirect_levels,
|
||
global, spill_reg_order);
|
||
|
||
/* If a no-op set needs more than one reload, this is likely
|
||
to be something that needs input address reloads. We
|
||
can't get rid of this cleanly later, and it is of no use
|
||
anyway, so discard it now.
|
||
We only do this when expensive_optimizations is enabled,
|
||
since this complements reload inheritance / output
|
||
reload deletion, and it can make debugging harder. */
|
||
if (flag_expensive_optimizations && n_reloads > 1)
|
||
{
|
||
rtx set = single_set (insn);
|
||
if (set
|
||
&& SET_SRC (set) == SET_DEST (set)
|
||
&& GET_CODE (SET_SRC (set)) == REG
|
||
&& REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
|
||
{
|
||
PUT_CODE (insn, NOTE);
|
||
NOTE_SOURCE_FILE (insn) = 0;
|
||
NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
|
||
continue;
|
||
}
|
||
}
|
||
if (num_eliminable)
|
||
update_eliminable_offsets ();
|
||
|
||
/* Remember for later shortcuts which insns had any reloads or
|
||
register eliminations. */
|
||
chain->need_elim = did_elimination;
|
||
chain->need_reload = n_reloads > 0;
|
||
chain->need_operand_change = operands_changed;
|
||
|
||
/* Discard any register replacements done. */
|
||
if (did_elimination)
|
||
{
|
||
obstack_free (&reload_obstack, reload_firstobj);
|
||
PATTERN (insn) = old_body;
|
||
INSN_CODE (insn) = old_code;
|
||
REG_NOTES (insn) = old_notes;
|
||
something_needs_elimination = 1;
|
||
}
|
||
|
||
something_needs_operands_changed |= operands_changed;
|
||
|
||
if (n_reloads != 0)
|
||
{
|
||
*pprev_reload = chain;
|
||
pprev_reload = &chain->next_need_reload;
|
||
|
||
calculate_needs (chain);
|
||
}
|
||
}
|
||
}
|
||
*pprev_reload = 0;
|
||
}
|
||
|
||
/* Compute the most additional registers needed by one instruction,
|
||
given by CHAIN. Collect information separately for each class of regs.
|
||
|
||
To compute the number of reload registers of each class needed for an
|
||
insn, we must simulate what choose_reload_regs can do. We do this by
|
||
splitting an insn into an "input" and an "output" part. RELOAD_OTHER
|
||
reloads are used in both. The input part uses those reloads,
|
||
RELOAD_FOR_INPUT reloads, which must be live over the entire input section
|
||
of reloads, and the maximum of all the RELOAD_FOR_INPUT_ADDRESS and
|
||
RELOAD_FOR_OPERAND_ADDRESS reloads, which conflict with the inputs.
|
||
|
||
The registers needed for output are RELOAD_OTHER and RELOAD_FOR_OUTPUT,
|
||
which are live for the entire output portion, and the maximum of all the
|
||
RELOAD_FOR_OUTPUT_ADDRESS reloads for each operand.
|
||
|
||
The total number of registers needed is the maximum of the
|
||
inputs and outputs. */
|
||
|
||
static void
|
||
calculate_needs (chain)
|
||
struct insn_chain *chain;
|
||
{
|
||
int i;
|
||
|
||
/* Each `struct needs' corresponds to one RELOAD_... type. */
|
||
struct {
|
||
struct needs other;
|
||
struct needs input;
|
||
struct needs output;
|
||
struct needs insn;
|
||
struct needs other_addr;
|
||
struct needs op_addr;
|
||
struct needs op_addr_reload;
|
||
struct needs in_addr[MAX_RECOG_OPERANDS];
|
||
struct needs in_addr_addr[MAX_RECOG_OPERANDS];
|
||
struct needs out_addr[MAX_RECOG_OPERANDS];
|
||
struct needs out_addr_addr[MAX_RECOG_OPERANDS];
|
||
} insn_needs;
|
||
|
||
bzero ((char *) chain->group_size, sizeof chain->group_size);
|
||
for (i = 0; i < N_REG_CLASSES; i++)
|
||
chain->group_mode[i] = VOIDmode;
|
||
bzero ((char *) &insn_needs, sizeof insn_needs);
|
||
|
||
/* Count each reload once in every class
|
||
containing the reload's own class. */
|
||
|
||
for (i = 0; i < n_reloads; i++)
|
||
{
|
||
register enum reg_class *p;
|
||
enum reg_class class = reload_reg_class[i];
|
||
int size;
|
||
enum machine_mode mode;
|
||
struct needs *this_needs;
|
||
|
||
/* Don't count the dummy reloads, for which one of the
|
||
regs mentioned in the insn can be used for reloading.
|
||
Don't count optional reloads.
|
||
Don't count reloads that got combined with others. */
|
||
if (reload_reg_rtx[i] != 0
|
||
|| reload_optional[i] != 0
|
||
|| (reload_out[i] == 0 && reload_in[i] == 0
|
||
&& ! reload_secondary_p[i]))
|
||
continue;
|
||
|
||
mode = reload_inmode[i];
|
||
if (GET_MODE_SIZE (reload_outmode[i]) > GET_MODE_SIZE (mode))
|
||
mode = reload_outmode[i];
|
||
size = CLASS_MAX_NREGS (class, mode);
|
||
|
||
/* Decide which time-of-use to count this reload for. */
|
||
switch (reload_when_needed[i])
|
||
{
|
||
case RELOAD_OTHER:
|
||
this_needs = &insn_needs.other;
|
||
break;
|
||
case RELOAD_FOR_INPUT:
|
||
this_needs = &insn_needs.input;
|
||
break;
|
||
case RELOAD_FOR_OUTPUT:
|
||
this_needs = &insn_needs.output;
|
||
break;
|
||
case RELOAD_FOR_INSN:
|
||
this_needs = &insn_needs.insn;
|
||
break;
|
||
case RELOAD_FOR_OTHER_ADDRESS:
|
||
this_needs = &insn_needs.other_addr;
|
||
break;
|
||
case RELOAD_FOR_INPUT_ADDRESS:
|
||
this_needs = &insn_needs.in_addr[reload_opnum[i]];
|
||
break;
|
||
case RELOAD_FOR_INPADDR_ADDRESS:
|
||
this_needs = &insn_needs.in_addr_addr[reload_opnum[i]];
|
||
break;
|
||
case RELOAD_FOR_OUTPUT_ADDRESS:
|
||
this_needs = &insn_needs.out_addr[reload_opnum[i]];
|
||
break;
|
||
case RELOAD_FOR_OUTADDR_ADDRESS:
|
||
this_needs = &insn_needs.out_addr_addr[reload_opnum[i]];
|
||
break;
|
||
case RELOAD_FOR_OPERAND_ADDRESS:
|
||
this_needs = &insn_needs.op_addr;
|
||
break;
|
||
case RELOAD_FOR_OPADDR_ADDR:
|
||
this_needs = &insn_needs.op_addr_reload;
|
||
break;
|
||
default:
|
||
abort();
|
||
}
|
||
|
||
if (size > 1)
|
||
{
|
||
enum machine_mode other_mode, allocate_mode;
|
||
|
||
/* Count number of groups needed separately from
|
||
number of individual regs needed. */
|
||
this_needs->groups[(int) class]++;
|
||
p = reg_class_superclasses[(int) class];
|
||
while (*p != LIM_REG_CLASSES)
|
||
this_needs->groups[(int) *p++]++;
|
||
|
||
/* Record size and mode of a group of this class. */
|
||
/* If more than one size group is needed,
|
||
make all groups the largest needed size. */
|
||
if (chain->group_size[(int) class] < size)
|
||
{
|
||
other_mode = chain->group_mode[(int) class];
|
||
allocate_mode = mode;
|
||
|
||
chain->group_size[(int) class] = size;
|
||
chain->group_mode[(int) class] = mode;
|
||
}
|
||
else
|
||
{
|
||
other_mode = mode;
|
||
allocate_mode = chain->group_mode[(int) class];
|
||
}
|
||
|
||
/* Crash if two dissimilar machine modes both need
|
||
groups of consecutive regs of the same class. */
|
||
|
||
if (other_mode != VOIDmode && other_mode != allocate_mode
|
||
&& ! modes_equiv_for_class_p (allocate_mode,
|
||
other_mode, class))
|
||
fatal_insn ("Two dissimilar machine modes both need groups of consecutive regs of the same class",
|
||
chain->insn);
|
||
}
|
||
else if (size == 1)
|
||
{
|
||
this_needs->regs[(unsigned char)reload_nongroup[i]][(int) class] += 1;
|
||
p = reg_class_superclasses[(int) class];
|
||
while (*p != LIM_REG_CLASSES)
|
||
this_needs->regs[(unsigned char)reload_nongroup[i]][(int) *p++] += 1;
|
||
}
|
||
else
|
||
abort ();
|
||
}
|
||
|
||
/* All reloads have been counted for this insn;
|
||
now merge the various times of use.
|
||
This sets insn_needs, etc., to the maximum total number
|
||
of registers needed at any point in this insn. */
|
||
|
||
for (i = 0; i < N_REG_CLASSES; i++)
|
||
{
|
||
int j, in_max, out_max;
|
||
|
||
/* Compute normal and nongroup needs. */
|
||
for (j = 0; j <= 1; j++)
|
||
{
|
||
int k;
|
||
for (in_max = 0, out_max = 0, k = 0; k < reload_n_operands; k++)
|
||
{
|
||
in_max = MAX (in_max,
|
||
(insn_needs.in_addr[k].regs[j][i]
|
||
+ insn_needs.in_addr_addr[k].regs[j][i]));
|
||
out_max = MAX (out_max, insn_needs.out_addr[k].regs[j][i]);
|
||
out_max = MAX (out_max,
|
||
insn_needs.out_addr_addr[k].regs[j][i]);
|
||
}
|
||
|
||
/* RELOAD_FOR_INSN reloads conflict with inputs, outputs,
|
||
and operand addresses but not things used to reload
|
||
them. Similarly, RELOAD_FOR_OPERAND_ADDRESS reloads
|
||
don't conflict with things needed to reload inputs or
|
||
outputs. */
|
||
|
||
in_max = MAX (MAX (insn_needs.op_addr.regs[j][i],
|
||
insn_needs.op_addr_reload.regs[j][i]),
|
||
in_max);
|
||
|
||
out_max = MAX (out_max, insn_needs.insn.regs[j][i]);
|
||
|
||
insn_needs.input.regs[j][i]
|
||
= MAX (insn_needs.input.regs[j][i]
|
||
+ insn_needs.op_addr.regs[j][i]
|
||
+ insn_needs.insn.regs[j][i],
|
||
in_max + insn_needs.input.regs[j][i]);
|
||
|
||
insn_needs.output.regs[j][i] += out_max;
|
||
insn_needs.other.regs[j][i]
|
||
+= MAX (MAX (insn_needs.input.regs[j][i],
|
||
insn_needs.output.regs[j][i]),
|
||
insn_needs.other_addr.regs[j][i]);
|
||
|
||
}
|
||
|
||
/* Now compute group needs. */
|
||
for (in_max = 0, out_max = 0, j = 0; j < reload_n_operands; j++)
|
||
{
|
||
in_max = MAX (in_max, insn_needs.in_addr[j].groups[i]);
|
||
in_max = MAX (in_max, insn_needs.in_addr_addr[j].groups[i]);
|
||
out_max = MAX (out_max, insn_needs.out_addr[j].groups[i]);
|
||
out_max = MAX (out_max, insn_needs.out_addr_addr[j].groups[i]);
|
||
}
|
||
|
||
in_max = MAX (MAX (insn_needs.op_addr.groups[i],
|
||
insn_needs.op_addr_reload.groups[i]),
|
||
in_max);
|
||
out_max = MAX (out_max, insn_needs.insn.groups[i]);
|
||
|
||
insn_needs.input.groups[i]
|
||
= MAX (insn_needs.input.groups[i]
|
||
+ insn_needs.op_addr.groups[i]
|
||
+ insn_needs.insn.groups[i],
|
||
in_max + insn_needs.input.groups[i]);
|
||
|
||
insn_needs.output.groups[i] += out_max;
|
||
insn_needs.other.groups[i]
|
||
+= MAX (MAX (insn_needs.input.groups[i],
|
||
insn_needs.output.groups[i]),
|
||
insn_needs.other_addr.groups[i]);
|
||
}
|
||
|
||
/* Record the needs for later. */
|
||
chain->need = insn_needs.other;
|
||
}
|
||
|
||
/* Find a group of exactly 2 registers.
|
||
|
||
First try to fill out the group by spilling a single register which
|
||
would allow completion of the group.
|
||
|
||
Then try to create a new group from a pair of registers, neither of
|
||
which are explicitly used.
|
||
|
||
Then try to create a group from any pair of registers. */
|
||
|
||
static void
|
||
find_tworeg_group (chain, class, dumpfile)
|
||
struct insn_chain *chain;
|
||
int class;
|
||
FILE *dumpfile;
|
||
{
|
||
int i;
|
||
/* First, look for a register that will complete a group. */
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
{
|
||
int j, other;
|
||
|
||
j = potential_reload_regs[i];
|
||
if (j >= 0 && ! TEST_HARD_REG_BIT (bad_spill_regs, j)
|
||
&& ((j > 0 && (other = j - 1, spill_reg_order[other] >= 0)
|
||
&& TEST_HARD_REG_BIT (reg_class_contents[class], j)
|
||
&& TEST_HARD_REG_BIT (reg_class_contents[class], other)
|
||
&& HARD_REGNO_MODE_OK (other, chain->group_mode[class])
|
||
&& ! TEST_HARD_REG_BIT (chain->counted_for_nongroups, other)
|
||
/* We don't want one part of another group.
|
||
We could get "two groups" that overlap! */
|
||
&& ! TEST_HARD_REG_BIT (chain->counted_for_groups, other))
|
||
|| (j < FIRST_PSEUDO_REGISTER - 1
|
||
&& (other = j + 1, spill_reg_order[other] >= 0)
|
||
&& TEST_HARD_REG_BIT (reg_class_contents[class], j)
|
||
&& TEST_HARD_REG_BIT (reg_class_contents[class], other)
|
||
&& HARD_REGNO_MODE_OK (j, chain->group_mode[class])
|
||
&& ! TEST_HARD_REG_BIT (chain->counted_for_nongroups, other)
|
||
&& ! TEST_HARD_REG_BIT (chain->counted_for_groups, other))))
|
||
{
|
||
register enum reg_class *p;
|
||
|
||
/* We have found one that will complete a group,
|
||
so count off one group as provided. */
|
||
chain->need.groups[class]--;
|
||
p = reg_class_superclasses[class];
|
||
while (*p != LIM_REG_CLASSES)
|
||
{
|
||
if (chain->group_size [(int) *p] <= chain->group_size [class])
|
||
chain->need.groups[(int) *p]--;
|
||
p++;
|
||
}
|
||
|
||
/* Indicate both these regs are part of a group. */
|
||
SET_HARD_REG_BIT (chain->counted_for_groups, j);
|
||
SET_HARD_REG_BIT (chain->counted_for_groups, other);
|
||
break;
|
||
}
|
||
}
|
||
/* We can't complete a group, so start one. */
|
||
if (i == FIRST_PSEUDO_REGISTER)
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
{
|
||
int j, k;
|
||
j = potential_reload_regs[i];
|
||
/* Verify that J+1 is a potential reload reg. */
|
||
for (k = 0; k < FIRST_PSEUDO_REGISTER; k++)
|
||
if (potential_reload_regs[k] == j + 1)
|
||
break;
|
||
if (j >= 0 && j + 1 < FIRST_PSEUDO_REGISTER
|
||
&& k < FIRST_PSEUDO_REGISTER
|
||
&& spill_reg_order[j] < 0 && spill_reg_order[j + 1] < 0
|
||
&& TEST_HARD_REG_BIT (reg_class_contents[class], j)
|
||
&& TEST_HARD_REG_BIT (reg_class_contents[class], j + 1)
|
||
&& HARD_REGNO_MODE_OK (j, chain->group_mode[class])
|
||
&& ! TEST_HARD_REG_BIT (chain->counted_for_nongroups, j + 1)
|
||
&& ! TEST_HARD_REG_BIT (bad_spill_regs, j + 1))
|
||
break;
|
||
}
|
||
|
||
/* I should be the index in potential_reload_regs
|
||
of the new reload reg we have found. */
|
||
|
||
new_spill_reg (chain, i, class, 0, dumpfile);
|
||
}
|
||
|
||
/* Find a group of more than 2 registers.
|
||
Look for a sufficient sequence of unspilled registers, and spill them all
|
||
at once. */
|
||
|
||
static void
|
||
find_group (chain, class, dumpfile)
|
||
struct insn_chain *chain;
|
||
int class;
|
||
FILE *dumpfile;
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
{
|
||
int j = potential_reload_regs[i];
|
||
|
||
if (j >= 0
|
||
&& j + chain->group_size[class] <= FIRST_PSEUDO_REGISTER
|
||
&& HARD_REGNO_MODE_OK (j, chain->group_mode[class]))
|
||
{
|
||
int k;
|
||
/* Check each reg in the sequence. */
|
||
for (k = 0; k < chain->group_size[class]; k++)
|
||
if (! (spill_reg_order[j + k] < 0
|
||
&& ! TEST_HARD_REG_BIT (bad_spill_regs, j + k)
|
||
&& TEST_HARD_REG_BIT (reg_class_contents[class], j + k)))
|
||
break;
|
||
/* We got a full sequence, so spill them all. */
|
||
if (k == chain->group_size[class])
|
||
{
|
||
register enum reg_class *p;
|
||
for (k = 0; k < chain->group_size[class]; k++)
|
||
{
|
||
int idx;
|
||
SET_HARD_REG_BIT (chain->counted_for_groups, j + k);
|
||
for (idx = 0; idx < FIRST_PSEUDO_REGISTER; idx++)
|
||
if (potential_reload_regs[idx] == j + k)
|
||
break;
|
||
new_spill_reg (chain, idx, class, 0, dumpfile);
|
||
}
|
||
|
||
/* We have found one that will complete a group,
|
||
so count off one group as provided. */
|
||
chain->need.groups[class]--;
|
||
p = reg_class_superclasses[class];
|
||
while (*p != LIM_REG_CLASSES)
|
||
{
|
||
if (chain->group_size [(int) *p]
|
||
<= chain->group_size [class])
|
||
chain->need.groups[(int) *p]--;
|
||
p++;
|
||
}
|
||
return;
|
||
}
|
||
}
|
||
}
|
||
/* There are no groups left. */
|
||
spill_failure (chain->insn);
|
||
failure = 1;
|
||
}
|
||
|
||
/* If pseudo REG conflicts with one of our reload registers, mark it as
|
||
spilled. */
|
||
static void
|
||
maybe_mark_pseudo_spilled (reg)
|
||
int reg;
|
||
{
|
||
int i;
|
||
int r = reg_renumber[reg];
|
||
int nregs;
|
||
|
||
if (r < 0)
|
||
abort ();
|
||
nregs = HARD_REGNO_NREGS (r, PSEUDO_REGNO_MODE (reg));
|
||
for (i = 0; i < n_spills; i++)
|
||
if (r <= spill_regs[i] && r + nregs > spill_regs[i])
|
||
{
|
||
SET_REGNO_REG_SET (spilled_pseudos, reg);
|
||
return;
|
||
}
|
||
}
|
||
|
||
/* Find more reload regs to satisfy the remaining need of an insn, which
|
||
is given by CHAIN.
|
||
Do it by ascending class number, since otherwise a reg
|
||
might be spilled for a big class and might fail to count
|
||
for a smaller class even though it belongs to that class.
|
||
|
||
Count spilled regs in `spills', and add entries to
|
||
`spill_regs' and `spill_reg_order'.
|
||
|
||
??? Note there is a problem here.
|
||
When there is a need for a group in a high-numbered class,
|
||
and also need for non-group regs that come from a lower class,
|
||
the non-group regs are chosen first. If there aren't many regs,
|
||
they might leave no room for a group.
|
||
|
||
This was happening on the 386. To fix it, we added the code
|
||
that calls possible_group_p, so that the lower class won't
|
||
break up the last possible group.
|
||
|
||
Really fixing the problem would require changes above
|
||
in counting the regs already spilled, and in choose_reload_regs.
|
||
It might be hard to avoid introducing bugs there. */
|
||
|
||
static void
|
||
find_reload_regs (chain, dumpfile)
|
||
struct insn_chain *chain;
|
||
FILE *dumpfile;
|
||
{
|
||
int i, class;
|
||
short *group_needs = chain->need.groups;
|
||
short *simple_needs = chain->need.regs[0];
|
||
short *nongroup_needs = chain->need.regs[1];
|
||
|
||
if (dumpfile)
|
||
fprintf (dumpfile, "Spilling for insn %d.\n", INSN_UID (chain->insn));
|
||
|
||
/* Compute the order of preference for hard registers to spill.
|
||
Store them by decreasing preference in potential_reload_regs. */
|
||
|
||
order_regs_for_reload (chain);
|
||
|
||
/* So far, no hard regs have been spilled. */
|
||
n_spills = 0;
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
spill_reg_order[i] = -1;
|
||
|
||
CLEAR_HARD_REG_SET (chain->used_spill_regs);
|
||
CLEAR_HARD_REG_SET (chain->counted_for_groups);
|
||
CLEAR_HARD_REG_SET (chain->counted_for_nongroups);
|
||
|
||
for (class = 0; class < N_REG_CLASSES; class++)
|
||
{
|
||
/* First get the groups of registers.
|
||
If we got single registers first, we might fragment
|
||
possible groups. */
|
||
while (group_needs[class] > 0)
|
||
{
|
||
/* If any single spilled regs happen to form groups,
|
||
count them now. Maybe we don't really need
|
||
to spill another group. */
|
||
count_possible_groups (chain, class);
|
||
|
||
if (group_needs[class] <= 0)
|
||
break;
|
||
|
||
/* Groups of size 2, the only groups used on most machines,
|
||
are treated specially. */
|
||
if (chain->group_size[class] == 2)
|
||
find_tworeg_group (chain, class, dumpfile);
|
||
else
|
||
find_group (chain, class, dumpfile);
|
||
if (failure)
|
||
return;
|
||
}
|
||
|
||
/* Now similarly satisfy all need for single registers. */
|
||
|
||
while (simple_needs[class] > 0 || nongroup_needs[class] > 0)
|
||
{
|
||
/* If we spilled enough regs, but they weren't counted
|
||
against the non-group need, see if we can count them now.
|
||
If so, we can avoid some actual spilling. */
|
||
if (simple_needs[class] <= 0 && nongroup_needs[class] > 0)
|
||
for (i = 0; i < n_spills; i++)
|
||
{
|
||
int regno = spill_regs[i];
|
||
if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
|
||
&& !TEST_HARD_REG_BIT (chain->counted_for_groups, regno)
|
||
&& !TEST_HARD_REG_BIT (chain->counted_for_nongroups, regno)
|
||
&& nongroup_needs[class] > 0)
|
||
{
|
||
register enum reg_class *p;
|
||
|
||
SET_HARD_REG_BIT (chain->counted_for_nongroups, regno);
|
||
nongroup_needs[class]--;
|
||
p = reg_class_superclasses[class];
|
||
while (*p != LIM_REG_CLASSES)
|
||
nongroup_needs[(int) *p++]--;
|
||
}
|
||
}
|
||
|
||
if (simple_needs[class] <= 0 && nongroup_needs[class] <= 0)
|
||
break;
|
||
|
||
/* Consider the potential reload regs that aren't
|
||
yet in use as reload regs, in order of preference.
|
||
Find the most preferred one that's in this class. */
|
||
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
{
|
||
int regno = potential_reload_regs[i];
|
||
if (regno >= 0
|
||
&& TEST_HARD_REG_BIT (reg_class_contents[class], regno)
|
||
/* If this reg will not be available for groups,
|
||
pick one that does not foreclose possible groups.
|
||
This is a kludge, and not very general,
|
||
but it should be sufficient to make the 386 work,
|
||
and the problem should not occur on machines with
|
||
more registers. */
|
||
&& (nongroup_needs[class] == 0
|
||
|| possible_group_p (chain, regno)))
|
||
break;
|
||
}
|
||
|
||
/* If we couldn't get a register, try to get one even if we
|
||
might foreclose possible groups. This may cause problems
|
||
later, but that's better than aborting now, since it is
|
||
possible that we will, in fact, be able to form the needed
|
||
group even with this allocation. */
|
||
|
||
if (i >= FIRST_PSEUDO_REGISTER
|
||
&& asm_noperands (chain->insn) < 0)
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
if (potential_reload_regs[i] >= 0
|
||
&& TEST_HARD_REG_BIT (reg_class_contents[class],
|
||
potential_reload_regs[i]))
|
||
break;
|
||
|
||
/* I should be the index in potential_reload_regs
|
||
of the new reload reg we have found. */
|
||
|
||
new_spill_reg (chain, i, class, 1, dumpfile);
|
||
if (failure)
|
||
return;
|
||
}
|
||
}
|
||
|
||
/* We know which hard regs to use, now mark the pseudos that live in them
|
||
as needing to be kicked out. */
|
||
EXECUTE_IF_SET_IN_REG_SET
|
||
(chain->live_before, FIRST_PSEUDO_REGISTER, i,
|
||
{
|
||
maybe_mark_pseudo_spilled (i);
|
||
});
|
||
EXECUTE_IF_SET_IN_REG_SET
|
||
(chain->live_after, FIRST_PSEUDO_REGISTER, i,
|
||
{
|
||
maybe_mark_pseudo_spilled (i);
|
||
});
|
||
|
||
IOR_HARD_REG_SET (used_spill_regs, chain->used_spill_regs);
|
||
}
|
||
|
||
void
|
||
dump_needs (chain, dumpfile)
|
||
struct insn_chain *chain;
|
||
FILE *dumpfile;
|
||
{
|
||
static char *reg_class_names[] = REG_CLASS_NAMES;
|
||
int i;
|
||
struct needs *n = &chain->need;
|
||
|
||
for (i = 0; i < N_REG_CLASSES; i++)
|
||
{
|
||
if (n->regs[i][0] > 0)
|
||
fprintf (dumpfile,
|
||
";; Need %d reg%s of class %s.\n",
|
||
n->regs[i][0], n->regs[i][0] == 1 ? "" : "s",
|
||
reg_class_names[i]);
|
||
if (n->regs[i][1] > 0)
|
||
fprintf (dumpfile,
|
||
";; Need %d nongroup reg%s of class %s.\n",
|
||
n->regs[i][1], n->regs[i][1] == 1 ? "" : "s",
|
||
reg_class_names[i]);
|
||
if (n->groups[i] > 0)
|
||
fprintf (dumpfile,
|
||
";; Need %d group%s (%smode) of class %s.\n",
|
||
n->groups[i], n->groups[i] == 1 ? "" : "s",
|
||
mode_name[(int) chain->group_mode[i]],
|
||
reg_class_names[i]);
|
||
}
|
||
}
|
||
|
||
/* Delete all insns that were inserted by emit_caller_save_insns during
|
||
this iteration. */
|
||
static void
|
||
delete_caller_save_insns ()
|
||
{
|
||
struct insn_chain *c = reload_insn_chain;
|
||
|
||
while (c != 0)
|
||
{
|
||
while (c != 0 && c->is_caller_save_insn)
|
||
{
|
||
struct insn_chain *next = c->next;
|
||
rtx insn = c->insn;
|
||
|
||
if (insn == BLOCK_HEAD (c->block))
|
||
BLOCK_HEAD (c->block) = NEXT_INSN (insn);
|
||
if (insn == BLOCK_END (c->block))
|
||
BLOCK_END (c->block) = PREV_INSN (insn);
|
||
if (c == reload_insn_chain)
|
||
reload_insn_chain = next;
|
||
|
||
if (NEXT_INSN (insn) != 0)
|
||
PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
|
||
if (PREV_INSN (insn) != 0)
|
||
NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
|
||
|
||
if (next)
|
||
next->prev = c->prev;
|
||
if (c->prev)
|
||
c->prev->next = next;
|
||
c->next = unused_insn_chains;
|
||
unused_insn_chains = c;
|
||
c = next;
|
||
}
|
||
if (c != 0)
|
||
c = c->next;
|
||
}
|
||
}
|
||
|
||
/* Nonzero if, after spilling reg REGNO for non-groups,
|
||
it will still be possible to find a group if we still need one. */
|
||
|
||
static int
|
||
possible_group_p (chain, regno)
|
||
struct insn_chain *chain;
|
||
int regno;
|
||
{
|
||
int i;
|
||
int class = (int) NO_REGS;
|
||
|
||
for (i = 0; i < (int) N_REG_CLASSES; i++)
|
||
if (chain->need.groups[i] > 0)
|
||
{
|
||
class = i;
|
||
break;
|
||
}
|
||
|
||
if (class == (int) NO_REGS)
|
||
return 1;
|
||
|
||
/* Consider each pair of consecutive registers. */
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER - 1; i++)
|
||
{
|
||
/* Ignore pairs that include reg REGNO. */
|
||
if (i == regno || i + 1 == regno)
|
||
continue;
|
||
|
||
/* Ignore pairs that are outside the class that needs the group.
|
||
??? Here we fail to handle the case where two different classes
|
||
independently need groups. But this never happens with our
|
||
current machine descriptions. */
|
||
if (! (TEST_HARD_REG_BIT (reg_class_contents[class], i)
|
||
&& TEST_HARD_REG_BIT (reg_class_contents[class], i + 1)))
|
||
continue;
|
||
|
||
/* A pair of consecutive regs we can still spill does the trick. */
|
||
if (spill_reg_order[i] < 0 && spill_reg_order[i + 1] < 0
|
||
&& ! TEST_HARD_REG_BIT (bad_spill_regs, i)
|
||
&& ! TEST_HARD_REG_BIT (bad_spill_regs, i + 1))
|
||
return 1;
|
||
|
||
/* A pair of one already spilled and one we can spill does it
|
||
provided the one already spilled is not otherwise reserved. */
|
||
if (spill_reg_order[i] < 0
|
||
&& ! TEST_HARD_REG_BIT (bad_spill_regs, i)
|
||
&& spill_reg_order[i + 1] >= 0
|
||
&& ! TEST_HARD_REG_BIT (chain->counted_for_groups, i + 1)
|
||
&& ! TEST_HARD_REG_BIT (chain->counted_for_nongroups, i + 1))
|
||
return 1;
|
||
if (spill_reg_order[i + 1] < 0
|
||
&& ! TEST_HARD_REG_BIT (bad_spill_regs, i + 1)
|
||
&& spill_reg_order[i] >= 0
|
||
&& ! TEST_HARD_REG_BIT (chain->counted_for_groups, i)
|
||
&& ! TEST_HARD_REG_BIT (chain->counted_for_nongroups, i))
|
||
return 1;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Count any groups of CLASS that can be formed from the registers recently
|
||
spilled. */
|
||
|
||
static void
|
||
count_possible_groups (chain, class)
|
||
struct insn_chain *chain;
|
||
int class;
|
||
{
|
||
HARD_REG_SET new;
|
||
int i, j;
|
||
|
||
/* Now find all consecutive groups of spilled registers
|
||
and mark each group off against the need for such groups.
|
||
But don't count them against ordinary need, yet. */
|
||
|
||
if (chain->group_size[class] == 0)
|
||
return;
|
||
|
||
CLEAR_HARD_REG_SET (new);
|
||
|
||
/* Make a mask of all the regs that are spill regs in class I. */
|
||
for (i = 0; i < n_spills; i++)
|
||
{
|
||
int regno = spill_regs[i];
|
||
|
||
if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
|
||
&& ! TEST_HARD_REG_BIT (chain->counted_for_groups, regno)
|
||
&& ! TEST_HARD_REG_BIT (chain->counted_for_nongroups, regno))
|
||
SET_HARD_REG_BIT (new, regno);
|
||
}
|
||
|
||
/* Find each consecutive group of them. */
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER && chain->need.groups[class] > 0; i++)
|
||
if (TEST_HARD_REG_BIT (new, i)
|
||
&& i + chain->group_size[class] <= FIRST_PSEUDO_REGISTER
|
||
&& HARD_REGNO_MODE_OK (i, chain->group_mode[class]))
|
||
{
|
||
for (j = 1; j < chain->group_size[class]; j++)
|
||
if (! TEST_HARD_REG_BIT (new, i + j))
|
||
break;
|
||
|
||
if (j == chain->group_size[class])
|
||
{
|
||
/* We found a group. Mark it off against this class's need for
|
||
groups, and against each superclass too. */
|
||
register enum reg_class *p;
|
||
|
||
chain->need.groups[class]--;
|
||
p = reg_class_superclasses[class];
|
||
while (*p != LIM_REG_CLASSES)
|
||
{
|
||
if (chain->group_size [(int) *p] <= chain->group_size [class])
|
||
chain->need.groups[(int) *p]--;
|
||
p++;
|
||
}
|
||
|
||
/* Don't count these registers again. */
|
||
for (j = 0; j < chain->group_size[class]; j++)
|
||
SET_HARD_REG_BIT (chain->counted_for_groups, i + j);
|
||
}
|
||
|
||
/* Skip to the last reg in this group. When i is incremented above,
|
||
it will then point to the first reg of the next possible group. */
|
||
i += j - 1;
|
||
}
|
||
}
|
||
|
||
/* ALLOCATE_MODE is a register mode that needs to be reloaded. OTHER_MODE is
|
||
another mode that needs to be reloaded for the same register class CLASS.
|
||
If any reg in CLASS allows ALLOCATE_MODE but not OTHER_MODE, fail.
|
||
ALLOCATE_MODE will never be smaller than OTHER_MODE.
|
||
|
||
This code used to also fail if any reg in CLASS allows OTHER_MODE but not
|
||
ALLOCATE_MODE. This test is unnecessary, because we will never try to put
|
||
something of mode ALLOCATE_MODE into an OTHER_MODE register. Testing this
|
||
causes unnecessary failures on machines requiring alignment of register
|
||
groups when the two modes are different sizes, because the larger mode has
|
||
more strict alignment rules than the smaller mode. */
|
||
|
||
static int
|
||
modes_equiv_for_class_p (allocate_mode, other_mode, class)
|
||
enum machine_mode allocate_mode, other_mode;
|
||
enum reg_class class;
|
||
{
|
||
register int regno;
|
||
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
|
||
{
|
||
if (TEST_HARD_REG_BIT (reg_class_contents[(int) class], regno)
|
||
&& HARD_REGNO_MODE_OK (regno, allocate_mode)
|
||
&& ! HARD_REGNO_MODE_OK (regno, other_mode))
|
||
return 0;
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
/* Handle the failure to find a register to spill.
|
||
INSN should be one of the insns which needed this particular spill reg. */
|
||
|
||
static void
|
||
spill_failure (insn)
|
||
rtx insn;
|
||
{
|
||
if (asm_noperands (PATTERN (insn)) >= 0)
|
||
error_for_asm (insn, "`asm' needs too many reloads");
|
||
else
|
||
fatal_insn ("Unable to find a register to spill.", insn);
|
||
}
|
||
|
||
/* Add a new register to the tables of available spill-registers.
|
||
CHAIN is the insn for which the register will be used; we decrease the
|
||
needs of that insn.
|
||
I is the index of this register in potential_reload_regs.
|
||
CLASS is the regclass whose need is being satisfied.
|
||
NONGROUP is 0 if this register is part of a group.
|
||
DUMPFILE is the same as the one that `reload' got. */
|
||
|
||
static void
|
||
new_spill_reg (chain, i, class, nongroup, dumpfile)
|
||
struct insn_chain *chain;
|
||
int i;
|
||
int class;
|
||
int nongroup;
|
||
FILE *dumpfile;
|
||
{
|
||
register enum reg_class *p;
|
||
int regno = potential_reload_regs[i];
|
||
|
||
if (i >= FIRST_PSEUDO_REGISTER)
|
||
{
|
||
spill_failure (chain->insn);
|
||
failure = 1;
|
||
return;
|
||
}
|
||
|
||
if (TEST_HARD_REG_BIT (bad_spill_regs, regno))
|
||
{
|
||
static char *reg_class_names[] = REG_CLASS_NAMES;
|
||
|
||
if (asm_noperands (PATTERN (chain->insn)) < 0)
|
||
{
|
||
/* The error message is still correct - we know only that it wasn't
|
||
an asm statement that caused the problem, but one of the global
|
||
registers declared by the users might have screwed us. */
|
||
error ("fixed or forbidden register %d (%s) was spilled for class %s.",
|
||
regno, reg_names[regno], reg_class_names[class]);
|
||
error ("This may be due to a compiler bug or to impossible asm");
|
||
error ("statements or clauses.");
|
||
fatal_insn ("This is the instruction:", chain->insn);
|
||
}
|
||
error_for_asm (chain->insn, "Invalid `asm' statement:");
|
||
error_for_asm (chain->insn,
|
||
"fixed or forbidden register %d (%s) was spilled for class %s.",
|
||
regno, reg_names[regno], reg_class_names[class]);
|
||
failure = 1;
|
||
return;
|
||
}
|
||
|
||
/* Make reg REGNO an additional reload reg. */
|
||
|
||
potential_reload_regs[i] = -1;
|
||
spill_regs[n_spills] = regno;
|
||
spill_reg_order[regno] = n_spills;
|
||
if (dumpfile)
|
||
fprintf (dumpfile, "Spilling reg %d.\n", regno);
|
||
SET_HARD_REG_BIT (chain->used_spill_regs, regno);
|
||
|
||
/* Clear off the needs we just satisfied. */
|
||
|
||
chain->need.regs[0][class]--;
|
||
p = reg_class_superclasses[class];
|
||
while (*p != LIM_REG_CLASSES)
|
||
chain->need.regs[0][(int) *p++]--;
|
||
|
||
if (nongroup && chain->need.regs[1][class] > 0)
|
||
{
|
||
SET_HARD_REG_BIT (chain->counted_for_nongroups, regno);
|
||
chain->need.regs[1][class]--;
|
||
p = reg_class_superclasses[class];
|
||
while (*p != LIM_REG_CLASSES)
|
||
chain->need.regs[1][(int) *p++]--;
|
||
}
|
||
|
||
n_spills++;
|
||
}
|
||
|
||
/* Delete an unneeded INSN and any previous insns who sole purpose is loading
|
||
data that is dead in INSN. */
|
||
|
||
static void
|
||
delete_dead_insn (insn)
|
||
rtx insn;
|
||
{
|
||
rtx prev = prev_real_insn (insn);
|
||
rtx prev_dest;
|
||
|
||
/* If the previous insn sets a register that dies in our insn, delete it
|
||
too. */
|
||
if (prev && GET_CODE (PATTERN (prev)) == SET
|
||
&& (prev_dest = SET_DEST (PATTERN (prev)), GET_CODE (prev_dest) == REG)
|
||
&& reg_mentioned_p (prev_dest, PATTERN (insn))
|
||
&& find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
|
||
&& ! side_effects_p (SET_SRC (PATTERN (prev))))
|
||
delete_dead_insn (prev);
|
||
|
||
PUT_CODE (insn, NOTE);
|
||
NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
|
||
NOTE_SOURCE_FILE (insn) = 0;
|
||
}
|
||
|
||
/* Modify the home of pseudo-reg I.
|
||
The new home is present in reg_renumber[I].
|
||
|
||
FROM_REG may be the hard reg that the pseudo-reg is being spilled from;
|
||
or it may be -1, meaning there is none or it is not relevant.
|
||
This is used so that all pseudos spilled from a given hard reg
|
||
can share one stack slot. */
|
||
|
||
static void
|
||
alter_reg (i, from_reg)
|
||
register int i;
|
||
int from_reg;
|
||
{
|
||
/* When outputting an inline function, this can happen
|
||
for a reg that isn't actually used. */
|
||
if (regno_reg_rtx[i] == 0)
|
||
return;
|
||
|
||
/* If the reg got changed to a MEM at rtl-generation time,
|
||
ignore it. */
|
||
if (GET_CODE (regno_reg_rtx[i]) != REG)
|
||
return;
|
||
|
||
/* Modify the reg-rtx to contain the new hard reg
|
||
number or else to contain its pseudo reg number. */
|
||
REGNO (regno_reg_rtx[i])
|
||
= reg_renumber[i] >= 0 ? reg_renumber[i] : i;
|
||
|
||
/* If we have a pseudo that is needed but has no hard reg or equivalent,
|
||
allocate a stack slot for it. */
|
||
|
||
if (reg_renumber[i] < 0
|
||
&& REG_N_REFS (i) > 0
|
||
&& reg_equiv_constant[i] == 0
|
||
&& reg_equiv_memory_loc[i] == 0)
|
||
{
|
||
register rtx x;
|
||
int inherent_size = PSEUDO_REGNO_BYTES (i);
|
||
int total_size = MAX (inherent_size, reg_max_ref_width[i]);
|
||
int adjust = 0;
|
||
|
||
/* Each pseudo reg has an inherent size which comes from its own mode,
|
||
and a total size which provides room for paradoxical subregs
|
||
which refer to the pseudo reg in wider modes.
|
||
|
||
We can use a slot already allocated if it provides both
|
||
enough inherent space and enough total space.
|
||
Otherwise, we allocate a new slot, making sure that it has no less
|
||
inherent space, and no less total space, then the previous slot. */
|
||
if (from_reg == -1)
|
||
{
|
||
/* No known place to spill from => no slot to reuse. */
|
||
x = assign_stack_local (GET_MODE (regno_reg_rtx[i]), total_size,
|
||
inherent_size == total_size ? 0 : -1);
|
||
if (BYTES_BIG_ENDIAN)
|
||
/* Cancel the big-endian correction done in assign_stack_local.
|
||
Get the address of the beginning of the slot.
|
||
This is so we can do a big-endian correction unconditionally
|
||
below. */
|
||
adjust = inherent_size - total_size;
|
||
|
||
RTX_UNCHANGING_P (x) = RTX_UNCHANGING_P (regno_reg_rtx[i]);
|
||
}
|
||
/* Reuse a stack slot if possible. */
|
||
else if (spill_stack_slot[from_reg] != 0
|
||
&& spill_stack_slot_width[from_reg] >= total_size
|
||
&& (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
|
||
>= inherent_size))
|
||
x = spill_stack_slot[from_reg];
|
||
/* Allocate a bigger slot. */
|
||
else
|
||
{
|
||
/* Compute maximum size needed, both for inherent size
|
||
and for total size. */
|
||
enum machine_mode mode = GET_MODE (regno_reg_rtx[i]);
|
||
rtx stack_slot;
|
||
if (spill_stack_slot[from_reg])
|
||
{
|
||
if (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
|
||
> inherent_size)
|
||
mode = GET_MODE (spill_stack_slot[from_reg]);
|
||
if (spill_stack_slot_width[from_reg] > total_size)
|
||
total_size = spill_stack_slot_width[from_reg];
|
||
}
|
||
/* Make a slot with that size. */
|
||
x = assign_stack_local (mode, total_size,
|
||
inherent_size == total_size ? 0 : -1);
|
||
stack_slot = x;
|
||
if (BYTES_BIG_ENDIAN)
|
||
{
|
||
/* Cancel the big-endian correction done in assign_stack_local.
|
||
Get the address of the beginning of the slot.
|
||
This is so we can do a big-endian correction unconditionally
|
||
below. */
|
||
adjust = GET_MODE_SIZE (mode) - total_size;
|
||
if (adjust)
|
||
stack_slot = gen_rtx_MEM (mode_for_size (total_size
|
||
* BITS_PER_UNIT,
|
||
MODE_INT, 1),
|
||
plus_constant (XEXP (x, 0), adjust));
|
||
}
|
||
spill_stack_slot[from_reg] = stack_slot;
|
||
spill_stack_slot_width[from_reg] = total_size;
|
||
}
|
||
|
||
/* On a big endian machine, the "address" of the slot
|
||
is the address of the low part that fits its inherent mode. */
|
||
if (BYTES_BIG_ENDIAN && inherent_size < total_size)
|
||
adjust += (total_size - inherent_size);
|
||
|
||
/* If we have any adjustment to make, or if the stack slot is the
|
||
wrong mode, make a new stack slot. */
|
||
if (adjust != 0 || GET_MODE (x) != GET_MODE (regno_reg_rtx[i]))
|
||
{
|
||
x = gen_rtx_MEM (GET_MODE (regno_reg_rtx[i]),
|
||
plus_constant (XEXP (x, 0), adjust));
|
||
|
||
/* If this was shared among registers, must ensure we never
|
||
set it readonly since that can cause scheduling
|
||
problems. Note we would only have in this adjustment
|
||
case in any event, since the code above doesn't set it. */
|
||
|
||
if (from_reg == -1)
|
||
RTX_UNCHANGING_P (x) = RTX_UNCHANGING_P (regno_reg_rtx[i]);
|
||
}
|
||
|
||
/* Save the stack slot for later. */
|
||
reg_equiv_memory_loc[i] = x;
|
||
}
|
||
}
|
||
|
||
/* Mark the slots in regs_ever_live for the hard regs
|
||
used by pseudo-reg number REGNO. */
|
||
|
||
void
|
||
mark_home_live (regno)
|
||
int regno;
|
||
{
|
||
register int i, lim;
|
||
i = reg_renumber[regno];
|
||
if (i < 0)
|
||
return;
|
||
lim = i + HARD_REGNO_NREGS (i, PSEUDO_REGNO_MODE (regno));
|
||
while (i < lim)
|
||
regs_ever_live[i++] = 1;
|
||
}
|
||
|
||
/* This function handles the tracking of elimination offsets around branches.
|
||
|
||
X is a piece of RTL being scanned.
|
||
|
||
INSN is the insn that it came from, if any.
|
||
|
||
INITIAL_P is non-zero if we are to set the offset to be the initial
|
||
offset and zero if we are setting the offset of the label to be the
|
||
current offset. */
|
||
|
||
static void
|
||
set_label_offsets (x, insn, initial_p)
|
||
rtx x;
|
||
rtx insn;
|
||
int initial_p;
|
||
{
|
||
enum rtx_code code = GET_CODE (x);
|
||
rtx tem;
|
||
unsigned int i;
|
||
struct elim_table *p;
|
||
|
||
switch (code)
|
||
{
|
||
case LABEL_REF:
|
||
if (LABEL_REF_NONLOCAL_P (x))
|
||
return;
|
||
|
||
x = XEXP (x, 0);
|
||
|
||
/* ... fall through ... */
|
||
|
||
case CODE_LABEL:
|
||
/* If we know nothing about this label, set the desired offsets. Note
|
||
that this sets the offset at a label to be the offset before a label
|
||
if we don't know anything about the label. This is not correct for
|
||
the label after a BARRIER, but is the best guess we can make. If
|
||
we guessed wrong, we will suppress an elimination that might have
|
||
been possible had we been able to guess correctly. */
|
||
|
||
if (! offsets_known_at[CODE_LABEL_NUMBER (x)])
|
||
{
|
||
for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
|
||
offsets_at[CODE_LABEL_NUMBER (x)][i]
|
||
= (initial_p ? reg_eliminate[i].initial_offset
|
||
: reg_eliminate[i].offset);
|
||
offsets_known_at[CODE_LABEL_NUMBER (x)] = 1;
|
||
}
|
||
|
||
/* Otherwise, if this is the definition of a label and it is
|
||
preceded by a BARRIER, set our offsets to the known offset of
|
||
that label. */
|
||
|
||
else if (x == insn
|
||
&& (tem = prev_nonnote_insn (insn)) != 0
|
||
&& GET_CODE (tem) == BARRIER)
|
||
set_offsets_for_label (insn);
|
||
else
|
||
/* If neither of the above cases is true, compare each offset
|
||
with those previously recorded and suppress any eliminations
|
||
where the offsets disagree. */
|
||
|
||
for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
|
||
if (offsets_at[CODE_LABEL_NUMBER (x)][i]
|
||
!= (initial_p ? reg_eliminate[i].initial_offset
|
||
: reg_eliminate[i].offset))
|
||
reg_eliminate[i].can_eliminate = 0;
|
||
|
||
return;
|
||
|
||
case JUMP_INSN:
|
||
set_label_offsets (PATTERN (insn), insn, initial_p);
|
||
|
||
/* ... fall through ... */
|
||
|
||
case INSN:
|
||
case CALL_INSN:
|
||
/* Any labels mentioned in REG_LABEL notes can be branched to indirectly
|
||
and hence must have all eliminations at their initial offsets. */
|
||
for (tem = REG_NOTES (x); tem; tem = XEXP (tem, 1))
|
||
if (REG_NOTE_KIND (tem) == REG_LABEL)
|
||
set_label_offsets (XEXP (tem, 0), insn, 1);
|
||
return;
|
||
|
||
case ADDR_VEC:
|
||
case ADDR_DIFF_VEC:
|
||
/* Each of the labels in the address vector must be at their initial
|
||
offsets. We want the first field for ADDR_VEC and the second
|
||
field for ADDR_DIFF_VEC. */
|
||
|
||
for (i = 0; i < (unsigned) XVECLEN (x, code == ADDR_DIFF_VEC); i++)
|
||
set_label_offsets (XVECEXP (x, code == ADDR_DIFF_VEC, i),
|
||
insn, initial_p);
|
||
return;
|
||
|
||
case SET:
|
||
/* We only care about setting PC. If the source is not RETURN,
|
||
IF_THEN_ELSE, or a label, disable any eliminations not at
|
||
their initial offsets. Similarly if any arm of the IF_THEN_ELSE
|
||
isn't one of those possibilities. For branches to a label,
|
||
call ourselves recursively.
|
||
|
||
Note that this can disable elimination unnecessarily when we have
|
||
a non-local goto since it will look like a non-constant jump to
|
||
someplace in the current function. This isn't a significant
|
||
problem since such jumps will normally be when all elimination
|
||
pairs are back to their initial offsets. */
|
||
|
||
if (SET_DEST (x) != pc_rtx)
|
||
return;
|
||
|
||
switch (GET_CODE (SET_SRC (x)))
|
||
{
|
||
case PC:
|
||
case RETURN:
|
||
return;
|
||
|
||
case LABEL_REF:
|
||
set_label_offsets (XEXP (SET_SRC (x), 0), insn, initial_p);
|
||
return;
|
||
|
||
case IF_THEN_ELSE:
|
||
tem = XEXP (SET_SRC (x), 1);
|
||
if (GET_CODE (tem) == LABEL_REF)
|
||
set_label_offsets (XEXP (tem, 0), insn, initial_p);
|
||
else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
|
||
break;
|
||
|
||
tem = XEXP (SET_SRC (x), 2);
|
||
if (GET_CODE (tem) == LABEL_REF)
|
||
set_label_offsets (XEXP (tem, 0), insn, initial_p);
|
||
else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
|
||
break;
|
||
return;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
/* If we reach here, all eliminations must be at their initial
|
||
offset because we are doing a jump to a variable address. */
|
||
for (p = reg_eliminate; p < ®_eliminate[NUM_ELIMINABLE_REGS]; p++)
|
||
if (p->offset != p->initial_offset)
|
||
p->can_eliminate = 0;
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Used for communication between the next two function to properly share
|
||
the vector for an ASM_OPERANDS. */
|
||
|
||
static struct rtvec_def *old_asm_operands_vec, *new_asm_operands_vec;
|
||
|
||
/* Scan X and replace any eliminable registers (such as fp) with a
|
||
replacement (such as sp), plus an offset.
|
||
|
||
MEM_MODE is the mode of an enclosing MEM. We need this to know how
|
||
much to adjust a register for, e.g., PRE_DEC. Also, if we are inside a
|
||
MEM, we are allowed to replace a sum of a register and the constant zero
|
||
with the register, which we cannot do outside a MEM. In addition, we need
|
||
to record the fact that a register is referenced outside a MEM.
|
||
|
||
If INSN is an insn, it is the insn containing X. If we replace a REG
|
||
in a SET_DEST with an equivalent MEM and INSN is non-zero, write a
|
||
CLOBBER of the pseudo after INSN so find_equiv_regs will know that
|
||
the REG is being modified.
|
||
|
||
Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST).
|
||
That's used when we eliminate in expressions stored in notes.
|
||
This means, do not set ref_outside_mem even if the reference
|
||
is outside of MEMs.
|
||
|
||
If we see a modification to a register we know about, take the
|
||
appropriate action (see case SET, below).
|
||
|
||
REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
|
||
replacements done assuming all offsets are at their initial values. If
|
||
they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
|
||
encounter, return the actual location so that find_reloads will do
|
||
the proper thing. */
|
||
|
||
rtx
|
||
eliminate_regs (x, mem_mode, insn)
|
||
rtx x;
|
||
enum machine_mode mem_mode;
|
||
rtx insn;
|
||
{
|
||
enum rtx_code code = GET_CODE (x);
|
||
struct elim_table *ep;
|
||
int regno;
|
||
rtx new;
|
||
int i, j;
|
||
char *fmt;
|
||
int copied = 0;
|
||
|
||
if (! current_function_decl)
|
||
return x;
|
||
|
||
switch (code)
|
||
{
|
||
case CONST_INT:
|
||
case CONST_DOUBLE:
|
||
case CONST:
|
||
case SYMBOL_REF:
|
||
case CODE_LABEL:
|
||
case PC:
|
||
case CC0:
|
||
case ASM_INPUT:
|
||
case ADDR_VEC:
|
||
case ADDR_DIFF_VEC:
|
||
case RETURN:
|
||
return x;
|
||
|
||
case ADDRESSOF:
|
||
/* This is only for the benefit of the debugging backends, which call
|
||
eliminate_regs on DECL_RTL; any ADDRESSOFs in the actual insns are
|
||
removed after CSE. */
|
||
new = eliminate_regs (XEXP (x, 0), 0, insn);
|
||
if (GET_CODE (new) == MEM)
|
||
return XEXP (new, 0);
|
||
return x;
|
||
|
||
case REG:
|
||
regno = REGNO (x);
|
||
|
||
/* First handle the case where we encounter a bare register that
|
||
is eliminable. Replace it with a PLUS. */
|
||
if (regno < FIRST_PSEUDO_REGISTER)
|
||
{
|
||
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS];
|
||
ep++)
|
||
if (ep->from_rtx == x && ep->can_eliminate)
|
||
{
|
||
if (! mem_mode
|
||
/* Refs inside notes don't count for this purpose. */
|
||
&& ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
|
||
|| GET_CODE (insn) == INSN_LIST)))
|
||
ep->ref_outside_mem = 1;
|
||
return plus_constant (ep->to_rtx, ep->previous_offset);
|
||
}
|
||
|
||
}
|
||
else if (reg_renumber[regno] < 0 && reg_equiv_constant
|
||
&& reg_equiv_constant[regno]
|
||
&& ! CONSTANT_P (reg_equiv_constant[regno]))
|
||
return eliminate_regs (copy_rtx (reg_equiv_constant[regno]),
|
||
mem_mode, insn);
|
||
return x;
|
||
|
||
case PLUS:
|
||
/* If this is the sum of an eliminable register and a constant, rework
|
||
the sum. */
|
||
if (GET_CODE (XEXP (x, 0)) == REG
|
||
&& REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
|
||
&& CONSTANT_P (XEXP (x, 1)))
|
||
{
|
||
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS];
|
||
ep++)
|
||
if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
|
||
{
|
||
if (! mem_mode
|
||
/* Refs inside notes don't count for this purpose. */
|
||
&& ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
|
||
|| GET_CODE (insn) == INSN_LIST)))
|
||
ep->ref_outside_mem = 1;
|
||
|
||
/* The only time we want to replace a PLUS with a REG (this
|
||
occurs when the constant operand of the PLUS is the negative
|
||
of the offset) is when we are inside a MEM. We won't want
|
||
to do so at other times because that would change the
|
||
structure of the insn in a way that reload can't handle.
|
||
We special-case the commonest situation in
|
||
eliminate_regs_in_insn, so just replace a PLUS with a
|
||
PLUS here, unless inside a MEM. */
|
||
if (mem_mode != 0 && GET_CODE (XEXP (x, 1)) == CONST_INT
|
||
&& INTVAL (XEXP (x, 1)) == - ep->previous_offset)
|
||
return ep->to_rtx;
|
||
else
|
||
return gen_rtx_PLUS (Pmode, ep->to_rtx,
|
||
plus_constant (XEXP (x, 1),
|
||
ep->previous_offset));
|
||
}
|
||
|
||
/* If the register is not eliminable, we are done since the other
|
||
operand is a constant. */
|
||
return x;
|
||
}
|
||
|
||
/* If this is part of an address, we want to bring any constant to the
|
||
outermost PLUS. We will do this by doing register replacement in
|
||
our operands and seeing if a constant shows up in one of them.
|
||
|
||
We assume here this is part of an address (or a "load address" insn)
|
||
since an eliminable register is not likely to appear in any other
|
||
context.
|
||
|
||
If we have (plus (eliminable) (reg)), we want to produce
|
||
(plus (plus (replacement) (reg) (const))). If this was part of a
|
||
normal add insn, (plus (replacement) (reg)) will be pushed as a
|
||
reload. This is the desired action. */
|
||
|
||
{
|
||
rtx new0 = eliminate_regs (XEXP (x, 0), mem_mode, insn);
|
||
rtx new1 = eliminate_regs (XEXP (x, 1), mem_mode, insn);
|
||
|
||
if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
|
||
{
|
||
/* If one side is a PLUS and the other side is a pseudo that
|
||
didn't get a hard register but has a reg_equiv_constant,
|
||
we must replace the constant here since it may no longer
|
||
be in the position of any operand. */
|
||
if (GET_CODE (new0) == PLUS && GET_CODE (new1) == REG
|
||
&& REGNO (new1) >= FIRST_PSEUDO_REGISTER
|
||
&& reg_renumber[REGNO (new1)] < 0
|
||
&& reg_equiv_constant != 0
|
||
&& reg_equiv_constant[REGNO (new1)] != 0)
|
||
new1 = reg_equiv_constant[REGNO (new1)];
|
||
else if (GET_CODE (new1) == PLUS && GET_CODE (new0) == REG
|
||
&& REGNO (new0) >= FIRST_PSEUDO_REGISTER
|
||
&& reg_renumber[REGNO (new0)] < 0
|
||
&& reg_equiv_constant[REGNO (new0)] != 0)
|
||
new0 = reg_equiv_constant[REGNO (new0)];
|
||
|
||
new = form_sum (new0, new1);
|
||
|
||
/* As above, if we are not inside a MEM we do not want to
|
||
turn a PLUS into something else. We might try to do so here
|
||
for an addition of 0 if we aren't optimizing. */
|
||
if (! mem_mode && GET_CODE (new) != PLUS)
|
||
return gen_rtx_PLUS (GET_MODE (x), new, const0_rtx);
|
||
else
|
||
return new;
|
||
}
|
||
}
|
||
return x;
|
||
|
||
case MULT:
|
||
/* If this is the product of an eliminable register and a
|
||
constant, apply the distribute law and move the constant out
|
||
so that we have (plus (mult ..) ..). This is needed in order
|
||
to keep load-address insns valid. This case is pathological.
|
||
We ignore the possibility of overflow here. */
|
||
if (GET_CODE (XEXP (x, 0)) == REG
|
||
&& REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
|
||
&& GET_CODE (XEXP (x, 1)) == CONST_INT)
|
||
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS];
|
||
ep++)
|
||
if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
|
||
{
|
||
if (! mem_mode
|
||
/* Refs inside notes don't count for this purpose. */
|
||
&& ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
|
||
|| GET_CODE (insn) == INSN_LIST)))
|
||
ep->ref_outside_mem = 1;
|
||
|
||
return
|
||
plus_constant (gen_rtx_MULT (Pmode, ep->to_rtx, XEXP (x, 1)),
|
||
ep->previous_offset * INTVAL (XEXP (x, 1)));
|
||
}
|
||
|
||
/* ... fall through ... */
|
||
|
||
case CALL:
|
||
case COMPARE:
|
||
case MINUS:
|
||
case DIV: case UDIV:
|
||
case MOD: case UMOD:
|
||
case AND: case IOR: case XOR:
|
||
case ROTATERT: case ROTATE:
|
||
case ASHIFTRT: case LSHIFTRT: case ASHIFT:
|
||
case NE: case EQ:
|
||
case GE: case GT: case GEU: case GTU:
|
||
case LE: case LT: case LEU: case LTU:
|
||
{
|
||
rtx new0 = eliminate_regs (XEXP (x, 0), mem_mode, insn);
|
||
rtx new1
|
||
= XEXP (x, 1) ? eliminate_regs (XEXP (x, 1), mem_mode, insn) : 0;
|
||
|
||
if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
|
||
return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
|
||
}
|
||
return x;
|
||
|
||
case EXPR_LIST:
|
||
/* If we have something in XEXP (x, 0), the usual case, eliminate it. */
|
||
if (XEXP (x, 0))
|
||
{
|
||
new = eliminate_regs (XEXP (x, 0), mem_mode, insn);
|
||
if (new != XEXP (x, 0))
|
||
{
|
||
/* If this is a REG_DEAD note, it is not valid anymore.
|
||
Using the eliminated version could result in creating a
|
||
REG_DEAD note for the stack or frame pointer. */
|
||
if (GET_MODE (x) == REG_DEAD)
|
||
return (XEXP (x, 1)
|
||
? eliminate_regs (XEXP (x, 1), mem_mode, insn)
|
||
: NULL_RTX);
|
||
|
||
x = gen_rtx_EXPR_LIST (REG_NOTE_KIND (x), new, XEXP (x, 1));
|
||
}
|
||
}
|
||
|
||
/* ... fall through ... */
|
||
|
||
case INSN_LIST:
|
||
/* Now do eliminations in the rest of the chain. If this was
|
||
an EXPR_LIST, this might result in allocating more memory than is
|
||
strictly needed, but it simplifies the code. */
|
||
if (XEXP (x, 1))
|
||
{
|
||
new = eliminate_regs (XEXP (x, 1), mem_mode, insn);
|
||
if (new != XEXP (x, 1))
|
||
return gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x), XEXP (x, 0), new);
|
||
}
|
||
return x;
|
||
|
||
case PRE_INC:
|
||
case POST_INC:
|
||
case PRE_DEC:
|
||
case POST_DEC:
|
||
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++)
|
||
if (ep->to_rtx == XEXP (x, 0))
|
||
{
|
||
int size = GET_MODE_SIZE (mem_mode);
|
||
|
||
/* If more bytes than MEM_MODE are pushed, account for them. */
|
||
#ifdef PUSH_ROUNDING
|
||
if (ep->to_rtx == stack_pointer_rtx)
|
||
size = PUSH_ROUNDING (size);
|
||
#endif
|
||
if (code == PRE_DEC || code == POST_DEC)
|
||
ep->offset += size;
|
||
else
|
||
ep->offset -= size;
|
||
}
|
||
|
||
/* Fall through to generic unary operation case. */
|
||
case STRICT_LOW_PART:
|
||
case NEG: case NOT:
|
||
case SIGN_EXTEND: case ZERO_EXTEND:
|
||
case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
|
||
case FLOAT: case FIX:
|
||
case UNSIGNED_FIX: case UNSIGNED_FLOAT:
|
||
case ABS:
|
||
case SQRT:
|
||
case FFS:
|
||
new = eliminate_regs (XEXP (x, 0), mem_mode, insn);
|
||
if (new != XEXP (x, 0))
|
||
return gen_rtx_fmt_e (code, GET_MODE (x), new);
|
||
return x;
|
||
|
||
case SUBREG:
|
||
/* Similar to above processing, but preserve SUBREG_WORD.
|
||
Convert (subreg (mem)) to (mem) if not paradoxical.
|
||
Also, if we have a non-paradoxical (subreg (pseudo)) and the
|
||
pseudo didn't get a hard reg, we must replace this with the
|
||
eliminated version of the memory location because push_reloads
|
||
may do the replacement in certain circumstances. */
|
||
if (GET_CODE (SUBREG_REG (x)) == REG
|
||
&& (GET_MODE_SIZE (GET_MODE (x))
|
||
<= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
|
||
&& reg_equiv_memory_loc != 0
|
||
&& reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
|
||
{
|
||
#if 0
|
||
new = eliminate_regs (reg_equiv_memory_loc[REGNO (SUBREG_REG (x))],
|
||
mem_mode, insn);
|
||
|
||
/* If we didn't change anything, we must retain the pseudo. */
|
||
if (new == reg_equiv_memory_loc[REGNO (SUBREG_REG (x))])
|
||
new = SUBREG_REG (x);
|
||
else
|
||
{
|
||
/* In this case, we must show that the pseudo is used in this
|
||
insn so that delete_output_reload will do the right thing. */
|
||
if (insn != 0 && GET_CODE (insn) != EXPR_LIST
|
||
&& GET_CODE (insn) != INSN_LIST)
|
||
REG_NOTES (emit_insn_before (gen_rtx_USE (VOIDmode,
|
||
SUBREG_REG (x)),
|
||
insn))
|
||
= gen_rtx_EXPR_LIST (REG_EQUAL, new, NULL_RTX);
|
||
|
||
/* Ensure NEW isn't shared in case we have to reload it. */
|
||
new = copy_rtx (new);
|
||
}
|
||
#else
|
||
new = SUBREG_REG (x);
|
||
#endif
|
||
}
|
||
else
|
||
new = eliminate_regs (SUBREG_REG (x), mem_mode, insn);
|
||
|
||
if (new != XEXP (x, 0))
|
||
{
|
||
int x_size = GET_MODE_SIZE (GET_MODE (x));
|
||
int new_size = GET_MODE_SIZE (GET_MODE (new));
|
||
|
||
if (GET_CODE (new) == MEM
|
||
&& ((x_size < new_size
|
||
#ifdef WORD_REGISTER_OPERATIONS
|
||
/* On these machines, combine can create rtl of the form
|
||
(set (subreg:m1 (reg:m2 R) 0) ...)
|
||
where m1 < m2, and expects something interesting to
|
||
happen to the entire word. Moreover, it will use the
|
||
(reg:m2 R) later, expecting all bits to be preserved.
|
||
So if the number of words is the same, preserve the
|
||
subreg so that push_reloads can see it. */
|
||
&& ! ((x_size-1)/UNITS_PER_WORD == (new_size-1)/UNITS_PER_WORD)
|
||
#endif
|
||
)
|
||
|| (x_size == new_size))
|
||
)
|
||
{
|
||
int offset = SUBREG_WORD (x) * UNITS_PER_WORD;
|
||
enum machine_mode mode = GET_MODE (x);
|
||
|
||
if (BYTES_BIG_ENDIAN)
|
||
offset += (MIN (UNITS_PER_WORD,
|
||
GET_MODE_SIZE (GET_MODE (new)))
|
||
- MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode)));
|
||
|
||
PUT_MODE (new, mode);
|
||
XEXP (new, 0) = plus_constant (XEXP (new, 0), offset);
|
||
return new;
|
||
}
|
||
else
|
||
return gen_rtx_SUBREG (GET_MODE (x), new, SUBREG_WORD (x));
|
||
}
|
||
|
||
return x;
|
||
|
||
case USE:
|
||
/* If using a register that is the source of an eliminate we still
|
||
think can be performed, note it cannot be performed since we don't
|
||
know how this register is used. */
|
||
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++)
|
||
if (ep->from_rtx == XEXP (x, 0))
|
||
ep->can_eliminate = 0;
|
||
|
||
new = eliminate_regs (XEXP (x, 0), mem_mode, insn);
|
||
if (new != XEXP (x, 0))
|
||
return gen_rtx_fmt_e (code, GET_MODE (x), new);
|
||
return x;
|
||
|
||
case CLOBBER:
|
||
/* If clobbering a register that is the replacement register for an
|
||
elimination we still think can be performed, note that it cannot
|
||
be performed. Otherwise, we need not be concerned about it. */
|
||
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++)
|
||
if (ep->to_rtx == XEXP (x, 0))
|
||
ep->can_eliminate = 0;
|
||
|
||
new = eliminate_regs (XEXP (x, 0), mem_mode, insn);
|
||
if (new != XEXP (x, 0))
|
||
return gen_rtx_fmt_e (code, GET_MODE (x), new);
|
||
return x;
|
||
|
||
case ASM_OPERANDS:
|
||
{
|
||
rtx *temp_vec;
|
||
/* Properly handle sharing input and constraint vectors. */
|
||
if (ASM_OPERANDS_INPUT_VEC (x) != old_asm_operands_vec)
|
||
{
|
||
/* When we come to a new vector not seen before,
|
||
scan all its elements; keep the old vector if none
|
||
of them changes; otherwise, make a copy. */
|
||
old_asm_operands_vec = ASM_OPERANDS_INPUT_VEC (x);
|
||
temp_vec = (rtx *) alloca (XVECLEN (x, 3) * sizeof (rtx));
|
||
for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
|
||
temp_vec[i] = eliminate_regs (ASM_OPERANDS_INPUT (x, i),
|
||
mem_mode, insn);
|
||
|
||
for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
|
||
if (temp_vec[i] != ASM_OPERANDS_INPUT (x, i))
|
||
break;
|
||
|
||
if (i == ASM_OPERANDS_INPUT_LENGTH (x))
|
||
new_asm_operands_vec = old_asm_operands_vec;
|
||
else
|
||
new_asm_operands_vec
|
||
= gen_rtvec_v (ASM_OPERANDS_INPUT_LENGTH (x), temp_vec);
|
||
}
|
||
|
||
/* If we had to copy the vector, copy the entire ASM_OPERANDS. */
|
||
if (new_asm_operands_vec == old_asm_operands_vec)
|
||
return x;
|
||
|
||
new = gen_rtx_ASM_OPERANDS (VOIDmode, ASM_OPERANDS_TEMPLATE (x),
|
||
ASM_OPERANDS_OUTPUT_CONSTRAINT (x),
|
||
ASM_OPERANDS_OUTPUT_IDX (x),
|
||
new_asm_operands_vec,
|
||
ASM_OPERANDS_INPUT_CONSTRAINT_VEC (x),
|
||
ASM_OPERANDS_SOURCE_FILE (x),
|
||
ASM_OPERANDS_SOURCE_LINE (x));
|
||
new->volatil = x->volatil;
|
||
return new;
|
||
}
|
||
|
||
case SET:
|
||
/* Check for setting a register that we know about. */
|
||
if (GET_CODE (SET_DEST (x)) == REG)
|
||
{
|
||
/* See if this is setting the replacement register for an
|
||
elimination.
|
||
|
||
If DEST is the hard frame pointer, we do nothing because we
|
||
assume that all assignments to the frame pointer are for
|
||
non-local gotos and are being done at a time when they are valid
|
||
and do not disturb anything else. Some machines want to
|
||
eliminate a fake argument pointer (or even a fake frame pointer)
|
||
with either the real frame or the stack pointer. Assignments to
|
||
the hard frame pointer must not prevent this elimination. */
|
||
|
||
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS];
|
||
ep++)
|
||
if (ep->to_rtx == SET_DEST (x)
|
||
&& SET_DEST (x) != hard_frame_pointer_rtx)
|
||
{
|
||
/* If it is being incremented, adjust the offset. Otherwise,
|
||
this elimination can't be done. */
|
||
rtx src = SET_SRC (x);
|
||
|
||
if (GET_CODE (src) == PLUS
|
||
&& XEXP (src, 0) == SET_DEST (x)
|
||
&& GET_CODE (XEXP (src, 1)) == CONST_INT)
|
||
ep->offset -= INTVAL (XEXP (src, 1));
|
||
else
|
||
ep->can_eliminate = 0;
|
||
}
|
||
|
||
/* Now check to see we are assigning to a register that can be
|
||
eliminated. If so, it must be as part of a PARALLEL, since we
|
||
will not have been called if this is a single SET. So indicate
|
||
that we can no longer eliminate this reg. */
|
||
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS];
|
||
ep++)
|
||
if (ep->from_rtx == SET_DEST (x) && ep->can_eliminate)
|
||
ep->can_eliminate = 0;
|
||
}
|
||
|
||
/* Now avoid the loop below in this common case. */
|
||
{
|
||
rtx new0 = eliminate_regs (SET_DEST (x), 0, insn);
|
||
rtx new1 = eliminate_regs (SET_SRC (x), 0, insn);
|
||
|
||
/* If SET_DEST changed from a REG to a MEM and INSN is an insn,
|
||
write a CLOBBER insn. */
|
||
if (GET_CODE (SET_DEST (x)) == REG && GET_CODE (new0) == MEM
|
||
&& insn != 0 && GET_CODE (insn) != EXPR_LIST
|
||
&& GET_CODE (insn) != INSN_LIST)
|
||
emit_insn_after (gen_rtx_CLOBBER (VOIDmode, SET_DEST (x)), insn);
|
||
|
||
if (new0 != SET_DEST (x) || new1 != SET_SRC (x))
|
||
return gen_rtx_SET (VOIDmode, new0, new1);
|
||
}
|
||
|
||
return x;
|
||
|
||
case MEM:
|
||
/* This is only for the benefit of the debugging backends, which call
|
||
eliminate_regs on DECL_RTL; any ADDRESSOFs in the actual insns are
|
||
removed after CSE. */
|
||
if (GET_CODE (XEXP (x, 0)) == ADDRESSOF)
|
||
return eliminate_regs (XEXP (XEXP (x, 0), 0), 0, insn);
|
||
|
||
/* Our only special processing is to pass the mode of the MEM to our
|
||
recursive call and copy the flags. While we are here, handle this
|
||
case more efficiently. */
|
||
new = eliminate_regs (XEXP (x, 0), GET_MODE (x), insn);
|
||
if (new != XEXP (x, 0))
|
||
{
|
||
new = gen_rtx_MEM (GET_MODE (x), new);
|
||
new->volatil = x->volatil;
|
||
new->unchanging = x->unchanging;
|
||
new->in_struct = x->in_struct;
|
||
return new;
|
||
}
|
||
else
|
||
return x;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
/* Process each of our operands recursively. If any have changed, make a
|
||
copy of the rtx. */
|
||
fmt = GET_RTX_FORMAT (code);
|
||
for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
|
||
{
|
||
if (*fmt == 'e')
|
||
{
|
||
new = eliminate_regs (XEXP (x, i), mem_mode, insn);
|
||
if (new != XEXP (x, i) && ! copied)
|
||
{
|
||
rtx new_x = rtx_alloc (code);
|
||
bcopy ((char *) x, (char *) new_x,
|
||
(sizeof (*new_x) - sizeof (new_x->fld)
|
||
+ sizeof (new_x->fld[0]) * GET_RTX_LENGTH (code)));
|
||
x = new_x;
|
||
copied = 1;
|
||
}
|
||
XEXP (x, i) = new;
|
||
}
|
||
else if (*fmt == 'E')
|
||
{
|
||
int copied_vec = 0;
|
||
for (j = 0; j < XVECLEN (x, i); j++)
|
||
{
|
||
new = eliminate_regs (XVECEXP (x, i, j), mem_mode, insn);
|
||
if (new != XVECEXP (x, i, j) && ! copied_vec)
|
||
{
|
||
rtvec new_v = gen_rtvec_vv (XVECLEN (x, i),
|
||
XVEC (x, i)->elem);
|
||
if (! copied)
|
||
{
|
||
rtx new_x = rtx_alloc (code);
|
||
bcopy ((char *) x, (char *) new_x,
|
||
(sizeof (*new_x) - sizeof (new_x->fld)
|
||
+ (sizeof (new_x->fld[0])
|
||
* GET_RTX_LENGTH (code))));
|
||
x = new_x;
|
||
copied = 1;
|
||
}
|
||
XVEC (x, i) = new_v;
|
||
copied_vec = 1;
|
||
}
|
||
XVECEXP (x, i, j) = new;
|
||
}
|
||
}
|
||
}
|
||
|
||
return x;
|
||
}
|
||
|
||
/* Scan INSN and eliminate all eliminable registers in it.
|
||
|
||
If REPLACE is nonzero, do the replacement destructively. Also
|
||
delete the insn as dead it if it is setting an eliminable register.
|
||
|
||
If REPLACE is zero, do all our allocations in reload_obstack.
|
||
|
||
If no eliminations were done and this insn doesn't require any elimination
|
||
processing (these are not identical conditions: it might be updating sp,
|
||
but not referencing fp; this needs to be seen during reload_as_needed so
|
||
that the offset between fp and sp can be taken into consideration), zero
|
||
is returned. Otherwise, 1 is returned. */
|
||
|
||
static int
|
||
eliminate_regs_in_insn (insn, replace)
|
||
rtx insn;
|
||
int replace;
|
||
{
|
||
rtx old_body = PATTERN (insn);
|
||
rtx old_set = single_set (insn);
|
||
rtx new_body;
|
||
int val = 0;
|
||
struct elim_table *ep;
|
||
|
||
if (! replace)
|
||
push_obstacks (&reload_obstack, &reload_obstack);
|
||
|
||
if (old_set != 0 && GET_CODE (SET_DEST (old_set)) == REG
|
||
&& REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
|
||
{
|
||
/* Check for setting an eliminable register. */
|
||
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++)
|
||
if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
|
||
{
|
||
#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
|
||
/* If this is setting the frame pointer register to the
|
||
hardware frame pointer register and this is an elimination
|
||
that will be done (tested above), this insn is really
|
||
adjusting the frame pointer downward to compensate for
|
||
the adjustment done before a nonlocal goto. */
|
||
if (ep->from == FRAME_POINTER_REGNUM
|
||
&& ep->to == HARD_FRAME_POINTER_REGNUM)
|
||
{
|
||
rtx src = SET_SRC (old_set);
|
||
int offset = 0, ok = 0;
|
||
rtx prev_insn, prev_set;
|
||
|
||
if (src == ep->to_rtx)
|
||
offset = 0, ok = 1;
|
||
else if (GET_CODE (src) == PLUS
|
||
&& GET_CODE (XEXP (src, 0)) == CONST_INT
|
||
&& XEXP (src, 1) == ep->to_rtx)
|
||
offset = INTVAL (XEXP (src, 0)), ok = 1;
|
||
else if (GET_CODE (src) == PLUS
|
||
&& GET_CODE (XEXP (src, 1)) == CONST_INT
|
||
&& XEXP (src, 0) == ep->to_rtx)
|
||
offset = INTVAL (XEXP (src, 1)), ok = 1;
|
||
else if ((prev_insn = prev_nonnote_insn (insn)) != 0
|
||
&& (prev_set = single_set (prev_insn)) != 0
|
||
&& rtx_equal_p (SET_DEST (prev_set), src))
|
||
{
|
||
src = SET_SRC (prev_set);
|
||
if (src == ep->to_rtx)
|
||
offset = 0, ok = 1;
|
||
else if (GET_CODE (src) == PLUS
|
||
&& GET_CODE (XEXP (src, 0)) == CONST_INT
|
||
&& XEXP (src, 1) == ep->to_rtx)
|
||
offset = INTVAL (XEXP (src, 0)), ok = 1;
|
||
else if (GET_CODE (src) == PLUS
|
||
&& GET_CODE (XEXP (src, 1)) == CONST_INT
|
||
&& XEXP (src, 0) == ep->to_rtx)
|
||
offset = INTVAL (XEXP (src, 1)), ok = 1;
|
||
}
|
||
|
||
if (ok)
|
||
{
|
||
if (replace)
|
||
{
|
||
rtx src
|
||
= plus_constant (ep->to_rtx, offset - ep->offset);
|
||
|
||
/* First see if this insn remains valid when we
|
||
make the change. If not, keep the INSN_CODE
|
||
the same and let reload fit it up. */
|
||
validate_change (insn, &SET_SRC (old_set), src, 1);
|
||
validate_change (insn, &SET_DEST (old_set),
|
||
ep->to_rtx, 1);
|
||
if (! apply_change_group ())
|
||
{
|
||
SET_SRC (old_set) = src;
|
||
SET_DEST (old_set) = ep->to_rtx;
|
||
}
|
||
}
|
||
|
||
val = 1;
|
||
goto done;
|
||
}
|
||
}
|
||
#endif
|
||
|
||
/* In this case this insn isn't serving a useful purpose. We
|
||
will delete it in reload_as_needed once we know that this
|
||
elimination is, in fact, being done.
|
||
|
||
If REPLACE isn't set, we can't delete this insn, but needn't
|
||
process it since it won't be used unless something changes. */
|
||
if (replace)
|
||
delete_dead_insn (insn);
|
||
val = 1;
|
||
goto done;
|
||
}
|
||
|
||
/* Check for (set (reg) (plus (reg from) (offset))) where the offset
|
||
in the insn is the negative of the offset in FROM. Substitute
|
||
(set (reg) (reg to)) for the insn and change its code.
|
||
|
||
We have to do this here, rather than in eliminate_regs, so that we can
|
||
change the insn code. */
|
||
|
||
if (GET_CODE (SET_SRC (old_set)) == PLUS
|
||
&& GET_CODE (XEXP (SET_SRC (old_set), 0)) == REG
|
||
&& GET_CODE (XEXP (SET_SRC (old_set), 1)) == CONST_INT)
|
||
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS];
|
||
ep++)
|
||
if (ep->from_rtx == XEXP (SET_SRC (old_set), 0)
|
||
&& ep->can_eliminate)
|
||
{
|
||
/* We must stop at the first elimination that will be used.
|
||
If this one would replace the PLUS with a REG, do it
|
||
now. Otherwise, quit the loop and let eliminate_regs
|
||
do its normal replacement. */
|
||
if (ep->offset == - INTVAL (XEXP (SET_SRC (old_set), 1)))
|
||
{
|
||
/* We assume here that we don't need a PARALLEL of
|
||
any CLOBBERs for this assignment. There's not
|
||
much we can do if we do need it. */
|
||
PATTERN (insn) = gen_rtx_SET (VOIDmode,
|
||
SET_DEST (old_set),
|
||
ep->to_rtx);
|
||
INSN_CODE (insn) = -1;
|
||
val = 1;
|
||
goto done;
|
||
}
|
||
|
||
break;
|
||
}
|
||
}
|
||
|
||
old_asm_operands_vec = 0;
|
||
|
||
/* Replace the body of this insn with a substituted form. If we changed
|
||
something, return non-zero.
|
||
|
||
If we are replacing a body that was a (set X (plus Y Z)), try to
|
||
re-recognize the insn. We do this in case we had a simple addition
|
||
but now can do this as a load-address. This saves an insn in this
|
||
common case. */
|
||
|
||
new_body = eliminate_regs (old_body, 0, replace ? insn : NULL_RTX);
|
||
if (new_body != old_body)
|
||
{
|
||
/* If we aren't replacing things permanently and we changed something,
|
||
make another copy to ensure that all the RTL is new. Otherwise
|
||
things can go wrong if find_reload swaps commutative operands
|
||
and one is inside RTL that has been copied while the other is not. */
|
||
|
||
/* Don't copy an asm_operands because (1) there's no need and (2)
|
||
copy_rtx can't do it properly when there are multiple outputs. */
|
||
if (! replace && asm_noperands (old_body) < 0)
|
||
new_body = copy_rtx (new_body);
|
||
|
||
/* If we had a move insn but now we don't, rerecognize it. This will
|
||
cause spurious re-recognition if the old move had a PARALLEL since
|
||
the new one still will, but we can't call single_set without
|
||
having put NEW_BODY into the insn and the re-recognition won't
|
||
hurt in this rare case. */
|
||
if (old_set != 0
|
||
&& ((GET_CODE (SET_SRC (old_set)) == REG
|
||
&& (GET_CODE (new_body) != SET
|
||
|| GET_CODE (SET_SRC (new_body)) != REG))
|
||
/* If this was a load from or store to memory, compare
|
||
the MEM in recog_operand to the one in the insn. If they
|
||
are not equal, then rerecognize the insn. */
|
||
|| (old_set != 0
|
||
&& ((GET_CODE (SET_SRC (old_set)) == MEM
|
||
&& SET_SRC (old_set) != recog_operand[1])
|
||
|| (GET_CODE (SET_DEST (old_set)) == MEM
|
||
&& SET_DEST (old_set) != recog_operand[0])))
|
||
/* If this was an add insn before, rerecognize. */
|
||
|| GET_CODE (SET_SRC (old_set)) == PLUS))
|
||
{
|
||
if (! validate_change (insn, &PATTERN (insn), new_body, 0))
|
||
/* If recognition fails, store the new body anyway.
|
||
It's normal to have recognition failures here
|
||
due to bizarre memory addresses; reloading will fix them. */
|
||
PATTERN (insn) = new_body;
|
||
}
|
||
else
|
||
PATTERN (insn) = new_body;
|
||
|
||
val = 1;
|
||
}
|
||
|
||
/* Loop through all elimination pairs. See if any have changed.
|
||
|
||
We also detect a cases where register elimination cannot be done,
|
||
namely, if a register would be both changed and referenced outside a MEM
|
||
in the resulting insn since such an insn is often undefined and, even if
|
||
not, we cannot know what meaning will be given to it. Note that it is
|
||
valid to have a register used in an address in an insn that changes it
|
||
(presumably with a pre- or post-increment or decrement).
|
||
|
||
If anything changes, return nonzero. */
|
||
|
||
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++)
|
||
{
|
||
if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
|
||
ep->can_eliminate = 0;
|
||
|
||
ep->ref_outside_mem = 0;
|
||
|
||
if (ep->previous_offset != ep->offset)
|
||
val = 1;
|
||
}
|
||
|
||
done:
|
||
/* If we changed something, perform elimination in REG_NOTES. This is
|
||
needed even when REPLACE is zero because a REG_DEAD note might refer
|
||
to a register that we eliminate and could cause a different number
|
||
of spill registers to be needed in the final reload pass than in
|
||
the pre-passes. */
|
||
if (val && REG_NOTES (insn) != 0)
|
||
REG_NOTES (insn) = eliminate_regs (REG_NOTES (insn), 0, REG_NOTES (insn));
|
||
|
||
if (! replace)
|
||
pop_obstacks ();
|
||
|
||
return val;
|
||
}
|
||
|
||
/* Loop through all elimination pairs.
|
||
Recalculate the number not at initial offset.
|
||
|
||
Compute the maximum offset (minimum offset if the stack does not
|
||
grow downward) for each elimination pair. */
|
||
|
||
static void
|
||
update_eliminable_offsets ()
|
||
{
|
||
struct elim_table *ep;
|
||
|
||
num_not_at_initial_offset = 0;
|
||
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++)
|
||
{
|
||
ep->previous_offset = ep->offset;
|
||
if (ep->can_eliminate && ep->offset != ep->initial_offset)
|
||
num_not_at_initial_offset++;
|
||
}
|
||
}
|
||
|
||
/* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register
|
||
replacement we currently believe is valid, mark it as not eliminable if X
|
||
modifies DEST in any way other than by adding a constant integer to it.
|
||
|
||
If DEST is the frame pointer, we do nothing because we assume that
|
||
all assignments to the hard frame pointer are nonlocal gotos and are being
|
||
done at a time when they are valid and do not disturb anything else.
|
||
Some machines want to eliminate a fake argument pointer with either the
|
||
frame or stack pointer. Assignments to the hard frame pointer must not
|
||
prevent this elimination.
|
||
|
||
Called via note_stores from reload before starting its passes to scan
|
||
the insns of the function. */
|
||
|
||
static void
|
||
mark_not_eliminable (dest, x)
|
||
rtx dest;
|
||
rtx x;
|
||
{
|
||
register unsigned int i;
|
||
|
||
/* A SUBREG of a hard register here is just changing its mode. We should
|
||
not see a SUBREG of an eliminable hard register, but check just in
|
||
case. */
|
||
if (GET_CODE (dest) == SUBREG)
|
||
dest = SUBREG_REG (dest);
|
||
|
||
if (dest == hard_frame_pointer_rtx)
|
||
return;
|
||
|
||
for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
|
||
if (reg_eliminate[i].can_eliminate && dest == reg_eliminate[i].to_rtx
|
||
&& (GET_CODE (x) != SET
|
||
|| GET_CODE (SET_SRC (x)) != PLUS
|
||
|| XEXP (SET_SRC (x), 0) != dest
|
||
|| GET_CODE (XEXP (SET_SRC (x), 1)) != CONST_INT))
|
||
{
|
||
reg_eliminate[i].can_eliminate_previous
|
||
= reg_eliminate[i].can_eliminate = 0;
|
||
num_eliminable--;
|
||
}
|
||
}
|
||
|
||
/* Verify that the initial elimination offsets did not change since the
|
||
last call to set_initial_elim_offsets. This is used to catch cases
|
||
where something illegal happened during reload_as_needed that could
|
||
cause incorrect code to be generated if we did not check for it. */
|
||
static void
|
||
verify_initial_elim_offsets ()
|
||
{
|
||
int t;
|
||
|
||
#ifdef ELIMINABLE_REGS
|
||
struct elim_table *ep;
|
||
|
||
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++)
|
||
{
|
||
INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, t);
|
||
if (t != ep->initial_offset)
|
||
abort ();
|
||
}
|
||
#else
|
||
INITIAL_FRAME_POINTER_OFFSET (t);
|
||
if (t != reg_eliminate[0].initial_offset)
|
||
abort ();
|
||
#endif
|
||
}
|
||
|
||
/* Reset all offsets on eliminable registers to their initial values. */
|
||
static void
|
||
set_initial_elim_offsets ()
|
||
{
|
||
struct elim_table *ep = reg_eliminate;
|
||
|
||
#ifdef ELIMINABLE_REGS
|
||
for (; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++)
|
||
{
|
||
INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->initial_offset);
|
||
ep->previous_offset = ep->offset = ep->initial_offset;
|
||
}
|
||
#else
|
||
INITIAL_FRAME_POINTER_OFFSET (ep->initial_offset);
|
||
ep->previous_offset = ep->offset = ep->initial_offset;
|
||
#endif
|
||
|
||
num_not_at_initial_offset = 0;
|
||
}
|
||
|
||
/* Initialize the known label offsets.
|
||
Set a known offset for each forced label to be at the initial offset
|
||
of each elimination. We do this because we assume that all
|
||
computed jumps occur from a location where each elimination is
|
||
at its initial offset.
|
||
For all other labels, show that we don't know the offsets. */
|
||
|
||
static void
|
||
set_initial_label_offsets ()
|
||
{
|
||
rtx x;
|
||
bzero ((char *) &offsets_known_at[get_first_label_num ()], num_labels);
|
||
|
||
for (x = forced_labels; x; x = XEXP (x, 1))
|
||
if (XEXP (x, 0))
|
||
set_label_offsets (XEXP (x, 0), NULL_RTX, 1);
|
||
}
|
||
|
||
/* Set all elimination offsets to the known values for the code label given
|
||
by INSN. */
|
||
static void
|
||
set_offsets_for_label (insn)
|
||
rtx insn;
|
||
{
|
||
unsigned int i;
|
||
int label_nr = CODE_LABEL_NUMBER (insn);
|
||
struct elim_table *ep;
|
||
|
||
num_not_at_initial_offset = 0;
|
||
for (i = 0, ep = reg_eliminate; i < NUM_ELIMINABLE_REGS; ep++, i++)
|
||
{
|
||
ep->offset = ep->previous_offset = offsets_at[label_nr][i];
|
||
if (ep->can_eliminate && ep->offset != ep->initial_offset)
|
||
num_not_at_initial_offset++;
|
||
}
|
||
}
|
||
|
||
/* See if anything that happened changes which eliminations are valid.
|
||
For example, on the Sparc, whether or not the frame pointer can
|
||
be eliminated can depend on what registers have been used. We need
|
||
not check some conditions again (such as flag_omit_frame_pointer)
|
||
since they can't have changed. */
|
||
|
||
static void
|
||
update_eliminables (pset)
|
||
HARD_REG_SET *pset;
|
||
{
|
||
#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
|
||
int previous_frame_pointer_needed = frame_pointer_needed;
|
||
#endif
|
||
struct elim_table *ep;
|
||
|
||
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++)
|
||
if ((ep->from == HARD_FRAME_POINTER_REGNUM && FRAME_POINTER_REQUIRED)
|
||
#ifdef ELIMINABLE_REGS
|
||
|| ! CAN_ELIMINATE (ep->from, ep->to)
|
||
#endif
|
||
)
|
||
ep->can_eliminate = 0;
|
||
|
||
/* Look for the case where we have discovered that we can't replace
|
||
register A with register B and that means that we will now be
|
||
trying to replace register A with register C. This means we can
|
||
no longer replace register C with register B and we need to disable
|
||
such an elimination, if it exists. This occurs often with A == ap,
|
||
B == sp, and C == fp. */
|
||
|
||
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++)
|
||
{
|
||
struct elim_table *op;
|
||
register int new_to = -1;
|
||
|
||
if (! ep->can_eliminate && ep->can_eliminate_previous)
|
||
{
|
||
/* Find the current elimination for ep->from, if there is a
|
||
new one. */
|
||
for (op = reg_eliminate;
|
||
op < ®_eliminate[NUM_ELIMINABLE_REGS]; op++)
|
||
if (op->from == ep->from && op->can_eliminate)
|
||
{
|
||
new_to = op->to;
|
||
break;
|
||
}
|
||
|
||
/* See if there is an elimination of NEW_TO -> EP->TO. If so,
|
||
disable it. */
|
||
for (op = reg_eliminate;
|
||
op < ®_eliminate[NUM_ELIMINABLE_REGS]; op++)
|
||
if (op->from == new_to && op->to == ep->to)
|
||
op->can_eliminate = 0;
|
||
}
|
||
}
|
||
|
||
/* See if any registers that we thought we could eliminate the previous
|
||
time are no longer eliminable. If so, something has changed and we
|
||
must spill the register. Also, recompute the number of eliminable
|
||
registers and see if the frame pointer is needed; it is if there is
|
||
no elimination of the frame pointer that we can perform. */
|
||
|
||
frame_pointer_needed = 1;
|
||
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++)
|
||
{
|
||
if (ep->can_eliminate && ep->from == FRAME_POINTER_REGNUM
|
||
&& ep->to != HARD_FRAME_POINTER_REGNUM)
|
||
frame_pointer_needed = 0;
|
||
|
||
if (! ep->can_eliminate && ep->can_eliminate_previous)
|
||
{
|
||
ep->can_eliminate_previous = 0;
|
||
SET_HARD_REG_BIT (*pset, ep->from);
|
||
num_eliminable--;
|
||
}
|
||
}
|
||
|
||
#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
|
||
/* If we didn't need a frame pointer last time, but we do now, spill
|
||
the hard frame pointer. */
|
||
if (frame_pointer_needed && ! previous_frame_pointer_needed)
|
||
SET_HARD_REG_BIT (*pset, HARD_FRAME_POINTER_REGNUM);
|
||
#endif
|
||
}
|
||
|
||
/* Initialize the table of registers to eliminate. */
|
||
static void
|
||
init_elim_table ()
|
||
{
|
||
struct elim_table *ep;
|
||
#ifdef ELIMINABLE_REGS
|
||
struct elim_table_1 *ep1;
|
||
#endif
|
||
|
||
if (!reg_eliminate)
|
||
{
|
||
reg_eliminate = (struct elim_table *)
|
||
xmalloc(sizeof(struct elim_table) * NUM_ELIMINABLE_REGS);
|
||
bzero ((PTR) reg_eliminate,
|
||
sizeof(struct elim_table) * NUM_ELIMINABLE_REGS);
|
||
}
|
||
|
||
/* Does this function require a frame pointer? */
|
||
|
||
frame_pointer_needed = (! flag_omit_frame_pointer
|
||
#ifdef EXIT_IGNORE_STACK
|
||
/* ?? If EXIT_IGNORE_STACK is set, we will not save
|
||
and restore sp for alloca. So we can't eliminate
|
||
the frame pointer in that case. At some point,
|
||
we should improve this by emitting the
|
||
sp-adjusting insns for this case. */
|
||
|| (current_function_calls_alloca
|
||
&& EXIT_IGNORE_STACK)
|
||
#endif
|
||
|| FRAME_POINTER_REQUIRED);
|
||
|
||
num_eliminable = 0;
|
||
|
||
#ifdef ELIMINABLE_REGS
|
||
for (ep = reg_eliminate, ep1 = reg_eliminate_1;
|
||
ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++)
|
||
{
|
||
ep->from = ep1->from;
|
||
ep->to = ep1->to;
|
||
ep->can_eliminate = ep->can_eliminate_previous
|
||
= (CAN_ELIMINATE (ep->from, ep->to)
|
||
&& ! (ep->to == STACK_POINTER_REGNUM && frame_pointer_needed));
|
||
}
|
||
#else
|
||
reg_eliminate[0].from = reg_eliminate_1[0].from;
|
||
reg_eliminate[0].to = reg_eliminate_1[0].to;
|
||
reg_eliminate[0].can_eliminate = reg_eliminate[0].can_eliminate_previous
|
||
= ! frame_pointer_needed;
|
||
#endif
|
||
|
||
/* Count the number of eliminable registers and build the FROM and TO
|
||
REG rtx's. Note that code in gen_rtx will cause, e.g.,
|
||
gen_rtx (REG, Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
|
||
We depend on this. */
|
||
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++)
|
||
{
|
||
num_eliminable += ep->can_eliminate;
|
||
ep->from_rtx = gen_rtx_REG (Pmode, ep->from);
|
||
ep->to_rtx = gen_rtx_REG (Pmode, ep->to);
|
||
}
|
||
}
|
||
|
||
/* Kick all pseudos out of hard register REGNO.
|
||
If DUMPFILE is nonzero, log actions taken on that file.
|
||
|
||
If CANT_ELIMINATE is nonzero, it means that we are doing this spill
|
||
because we found we can't eliminate some register. In the case, no pseudos
|
||
are allowed to be in the register, even if they are only in a block that
|
||
doesn't require spill registers, unlike the case when we are spilling this
|
||
hard reg to produce another spill register.
|
||
|
||
Return nonzero if any pseudos needed to be kicked out. */
|
||
|
||
static void
|
||
spill_hard_reg (regno, dumpfile, cant_eliminate)
|
||
register int regno;
|
||
FILE *dumpfile;
|
||
int cant_eliminate;
|
||
{
|
||
register int i;
|
||
|
||
if (cant_eliminate)
|
||
{
|
||
SET_HARD_REG_BIT (bad_spill_regs_global, regno);
|
||
regs_ever_live[regno] = 1;
|
||
}
|
||
|
||
/* Spill every pseudo reg that was allocated to this reg
|
||
or to something that overlaps this reg. */
|
||
|
||
for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
|
||
if (reg_renumber[i] >= 0
|
||
&& reg_renumber[i] <= regno
|
||
&& (reg_renumber[i]
|
||
+ HARD_REGNO_NREGS (reg_renumber[i],
|
||
PSEUDO_REGNO_MODE (i))
|
||
> regno))
|
||
SET_REGNO_REG_SET (spilled_pseudos, i);
|
||
}
|
||
|
||
/* I'm getting weird preprocessor errors if I use IOR_HARD_REG_SET
|
||
from within EXECUTE_IF_SET_IN_REG_SET. Hence this awkwardness. */
|
||
static void
|
||
ior_hard_reg_set (set1, set2)
|
||
HARD_REG_SET *set1, *set2;
|
||
{
|
||
IOR_HARD_REG_SET (*set1, *set2);
|
||
}
|
||
|
||
/* After find_reload_regs has been run for all insn that need reloads,
|
||
and/or spill_hard_regs was called, this function is used to actually
|
||
spill pseudo registers and try to reallocate them. It also sets up the
|
||
spill_regs array for use by choose_reload_regs. */
|
||
|
||
static int
|
||
finish_spills (global, dumpfile)
|
||
int global;
|
||
FILE *dumpfile;
|
||
{
|
||
struct insn_chain *chain;
|
||
int something_changed = 0;
|
||
int i;
|
||
|
||
/* Build the spill_regs array for the function. */
|
||
/* If there are some registers still to eliminate and one of the spill regs
|
||
wasn't ever used before, additional stack space may have to be
|
||
allocated to store this register. Thus, we may have changed the offset
|
||
between the stack and frame pointers, so mark that something has changed.
|
||
|
||
One might think that we need only set VAL to 1 if this is a call-used
|
||
register. However, the set of registers that must be saved by the
|
||
prologue is not identical to the call-used set. For example, the
|
||
register used by the call insn for the return PC is a call-used register,
|
||
but must be saved by the prologue. */
|
||
|
||
n_spills = 0;
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
if (TEST_HARD_REG_BIT (used_spill_regs, i))
|
||
{
|
||
spill_reg_order[i] = n_spills;
|
||
spill_regs[n_spills++] = i;
|
||
if (num_eliminable && ! regs_ever_live[i])
|
||
something_changed = 1;
|
||
regs_ever_live[i] = 1;
|
||
}
|
||
else
|
||
spill_reg_order[i] = -1;
|
||
|
||
for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
|
||
if (REGNO_REG_SET_P (spilled_pseudos, i))
|
||
{
|
||
/* Record the current hard register the pseudo is allocated to in
|
||
pseudo_previous_regs so we avoid reallocating it to the same
|
||
hard reg in a later pass. */
|
||
if (reg_renumber[i] < 0)
|
||
abort ();
|
||
SET_HARD_REG_BIT (pseudo_previous_regs[i], reg_renumber[i]);
|
||
/* Mark it as no longer having a hard register home. */
|
||
reg_renumber[i] = -1;
|
||
/* We will need to scan everything again. */
|
||
something_changed = 1;
|
||
}
|
||
|
||
/* Retry global register allocation if possible. */
|
||
if (global)
|
||
{
|
||
bzero ((char *) pseudo_forbidden_regs, max_regno * sizeof (HARD_REG_SET));
|
||
/* For every insn that needs reloads, set the registers used as spill
|
||
regs in pseudo_forbidden_regs for every pseudo live across the
|
||
insn. */
|
||
for (chain = insns_need_reload; chain; chain = chain->next_need_reload)
|
||
{
|
||
EXECUTE_IF_SET_IN_REG_SET
|
||
(chain->live_before, FIRST_PSEUDO_REGISTER, i,
|
||
{
|
||
ior_hard_reg_set (pseudo_forbidden_regs + i,
|
||
&chain->used_spill_regs);
|
||
});
|
||
EXECUTE_IF_SET_IN_REG_SET
|
||
(chain->live_after, FIRST_PSEUDO_REGISTER, i,
|
||
{
|
||
ior_hard_reg_set (pseudo_forbidden_regs + i,
|
||
&chain->used_spill_regs);
|
||
});
|
||
}
|
||
|
||
/* Retry allocating the spilled pseudos. For each reg, merge the
|
||
various reg sets that indicate which hard regs can't be used,
|
||
and call retry_global_alloc.
|
||
We change spill_pseudos here to only contain pseudos that did not
|
||
get a new hard register. */
|
||
for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
|
||
if (reg_old_renumber[i] != reg_renumber[i])
|
||
{
|
||
HARD_REG_SET forbidden;
|
||
COPY_HARD_REG_SET (forbidden, bad_spill_regs_global);
|
||
IOR_HARD_REG_SET (forbidden, pseudo_forbidden_regs[i]);
|
||
IOR_HARD_REG_SET (forbidden, pseudo_previous_regs[i]);
|
||
retry_global_alloc (i, forbidden);
|
||
if (reg_renumber[i] >= 0)
|
||
CLEAR_REGNO_REG_SET (spilled_pseudos, i);
|
||
}
|
||
}
|
||
|
||
/* Fix up the register information in the insn chain.
|
||
This involves deleting those of the spilled pseudos which did not get
|
||
a new hard register home from the live_{before,after} sets. */
|
||
for (chain = reload_insn_chain; chain; chain = chain->next)
|
||
{
|
||
HARD_REG_SET used_by_pseudos;
|
||
HARD_REG_SET used_by_pseudos2;
|
||
|
||
AND_COMPL_REG_SET (chain->live_before, spilled_pseudos);
|
||
AND_COMPL_REG_SET (chain->live_after, spilled_pseudos);
|
||
|
||
/* Mark any unallocated hard regs as available for spills. That
|
||
makes inheritance work somewhat better. */
|
||
if (chain->need_reload)
|
||
{
|
||
REG_SET_TO_HARD_REG_SET (used_by_pseudos, chain->live_before);
|
||
REG_SET_TO_HARD_REG_SET (used_by_pseudos2, chain->live_after);
|
||
IOR_HARD_REG_SET (used_by_pseudos, used_by_pseudos2);
|
||
|
||
/* Save the old value for the sanity test below. */
|
||
COPY_HARD_REG_SET (used_by_pseudos2, chain->used_spill_regs);
|
||
|
||
compute_use_by_pseudos (&used_by_pseudos, chain->live_before);
|
||
compute_use_by_pseudos (&used_by_pseudos, chain->live_after);
|
||
COMPL_HARD_REG_SET (chain->used_spill_regs, used_by_pseudos);
|
||
AND_HARD_REG_SET (chain->used_spill_regs, used_spill_regs);
|
||
|
||
/* Make sure we only enlarge the set. */
|
||
GO_IF_HARD_REG_SUBSET (used_by_pseudos2, chain->used_spill_regs, ok);
|
||
abort ();
|
||
ok:;
|
||
}
|
||
}
|
||
|
||
/* Let alter_reg modify the reg rtx's for the modified pseudos. */
|
||
for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
|
||
{
|
||
int regno = reg_renumber[i];
|
||
if (reg_old_renumber[i] == regno)
|
||
continue;
|
||
|
||
alter_reg (i, reg_old_renumber[i]);
|
||
reg_old_renumber[i] = regno;
|
||
if (dumpfile)
|
||
{
|
||
if (regno == -1)
|
||
fprintf (dumpfile, " Register %d now on stack.\n\n", i);
|
||
else
|
||
fprintf (dumpfile, " Register %d now in %d.\n\n",
|
||
i, reg_renumber[i]);
|
||
}
|
||
}
|
||
|
||
return something_changed;
|
||
}
|
||
|
||
/* Find all paradoxical subregs within X and update reg_max_ref_width.
|
||
Also mark any hard registers used to store user variables as
|
||
forbidden from being used for spill registers. */
|
||
|
||
static void
|
||
scan_paradoxical_subregs (x)
|
||
register rtx x;
|
||
{
|
||
register int i;
|
||
register char *fmt;
|
||
register enum rtx_code code = GET_CODE (x);
|
||
|
||
switch (code)
|
||
{
|
||
case REG:
|
||
#if 0
|
||
if (SMALL_REGISTER_CLASSES && REGNO (x) < FIRST_PSEUDO_REGISTER
|
||
&& REG_USERVAR_P (x))
|
||
SET_HARD_REG_BIT (bad_spill_regs_global, REGNO (x));
|
||
#endif
|
||
return;
|
||
|
||
case CONST_INT:
|
||
case CONST:
|
||
case SYMBOL_REF:
|
||
case LABEL_REF:
|
||
case CONST_DOUBLE:
|
||
case CC0:
|
||
case PC:
|
||
case USE:
|
||
case CLOBBER:
|
||
return;
|
||
|
||
case SUBREG:
|
||
if (GET_CODE (SUBREG_REG (x)) == REG
|
||
&& GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
|
||
reg_max_ref_width[REGNO (SUBREG_REG (x))]
|
||
= GET_MODE_SIZE (GET_MODE (x));
|
||
return;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
fmt = GET_RTX_FORMAT (code);
|
||
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
||
{
|
||
if (fmt[i] == 'e')
|
||
scan_paradoxical_subregs (XEXP (x, i));
|
||
else if (fmt[i] == 'E')
|
||
{
|
||
register int j;
|
||
for (j = XVECLEN (x, i) - 1; j >=0; j--)
|
||
scan_paradoxical_subregs (XVECEXP (x, i, j));
|
||
}
|
||
}
|
||
}
|
||
|
||
static int
|
||
hard_reg_use_compare (p1p, p2p)
|
||
const GENERIC_PTR p1p;
|
||
const GENERIC_PTR p2p;
|
||
{
|
||
struct hard_reg_n_uses *p1 = (struct hard_reg_n_uses *)p1p;
|
||
struct hard_reg_n_uses *p2 = (struct hard_reg_n_uses *)p2p;
|
||
int bad1 = TEST_HARD_REG_BIT (bad_spill_regs, p1->regno);
|
||
int bad2 = TEST_HARD_REG_BIT (bad_spill_regs, p2->regno);
|
||
if (bad1 && bad2)
|
||
return p1->regno - p2->regno;
|
||
if (bad1)
|
||
return 1;
|
||
if (bad2)
|
||
return -1;
|
||
if (p1->uses > p2->uses)
|
||
return 1;
|
||
if (p1->uses < p2->uses)
|
||
return -1;
|
||
/* If regs are equally good, sort by regno,
|
||
so that the results of qsort leave nothing to chance. */
|
||
return p1->regno - p2->regno;
|
||
}
|
||
|
||
/* Used for communication between order_regs_for_reload and count_pseudo.
|
||
Used to avoid counting one pseudo twice. */
|
||
static regset pseudos_counted;
|
||
|
||
/* Update the costs in N_USES, considering that pseudo REG is live. */
|
||
static void
|
||
count_pseudo (n_uses, reg)
|
||
struct hard_reg_n_uses *n_uses;
|
||
int reg;
|
||
{
|
||
int r = reg_renumber[reg];
|
||
int nregs;
|
||
|
||
if (REGNO_REG_SET_P (pseudos_counted, reg))
|
||
return;
|
||
SET_REGNO_REG_SET (pseudos_counted, reg);
|
||
|
||
if (r < 0)
|
||
abort ();
|
||
|
||
nregs = HARD_REGNO_NREGS (r, PSEUDO_REGNO_MODE (reg));
|
||
while (nregs-- > 0)
|
||
n_uses[r++].uses += REG_N_REFS (reg);
|
||
}
|
||
/* Choose the order to consider regs for use as reload registers
|
||
based on how much trouble would be caused by spilling one.
|
||
Store them in order of decreasing preference in potential_reload_regs. */
|
||
|
||
static void
|
||
order_regs_for_reload (chain)
|
||
struct insn_chain *chain;
|
||
{
|
||
register int i;
|
||
register int o = 0;
|
||
struct hard_reg_n_uses hard_reg_n_uses[FIRST_PSEUDO_REGISTER];
|
||
|
||
pseudos_counted = ALLOCA_REG_SET ();
|
||
|
||
COPY_HARD_REG_SET (bad_spill_regs, bad_spill_regs_global);
|
||
|
||
/* Count number of uses of each hard reg by pseudo regs allocated to it
|
||
and then order them by decreasing use. */
|
||
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
{
|
||
int j;
|
||
|
||
hard_reg_n_uses[i].regno = i;
|
||
hard_reg_n_uses[i].uses = 0;
|
||
|
||
/* Test the various reasons why we can't use a register for
|
||
spilling in this insn. */
|
||
if (fixed_regs[i]
|
||
|| REGNO_REG_SET_P (chain->live_before, i)
|
||
|| REGNO_REG_SET_P (chain->live_after, i))
|
||
{
|
||
SET_HARD_REG_BIT (bad_spill_regs, i);
|
||
continue;
|
||
}
|
||
|
||
/* Now find out which pseudos are allocated to it, and update
|
||
hard_reg_n_uses. */
|
||
CLEAR_REG_SET (pseudos_counted);
|
||
|
||
EXECUTE_IF_SET_IN_REG_SET
|
||
(chain->live_before, FIRST_PSEUDO_REGISTER, j,
|
||
{
|
||
count_pseudo (hard_reg_n_uses, j);
|
||
});
|
||
EXECUTE_IF_SET_IN_REG_SET
|
||
(chain->live_after, FIRST_PSEUDO_REGISTER, j,
|
||
{
|
||
count_pseudo (hard_reg_n_uses, j);
|
||
});
|
||
}
|
||
|
||
FREE_REG_SET (pseudos_counted);
|
||
|
||
/* Prefer registers not so far used, for use in temporary loading.
|
||
Among them, if REG_ALLOC_ORDER is defined, use that order.
|
||
Otherwise, prefer registers not preserved by calls. */
|
||
|
||
#ifdef REG_ALLOC_ORDER
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
{
|
||
int regno = reg_alloc_order[i];
|
||
|
||
if (hard_reg_n_uses[regno].uses == 0
|
||
&& ! TEST_HARD_REG_BIT (bad_spill_regs, regno))
|
||
potential_reload_regs[o++] = regno;
|
||
}
|
||
#else
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
{
|
||
if (hard_reg_n_uses[i].uses == 0 && call_used_regs[i]
|
||
&& ! TEST_HARD_REG_BIT (bad_spill_regs, i))
|
||
potential_reload_regs[o++] = i;
|
||
}
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
{
|
||
if (hard_reg_n_uses[i].uses == 0 && ! call_used_regs[i]
|
||
&& ! TEST_HARD_REG_BIT (bad_spill_regs, i))
|
||
potential_reload_regs[o++] = i;
|
||
}
|
||
#endif
|
||
|
||
qsort (hard_reg_n_uses, FIRST_PSEUDO_REGISTER,
|
||
sizeof hard_reg_n_uses[0], hard_reg_use_compare);
|
||
|
||
/* Now add the regs that are already used,
|
||
preferring those used less often. The fixed and otherwise forbidden
|
||
registers will be at the end of this list. */
|
||
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
if (hard_reg_n_uses[i].uses != 0
|
||
&& ! TEST_HARD_REG_BIT (bad_spill_regs, hard_reg_n_uses[i].regno))
|
||
potential_reload_regs[o++] = hard_reg_n_uses[i].regno;
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
if (TEST_HARD_REG_BIT (bad_spill_regs, hard_reg_n_uses[i].regno))
|
||
potential_reload_regs[o++] = hard_reg_n_uses[i].regno;
|
||
}
|
||
|
||
/* Reload pseudo-registers into hard regs around each insn as needed.
|
||
Additional register load insns are output before the insn that needs it
|
||
and perhaps store insns after insns that modify the reloaded pseudo reg.
|
||
|
||
reg_last_reload_reg and reg_reloaded_contents keep track of
|
||
which registers are already available in reload registers.
|
||
We update these for the reloads that we perform,
|
||
as the insns are scanned. */
|
||
|
||
static void
|
||
reload_as_needed (live_known)
|
||
int live_known;
|
||
{
|
||
struct insn_chain *chain;
|
||
#if defined (AUTO_INC_DEC) || defined (INSN_CLOBBERS_REGNO_P)
|
||
register int i;
|
||
#endif
|
||
rtx x;
|
||
|
||
bzero ((char *) spill_reg_rtx, sizeof spill_reg_rtx);
|
||
bzero ((char *) spill_reg_store, sizeof spill_reg_store);
|
||
reg_last_reload_reg = (rtx *) alloca (max_regno * sizeof (rtx));
|
||
bzero ((char *) reg_last_reload_reg, max_regno * sizeof (rtx));
|
||
reg_has_output_reload = (char *) alloca (max_regno);
|
||
CLEAR_HARD_REG_SET (reg_reloaded_valid);
|
||
|
||
set_initial_elim_offsets ();
|
||
|
||
for (chain = reload_insn_chain; chain; chain = chain->next)
|
||
{
|
||
rtx prev;
|
||
rtx insn = chain->insn;
|
||
rtx old_next = NEXT_INSN (insn);
|
||
|
||
/* If we pass a label, copy the offsets from the label information
|
||
into the current offsets of each elimination. */
|
||
if (GET_CODE (insn) == CODE_LABEL)
|
||
set_offsets_for_label (insn);
|
||
|
||
else if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
|
||
{
|
||
rtx oldpat = PATTERN (insn);
|
||
|
||
/* If this is a USE and CLOBBER of a MEM, ensure that any
|
||
references to eliminable registers have been removed. */
|
||
|
||
if ((GET_CODE (PATTERN (insn)) == USE
|
||
|| GET_CODE (PATTERN (insn)) == CLOBBER)
|
||
&& GET_CODE (XEXP (PATTERN (insn), 0)) == MEM)
|
||
XEXP (XEXP (PATTERN (insn), 0), 0)
|
||
= eliminate_regs (XEXP (XEXP (PATTERN (insn), 0), 0),
|
||
GET_MODE (XEXP (PATTERN (insn), 0)),
|
||
NULL_RTX);
|
||
|
||
/* If we need to do register elimination processing, do so.
|
||
This might delete the insn, in which case we are done. */
|
||
if ((num_eliminable || num_eliminable_invariants) && chain->need_elim)
|
||
{
|
||
eliminate_regs_in_insn (insn, 1);
|
||
if (GET_CODE (insn) == NOTE)
|
||
{
|
||
update_eliminable_offsets ();
|
||
continue;
|
||
}
|
||
}
|
||
|
||
/* If need_elim is nonzero but need_reload is zero, one might think
|
||
that we could simply set n_reloads to 0. However, find_reloads
|
||
could have done some manipulation of the insn (such as swapping
|
||
commutative operands), and these manipulations are lost during
|
||
the first pass for every insn that needs register elimination.
|
||
So the actions of find_reloads must be redone here. */
|
||
|
||
if (! chain->need_elim && ! chain->need_reload
|
||
&& ! chain->need_operand_change)
|
||
n_reloads = 0;
|
||
/* First find the pseudo regs that must be reloaded for this insn.
|
||
This info is returned in the tables reload_... (see reload.h).
|
||
Also modify the body of INSN by substituting RELOAD
|
||
rtx's for those pseudo regs. */
|
||
else
|
||
{
|
||
bzero (reg_has_output_reload, max_regno);
|
||
CLEAR_HARD_REG_SET (reg_is_output_reload);
|
||
|
||
find_reloads (insn, 1, spill_indirect_levels, live_known,
|
||
spill_reg_order);
|
||
}
|
||
|
||
if (num_eliminable && chain->need_elim)
|
||
update_eliminable_offsets ();
|
||
|
||
if (n_reloads > 0)
|
||
{
|
||
rtx next = NEXT_INSN (insn);
|
||
rtx p;
|
||
|
||
prev = PREV_INSN (insn);
|
||
|
||
/* Now compute which reload regs to reload them into. Perhaps
|
||
reusing reload regs from previous insns, or else output
|
||
load insns to reload them. Maybe output store insns too.
|
||
Record the choices of reload reg in reload_reg_rtx. */
|
||
choose_reload_regs (chain);
|
||
|
||
/* Merge any reloads that we didn't combine for fear of
|
||
increasing the number of spill registers needed but now
|
||
discover can be safely merged. */
|
||
if (SMALL_REGISTER_CLASSES)
|
||
merge_assigned_reloads (insn);
|
||
|
||
/* Generate the insns to reload operands into or out of
|
||
their reload regs. */
|
||
emit_reload_insns (chain);
|
||
|
||
/* Substitute the chosen reload regs from reload_reg_rtx
|
||
into the insn's body (or perhaps into the bodies of other
|
||
load and store insn that we just made for reloading
|
||
and that we moved the structure into). */
|
||
subst_reloads ();
|
||
|
||
/* If this was an ASM, make sure that all the reload insns
|
||
we have generated are valid. If not, give an error
|
||
and delete them. */
|
||
|
||
if (asm_noperands (PATTERN (insn)) >= 0)
|
||
for (p = NEXT_INSN (prev); p != next; p = NEXT_INSN (p))
|
||
if (p != insn && GET_RTX_CLASS (GET_CODE (p)) == 'i'
|
||
&& (recog_memoized (p) < 0
|
||
|| (extract_insn (p), ! constrain_operands (1))))
|
||
{
|
||
error_for_asm (insn,
|
||
"`asm' operand requires impossible reload");
|
||
PUT_CODE (p, NOTE);
|
||
NOTE_SOURCE_FILE (p) = 0;
|
||
NOTE_LINE_NUMBER (p) = NOTE_INSN_DELETED;
|
||
}
|
||
}
|
||
/* Any previously reloaded spilled pseudo reg, stored in this insn,
|
||
is no longer validly lying around to save a future reload.
|
||
Note that this does not detect pseudos that were reloaded
|
||
for this insn in order to be stored in
|
||
(obeying register constraints). That is correct; such reload
|
||
registers ARE still valid. */
|
||
note_stores (oldpat, forget_old_reloads_1);
|
||
|
||
/* There may have been CLOBBER insns placed after INSN. So scan
|
||
between INSN and NEXT and use them to forget old reloads. */
|
||
for (x = NEXT_INSN (insn); x != old_next; x = NEXT_INSN (x))
|
||
if (GET_CODE (x) == INSN && GET_CODE (PATTERN (x)) == CLOBBER)
|
||
note_stores (PATTERN (x), forget_old_reloads_1);
|
||
|
||
#ifdef AUTO_INC_DEC
|
||
/* Likewise for regs altered by auto-increment in this insn.
|
||
REG_INC notes have been changed by reloading:
|
||
find_reloads_address_1 records substitutions for them,
|
||
which have been performed by subst_reloads above. */
|
||
for (i = n_reloads - 1; i >= 0; i--)
|
||
{
|
||
rtx in_reg = reload_in_reg[i];
|
||
if (in_reg)
|
||
{
|
||
enum rtx_code code = GET_CODE (in_reg);
|
||
/* PRE_INC / PRE_DEC will have the reload register ending up
|
||
with the same value as the stack slot, but that doesn't
|
||
hold true for POST_INC / POST_DEC. Either we have to
|
||
convert the memory access to a true POST_INC / POST_DEC,
|
||
or we can't use the reload register for inheritance. */
|
||
if ((code == POST_INC || code == POST_DEC)
|
||
&& TEST_HARD_REG_BIT (reg_reloaded_valid,
|
||
REGNO (reload_reg_rtx[i]))
|
||
/* Make sure it is the inc/dec pseudo, and not
|
||
some other (e.g. output operand) pseudo. */
|
||
&& (reg_reloaded_contents[REGNO (reload_reg_rtx[i])]
|
||
== REGNO (XEXP (in_reg, 0))))
|
||
|
||
{
|
||
rtx reload_reg = reload_reg_rtx[i];
|
||
enum machine_mode mode = GET_MODE (reload_reg);
|
||
int n = 0;
|
||
rtx p;
|
||
|
||
for (p = PREV_INSN (old_next); p != prev; p = PREV_INSN (p))
|
||
{
|
||
/* We really want to ignore REG_INC notes here, so
|
||
use PATTERN (p) as argument to reg_set_p . */
|
||
if (reg_set_p (reload_reg, PATTERN (p)))
|
||
break;
|
||
n = count_occurrences (PATTERN (p), reload_reg);
|
||
if (! n)
|
||
continue;
|
||
if (n == 1)
|
||
{
|
||
n = validate_replace_rtx (reload_reg,
|
||
gen_rtx (code, mode,
|
||
reload_reg),
|
||
p);
|
||
|
||
/* We must also verify that the constraints
|
||
are met after the replacement. */
|
||
extract_insn (p);
|
||
if (n)
|
||
n = constrain_operands (1);
|
||
else
|
||
break;
|
||
|
||
/* If the constraints were not met, then
|
||
undo the replacement. */
|
||
if (!n)
|
||
{
|
||
validate_replace_rtx (gen_rtx (code, mode,
|
||
reload_reg),
|
||
reload_reg, p);
|
||
break;
|
||
}
|
||
|
||
}
|
||
break;
|
||
}
|
||
if (n == 1)
|
||
{
|
||
REG_NOTES (p)
|
||
= gen_rtx_EXPR_LIST (REG_INC, reload_reg,
|
||
REG_NOTES (p));
|
||
/* Mark this as having an output reload so that the
|
||
REG_INC processing code below won't invalidate
|
||
the reload for inheritance. */
|
||
SET_HARD_REG_BIT (reg_is_output_reload,
|
||
REGNO (reload_reg));
|
||
reg_has_output_reload[REGNO (XEXP (in_reg, 0))] = 1;
|
||
}
|
||
else
|
||
forget_old_reloads_1 (XEXP (in_reg, 0), NULL_RTX);
|
||
}
|
||
else if ((code == PRE_INC || code == PRE_DEC)
|
||
&& TEST_HARD_REG_BIT (reg_reloaded_valid,
|
||
REGNO (reload_reg_rtx[i]))
|
||
/* Make sure it is the inc/dec pseudo, and not
|
||
some other (e.g. output operand) pseudo. */
|
||
&& (reg_reloaded_contents[REGNO (reload_reg_rtx[i])]
|
||
== REGNO (XEXP (in_reg, 0))))
|
||
{
|
||
SET_HARD_REG_BIT (reg_is_output_reload,
|
||
REGNO (reload_reg_rtx[i]));
|
||
reg_has_output_reload[REGNO (XEXP (in_reg, 0))] = 1;
|
||
}
|
||
}
|
||
}
|
||
/* If a pseudo that got a hard register is auto-incremented,
|
||
we must purge records of copying it into pseudos without
|
||
hard registers. */
|
||
for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
|
||
if (REG_NOTE_KIND (x) == REG_INC)
|
||
{
|
||
/* See if this pseudo reg was reloaded in this insn.
|
||
If so, its last-reload info is still valid
|
||
because it is based on this insn's reload. */
|
||
for (i = 0; i < n_reloads; i++)
|
||
if (reload_out[i] == XEXP (x, 0))
|
||
break;
|
||
|
||
if (i == n_reloads)
|
||
forget_old_reloads_1 (XEXP (x, 0), NULL_RTX);
|
||
}
|
||
#endif
|
||
}
|
||
/* A reload reg's contents are unknown after a label. */
|
||
if (GET_CODE (insn) == CODE_LABEL)
|
||
CLEAR_HARD_REG_SET (reg_reloaded_valid);
|
||
|
||
/* Don't assume a reload reg is still good after a call insn
|
||
if it is a call-used reg. */
|
||
else if (GET_CODE (insn) == CALL_INSN)
|
||
AND_COMPL_HARD_REG_SET(reg_reloaded_valid, call_used_reg_set);
|
||
|
||
/* In case registers overlap, allow certain insns to invalidate
|
||
particular hard registers. */
|
||
|
||
#ifdef INSN_CLOBBERS_REGNO_P
|
||
for (i = 0 ; i < FIRST_PSEUDO_REGISTER; i++)
|
||
if (TEST_HARD_REG_BIT (reg_reloaded_valid, i)
|
||
&& INSN_CLOBBERS_REGNO_P (insn, i))
|
||
CLEAR_HARD_REG_BIT (reg_reloaded_valid, i);
|
||
#endif
|
||
|
||
#ifdef USE_C_ALLOCA
|
||
alloca (0);
|
||
#endif
|
||
}
|
||
}
|
||
|
||
/* Discard all record of any value reloaded from X,
|
||
or reloaded in X from someplace else;
|
||
unless X is an output reload reg of the current insn.
|
||
|
||
X may be a hard reg (the reload reg)
|
||
or it may be a pseudo reg that was reloaded from. */
|
||
|
||
static void
|
||
forget_old_reloads_1 (x, ignored)
|
||
rtx x;
|
||
rtx ignored ATTRIBUTE_UNUSED;
|
||
{
|
||
register int regno;
|
||
int nr;
|
||
int offset = 0;
|
||
|
||
/* note_stores does give us subregs of hard regs. */
|
||
while (GET_CODE (x) == SUBREG)
|
||
{
|
||
offset += SUBREG_WORD (x);
|
||
x = SUBREG_REG (x);
|
||
}
|
||
|
||
if (GET_CODE (x) != REG)
|
||
return;
|
||
|
||
regno = REGNO (x) + offset;
|
||
|
||
if (regno >= FIRST_PSEUDO_REGISTER)
|
||
nr = 1;
|
||
else
|
||
{
|
||
int i;
|
||
nr = HARD_REGNO_NREGS (regno, GET_MODE (x));
|
||
/* Storing into a spilled-reg invalidates its contents.
|
||
This can happen if a block-local pseudo is allocated to that reg
|
||
and it wasn't spilled because this block's total need is 0.
|
||
Then some insn might have an optional reload and use this reg. */
|
||
for (i = 0; i < nr; i++)
|
||
/* But don't do this if the reg actually serves as an output
|
||
reload reg in the current instruction. */
|
||
if (n_reloads == 0
|
||
|| ! TEST_HARD_REG_BIT (reg_is_output_reload, regno + i))
|
||
{
|
||
CLEAR_HARD_REG_BIT (reg_reloaded_valid, regno + i);
|
||
spill_reg_store[regno + i] = 0;
|
||
}
|
||
}
|
||
|
||
/* Since value of X has changed,
|
||
forget any value previously copied from it. */
|
||
|
||
while (nr-- > 0)
|
||
/* But don't forget a copy if this is the output reload
|
||
that establishes the copy's validity. */
|
||
if (n_reloads == 0 || reg_has_output_reload[regno + nr] == 0)
|
||
reg_last_reload_reg[regno + nr] = 0;
|
||
}
|
||
|
||
/* For each reload, the mode of the reload register. */
|
||
static enum machine_mode reload_mode[MAX_RELOADS];
|
||
|
||
/* For each reload, the largest number of registers it will require. */
|
||
static int reload_nregs[MAX_RELOADS];
|
||
|
||
/* Comparison function for qsort to decide which of two reloads
|
||
should be handled first. *P1 and *P2 are the reload numbers. */
|
||
|
||
static int
|
||
reload_reg_class_lower (r1p, r2p)
|
||
const GENERIC_PTR r1p;
|
||
const GENERIC_PTR r2p;
|
||
{
|
||
register int r1 = *(short *)r1p, r2 = *(short *)r2p;
|
||
register int t;
|
||
|
||
/* Consider required reloads before optional ones. */
|
||
t = reload_optional[r1] - reload_optional[r2];
|
||
if (t != 0)
|
||
return t;
|
||
|
||
/* Count all solitary classes before non-solitary ones. */
|
||
t = ((reg_class_size[(int) reload_reg_class[r2]] == 1)
|
||
- (reg_class_size[(int) reload_reg_class[r1]] == 1));
|
||
if (t != 0)
|
||
return t;
|
||
|
||
/* Aside from solitaires, consider all multi-reg groups first. */
|
||
t = reload_nregs[r2] - reload_nregs[r1];
|
||
if (t != 0)
|
||
return t;
|
||
|
||
/* Consider reloads in order of increasing reg-class number. */
|
||
t = (int) reload_reg_class[r1] - (int) reload_reg_class[r2];
|
||
if (t != 0)
|
||
return t;
|
||
|
||
/* If reloads are equally urgent, sort by reload number,
|
||
so that the results of qsort leave nothing to chance. */
|
||
return r1 - r2;
|
||
}
|
||
|
||
/* The following HARD_REG_SETs indicate when each hard register is
|
||
used for a reload of various parts of the current insn. */
|
||
|
||
/* If reg is unavailable for all reloads. */
|
||
static HARD_REG_SET reload_reg_unavailable;
|
||
/* If reg is in use as a reload reg for a RELOAD_OTHER reload. */
|
||
static HARD_REG_SET reload_reg_used;
|
||
/* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I. */
|
||
static HARD_REG_SET reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
|
||
/* If reg is in use for a RELOAD_FOR_INPADDR_ADDRESS reload for operand I. */
|
||
static HARD_REG_SET reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS];
|
||
/* If reg is in use for a RELOAD_FOR_OUTPUT_ADDRESS reload for operand I. */
|
||
static HARD_REG_SET reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
|
||
/* If reg is in use for a RELOAD_FOR_OUTADDR_ADDRESS reload for operand I. */
|
||
static HARD_REG_SET reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS];
|
||
/* If reg is in use for a RELOAD_FOR_INPUT reload for operand I. */
|
||
static HARD_REG_SET reload_reg_used_in_input[MAX_RECOG_OPERANDS];
|
||
/* If reg is in use for a RELOAD_FOR_OUTPUT reload for operand I. */
|
||
static HARD_REG_SET reload_reg_used_in_output[MAX_RECOG_OPERANDS];
|
||
/* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload. */
|
||
static HARD_REG_SET reload_reg_used_in_op_addr;
|
||
/* If reg is in use for a RELOAD_FOR_OPADDR_ADDR reload. */
|
||
static HARD_REG_SET reload_reg_used_in_op_addr_reload;
|
||
/* If reg is in use for a RELOAD_FOR_INSN reload. */
|
||
static HARD_REG_SET reload_reg_used_in_insn;
|
||
/* If reg is in use for a RELOAD_FOR_OTHER_ADDRESS reload. */
|
||
static HARD_REG_SET reload_reg_used_in_other_addr;
|
||
|
||
/* If reg is in use as a reload reg for any sort of reload. */
|
||
static HARD_REG_SET reload_reg_used_at_all;
|
||
|
||
/* If reg is use as an inherited reload. We just mark the first register
|
||
in the group. */
|
||
static HARD_REG_SET reload_reg_used_for_inherit;
|
||
|
||
/* Records which hard regs are used in any way, either as explicit use or
|
||
by being allocated to a pseudo during any point of the current insn. */
|
||
static HARD_REG_SET reg_used_in_insn;
|
||
|
||
/* Mark reg REGNO as in use for a reload of the sort spec'd by OPNUM and
|
||
TYPE. MODE is used to indicate how many consecutive regs are
|
||
actually used. */
|
||
|
||
static void
|
||
mark_reload_reg_in_use (regno, opnum, type, mode)
|
||
int regno;
|
||
int opnum;
|
||
enum reload_type type;
|
||
enum machine_mode mode;
|
||
{
|
||
int nregs = HARD_REGNO_NREGS (regno, mode);
|
||
int i;
|
||
|
||
for (i = regno; i < nregs + regno; i++)
|
||
{
|
||
switch (type)
|
||
{
|
||
case RELOAD_OTHER:
|
||
SET_HARD_REG_BIT (reload_reg_used, i);
|
||
break;
|
||
|
||
case RELOAD_FOR_INPUT_ADDRESS:
|
||
SET_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], i);
|
||
break;
|
||
|
||
case RELOAD_FOR_INPADDR_ADDRESS:
|
||
SET_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], i);
|
||
break;
|
||
|
||
case RELOAD_FOR_OUTPUT_ADDRESS:
|
||
SET_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], i);
|
||
break;
|
||
|
||
case RELOAD_FOR_OUTADDR_ADDRESS:
|
||
SET_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], i);
|
||
break;
|
||
|
||
case RELOAD_FOR_OPERAND_ADDRESS:
|
||
SET_HARD_REG_BIT (reload_reg_used_in_op_addr, i);
|
||
break;
|
||
|
||
case RELOAD_FOR_OPADDR_ADDR:
|
||
SET_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, i);
|
||
break;
|
||
|
||
case RELOAD_FOR_OTHER_ADDRESS:
|
||
SET_HARD_REG_BIT (reload_reg_used_in_other_addr, i);
|
||
break;
|
||
|
||
case RELOAD_FOR_INPUT:
|
||
SET_HARD_REG_BIT (reload_reg_used_in_input[opnum], i);
|
||
break;
|
||
|
||
case RELOAD_FOR_OUTPUT:
|
||
SET_HARD_REG_BIT (reload_reg_used_in_output[opnum], i);
|
||
break;
|
||
|
||
case RELOAD_FOR_INSN:
|
||
SET_HARD_REG_BIT (reload_reg_used_in_insn, i);
|
||
break;
|
||
}
|
||
|
||
SET_HARD_REG_BIT (reload_reg_used_at_all, i);
|
||
}
|
||
}
|
||
|
||
/* Similarly, but show REGNO is no longer in use for a reload. */
|
||
|
||
static void
|
||
clear_reload_reg_in_use (regno, opnum, type, mode)
|
||
int regno;
|
||
int opnum;
|
||
enum reload_type type;
|
||
enum machine_mode mode;
|
||
{
|
||
int nregs = HARD_REGNO_NREGS (regno, mode);
|
||
int start_regno, end_regno;
|
||
int i;
|
||
/* A complication is that for some reload types, inheritance might
|
||
allow multiple reloads of the same types to share a reload register.
|
||
We set check_opnum if we have to check only reloads with the same
|
||
operand number, and check_any if we have to check all reloads. */
|
||
int check_opnum = 0;
|
||
int check_any = 0;
|
||
HARD_REG_SET *used_in_set;
|
||
|
||
switch (type)
|
||
{
|
||
case RELOAD_OTHER:
|
||
used_in_set = &reload_reg_used;
|
||
break;
|
||
|
||
case RELOAD_FOR_INPUT_ADDRESS:
|
||
used_in_set = &reload_reg_used_in_input_addr[opnum];
|
||
break;
|
||
|
||
case RELOAD_FOR_INPADDR_ADDRESS:
|
||
check_opnum = 1;
|
||
used_in_set = &reload_reg_used_in_inpaddr_addr[opnum];
|
||
break;
|
||
|
||
case RELOAD_FOR_OUTPUT_ADDRESS:
|
||
used_in_set = &reload_reg_used_in_output_addr[opnum];
|
||
break;
|
||
|
||
case RELOAD_FOR_OUTADDR_ADDRESS:
|
||
check_opnum = 1;
|
||
used_in_set = &reload_reg_used_in_outaddr_addr[opnum];
|
||
break;
|
||
|
||
case RELOAD_FOR_OPERAND_ADDRESS:
|
||
used_in_set = &reload_reg_used_in_op_addr;
|
||
break;
|
||
|
||
case RELOAD_FOR_OPADDR_ADDR:
|
||
check_any = 1;
|
||
used_in_set = &reload_reg_used_in_op_addr_reload;
|
||
break;
|
||
|
||
case RELOAD_FOR_OTHER_ADDRESS:
|
||
used_in_set = &reload_reg_used_in_other_addr;
|
||
check_any = 1;
|
||
break;
|
||
|
||
case RELOAD_FOR_INPUT:
|
||
used_in_set = &reload_reg_used_in_input[opnum];
|
||
break;
|
||
|
||
case RELOAD_FOR_OUTPUT:
|
||
used_in_set = &reload_reg_used_in_output[opnum];
|
||
break;
|
||
|
||
case RELOAD_FOR_INSN:
|
||
used_in_set = &reload_reg_used_in_insn;
|
||
break;
|
||
default:
|
||
abort ();
|
||
}
|
||
/* We resolve conflicts with remaining reloads of the same type by
|
||
excluding the intervals of of reload registers by them from the
|
||
interval of freed reload registers. Since we only keep track of
|
||
one set of interval bounds, we might have to exclude somewhat
|
||
more then what would be necessary if we used a HARD_REG_SET here.
|
||
But this should only happen very infrequently, so there should
|
||
be no reason to worry about it. */
|
||
|
||
start_regno = regno;
|
||
end_regno = regno + nregs;
|
||
if (check_opnum || check_any)
|
||
{
|
||
for (i = n_reloads - 1; i >= 0; i--)
|
||
{
|
||
if (reload_when_needed[i] == type
|
||
&& (check_any || reload_opnum[i] == opnum)
|
||
&& reload_reg_rtx[i])
|
||
{
|
||
int conflict_start = true_regnum (reload_reg_rtx[i]);
|
||
int conflict_end
|
||
= (conflict_start
|
||
+ HARD_REGNO_NREGS (conflict_start, reload_mode[i]));
|
||
|
||
/* If there is an overlap with the first to-be-freed register,
|
||
adjust the interval start. */
|
||
if (conflict_start <= start_regno && conflict_end > start_regno)
|
||
start_regno = conflict_end;
|
||
/* Otherwise, if there is a conflict with one of the other
|
||
to-be-freed registers, adjust the interval end. */
|
||
if (conflict_start > start_regno && conflict_start < end_regno)
|
||
end_regno = conflict_start;
|
||
}
|
||
}
|
||
}
|
||
for (i = start_regno; i < end_regno; i++)
|
||
CLEAR_HARD_REG_BIT (*used_in_set, i);
|
||
}
|
||
|
||
/* 1 if reg REGNO is free as a reload reg for a reload of the sort
|
||
specified by OPNUM and TYPE. */
|
||
|
||
static int
|
||
reload_reg_free_p (regno, opnum, type)
|
||
int regno;
|
||
int opnum;
|
||
enum reload_type type;
|
||
{
|
||
int i;
|
||
|
||
if (TEST_HARD_REG_BIT (reload_reg_used, regno)
|
||
|| TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
|
||
return 0;
|
||
|
||
switch (type)
|
||
{
|
||
case RELOAD_OTHER:
|
||
/* In use for anything means we can't use it for RELOAD_OTHER. */
|
||
if (TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno)
|
||
|| TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
|
||
|| TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
|
||
return 0;
|
||
|
||
for (i = 0; i < reload_n_operands; i++)
|
||
if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
|
||
|| TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
|
||
|| TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
|
||
|| TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
|
||
|| TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
|
||
|| TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
|
||
return 0;
|
||
|
||
return 1;
|
||
|
||
case RELOAD_FOR_INPUT:
|
||
if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
|
||
|| TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno))
|
||
return 0;
|
||
|
||
if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
|
||
return 0;
|
||
|
||
/* If it is used for some other input, can't use it. */
|
||
for (i = 0; i < reload_n_operands; i++)
|
||
if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
|
||
return 0;
|
||
|
||
/* If it is used in a later operand's address, can't use it. */
|
||
for (i = opnum + 1; i < reload_n_operands; i++)
|
||
if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
|
||
|| TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
|
||
return 0;
|
||
|
||
return 1;
|
||
|
||
case RELOAD_FOR_INPUT_ADDRESS:
|
||
/* Can't use a register if it is used for an input address for this
|
||
operand or used as an input in an earlier one. */
|
||
if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno)
|
||
|| TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
|
||
return 0;
|
||
|
||
for (i = 0; i < opnum; i++)
|
||
if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
|
||
return 0;
|
||
|
||
return 1;
|
||
|
||
case RELOAD_FOR_INPADDR_ADDRESS:
|
||
/* Can't use a register if it is used for an input address
|
||
for this operand or used as an input in an earlier
|
||
one. */
|
||
if (TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
|
||
return 0;
|
||
|
||
for (i = 0; i < opnum; i++)
|
||
if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
|
||
return 0;
|
||
|
||
return 1;
|
||
|
||
case RELOAD_FOR_OUTPUT_ADDRESS:
|
||
/* Can't use a register if it is used for an output address for this
|
||
operand or used as an output in this or a later operand. */
|
||
if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno))
|
||
return 0;
|
||
|
||
for (i = opnum; i < reload_n_operands; i++)
|
||
if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
|
||
return 0;
|
||
|
||
return 1;
|
||
|
||
case RELOAD_FOR_OUTADDR_ADDRESS:
|
||
/* Can't use a register if it is used for an output address
|
||
for this operand or used as an output in this or a
|
||
later operand. */
|
||
if (TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
|
||
return 0;
|
||
|
||
for (i = opnum; i < reload_n_operands; i++)
|
||
if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
|
||
return 0;
|
||
|
||
return 1;
|
||
|
||
case RELOAD_FOR_OPERAND_ADDRESS:
|
||
for (i = 0; i < reload_n_operands; i++)
|
||
if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
|
||
return 0;
|
||
|
||
return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
|
||
&& ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
|
||
|
||
case RELOAD_FOR_OPADDR_ADDR:
|
||
for (i = 0; i < reload_n_operands; i++)
|
||
if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
|
||
return 0;
|
||
|
||
return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno));
|
||
|
||
case RELOAD_FOR_OUTPUT:
|
||
/* This cannot share a register with RELOAD_FOR_INSN reloads, other
|
||
outputs, or an operand address for this or an earlier output. */
|
||
if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
|
||
return 0;
|
||
|
||
for (i = 0; i < reload_n_operands; i++)
|
||
if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
|
||
return 0;
|
||
|
||
for (i = 0; i <= opnum; i++)
|
||
if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
|
||
|| TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
|
||
return 0;
|
||
|
||
return 1;
|
||
|
||
case RELOAD_FOR_INSN:
|
||
for (i = 0; i < reload_n_operands; i++)
|
||
if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
|
||
|| TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
|
||
return 0;
|
||
|
||
return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
|
||
&& ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
|
||
|
||
case RELOAD_FOR_OTHER_ADDRESS:
|
||
return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
|
||
}
|
||
abort ();
|
||
}
|
||
|
||
/* Return 1 if the value in reload reg REGNO, as used by a reload
|
||
needed for the part of the insn specified by OPNUM and TYPE,
|
||
is still available in REGNO at the end of the insn.
|
||
|
||
We can assume that the reload reg was already tested for availability
|
||
at the time it is needed, and we should not check this again,
|
||
in case the reg has already been marked in use. */
|
||
|
||
static int
|
||
reload_reg_reaches_end_p (regno, opnum, type)
|
||
int regno;
|
||
int opnum;
|
||
enum reload_type type;
|
||
{
|
||
int i;
|
||
|
||
switch (type)
|
||
{
|
||
case RELOAD_OTHER:
|
||
/* Since a RELOAD_OTHER reload claims the reg for the entire insn,
|
||
its value must reach the end. */
|
||
return 1;
|
||
|
||
/* If this use is for part of the insn,
|
||
its value reaches if no subsequent part uses the same register.
|
||
Just like the above function, don't try to do this with lots
|
||
of fallthroughs. */
|
||
|
||
case RELOAD_FOR_OTHER_ADDRESS:
|
||
/* Here we check for everything else, since these don't conflict
|
||
with anything else and everything comes later. */
|
||
|
||
for (i = 0; i < reload_n_operands; i++)
|
||
if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
|
||
|| TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
|
||
|| TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)
|
||
|| TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
|
||
|| TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
|
||
|| TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
|
||
return 0;
|
||
|
||
return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
|
||
&& ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
|
||
&& ! TEST_HARD_REG_BIT (reload_reg_used, regno));
|
||
|
||
case RELOAD_FOR_INPUT_ADDRESS:
|
||
case RELOAD_FOR_INPADDR_ADDRESS:
|
||
/* Similar, except that we check only for this and subsequent inputs
|
||
and the address of only subsequent inputs and we do not need
|
||
to check for RELOAD_OTHER objects since they are known not to
|
||
conflict. */
|
||
|
||
for (i = opnum; i < reload_n_operands; i++)
|
||
if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
|
||
return 0;
|
||
|
||
for (i = opnum + 1; i < reload_n_operands; i++)
|
||
if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
|
||
|| TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
|
||
return 0;
|
||
|
||
for (i = 0; i < reload_n_operands; i++)
|
||
if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
|
||
|| TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
|
||
|| TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
|
||
return 0;
|
||
|
||
if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
|
||
return 0;
|
||
|
||
return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
|
||
&& ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno));
|
||
|
||
case RELOAD_FOR_INPUT:
|
||
/* Similar to input address, except we start at the next operand for
|
||
both input and input address and we do not check for
|
||
RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these
|
||
would conflict. */
|
||
|
||
for (i = opnum + 1; i < reload_n_operands; i++)
|
||
if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
|
||
|| TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
|
||
|| TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
|
||
return 0;
|
||
|
||
/* ... fall through ... */
|
||
|
||
case RELOAD_FOR_OPERAND_ADDRESS:
|
||
/* Check outputs and their addresses. */
|
||
|
||
for (i = 0; i < reload_n_operands; i++)
|
||
if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
|
||
|| TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
|
||
|| TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
|
||
return 0;
|
||
|
||
return 1;
|
||
|
||
case RELOAD_FOR_OPADDR_ADDR:
|
||
for (i = 0; i < reload_n_operands; i++)
|
||
if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
|
||
|| TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
|
||
|| TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
|
||
return 0;
|
||
|
||
return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
|
||
&& !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno));
|
||
|
||
case RELOAD_FOR_INSN:
|
||
/* These conflict with other outputs with RELOAD_OTHER. So
|
||
we need only check for output addresses. */
|
||
|
||
opnum = -1;
|
||
|
||
/* ... fall through ... */
|
||
|
||
case RELOAD_FOR_OUTPUT:
|
||
case RELOAD_FOR_OUTPUT_ADDRESS:
|
||
case RELOAD_FOR_OUTADDR_ADDRESS:
|
||
/* We already know these can't conflict with a later output. So the
|
||
only thing to check are later output addresses. */
|
||
for (i = opnum + 1; i < reload_n_operands; i++)
|
||
if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
|
||
|| TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
|
||
return 0;
|
||
|
||
return 1;
|
||
}
|
||
|
||
abort ();
|
||
}
|
||
|
||
/* Return 1 if the reloads denoted by R1 and R2 cannot share a register.
|
||
Return 0 otherwise.
|
||
|
||
This function uses the same algorithm as reload_reg_free_p above. */
|
||
|
||
int
|
||
reloads_conflict (r1, r2)
|
||
int r1, r2;
|
||
{
|
||
enum reload_type r1_type = reload_when_needed[r1];
|
||
enum reload_type r2_type = reload_when_needed[r2];
|
||
int r1_opnum = reload_opnum[r1];
|
||
int r2_opnum = reload_opnum[r2];
|
||
|
||
/* RELOAD_OTHER conflicts with everything. */
|
||
if (r2_type == RELOAD_OTHER)
|
||
return 1;
|
||
|
||
/* Otherwise, check conflicts differently for each type. */
|
||
|
||
switch (r1_type)
|
||
{
|
||
case RELOAD_FOR_INPUT:
|
||
return (r2_type == RELOAD_FOR_INSN
|
||
|| r2_type == RELOAD_FOR_OPERAND_ADDRESS
|
||
|| r2_type == RELOAD_FOR_OPADDR_ADDR
|
||
|| r2_type == RELOAD_FOR_INPUT
|
||
|| ((r2_type == RELOAD_FOR_INPUT_ADDRESS
|
||
|| r2_type == RELOAD_FOR_INPADDR_ADDRESS)
|
||
&& r2_opnum > r1_opnum));
|
||
|
||
case RELOAD_FOR_INPUT_ADDRESS:
|
||
return ((r2_type == RELOAD_FOR_INPUT_ADDRESS && r1_opnum == r2_opnum)
|
||
|| (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
|
||
|
||
case RELOAD_FOR_INPADDR_ADDRESS:
|
||
return ((r2_type == RELOAD_FOR_INPADDR_ADDRESS && r1_opnum == r2_opnum)
|
||
|| (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
|
||
|
||
case RELOAD_FOR_OUTPUT_ADDRESS:
|
||
return ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS && r2_opnum == r1_opnum)
|
||
|| (r2_type == RELOAD_FOR_OUTPUT && r2_opnum >= r1_opnum));
|
||
|
||
case RELOAD_FOR_OUTADDR_ADDRESS:
|
||
return ((r2_type == RELOAD_FOR_OUTADDR_ADDRESS && r2_opnum == r1_opnum)
|
||
|| (r2_type == RELOAD_FOR_OUTPUT && r2_opnum >= r1_opnum));
|
||
|
||
case RELOAD_FOR_OPERAND_ADDRESS:
|
||
return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_INSN
|
||
|| r2_type == RELOAD_FOR_OPERAND_ADDRESS);
|
||
|
||
case RELOAD_FOR_OPADDR_ADDR:
|
||
return (r2_type == RELOAD_FOR_INPUT
|
||
|| r2_type == RELOAD_FOR_OPADDR_ADDR);
|
||
|
||
case RELOAD_FOR_OUTPUT:
|
||
return (r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OUTPUT
|
||
|| ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS
|
||
|| r2_type == RELOAD_FOR_OUTADDR_ADDRESS)
|
||
&& r2_opnum <= r1_opnum));
|
||
|
||
case RELOAD_FOR_INSN:
|
||
return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_OUTPUT
|
||
|| r2_type == RELOAD_FOR_INSN
|
||
|| r2_type == RELOAD_FOR_OPERAND_ADDRESS);
|
||
|
||
case RELOAD_FOR_OTHER_ADDRESS:
|
||
return r2_type == RELOAD_FOR_OTHER_ADDRESS;
|
||
|
||
case RELOAD_OTHER:
|
||
return 1;
|
||
|
||
default:
|
||
abort ();
|
||
}
|
||
}
|
||
|
||
/* Vector of reload-numbers showing the order in which the reloads should
|
||
be processed. */
|
||
short reload_order[MAX_RELOADS];
|
||
|
||
/* Indexed by reload number, 1 if incoming value
|
||
inherited from previous insns. */
|
||
char reload_inherited[MAX_RELOADS];
|
||
|
||
/* For an inherited reload, this is the insn the reload was inherited from,
|
||
if we know it. Otherwise, this is 0. */
|
||
rtx reload_inheritance_insn[MAX_RELOADS];
|
||
|
||
/* If non-zero, this is a place to get the value of the reload,
|
||
rather than using reload_in. */
|
||
rtx reload_override_in[MAX_RELOADS];
|
||
|
||
/* For each reload, the hard register number of the register used,
|
||
or -1 if we did not need a register for this reload. */
|
||
int reload_spill_index[MAX_RELOADS];
|
||
|
||
/* Subroutine of free_for_value_p, used to check a single register. */
|
||
|
||
static int
|
||
reload_reg_free_for_value_p (regno, opnum, type, value, out, reloadnum,
|
||
ignore_address_reloads)
|
||
int regno;
|
||
int opnum;
|
||
enum reload_type type;
|
||
rtx value, out;
|
||
int reloadnum;
|
||
int ignore_address_reloads;
|
||
{
|
||
int time1;
|
||
/* Set if we see an input reload that must not share its reload register
|
||
with any new earlyclobber, but might otherwise share the reload
|
||
register with an output or input-output reload. */
|
||
int check_earlyclobber = 0;
|
||
int i;
|
||
int copy = 0;
|
||
|
||
/* ??? reload_reg_used is abused to hold the registers that are not
|
||
available as spill registers, including hard registers that are
|
||
earlyclobbered in asms. As a temporary measure, reject anything
|
||
in reload_reg_used. */
|
||
if (TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
|
||
return 0;
|
||
|
||
if (out == const0_rtx)
|
||
{
|
||
copy = 1;
|
||
out = NULL_RTX;
|
||
}
|
||
|
||
/* We use some pseudo 'time' value to check if the lifetimes of the
|
||
new register use would overlap with the one of a previous reload
|
||
that is not read-only or uses a different value.
|
||
The 'time' used doesn't have to be linear in any shape or form, just
|
||
monotonic.
|
||
Some reload types use different 'buckets' for each operand.
|
||
So there are MAX_RECOG_OPERANDS different time values for each
|
||
such reload type.
|
||
We compute TIME1 as the time when the register for the prospective
|
||
new reload ceases to be live, and TIME2 for each existing
|
||
reload as the time when that the reload register of that reload
|
||
becomes live.
|
||
Where there is little to be gained by exact lifetime calculations,
|
||
we just make conservative assumptions, i.e. a longer lifetime;
|
||
this is done in the 'default:' cases. */
|
||
switch (type)
|
||
{
|
||
case RELOAD_FOR_OTHER_ADDRESS:
|
||
/* RELOAD_FOR_OTHER_ADDRESS conflicts with RELOAD_OTHER reloads. */
|
||
time1 = copy ? 0 : 1;
|
||
break;
|
||
case RELOAD_OTHER:
|
||
time1 = copy ? 1 : MAX_RECOG_OPERANDS * 5 + 5;
|
||
break;
|
||
/* For each input, we might have a sequence of RELOAD_FOR_INPADDR_ADDRESS,
|
||
RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT. By adding 0 / 1 / 2 ,
|
||
respectively, to the time values for these, we get distinct time
|
||
values. To get distinct time values for each operand, we have to
|
||
multiply opnum by at least three. We round that up to four because
|
||
multiply by four is often cheaper. */
|
||
case RELOAD_FOR_INPADDR_ADDRESS:
|
||
time1 = opnum * 4 + 2;
|
||
break;
|
||
case RELOAD_FOR_INPUT_ADDRESS:
|
||
time1 = opnum * 4 + 3;
|
||
break;
|
||
case RELOAD_FOR_INPUT:
|
||
/* All RELOAD_FOR_INPUT reloads remain live till the instruction
|
||
executes (inclusive). */
|
||
time1 = copy ? opnum * 4 + 4 : MAX_RECOG_OPERANDS * 4 + 3;
|
||
break;
|
||
case RELOAD_FOR_OPADDR_ADDR:
|
||
/* opnum * 4 + 4
|
||
<= (MAX_RECOG_OPERANDS - 1) * 4 + 4 == MAX_RECOG_OPERANDS * 4 */
|
||
time1 = MAX_RECOG_OPERANDS * 4 + 1;
|
||
break;
|
||
case RELOAD_FOR_OPERAND_ADDRESS:
|
||
/* RELOAD_FOR_OPERAND_ADDRESS reloads are live even while the insn
|
||
is executed. */
|
||
time1 = copy ? MAX_RECOG_OPERANDS * 4 + 2 : MAX_RECOG_OPERANDS * 4 + 3;
|
||
break;
|
||
case RELOAD_FOR_OUTADDR_ADDRESS:
|
||
time1 = MAX_RECOG_OPERANDS * 4 + 4 + opnum;
|
||
break;
|
||
case RELOAD_FOR_OUTPUT_ADDRESS:
|
||
time1 = MAX_RECOG_OPERANDS * 4 + 5 + opnum;
|
||
break;
|
||
default:
|
||
time1 = MAX_RECOG_OPERANDS * 5 + 5;
|
||
}
|
||
|
||
for (i = 0; i < n_reloads; i++)
|
||
{
|
||
rtx reg = reload_reg_rtx[i];
|
||
if (reg && GET_CODE (reg) == REG
|
||
&& ((unsigned) regno - true_regnum (reg)
|
||
<= HARD_REGNO_NREGS (REGNO (reg), GET_MODE (reg)) - (unsigned)1)
|
||
&& i != reloadnum)
|
||
{
|
||
if (! reload_in[i] || ! rtx_equal_p (reload_in[i], value)
|
||
|| reload_out[i] || out)
|
||
{
|
||
int time2;
|
||
switch (reload_when_needed[i])
|
||
{
|
||
case RELOAD_FOR_OTHER_ADDRESS:
|
||
time2 = 0;
|
||
break;
|
||
case RELOAD_FOR_INPADDR_ADDRESS:
|
||
/* find_reloads makes sure that a
|
||
RELOAD_FOR_{INP,OP,OUT}ADDR_ADDRESS reload is only used
|
||
by at most one - the first -
|
||
RELOAD_FOR_{INPUT,OPERAND,OUTPUT}_ADDRESS . If the
|
||
address reload is inherited, the address address reload
|
||
goes away, so we can ignore this conflict. */
|
||
if (type == RELOAD_FOR_INPUT_ADDRESS && reloadnum == i + 1
|
||
&& ignore_address_reloads
|
||
/* Unless the RELOAD_FOR_INPUT is an auto_inc expression.
|
||
Then the address address is still needed to store
|
||
back the new address. */
|
||
&& ! reload_out[reloadnum])
|
||
continue;
|
||
/* Likewise, if a RELOAD_FOR_INPUT can inherit a value, its
|
||
RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS
|
||
reloads go away. */
|
||
if (type == RELOAD_FOR_INPUT && opnum == reload_opnum[i]
|
||
&& ignore_address_reloads
|
||
/* Unless we are reloading an auto_inc expression. */
|
||
&& ! reload_out[reloadnum])
|
||
continue;
|
||
time2 = reload_opnum[i] * 4 + 2;
|
||
break;
|
||
case RELOAD_FOR_INPUT_ADDRESS:
|
||
if (type == RELOAD_FOR_INPUT && opnum == reload_opnum[i]
|
||
&& ignore_address_reloads
|
||
&& ! reload_out[reloadnum])
|
||
continue;
|
||
time2 = reload_opnum[i] * 4 + 3;
|
||
break;
|
||
case RELOAD_FOR_INPUT:
|
||
time2 = reload_opnum[i] * 4 + 4;
|
||
check_earlyclobber = 1;
|
||
break;
|
||
/* reload_opnum[i] * 4 + 4 <= (MAX_RECOG_OPERAND - 1) * 4 + 4
|
||
== MAX_RECOG_OPERAND * 4 */
|
||
case RELOAD_FOR_OPADDR_ADDR:
|
||
if (type == RELOAD_FOR_OPERAND_ADDRESS && reloadnum == i + 1
|
||
&& ignore_address_reloads
|
||
&& ! reload_out[reloadnum])
|
||
continue;
|
||
time2 = MAX_RECOG_OPERANDS * 4 + 1;
|
||
break;
|
||
case RELOAD_FOR_OPERAND_ADDRESS:
|
||
time2 = MAX_RECOG_OPERANDS * 4 + 2;
|
||
check_earlyclobber = 1;
|
||
break;
|
||
case RELOAD_FOR_INSN:
|
||
time2 = MAX_RECOG_OPERANDS * 4 + 3;
|
||
break;
|
||
case RELOAD_FOR_OUTPUT:
|
||
/* All RELOAD_FOR_OUTPUT reloads become live just after the
|
||
instruction is executed. */
|
||
time2 = MAX_RECOG_OPERANDS * 4 + 4;
|
||
break;
|
||
/* The first RELOAD_FOR_OUTADDR_ADDRESS reload conflicts with
|
||
the RELOAD_FOR_OUTPUT reloads, so assign it the same time
|
||
value. */
|
||
case RELOAD_FOR_OUTADDR_ADDRESS:
|
||
if (type == RELOAD_FOR_OUTPUT_ADDRESS && reloadnum == i + 1
|
||
&& ignore_address_reloads
|
||
&& ! reload_out[reloadnum])
|
||
continue;
|
||
time2 = MAX_RECOG_OPERANDS * 4 + 4 + reload_opnum[i];
|
||
break;
|
||
case RELOAD_FOR_OUTPUT_ADDRESS:
|
||
time2 = MAX_RECOG_OPERANDS * 4 + 5 + reload_opnum[i];
|
||
break;
|
||
case RELOAD_OTHER:
|
||
/* If there is no conflict in the input part, handle this
|
||
like an output reload. */
|
||
if (! reload_in[i] || rtx_equal_p (reload_in[i], value))
|
||
{
|
||
time2 = MAX_RECOG_OPERANDS * 4 + 4;
|
||
/* Earlyclobbered outputs must conflict with inputs. */
|
||
if (earlyclobber_operand_p (reload_out[i]))
|
||
time2 = MAX_RECOG_OPERANDS * 4 + 3;
|
||
break;
|
||
}
|
||
time2 = 1;
|
||
/* RELOAD_OTHER might be live beyond instruction execution,
|
||
but this is not obvious when we set time2 = 1. So check
|
||
here if there might be a problem with the new reload
|
||
clobbering the register used by the RELOAD_OTHER. */
|
||
if (out)
|
||
return 0;
|
||
break;
|
||
default:
|
||
return 0;
|
||
}
|
||
if ((time1 >= time2
|
||
&& (! reload_in[i] || reload_out[i]
|
||
|| ! rtx_equal_p (reload_in[i], value)))
|
||
|| (out && reload_out_reg[reloadnum]
|
||
&& time2 >= MAX_RECOG_OPERANDS * 4 + 3))
|
||
return 0;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Earlyclobbered outputs must conflict with inputs. */
|
||
if (check_earlyclobber && out && earlyclobber_operand_p (out))
|
||
return 0;
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Return 1 if the value in reload reg REGNO, as used by a reload
|
||
needed for the part of the insn specified by OPNUM and TYPE,
|
||
may be used to load VALUE into it.
|
||
|
||
MODE is the mode in which the register is used, this is needed to
|
||
determine how many hard regs to test.
|
||
|
||
Other read-only reloads with the same value do not conflict
|
||
unless OUT is non-zero and these other reloads have to live while
|
||
output reloads live.
|
||
If OUT is CONST0_RTX, this is a special case: it means that the
|
||
test should not be for using register REGNO as reload register, but
|
||
for copying from register REGNO into the reload register.
|
||
|
||
RELOADNUM is the number of the reload we want to load this value for;
|
||
a reload does not conflict with itself.
|
||
|
||
When IGNORE_ADDRESS_RELOADS is set, we can not have conflicts with
|
||
reloads that load an address for the very reload we are considering.
|
||
|
||
The caller has to make sure that there is no conflict with the return
|
||
register. */
|
||
|
||
static int
|
||
free_for_value_p (regno, mode, opnum, type, value, out, reloadnum,
|
||
ignore_address_reloads)
|
||
int regno;
|
||
enum machine_mode mode;
|
||
int opnum;
|
||
enum reload_type type;
|
||
rtx value, out;
|
||
int reloadnum;
|
||
int ignore_address_reloads;
|
||
{
|
||
int nregs = HARD_REGNO_NREGS (regno, mode);
|
||
while (nregs-- > 0)
|
||
if (! reload_reg_free_for_value_p (regno + nregs, opnum, type, value, out,
|
||
reloadnum, ignore_address_reloads))
|
||
return 0;
|
||
return 1;
|
||
}
|
||
|
||
/* Determine whether the reload reg X overlaps any rtx'es used for
|
||
overriding inheritance. Return nonzero if so. */
|
||
|
||
static int
|
||
conflicts_with_override (x)
|
||
rtx x;
|
||
{
|
||
int i;
|
||
for (i = 0; i < n_reloads; i++)
|
||
if (reload_override_in[i]
|
||
&& reg_overlap_mentioned_p (x, reload_override_in[i]))
|
||
return 1;
|
||
return 0;
|
||
}
|
||
|
||
/* Find a spill register to use as a reload register for reload R.
|
||
LAST_RELOAD is non-zero if this is the last reload for the insn being
|
||
processed.
|
||
|
||
Set reload_reg_rtx[R] to the register allocated.
|
||
|
||
If NOERROR is nonzero, we return 1 if successful,
|
||
or 0 if we couldn't find a spill reg and we didn't change anything. */
|
||
|
||
static int
|
||
allocate_reload_reg (chain, r, last_reload, noerror)
|
||
struct insn_chain *chain;
|
||
int r;
|
||
int last_reload;
|
||
int noerror;
|
||
{
|
||
rtx insn = chain->insn;
|
||
int i, pass, count, regno;
|
||
rtx new;
|
||
|
||
/* If we put this reload ahead, thinking it is a group,
|
||
then insist on finding a group. Otherwise we can grab a
|
||
reg that some other reload needs.
|
||
(That can happen when we have a 68000 DATA_OR_FP_REG
|
||
which is a group of data regs or one fp reg.)
|
||
We need not be so restrictive if there are no more reloads
|
||
for this insn.
|
||
|
||
??? Really it would be nicer to have smarter handling
|
||
for that kind of reg class, where a problem like this is normal.
|
||
Perhaps those classes should be avoided for reloading
|
||
by use of more alternatives. */
|
||
|
||
int force_group = reload_nregs[r] > 1 && ! last_reload;
|
||
|
||
/* If we want a single register and haven't yet found one,
|
||
take any reg in the right class and not in use.
|
||
If we want a consecutive group, here is where we look for it.
|
||
|
||
We use two passes so we can first look for reload regs to
|
||
reuse, which are already in use for other reloads in this insn,
|
||
and only then use additional registers.
|
||
I think that maximizing reuse is needed to make sure we don't
|
||
run out of reload regs. Suppose we have three reloads, and
|
||
reloads A and B can share regs. These need two regs.
|
||
Suppose A and B are given different regs.
|
||
That leaves none for C. */
|
||
for (pass = 0; pass < 2; pass++)
|
||
{
|
||
/* I is the index in spill_regs.
|
||
We advance it round-robin between insns to use all spill regs
|
||
equally, so that inherited reloads have a chance
|
||
of leapfrogging each other. Don't do this, however, when we have
|
||
group needs and failure would be fatal; if we only have a relatively
|
||
small number of spill registers, and more than one of them has
|
||
group needs, then by starting in the middle, we may end up
|
||
allocating the first one in such a way that we are not left with
|
||
sufficient groups to handle the rest. */
|
||
|
||
if (noerror || ! force_group)
|
||
i = last_spill_reg;
|
||
else
|
||
i = -1;
|
||
|
||
for (count = 0; count < n_spills; count++)
|
||
{
|
||
int class = (int) reload_reg_class[r];
|
||
int regnum;
|
||
|
||
i++;
|
||
if (i >= n_spills)
|
||
i -= n_spills;
|
||
regnum = spill_regs[i];
|
||
|
||
if ((reload_reg_free_p (regnum, reload_opnum[r],
|
||
reload_when_needed[r])
|
||
|| (reload_in[r]
|
||
/* We check reload_reg_used to make sure we
|
||
don't clobber the return register. */
|
||
&& ! TEST_HARD_REG_BIT (reload_reg_used, regnum)
|
||
&& free_for_value_p (regnum, reload_mode[r],
|
||
reload_opnum[r],
|
||
reload_when_needed[r],
|
||
reload_in[r], reload_out[r], r, 1)))
|
||
&& TEST_HARD_REG_BIT (reg_class_contents[class], regnum)
|
||
&& HARD_REGNO_MODE_OK (regnum, reload_mode[r])
|
||
/* Look first for regs to share, then for unshared. But
|
||
don't share regs used for inherited reloads; they are
|
||
the ones we want to preserve. */
|
||
&& (pass
|
||
|| (TEST_HARD_REG_BIT (reload_reg_used_at_all,
|
||
regnum)
|
||
&& ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit,
|
||
regnum))))
|
||
{
|
||
int nr = HARD_REGNO_NREGS (regnum, reload_mode[r]);
|
||
/* Avoid the problem where spilling a GENERAL_OR_FP_REG
|
||
(on 68000) got us two FP regs. If NR is 1,
|
||
we would reject both of them. */
|
||
if (force_group)
|
||
nr = CLASS_MAX_NREGS (reload_reg_class[r], reload_mode[r]);
|
||
/* If we need only one reg, we have already won. */
|
||
if (nr == 1)
|
||
{
|
||
/* But reject a single reg if we demand a group. */
|
||
if (force_group)
|
||
continue;
|
||
break;
|
||
}
|
||
/* Otherwise check that as many consecutive regs as we need
|
||
are available here.
|
||
Also, don't use for a group registers that are
|
||
needed for nongroups. */
|
||
if (! TEST_HARD_REG_BIT (chain->counted_for_nongroups, regnum))
|
||
while (nr > 1)
|
||
{
|
||
regno = regnum + nr - 1;
|
||
if (!(TEST_HARD_REG_BIT (reg_class_contents[class], regno)
|
||
&& spill_reg_order[regno] >= 0
|
||
&& reload_reg_free_p (regno, reload_opnum[r],
|
||
reload_when_needed[r])
|
||
&& ! TEST_HARD_REG_BIT (chain->counted_for_nongroups,
|
||
regno)))
|
||
break;
|
||
nr--;
|
||
}
|
||
if (nr == 1)
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* If we found something on pass 1, omit pass 2. */
|
||
if (count < n_spills)
|
||
break;
|
||
}
|
||
|
||
/* We should have found a spill register by now. */
|
||
if (count == n_spills)
|
||
{
|
||
if (noerror)
|
||
return 0;
|
||
goto failure;
|
||
}
|
||
|
||
/* I is the index in SPILL_REG_RTX of the reload register we are to
|
||
allocate. Get an rtx for it and find its register number. */
|
||
|
||
new = spill_reg_rtx[i];
|
||
|
||
if (new == 0 || GET_MODE (new) != reload_mode[r])
|
||
spill_reg_rtx[i] = new
|
||
= gen_rtx_REG (reload_mode[r], spill_regs[i]);
|
||
|
||
regno = true_regnum (new);
|
||
|
||
/* Detect when the reload reg can't hold the reload mode.
|
||
This used to be one `if', but Sequent compiler can't handle that. */
|
||
if (HARD_REGNO_MODE_OK (regno, reload_mode[r]))
|
||
{
|
||
enum machine_mode test_mode = VOIDmode;
|
||
if (reload_in[r])
|
||
test_mode = GET_MODE (reload_in[r]);
|
||
/* If reload_in[r] has VOIDmode, it means we will load it
|
||
in whatever mode the reload reg has: to wit, reload_mode[r].
|
||
We have already tested that for validity. */
|
||
/* Aside from that, we need to test that the expressions
|
||
to reload from or into have modes which are valid for this
|
||
reload register. Otherwise the reload insns would be invalid. */
|
||
if (! (reload_in[r] != 0 && test_mode != VOIDmode
|
||
&& ! HARD_REGNO_MODE_OK (regno, test_mode)))
|
||
if (! (reload_out[r] != 0
|
||
&& ! HARD_REGNO_MODE_OK (regno, GET_MODE (reload_out[r]))))
|
||
{
|
||
/* The reg is OK. */
|
||
last_spill_reg = i;
|
||
|
||
/* Mark as in use for this insn the reload regs we use
|
||
for this. */
|
||
mark_reload_reg_in_use (spill_regs[i], reload_opnum[r],
|
||
reload_when_needed[r], reload_mode[r]);
|
||
|
||
reload_reg_rtx[r] = new;
|
||
reload_spill_index[r] = spill_regs[i];
|
||
return 1;
|
||
}
|
||
}
|
||
|
||
/* The reg is not OK. */
|
||
if (noerror)
|
||
return 0;
|
||
|
||
failure:
|
||
if (asm_noperands (PATTERN (insn)) < 0)
|
||
/* It's the compiler's fault. */
|
||
fatal_insn ("Could not find a spill register", insn);
|
||
|
||
/* It's the user's fault; the operand's mode and constraint
|
||
don't match. Disable this reload so we don't crash in final. */
|
||
error_for_asm (insn,
|
||
"`asm' operand constraint incompatible with operand size");
|
||
reload_in[r] = 0;
|
||
reload_out[r] = 0;
|
||
reload_reg_rtx[r] = 0;
|
||
reload_optional[r] = 1;
|
||
reload_secondary_p[r] = 1;
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Assign hard reg targets for the pseudo-registers we must reload
|
||
into hard regs for this insn.
|
||
Also output the instructions to copy them in and out of the hard regs.
|
||
|
||
For machines with register classes, we are responsible for
|
||
finding a reload reg in the proper class. */
|
||
|
||
static void
|
||
choose_reload_regs (chain)
|
||
struct insn_chain *chain;
|
||
{
|
||
rtx insn = chain->insn;
|
||
register int i, j;
|
||
int max_group_size = 1;
|
||
enum reg_class group_class = NO_REGS;
|
||
int inheritance;
|
||
int pass;
|
||
|
||
rtx save_reload_reg_rtx[MAX_RELOADS];
|
||
char save_reload_inherited[MAX_RELOADS];
|
||
rtx save_reload_inheritance_insn[MAX_RELOADS];
|
||
rtx save_reload_override_in[MAX_RELOADS];
|
||
int save_reload_spill_index[MAX_RELOADS];
|
||
HARD_REG_SET save_reload_reg_used;
|
||
HARD_REG_SET save_reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
|
||
HARD_REG_SET save_reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS];
|
||
HARD_REG_SET save_reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
|
||
HARD_REG_SET save_reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS];
|
||
HARD_REG_SET save_reload_reg_used_in_input[MAX_RECOG_OPERANDS];
|
||
HARD_REG_SET save_reload_reg_used_in_output[MAX_RECOG_OPERANDS];
|
||
HARD_REG_SET save_reload_reg_used_in_op_addr;
|
||
HARD_REG_SET save_reload_reg_used_in_op_addr_reload;
|
||
HARD_REG_SET save_reload_reg_used_in_insn;
|
||
HARD_REG_SET save_reload_reg_used_in_other_addr;
|
||
HARD_REG_SET save_reload_reg_used_at_all;
|
||
|
||
bzero (reload_inherited, MAX_RELOADS);
|
||
bzero ((char *) reload_inheritance_insn, MAX_RELOADS * sizeof (rtx));
|
||
bzero ((char *) reload_override_in, MAX_RELOADS * sizeof (rtx));
|
||
|
||
CLEAR_HARD_REG_SET (reload_reg_used);
|
||
CLEAR_HARD_REG_SET (reload_reg_used_at_all);
|
||
CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr);
|
||
CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr_reload);
|
||
CLEAR_HARD_REG_SET (reload_reg_used_in_insn);
|
||
CLEAR_HARD_REG_SET (reload_reg_used_in_other_addr);
|
||
|
||
CLEAR_HARD_REG_SET (reg_used_in_insn);
|
||
{
|
||
HARD_REG_SET tmp;
|
||
REG_SET_TO_HARD_REG_SET (tmp, chain->live_before);
|
||
IOR_HARD_REG_SET (reg_used_in_insn, tmp);
|
||
REG_SET_TO_HARD_REG_SET (tmp, chain->live_after);
|
||
IOR_HARD_REG_SET (reg_used_in_insn, tmp);
|
||
compute_use_by_pseudos (®_used_in_insn, chain->live_before);
|
||
compute_use_by_pseudos (®_used_in_insn, chain->live_after);
|
||
}
|
||
for (i = 0; i < reload_n_operands; i++)
|
||
{
|
||
CLEAR_HARD_REG_SET (reload_reg_used_in_output[i]);
|
||
CLEAR_HARD_REG_SET (reload_reg_used_in_input[i]);
|
||
CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr[i]);
|
||
CLEAR_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i]);
|
||
CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr[i]);
|
||
CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i]);
|
||
}
|
||
|
||
COMPL_HARD_REG_SET (reload_reg_unavailable, chain->used_spill_regs);
|
||
|
||
#if 0 /* Not needed, now that we can always retry without inheritance. */
|
||
/* See if we have more mandatory reloads than spill regs.
|
||
If so, then we cannot risk optimizations that could prevent
|
||
reloads from sharing one spill register.
|
||
|
||
Since we will try finding a better register than reload_reg_rtx
|
||
unless it is equal to reload_in or reload_out, count such reloads. */
|
||
|
||
{
|
||
int tem = 0;
|
||
for (j = 0; j < n_reloads; j++)
|
||
if (! reload_optional[j]
|
||
&& (reload_in[j] != 0 || reload_out[j] != 0 || reload_secondary_p[j])
|
||
&& (reload_reg_rtx[j] == 0
|
||
|| (! rtx_equal_p (reload_reg_rtx[j], reload_in[j])
|
||
&& ! rtx_equal_p (reload_reg_rtx[j], reload_out[j]))))
|
||
tem++;
|
||
if (tem > n_spills)
|
||
must_reuse = 1;
|
||
}
|
||
#endif
|
||
|
||
/* In order to be certain of getting the registers we need,
|
||
we must sort the reloads into order of increasing register class.
|
||
Then our grabbing of reload registers will parallel the process
|
||
that provided the reload registers.
|
||
|
||
Also note whether any of the reloads wants a consecutive group of regs.
|
||
If so, record the maximum size of the group desired and what
|
||
register class contains all the groups needed by this insn. */
|
||
|
||
for (j = 0; j < n_reloads; j++)
|
||
{
|
||
reload_order[j] = j;
|
||
reload_spill_index[j] = -1;
|
||
|
||
reload_mode[j]
|
||
= (reload_inmode[j] == VOIDmode
|
||
|| (GET_MODE_SIZE (reload_outmode[j])
|
||
> GET_MODE_SIZE (reload_inmode[j])))
|
||
? reload_outmode[j] : reload_inmode[j];
|
||
|
||
reload_nregs[j] = CLASS_MAX_NREGS (reload_reg_class[j], reload_mode[j]);
|
||
|
||
if (reload_nregs[j] > 1)
|
||
{
|
||
max_group_size = MAX (reload_nregs[j], max_group_size);
|
||
group_class = reg_class_superunion[(int)reload_reg_class[j]][(int)group_class];
|
||
}
|
||
|
||
/* If we have already decided to use a certain register,
|
||
don't use it in another way. */
|
||
if (reload_reg_rtx[j])
|
||
mark_reload_reg_in_use (REGNO (reload_reg_rtx[j]), reload_opnum[j],
|
||
reload_when_needed[j], reload_mode[j]);
|
||
}
|
||
|
||
if (n_reloads > 1)
|
||
qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
|
||
|
||
bcopy ((char *) reload_reg_rtx, (char *) save_reload_reg_rtx,
|
||
sizeof reload_reg_rtx);
|
||
bcopy (reload_inherited, save_reload_inherited, sizeof reload_inherited);
|
||
bcopy ((char *) reload_inheritance_insn,
|
||
(char *) save_reload_inheritance_insn,
|
||
sizeof reload_inheritance_insn);
|
||
bcopy ((char *) reload_override_in, (char *) save_reload_override_in,
|
||
sizeof reload_override_in);
|
||
bcopy ((char *) reload_spill_index, (char *) save_reload_spill_index,
|
||
sizeof reload_spill_index);
|
||
COPY_HARD_REG_SET (save_reload_reg_used, reload_reg_used);
|
||
COPY_HARD_REG_SET (save_reload_reg_used_at_all, reload_reg_used_at_all);
|
||
COPY_HARD_REG_SET (save_reload_reg_used_in_op_addr,
|
||
reload_reg_used_in_op_addr);
|
||
|
||
COPY_HARD_REG_SET (save_reload_reg_used_in_op_addr_reload,
|
||
reload_reg_used_in_op_addr_reload);
|
||
|
||
COPY_HARD_REG_SET (save_reload_reg_used_in_insn,
|
||
reload_reg_used_in_insn);
|
||
COPY_HARD_REG_SET (save_reload_reg_used_in_other_addr,
|
||
reload_reg_used_in_other_addr);
|
||
|
||
for (i = 0; i < reload_n_operands; i++)
|
||
{
|
||
COPY_HARD_REG_SET (save_reload_reg_used_in_output[i],
|
||
reload_reg_used_in_output[i]);
|
||
COPY_HARD_REG_SET (save_reload_reg_used_in_input[i],
|
||
reload_reg_used_in_input[i]);
|
||
COPY_HARD_REG_SET (save_reload_reg_used_in_input_addr[i],
|
||
reload_reg_used_in_input_addr[i]);
|
||
COPY_HARD_REG_SET (save_reload_reg_used_in_inpaddr_addr[i],
|
||
reload_reg_used_in_inpaddr_addr[i]);
|
||
COPY_HARD_REG_SET (save_reload_reg_used_in_output_addr[i],
|
||
reload_reg_used_in_output_addr[i]);
|
||
COPY_HARD_REG_SET (save_reload_reg_used_in_outaddr_addr[i],
|
||
reload_reg_used_in_outaddr_addr[i]);
|
||
}
|
||
|
||
/* If -O, try first with inheritance, then turning it off.
|
||
If not -O, don't do inheritance.
|
||
Using inheritance when not optimizing leads to paradoxes
|
||
with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves
|
||
because one side of the comparison might be inherited. */
|
||
|
||
for (inheritance = optimize > 0; inheritance >= 0; inheritance--)
|
||
{
|
||
/* Process the reloads in order of preference just found.
|
||
Beyond this point, subregs can be found in reload_reg_rtx.
|
||
|
||
This used to look for an existing reloaded home for all
|
||
of the reloads, and only then perform any new reloads.
|
||
But that could lose if the reloads were done out of reg-class order
|
||
because a later reload with a looser constraint might have an old
|
||
home in a register needed by an earlier reload with a tighter constraint.
|
||
|
||
To solve this, we make two passes over the reloads, in the order
|
||
described above. In the first pass we try to inherit a reload
|
||
from a previous insn. If there is a later reload that needs a
|
||
class that is a proper subset of the class being processed, we must
|
||
also allocate a spill register during the first pass.
|
||
|
||
Then make a second pass over the reloads to allocate any reloads
|
||
that haven't been given registers yet. */
|
||
|
||
CLEAR_HARD_REG_SET (reload_reg_used_for_inherit);
|
||
|
||
for (j = 0; j < n_reloads; j++)
|
||
{
|
||
register int r = reload_order[j];
|
||
rtx search_equiv = NULL_RTX;
|
||
|
||
/* Ignore reloads that got marked inoperative. */
|
||
if (reload_out[r] == 0 && reload_in[r] == 0
|
||
&& ! reload_secondary_p[r])
|
||
continue;
|
||
|
||
/* If find_reloads chose to use reload_in or reload_out as a reload
|
||
register, we don't need to chose one. Otherwise, try even if it
|
||
found one since we might save an insn if we find the value lying
|
||
around.
|
||
Try also when reload_in is a pseudo without a hard reg. */
|
||
if (reload_in[r] != 0 && reload_reg_rtx[r] != 0
|
||
&& (rtx_equal_p (reload_in[r], reload_reg_rtx[r])
|
||
|| (rtx_equal_p (reload_out[r], reload_reg_rtx[r])
|
||
&& GET_CODE (reload_in[r]) != MEM
|
||
&& true_regnum (reload_in[r]) < FIRST_PSEUDO_REGISTER)))
|
||
continue;
|
||
|
||
#if 0 /* No longer needed for correct operation.
|
||
It might give better code, or might not; worth an experiment? */
|
||
/* If this is an optional reload, we can't inherit from earlier insns
|
||
until we are sure that any non-optional reloads have been allocated.
|
||
The following code takes advantage of the fact that optional reloads
|
||
are at the end of reload_order. */
|
||
if (reload_optional[r] != 0)
|
||
for (i = 0; i < j; i++)
|
||
if ((reload_out[reload_order[i]] != 0
|
||
|| reload_in[reload_order[i]] != 0
|
||
|| reload_secondary_p[reload_order[i]])
|
||
&& ! reload_optional[reload_order[i]]
|
||
&& reload_reg_rtx[reload_order[i]] == 0)
|
||
allocate_reload_reg (chain, reload_order[i], 0, inheritance);
|
||
#endif
|
||
|
||
/* First see if this pseudo is already available as reloaded
|
||
for a previous insn. We cannot try to inherit for reloads
|
||
that are smaller than the maximum number of registers needed
|
||
for groups unless the register we would allocate cannot be used
|
||
for the groups.
|
||
|
||
We could check here to see if this is a secondary reload for
|
||
an object that is already in a register of the desired class.
|
||
This would avoid the need for the secondary reload register.
|
||
But this is complex because we can't easily determine what
|
||
objects might want to be loaded via this reload. So let a
|
||
register be allocated here. In `emit_reload_insns' we suppress
|
||
one of the loads in the case described above. */
|
||
|
||
if (inheritance)
|
||
{
|
||
int word = 0;
|
||
register int regno = -1;
|
||
enum machine_mode mode;
|
||
|
||
if (reload_in[r] == 0)
|
||
;
|
||
else if (GET_CODE (reload_in[r]) == REG)
|
||
{
|
||
regno = REGNO (reload_in[r]);
|
||
mode = GET_MODE (reload_in[r]);
|
||
}
|
||
else if (GET_CODE (reload_in_reg[r]) == REG)
|
||
{
|
||
regno = REGNO (reload_in_reg[r]);
|
||
mode = GET_MODE (reload_in_reg[r]);
|
||
}
|
||
else if (GET_CODE (reload_in_reg[r]) == SUBREG
|
||
&& GET_CODE (SUBREG_REG (reload_in_reg[r])) == REG)
|
||
{
|
||
word = SUBREG_WORD (reload_in_reg[r]);
|
||
regno = REGNO (SUBREG_REG (reload_in_reg[r]));
|
||
if (regno < FIRST_PSEUDO_REGISTER)
|
||
regno += word;
|
||
mode = GET_MODE (reload_in_reg[r]);
|
||
}
|
||
#ifdef AUTO_INC_DEC
|
||
else if ((GET_CODE (reload_in_reg[r]) == PRE_INC
|
||
|| GET_CODE (reload_in_reg[r]) == PRE_DEC
|
||
|| GET_CODE (reload_in_reg[r]) == POST_INC
|
||
|| GET_CODE (reload_in_reg[r]) == POST_DEC)
|
||
&& GET_CODE (XEXP (reload_in_reg[r], 0)) == REG)
|
||
{
|
||
regno = REGNO (XEXP (reload_in_reg[r], 0));
|
||
mode = GET_MODE (XEXP (reload_in_reg[r], 0));
|
||
reload_out[r] = reload_in[r];
|
||
}
|
||
#endif
|
||
#if 0
|
||
/* This won't work, since REGNO can be a pseudo reg number.
|
||
Also, it takes much more hair to keep track of all the things
|
||
that can invalidate an inherited reload of part of a pseudoreg. */
|
||
else if (GET_CODE (reload_in[r]) == SUBREG
|
||
&& GET_CODE (SUBREG_REG (reload_in[r])) == REG)
|
||
regno = REGNO (SUBREG_REG (reload_in[r])) + SUBREG_WORD (reload_in[r]);
|
||
#endif
|
||
|
||
if (regno >= 0 && reg_last_reload_reg[regno] != 0)
|
||
{
|
||
enum reg_class class = reload_reg_class[r], last_class;
|
||
rtx last_reg = reg_last_reload_reg[regno];
|
||
|
||
i = REGNO (last_reg) + word;
|
||
last_class = REGNO_REG_CLASS (i);
|
||
if ((GET_MODE_SIZE (GET_MODE (last_reg))
|
||
>= GET_MODE_SIZE (mode) + word * UNITS_PER_WORD)
|
||
&& reg_reloaded_contents[i] == regno
|
||
&& TEST_HARD_REG_BIT (reg_reloaded_valid, i)
|
||
&& HARD_REGNO_MODE_OK (i, reload_mode[r])
|
||
&& (TEST_HARD_REG_BIT (reg_class_contents[(int) class], i)
|
||
/* Even if we can't use this register as a reload
|
||
register, we might use it for reload_override_in,
|
||
if copying it to the desired class is cheap
|
||
enough. */
|
||
|| ((REGISTER_MOVE_COST (last_class, class)
|
||
< MEMORY_MOVE_COST (mode, class, 1))
|
||
#ifdef SECONDARY_INPUT_RELOAD_CLASS
|
||
&& (SECONDARY_INPUT_RELOAD_CLASS (class, mode,
|
||
last_reg)
|
||
== NO_REGS)
|
||
#endif
|
||
#ifdef SECONDARY_MEMORY_NEEDED
|
||
&& ! SECONDARY_MEMORY_NEEDED (last_class, class,
|
||
mode)
|
||
#endif
|
||
))
|
||
|
||
&& (reload_nregs[r] == max_group_size
|
||
|| ! TEST_HARD_REG_BIT (reg_class_contents[(int) group_class],
|
||
i))
|
||
&& free_for_value_p (i, reload_mode[r], reload_opnum[r],
|
||
reload_when_needed[r], reload_in[r],
|
||
const0_rtx, r, 1))
|
||
{
|
||
/* If a group is needed, verify that all the subsequent
|
||
registers still have their values intact. */
|
||
int nr
|
||
= HARD_REGNO_NREGS (i, reload_mode[r]);
|
||
int k;
|
||
|
||
for (k = 1; k < nr; k++)
|
||
if (reg_reloaded_contents[i + k] != regno
|
||
|| ! TEST_HARD_REG_BIT (reg_reloaded_valid, i + k))
|
||
break;
|
||
|
||
if (k == nr)
|
||
{
|
||
int i1;
|
||
|
||
last_reg = (GET_MODE (last_reg) == mode
|
||
? last_reg : gen_rtx_REG (mode, i));
|
||
|
||
/* We found a register that contains the
|
||
value we need. If this register is the
|
||
same as an `earlyclobber' operand of the
|
||
current insn, just mark it as a place to
|
||
reload from since we can't use it as the
|
||
reload register itself. */
|
||
|
||
for (i1 = 0; i1 < n_earlyclobbers; i1++)
|
||
if (reg_overlap_mentioned_for_reload_p
|
||
(reg_last_reload_reg[regno],
|
||
reload_earlyclobbers[i1]))
|
||
break;
|
||
|
||
if (i1 != n_earlyclobbers
|
||
|| ! (free_for_value_p (i, reload_mode[r],
|
||
reload_opnum[r],
|
||
reload_when_needed[r],
|
||
reload_in[r],
|
||
reload_out[r], r, 1))
|
||
/* Don't use it if we'd clobber a pseudo reg. */
|
||
|| (TEST_HARD_REG_BIT (reg_used_in_insn, i)
|
||
&& reload_out[r]
|
||
&& ! TEST_HARD_REG_BIT (reg_reloaded_dead, i))
|
||
/* Don't clobber the frame pointer. */
|
||
|| (i == HARD_FRAME_POINTER_REGNUM
|
||
&& reload_out[r])
|
||
/* Don't really use the inherited spill reg
|
||
if we need it wider than we've got it. */
|
||
|| (GET_MODE_SIZE (reload_mode[r])
|
||
> GET_MODE_SIZE (mode))
|
||
|| ! TEST_HARD_REG_BIT (reg_class_contents[(int) reload_reg_class[r]],
|
||
i)
|
||
|
||
/* If find_reloads chose reload_out as reload
|
||
register, stay with it - that leaves the
|
||
inherited register for subsequent reloads. */
|
||
|| (reload_out[r] && reload_reg_rtx[r]
|
||
&& rtx_equal_p (reload_out[r],
|
||
reload_reg_rtx[r])))
|
||
{
|
||
if (! reload_optional[r])
|
||
{
|
||
reload_override_in[r] = last_reg;
|
||
reload_inheritance_insn[r]
|
||
= reg_reloaded_insn[i];
|
||
}
|
||
}
|
||
else
|
||
{
|
||
int k;
|
||
/* We can use this as a reload reg. */
|
||
/* Mark the register as in use for this part of
|
||
the insn. */
|
||
mark_reload_reg_in_use (i,
|
||
reload_opnum[r],
|
||
reload_when_needed[r],
|
||
reload_mode[r]);
|
||
reload_reg_rtx[r] = last_reg;
|
||
reload_inherited[r] = 1;
|
||
reload_inheritance_insn[r]
|
||
= reg_reloaded_insn[i];
|
||
reload_spill_index[r] = i;
|
||
for (k = 0; k < nr; k++)
|
||
SET_HARD_REG_BIT (reload_reg_used_for_inherit,
|
||
i + k);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Here's another way to see if the value is already lying around. */
|
||
if (inheritance
|
||
&& reload_in[r] != 0
|
||
&& ! reload_inherited[r]
|
||
&& reload_out[r] == 0
|
||
&& (CONSTANT_P (reload_in[r])
|
||
|| GET_CODE (reload_in[r]) == PLUS
|
||
|| GET_CODE (reload_in[r]) == REG
|
||
|| GET_CODE (reload_in[r]) == MEM)
|
||
&& (reload_nregs[r] == max_group_size
|
||
|| ! reg_classes_intersect_p (reload_reg_class[r], group_class)))
|
||
search_equiv = reload_in[r];
|
||
/* If this is an output reload from a simple move insn, look
|
||
if an equivalence for the input is available. */
|
||
else if (inheritance && reload_in[r] == 0 && reload_out[r] != 0)
|
||
{
|
||
rtx set = single_set (insn);
|
||
|
||
if (set
|
||
&& rtx_equal_p (reload_out[r], SET_DEST (set))
|
||
&& CONSTANT_P (SET_SRC (set)))
|
||
search_equiv = SET_SRC (set);
|
||
}
|
||
|
||
if (search_equiv)
|
||
{
|
||
register rtx equiv
|
||
= find_equiv_reg (search_equiv, insn, reload_reg_class[r],
|
||
-1, NULL_PTR, 0, reload_mode[r]);
|
||
int regno;
|
||
|
||
if (equiv != 0)
|
||
{
|
||
if (GET_CODE (equiv) == REG)
|
||
regno = REGNO (equiv);
|
||
else if (GET_CODE (equiv) == SUBREG)
|
||
{
|
||
/* This must be a SUBREG of a hard register.
|
||
Make a new REG since this might be used in an
|
||
address and not all machines support SUBREGs
|
||
there. */
|
||
regno = REGNO (SUBREG_REG (equiv)) + SUBREG_WORD (equiv);
|
||
equiv = gen_rtx_REG (reload_mode[r], regno);
|
||
}
|
||
else
|
||
abort ();
|
||
}
|
||
|
||
/* If we found a spill reg, reject it unless it is free
|
||
and of the desired class. */
|
||
if (equiv != 0
|
||
&& ((TEST_HARD_REG_BIT (reload_reg_used_at_all, regno)
|
||
&& ! free_for_value_p (regno, reload_mode[r],
|
||
reload_opnum[r],
|
||
reload_when_needed[r],
|
||
reload_in[r], reload_out[r], r,
|
||
1))
|
||
|| ! TEST_HARD_REG_BIT (reg_class_contents[(int) reload_reg_class[r]],
|
||
regno)))
|
||
equiv = 0;
|
||
|
||
if (equiv != 0 && ! HARD_REGNO_MODE_OK (regno, reload_mode[r]))
|
||
equiv = 0;
|
||
|
||
/* We found a register that contains the value we need.
|
||
If this register is the same as an `earlyclobber' operand
|
||
of the current insn, just mark it as a place to reload from
|
||
since we can't use it as the reload register itself. */
|
||
|
||
if (equiv != 0)
|
||
for (i = 0; i < n_earlyclobbers; i++)
|
||
if (reg_overlap_mentioned_for_reload_p (equiv,
|
||
reload_earlyclobbers[i]))
|
||
{
|
||
if (! reload_optional[r])
|
||
reload_override_in[r] = equiv;
|
||
equiv = 0;
|
||
break;
|
||
}
|
||
|
||
/* If the equiv register we have found is explicitly clobbered
|
||
in the current insn, it depends on the reload type if we
|
||
can use it, use it for reload_override_in, or not at all.
|
||
In particular, we then can't use EQUIV for a
|
||
RELOAD_FOR_OUTPUT_ADDRESS reload. */
|
||
|
||
if (equiv != 0 && regno_clobbered_p (regno, insn,
|
||
reload_mode[r], 0))
|
||
{
|
||
switch (reload_when_needed[r])
|
||
{
|
||
case RELOAD_FOR_OTHER_ADDRESS:
|
||
case RELOAD_FOR_INPADDR_ADDRESS:
|
||
case RELOAD_FOR_INPUT_ADDRESS:
|
||
case RELOAD_FOR_OPADDR_ADDR:
|
||
break;
|
||
case RELOAD_OTHER:
|
||
case RELOAD_FOR_INPUT:
|
||
case RELOAD_FOR_OPERAND_ADDRESS:
|
||
if (! reload_optional[r])
|
||
reload_override_in[r] = equiv;
|
||
/* Fall through. */
|
||
default:
|
||
equiv = 0;
|
||
break;
|
||
}
|
||
}
|
||
else if (regno_clobbered_p (regno, insn, reload_mode[r], 1))
|
||
switch (reload_when_needed[r])
|
||
{
|
||
case RELOAD_FOR_OTHER_ADDRESS:
|
||
case RELOAD_FOR_INPADDR_ADDRESS:
|
||
case RELOAD_FOR_INPUT_ADDRESS:
|
||
case RELOAD_FOR_OPADDR_ADDR:
|
||
case RELOAD_FOR_OPERAND_ADDRESS:
|
||
case RELOAD_FOR_INPUT:
|
||
break;
|
||
case RELOAD_OTHER:
|
||
if (! reload_optional[r])
|
||
reload_override_in[r] = equiv;
|
||
/* Fall through. */
|
||
default:
|
||
equiv = 0;
|
||
break;
|
||
}
|
||
|
||
/* If we found an equivalent reg, say no code need be generated
|
||
to load it, and use it as our reload reg. */
|
||
if (equiv != 0 && regno != HARD_FRAME_POINTER_REGNUM)
|
||
{
|
||
int nr = HARD_REGNO_NREGS (regno, reload_mode[r]);
|
||
int k;
|
||
reload_reg_rtx[r] = equiv;
|
||
reload_inherited[r] = 1;
|
||
|
||
/* If reg_reloaded_valid is not set for this register,
|
||
there might be a stale spill_reg_store lying around.
|
||
We must clear it, since otherwise emit_reload_insns
|
||
might delete the store. */
|
||
if (! TEST_HARD_REG_BIT (reg_reloaded_valid, regno))
|
||
spill_reg_store[regno] = NULL_RTX;
|
||
/* If any of the hard registers in EQUIV are spill
|
||
registers, mark them as in use for this insn. */
|
||
for (k = 0; k < nr; k++)
|
||
{
|
||
i = spill_reg_order[regno + k];
|
||
if (i >= 0)
|
||
{
|
||
mark_reload_reg_in_use (regno, reload_opnum[r],
|
||
reload_when_needed[r],
|
||
reload_mode[r]);
|
||
SET_HARD_REG_BIT (reload_reg_used_for_inherit,
|
||
regno + k);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* If we found a register to use already, or if this is an optional
|
||
reload, we are done. */
|
||
if (reload_reg_rtx[r] != 0 || reload_optional[r] != 0)
|
||
continue;
|
||
|
||
#if 0 /* No longer needed for correct operation. Might or might not
|
||
give better code on the average. Want to experiment? */
|
||
|
||
/* See if there is a later reload that has a class different from our
|
||
class that intersects our class or that requires less register
|
||
than our reload. If so, we must allocate a register to this
|
||
reload now, since that reload might inherit a previous reload
|
||
and take the only available register in our class. Don't do this
|
||
for optional reloads since they will force all previous reloads
|
||
to be allocated. Also don't do this for reloads that have been
|
||
turned off. */
|
||
|
||
for (i = j + 1; i < n_reloads; i++)
|
||
{
|
||
int s = reload_order[i];
|
||
|
||
if ((reload_in[s] == 0 && reload_out[s] == 0
|
||
&& ! reload_secondary_p[s])
|
||
|| reload_optional[s])
|
||
continue;
|
||
|
||
if ((reload_reg_class[s] != reload_reg_class[r]
|
||
&& reg_classes_intersect_p (reload_reg_class[r],
|
||
reload_reg_class[s]))
|
||
|| reload_nregs[s] < reload_nregs[r])
|
||
break;
|
||
}
|
||
|
||
if (i == n_reloads)
|
||
continue;
|
||
|
||
allocate_reload_reg (chain, r, j == n_reloads - 1, inheritance);
|
||
#endif
|
||
}
|
||
|
||
/* Now allocate reload registers for anything non-optional that
|
||
didn't get one yet. */
|
||
for (j = 0; j < n_reloads; j++)
|
||
{
|
||
register int r = reload_order[j];
|
||
|
||
/* Ignore reloads that got marked inoperative. */
|
||
if (reload_out[r] == 0 && reload_in[r] == 0 && ! reload_secondary_p[r])
|
||
continue;
|
||
|
||
/* Skip reloads that already have a register allocated or are
|
||
optional. */
|
||
if (reload_reg_rtx[r] != 0 || reload_optional[r])
|
||
continue;
|
||
|
||
if (! allocate_reload_reg (chain, r, j == n_reloads - 1, inheritance))
|
||
break;
|
||
}
|
||
|
||
/* If that loop got all the way, we have won. */
|
||
if (j == n_reloads)
|
||
break;
|
||
|
||
/* Loop around and try without any inheritance. */
|
||
/* First undo everything done by the failed attempt
|
||
to allocate with inheritance. */
|
||
bcopy ((char *) save_reload_reg_rtx, (char *) reload_reg_rtx,
|
||
sizeof reload_reg_rtx);
|
||
bcopy ((char *) save_reload_inherited, (char *) reload_inherited,
|
||
sizeof reload_inherited);
|
||
bcopy ((char *) save_reload_inheritance_insn,
|
||
(char *) reload_inheritance_insn,
|
||
sizeof reload_inheritance_insn);
|
||
bcopy ((char *) save_reload_override_in, (char *) reload_override_in,
|
||
sizeof reload_override_in);
|
||
bcopy ((char *) save_reload_spill_index, (char *) reload_spill_index,
|
||
sizeof reload_spill_index);
|
||
COPY_HARD_REG_SET (reload_reg_used, save_reload_reg_used);
|
||
COPY_HARD_REG_SET (reload_reg_used_at_all, save_reload_reg_used_at_all);
|
||
COPY_HARD_REG_SET (reload_reg_used_in_op_addr,
|
||
save_reload_reg_used_in_op_addr);
|
||
COPY_HARD_REG_SET (reload_reg_used_in_op_addr_reload,
|
||
save_reload_reg_used_in_op_addr_reload);
|
||
COPY_HARD_REG_SET (reload_reg_used_in_insn,
|
||
save_reload_reg_used_in_insn);
|
||
COPY_HARD_REG_SET (reload_reg_used_in_other_addr,
|
||
save_reload_reg_used_in_other_addr);
|
||
|
||
for (i = 0; i < reload_n_operands; i++)
|
||
{
|
||
COPY_HARD_REG_SET (reload_reg_used_in_input[i],
|
||
save_reload_reg_used_in_input[i]);
|
||
COPY_HARD_REG_SET (reload_reg_used_in_output[i],
|
||
save_reload_reg_used_in_output[i]);
|
||
COPY_HARD_REG_SET (reload_reg_used_in_input_addr[i],
|
||
save_reload_reg_used_in_input_addr[i]);
|
||
COPY_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i],
|
||
save_reload_reg_used_in_inpaddr_addr[i]);
|
||
COPY_HARD_REG_SET (reload_reg_used_in_output_addr[i],
|
||
save_reload_reg_used_in_output_addr[i]);
|
||
COPY_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i],
|
||
save_reload_reg_used_in_outaddr_addr[i]);
|
||
}
|
||
}
|
||
|
||
/* If we thought we could inherit a reload, because it seemed that
|
||
nothing else wanted the same reload register earlier in the insn,
|
||
verify that assumption, now that all reloads have been assigned.
|
||
Likewise for reloads where reload_override_in has been set. */
|
||
|
||
/* If doing expensive optimizations, do one preliminary pass that doesn't
|
||
cancel any inheritance, but removes reloads that have been needed only
|
||
for reloads that we know can be inherited. */
|
||
for (pass = flag_expensive_optimizations; pass >= 0; pass--)
|
||
{
|
||
for (j = 0; j < n_reloads; j++)
|
||
{
|
||
register int r = reload_order[j];
|
||
rtx check_reg;
|
||
if (reload_inherited[r] && reload_reg_rtx[r])
|
||
check_reg = reload_reg_rtx[r];
|
||
else if (reload_override_in[r]
|
||
&& (GET_CODE (reload_override_in[r]) == REG
|
||
|| GET_CODE (reload_override_in[r]) == SUBREG))
|
||
check_reg = reload_override_in[r];
|
||
else
|
||
continue;
|
||
if (! free_for_value_p (true_regnum (check_reg), reload_mode[r],
|
||
reload_opnum[r], reload_when_needed[r],
|
||
reload_in[r],
|
||
(reload_inherited[r]
|
||
? reload_out[r] : const0_rtx),
|
||
r, 1))
|
||
{
|
||
if (pass)
|
||
continue;
|
||
reload_inherited[r] = 0;
|
||
reload_override_in[r] = 0;
|
||
}
|
||
/* If we can inherit a RELOAD_FOR_INPUT, or can use a
|
||
reload_override_in, then we do not need its related
|
||
RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS reloads;
|
||
likewise for other reload types.
|
||
We handle this by removing a reload when its only replacement
|
||
is mentioned in reload_in of the reload we are going to inherit.
|
||
A special case are auto_inc expressions; even if the input is
|
||
inherited, we still need the address for the output. We can
|
||
recognize them because they have RELOAD_OUT set but not
|
||
RELOAD_OUT_REG.
|
||
If we suceeded removing some reload and we are doing a preliminary
|
||
pass just to remove such reloads, make another pass, since the
|
||
removal of one reload might allow us to inherit another one. */
|
||
else if ((! reload_out[r] || reload_out_reg[r])
|
||
&& reload_in[r]
|
||
&& remove_address_replacements (reload_in[r]) && pass)
|
||
pass = 2;
|
||
}
|
||
}
|
||
|
||
/* Now that reload_override_in is known valid,
|
||
actually override reload_in. */
|
||
for (j = 0; j < n_reloads; j++)
|
||
if (reload_override_in[j])
|
||
reload_in[j] = reload_override_in[j];
|
||
|
||
/* If this reload won't be done because it has been cancelled or is
|
||
optional and not inherited, clear reload_reg_rtx so other
|
||
routines (such as subst_reloads) don't get confused. */
|
||
for (j = 0; j < n_reloads; j++)
|
||
if (reload_reg_rtx[j] != 0
|
||
&& ((reload_optional[j] && ! reload_inherited[j])
|
||
|| (reload_in[j] == 0 && reload_out[j] == 0
|
||
&& ! reload_secondary_p[j])))
|
||
{
|
||
int regno = true_regnum (reload_reg_rtx[j]);
|
||
|
||
if (spill_reg_order[regno] >= 0)
|
||
clear_reload_reg_in_use (regno, reload_opnum[j],
|
||
reload_when_needed[j], reload_mode[j]);
|
||
reload_reg_rtx[j] = 0;
|
||
reload_spill_index[j] = -1;
|
||
}
|
||
|
||
/* Record which pseudos and which spill regs have output reloads. */
|
||
for (j = 0; j < n_reloads; j++)
|
||
{
|
||
register int r = reload_order[j];
|
||
|
||
i = reload_spill_index[r];
|
||
|
||
/* I is nonneg if this reload uses a register.
|
||
If reload_reg_rtx[r] is 0, this is an optional reload
|
||
that we opted to ignore. */
|
||
if (reload_out_reg[r] != 0 && GET_CODE (reload_out_reg[r]) == REG
|
||
&& reload_reg_rtx[r] != 0)
|
||
{
|
||
register int nregno = REGNO (reload_out_reg[r]);
|
||
int nr = 1;
|
||
|
||
if (nregno < FIRST_PSEUDO_REGISTER)
|
||
nr = HARD_REGNO_NREGS (nregno, reload_mode[r]);
|
||
|
||
while (--nr >= 0)
|
||
reg_has_output_reload[nregno + nr] = 1;
|
||
|
||
if (i >= 0)
|
||
{
|
||
nr = HARD_REGNO_NREGS (i, reload_mode[r]);
|
||
while (--nr >= 0)
|
||
SET_HARD_REG_BIT (reg_is_output_reload, i + nr);
|
||
}
|
||
|
||
if (reload_when_needed[r] != RELOAD_OTHER
|
||
&& reload_when_needed[r] != RELOAD_FOR_OUTPUT
|
||
&& reload_when_needed[r] != RELOAD_FOR_INSN)
|
||
abort ();
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Deallocate the reload register for reload R. This is called from
|
||
remove_address_replacements. */
|
||
void
|
||
deallocate_reload_reg (r)
|
||
int r;
|
||
{
|
||
int regno;
|
||
|
||
if (! reload_reg_rtx[r])
|
||
return;
|
||
regno = true_regnum (reload_reg_rtx[r]);
|
||
reload_reg_rtx[r] = 0;
|
||
if (spill_reg_order[regno] >= 0)
|
||
clear_reload_reg_in_use (regno, reload_opnum[r], reload_when_needed[r],
|
||
reload_mode[r]);
|
||
reload_spill_index[r] = -1;
|
||
}
|
||
|
||
/* If SMALL_REGISTER_CLASSES is non-zero, we may not have merged two
|
||
reloads of the same item for fear that we might not have enough reload
|
||
registers. However, normally they will get the same reload register
|
||
and hence actually need not be loaded twice.
|
||
|
||
Here we check for the most common case of this phenomenon: when we have
|
||
a number of reloads for the same object, each of which were allocated
|
||
the same reload_reg_rtx, that reload_reg_rtx is not used for any other
|
||
reload, and is not modified in the insn itself. If we find such,
|
||
merge all the reloads and set the resulting reload to RELOAD_OTHER.
|
||
This will not increase the number of spill registers needed and will
|
||
prevent redundant code. */
|
||
|
||
static void
|
||
merge_assigned_reloads (insn)
|
||
rtx insn;
|
||
{
|
||
int i, j;
|
||
|
||
/* Scan all the reloads looking for ones that only load values and
|
||
are not already RELOAD_OTHER and ones whose reload_reg_rtx are
|
||
assigned and not modified by INSN. */
|
||
|
||
for (i = 0; i < n_reloads; i++)
|
||
{
|
||
int conflicting_input = 0;
|
||
int max_input_address_opnum = -1;
|
||
int min_conflicting_input_opnum = MAX_RECOG_OPERANDS;
|
||
|
||
if (reload_in[i] == 0 || reload_when_needed[i] == RELOAD_OTHER
|
||
|| reload_out[i] != 0 || reload_reg_rtx[i] == 0
|
||
|| reg_set_p (reload_reg_rtx[i], insn))
|
||
continue;
|
||
|
||
/* Look at all other reloads. Ensure that the only use of this
|
||
reload_reg_rtx is in a reload that just loads the same value
|
||
as we do. Note that any secondary reloads must be of the identical
|
||
class since the values, modes, and result registers are the
|
||
same, so we need not do anything with any secondary reloads. */
|
||
|
||
for (j = 0; j < n_reloads; j++)
|
||
{
|
||
if (i == j || reload_reg_rtx[j] == 0
|
||
|| ! reg_overlap_mentioned_p (reload_reg_rtx[j],
|
||
reload_reg_rtx[i]))
|
||
continue;
|
||
|
||
if (reload_when_needed[j] == RELOAD_FOR_INPUT_ADDRESS
|
||
&& reload_opnum[j] > max_input_address_opnum)
|
||
max_input_address_opnum = reload_opnum[j];
|
||
|
||
/* If the reload regs aren't exactly the same (e.g, different modes)
|
||
or if the values are different, we can't merge this reload.
|
||
But if it is an input reload, we might still merge
|
||
RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_OTHER_ADDRESS reloads. */
|
||
|
||
if (! rtx_equal_p (reload_reg_rtx[i], reload_reg_rtx[j])
|
||
|| reload_out[j] != 0 || reload_in[j] == 0
|
||
|| ! rtx_equal_p (reload_in[i], reload_in[j]))
|
||
{
|
||
if (reload_when_needed[j] != RELOAD_FOR_INPUT
|
||
|| ((reload_when_needed[i] != RELOAD_FOR_INPUT_ADDRESS
|
||
|| reload_opnum[i] > reload_opnum[j])
|
||
&& reload_when_needed[i] != RELOAD_FOR_OTHER_ADDRESS))
|
||
break;
|
||
conflicting_input = 1;
|
||
if (min_conflicting_input_opnum > reload_opnum[j])
|
||
min_conflicting_input_opnum = reload_opnum[j];
|
||
}
|
||
}
|
||
|
||
/* If all is OK, merge the reloads. Only set this to RELOAD_OTHER if
|
||
we, in fact, found any matching reloads. */
|
||
|
||
if (j == n_reloads
|
||
&& max_input_address_opnum <= min_conflicting_input_opnum)
|
||
{
|
||
for (j = 0; j < n_reloads; j++)
|
||
if (i != j && reload_reg_rtx[j] != 0
|
||
&& rtx_equal_p (reload_reg_rtx[i], reload_reg_rtx[j])
|
||
&& (! conflicting_input
|
||
|| reload_when_needed[j] == RELOAD_FOR_INPUT_ADDRESS
|
||
|| reload_when_needed[j] == RELOAD_FOR_OTHER_ADDRESS))
|
||
{
|
||
reload_when_needed[i] = RELOAD_OTHER;
|
||
reload_in[j] = 0;
|
||
reload_spill_index[j] = -1;
|
||
transfer_replacements (i, j);
|
||
}
|
||
|
||
/* If this is now RELOAD_OTHER, look for any reloads that load
|
||
parts of this operand and set them to RELOAD_FOR_OTHER_ADDRESS
|
||
if they were for inputs, RELOAD_OTHER for outputs. Note that
|
||
this test is equivalent to looking for reloads for this operand
|
||
number. */
|
||
|
||
if (reload_when_needed[i] == RELOAD_OTHER)
|
||
for (j = 0; j < n_reloads; j++)
|
||
if (reload_in[j] != 0
|
||
&& reload_when_needed[i] != RELOAD_OTHER
|
||
&& reg_overlap_mentioned_for_reload_p (reload_in[j],
|
||
reload_in[i]))
|
||
reload_when_needed[j]
|
||
= ((reload_when_needed[i] == RELOAD_FOR_INPUT_ADDRESS
|
||
|| reload_when_needed[i] == RELOAD_FOR_INPADDR_ADDRESS)
|
||
? RELOAD_FOR_OTHER_ADDRESS : RELOAD_OTHER);
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
/* Output insns to reload values in and out of the chosen reload regs. */
|
||
|
||
static void
|
||
emit_reload_insns (chain)
|
||
struct insn_chain *chain;
|
||
{
|
||
rtx insn = chain->insn;
|
||
|
||
register int j;
|
||
rtx input_reload_insns[MAX_RECOG_OPERANDS];
|
||
rtx other_input_address_reload_insns = 0;
|
||
rtx other_input_reload_insns = 0;
|
||
rtx input_address_reload_insns[MAX_RECOG_OPERANDS];
|
||
rtx inpaddr_address_reload_insns[MAX_RECOG_OPERANDS];
|
||
rtx output_reload_insns[MAX_RECOG_OPERANDS];
|
||
rtx output_address_reload_insns[MAX_RECOG_OPERANDS];
|
||
rtx outaddr_address_reload_insns[MAX_RECOG_OPERANDS];
|
||
rtx operand_reload_insns = 0;
|
||
rtx other_operand_reload_insns = 0;
|
||
rtx other_output_reload_insns[MAX_RECOG_OPERANDS];
|
||
rtx following_insn = NEXT_INSN (insn);
|
||
rtx before_insn = PREV_INSN (insn);
|
||
int special;
|
||
/* Values to be put in spill_reg_store are put here first. */
|
||
rtx new_spill_reg_store[FIRST_PSEUDO_REGISTER];
|
||
HARD_REG_SET reg_reloaded_died;
|
||
|
||
CLEAR_HARD_REG_SET (reg_reloaded_died);
|
||
|
||
for (j = 0; j < reload_n_operands; j++)
|
||
input_reload_insns[j] = input_address_reload_insns[j]
|
||
= inpaddr_address_reload_insns[j]
|
||
= output_reload_insns[j] = output_address_reload_insns[j]
|
||
= outaddr_address_reload_insns[j]
|
||
= other_output_reload_insns[j] = 0;
|
||
|
||
/* Now output the instructions to copy the data into and out of the
|
||
reload registers. Do these in the order that the reloads were reported,
|
||
since reloads of base and index registers precede reloads of operands
|
||
and the operands may need the base and index registers reloaded. */
|
||
|
||
for (j = 0; j < n_reloads; j++)
|
||
{
|
||
register rtx old;
|
||
rtx oldequiv_reg = 0;
|
||
rtx this_reload_insn = 0;
|
||
int expect_occurrences = 1;
|
||
|
||
if (reload_reg_rtx[j]
|
||
&& REGNO (reload_reg_rtx[j]) < FIRST_PSEUDO_REGISTER)
|
||
new_spill_reg_store[REGNO (reload_reg_rtx[j])] = 0;
|
||
|
||
old = (reload_in[j] && GET_CODE (reload_in[j]) == MEM
|
||
? reload_in_reg[j] : reload_in[j]);
|
||
|
||
if (old != 0
|
||
/* AUTO_INC reloads need to be handled even if inherited. We got an
|
||
AUTO_INC reload if reload_out is set but reload_out_reg isn't. */
|
||
&& (! reload_inherited[j] || (reload_out[j] && ! reload_out_reg[j]))
|
||
&& ! rtx_equal_p (reload_reg_rtx[j], old)
|
||
&& reload_reg_rtx[j] != 0)
|
||
{
|
||
register rtx reloadreg = reload_reg_rtx[j];
|
||
rtx oldequiv = 0;
|
||
enum machine_mode mode;
|
||
rtx *where;
|
||
|
||
/* Determine the mode to reload in.
|
||
This is very tricky because we have three to choose from.
|
||
There is the mode the insn operand wants (reload_inmode[J]).
|
||
There is the mode of the reload register RELOADREG.
|
||
There is the intrinsic mode of the operand, which we could find
|
||
by stripping some SUBREGs.
|
||
It turns out that RELOADREG's mode is irrelevant:
|
||
we can change that arbitrarily.
|
||
|
||
Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
|
||
then the reload reg may not support QImode moves, so use SImode.
|
||
If foo is in memory due to spilling a pseudo reg, this is safe,
|
||
because the QImode value is in the least significant part of a
|
||
slot big enough for a SImode. If foo is some other sort of
|
||
memory reference, then it is impossible to reload this case,
|
||
so previous passes had better make sure this never happens.
|
||
|
||
Then consider a one-word union which has SImode and one of its
|
||
members is a float, being fetched as (SUBREG:SF union:SI).
|
||
We must fetch that as SFmode because we could be loading into
|
||
a float-only register. In this case OLD's mode is correct.
|
||
|
||
Consider an immediate integer: it has VOIDmode. Here we need
|
||
to get a mode from something else.
|
||
|
||
In some cases, there is a fourth mode, the operand's
|
||
containing mode. If the insn specifies a containing mode for
|
||
this operand, it overrides all others.
|
||
|
||
I am not sure whether the algorithm here is always right,
|
||
but it does the right things in those cases. */
|
||
|
||
mode = GET_MODE (old);
|
||
if (mode == VOIDmode)
|
||
mode = reload_inmode[j];
|
||
|
||
#ifdef SECONDARY_INPUT_RELOAD_CLASS
|
||
/* If we need a secondary register for this operation, see if
|
||
the value is already in a register in that class. Don't
|
||
do this if the secondary register will be used as a scratch
|
||
register. */
|
||
|
||
if (reload_secondary_in_reload[j] >= 0
|
||
&& reload_secondary_in_icode[j] == CODE_FOR_nothing
|
||
&& optimize)
|
||
oldequiv
|
||
= find_equiv_reg (old, insn,
|
||
reload_reg_class[reload_secondary_in_reload[j]],
|
||
-1, NULL_PTR, 0, mode);
|
||
#endif
|
||
|
||
/* If reloading from memory, see if there is a register
|
||
that already holds the same value. If so, reload from there.
|
||
We can pass 0 as the reload_reg_p argument because
|
||
any other reload has either already been emitted,
|
||
in which case find_equiv_reg will see the reload-insn,
|
||
or has yet to be emitted, in which case it doesn't matter
|
||
because we will use this equiv reg right away. */
|
||
|
||
if (oldequiv == 0 && optimize
|
||
&& (GET_CODE (old) == MEM
|
||
|| (GET_CODE (old) == REG
|
||
&& REGNO (old) >= FIRST_PSEUDO_REGISTER
|
||
&& reg_renumber[REGNO (old)] < 0)))
|
||
oldequiv = find_equiv_reg (old, insn, ALL_REGS,
|
||
-1, NULL_PTR, 0, mode);
|
||
|
||
if (oldequiv)
|
||
{
|
||
int regno = true_regnum (oldequiv);
|
||
|
||
/* Don't use OLDEQUIV if any other reload changes it at an
|
||
earlier stage of this insn or at this stage. */
|
||
if (! free_for_value_p (regno, reload_mode[j],
|
||
reload_opnum[j],
|
||
reload_when_needed[j],
|
||
reload_in[j], const0_rtx, j, 0))
|
||
oldequiv = 0;
|
||
|
||
/* If it is no cheaper to copy from OLDEQUIV into the
|
||
reload register than it would be to move from memory,
|
||
don't use it. Likewise, if we need a secondary register
|
||
or memory. */
|
||
|
||
if (oldequiv != 0
|
||
&& ((REGNO_REG_CLASS (regno) != reload_reg_class[j]
|
||
&& (REGISTER_MOVE_COST (REGNO_REG_CLASS (regno),
|
||
reload_reg_class[j])
|
||
>= MEMORY_MOVE_COST (mode, reload_reg_class[j], 1)))
|
||
#ifdef SECONDARY_INPUT_RELOAD_CLASS
|
||
|| (SECONDARY_INPUT_RELOAD_CLASS (reload_reg_class[j],
|
||
mode, oldequiv)
|
||
!= NO_REGS)
|
||
#endif
|
||
#ifdef SECONDARY_MEMORY_NEEDED
|
||
|| SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (regno),
|
||
reload_reg_class[j],
|
||
mode)
|
||
#endif
|
||
))
|
||
oldequiv = 0;
|
||
}
|
||
|
||
/* delete_output_reload is only invoked properly if old contains
|
||
the original pseudo register. Since this is replaced with a
|
||
hard reg when RELOAD_OVERRIDE_IN is set, see if we can
|
||
find the pseudo in RELOAD_IN_REG. */
|
||
if (oldequiv == 0
|
||
&& reload_override_in[j]
|
||
&& GET_CODE (reload_in_reg[j]) == REG)
|
||
{
|
||
oldequiv = old;
|
||
old = reload_in_reg[j];
|
||
}
|
||
if (oldequiv == 0)
|
||
oldequiv = old;
|
||
else if (GET_CODE (oldequiv) == REG)
|
||
oldequiv_reg = oldequiv;
|
||
else if (GET_CODE (oldequiv) == SUBREG)
|
||
oldequiv_reg = SUBREG_REG (oldequiv);
|
||
|
||
/* If we are reloading from a register that was recently stored in
|
||
with an output-reload, see if we can prove there was
|
||
actually no need to store the old value in it. */
|
||
|
||
if (optimize && GET_CODE (oldequiv) == REG
|
||
&& REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
|
||
&& spill_reg_store[REGNO (oldequiv)]
|
||
&& GET_CODE (old) == REG
|
||
&& (dead_or_set_p (insn, spill_reg_stored_to[REGNO (oldequiv)])
|
||
|| rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
|
||
reload_out_reg[j])))
|
||
delete_output_reload (insn, j, REGNO (oldequiv));
|
||
|
||
/* Encapsulate both RELOADREG and OLDEQUIV into that mode,
|
||
then load RELOADREG from OLDEQUIV. Note that we cannot use
|
||
gen_lowpart_common since it can do the wrong thing when
|
||
RELOADREG has a multi-word mode. Note that RELOADREG
|
||
must always be a REG here. */
|
||
|
||
if (GET_MODE (reloadreg) != mode)
|
||
reloadreg = gen_rtx_REG (mode, REGNO (reloadreg));
|
||
while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode)
|
||
oldequiv = SUBREG_REG (oldequiv);
|
||
if (GET_MODE (oldequiv) != VOIDmode
|
||
&& mode != GET_MODE (oldequiv))
|
||
oldequiv = gen_rtx_SUBREG (mode, oldequiv, 0);
|
||
|
||
/* Switch to the right place to emit the reload insns. */
|
||
switch (reload_when_needed[j])
|
||
{
|
||
case RELOAD_OTHER:
|
||
where = &other_input_reload_insns;
|
||
break;
|
||
case RELOAD_FOR_INPUT:
|
||
where = &input_reload_insns[reload_opnum[j]];
|
||
break;
|
||
case RELOAD_FOR_INPUT_ADDRESS:
|
||
where = &input_address_reload_insns[reload_opnum[j]];
|
||
break;
|
||
case RELOAD_FOR_INPADDR_ADDRESS:
|
||
where = &inpaddr_address_reload_insns[reload_opnum[j]];
|
||
break;
|
||
case RELOAD_FOR_OUTPUT_ADDRESS:
|
||
where = &output_address_reload_insns[reload_opnum[j]];
|
||
break;
|
||
case RELOAD_FOR_OUTADDR_ADDRESS:
|
||
where = &outaddr_address_reload_insns[reload_opnum[j]];
|
||
break;
|
||
case RELOAD_FOR_OPERAND_ADDRESS:
|
||
where = &operand_reload_insns;
|
||
break;
|
||
case RELOAD_FOR_OPADDR_ADDR:
|
||
where = &other_operand_reload_insns;
|
||
break;
|
||
case RELOAD_FOR_OTHER_ADDRESS:
|
||
where = &other_input_address_reload_insns;
|
||
break;
|
||
default:
|
||
abort ();
|
||
}
|
||
|
||
push_to_sequence (*where);
|
||
special = 0;
|
||
|
||
/* Auto-increment addresses must be reloaded in a special way. */
|
||
if (reload_out[j] && ! reload_out_reg[j])
|
||
{
|
||
/* We are not going to bother supporting the case where a
|
||
incremented register can't be copied directly from
|
||
OLDEQUIV since this seems highly unlikely. */
|
||
if (reload_secondary_in_reload[j] >= 0)
|
||
abort ();
|
||
|
||
if (reload_inherited[j])
|
||
oldequiv = reloadreg;
|
||
|
||
old = XEXP (reload_in_reg[j], 0);
|
||
|
||
if (optimize && GET_CODE (oldequiv) == REG
|
||
&& REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
|
||
&& spill_reg_store[REGNO (oldequiv)]
|
||
&& GET_CODE (old) == REG
|
||
&& (dead_or_set_p (insn,
|
||
spill_reg_stored_to[REGNO (oldequiv)])
|
||
|| rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
|
||
old)))
|
||
delete_output_reload (insn, j, REGNO (oldequiv));
|
||
|
||
/* Prevent normal processing of this reload. */
|
||
special = 1;
|
||
/* Output a special code sequence for this case. */
|
||
new_spill_reg_store[REGNO (reloadreg)]
|
||
= inc_for_reload (reloadreg, oldequiv, reload_out[j],
|
||
reload_inc[j]);
|
||
}
|
||
|
||
/* If we are reloading a pseudo-register that was set by the previous
|
||
insn, see if we can get rid of that pseudo-register entirely
|
||
by redirecting the previous insn into our reload register. */
|
||
|
||
else if (optimize && GET_CODE (old) == REG
|
||
&& REGNO (old) >= FIRST_PSEUDO_REGISTER
|
||
&& dead_or_set_p (insn, old)
|
||
/* This is unsafe if some other reload
|
||
uses the same reg first. */
|
||
&& ! conflicts_with_override (reloadreg)
|
||
&& free_for_value_p (REGNO (reloadreg), reload_mode[j],
|
||
reload_opnum[j], reload_when_needed[j],
|
||
old, reload_out[j], j, 0))
|
||
{
|
||
rtx temp = PREV_INSN (insn);
|
||
while (temp && GET_CODE (temp) == NOTE)
|
||
temp = PREV_INSN (temp);
|
||
if (temp
|
||
&& GET_CODE (temp) == INSN
|
||
&& GET_CODE (PATTERN (temp)) == SET
|
||
&& SET_DEST (PATTERN (temp)) == old
|
||
/* Make sure we can access insn_operand_constraint. */
|
||
&& asm_noperands (PATTERN (temp)) < 0
|
||
/* This is unsafe if prev insn rejects our reload reg. */
|
||
&& constraint_accepts_reg_p (insn_operand_constraint[recog_memoized (temp)][0],
|
||
reloadreg)
|
||
/* This is unsafe if operand occurs more than once in current
|
||
insn. Perhaps some occurrences aren't reloaded. */
|
||
&& count_occurrences (PATTERN (insn), old) == 1
|
||
/* Don't risk splitting a matching pair of operands. */
|
||
&& ! reg_mentioned_p (old, SET_SRC (PATTERN (temp))))
|
||
{
|
||
/* Store into the reload register instead of the pseudo. */
|
||
SET_DEST (PATTERN (temp)) = reloadreg;
|
||
|
||
/* If the previous insn is an output reload, the source is
|
||
a reload register, and its spill_reg_store entry will
|
||
contain the previous destination. This is now
|
||
invalid. */
|
||
if (GET_CODE (SET_SRC (PATTERN (temp))) == REG
|
||
&& REGNO (SET_SRC (PATTERN (temp))) < FIRST_PSEUDO_REGISTER)
|
||
{
|
||
spill_reg_store[REGNO (SET_SRC (PATTERN (temp)))] = 0;
|
||
spill_reg_stored_to[REGNO (SET_SRC (PATTERN (temp)))] = 0;
|
||
}
|
||
|
||
/* If these are the only uses of the pseudo reg,
|
||
pretend for GDB it lives in the reload reg we used. */
|
||
if (REG_N_DEATHS (REGNO (old)) == 1
|
||
&& REG_N_SETS (REGNO (old)) == 1)
|
||
{
|
||
reg_renumber[REGNO (old)] = REGNO (reload_reg_rtx[j]);
|
||
alter_reg (REGNO (old), -1);
|
||
}
|
||
special = 1;
|
||
}
|
||
}
|
||
|
||
/* We can't do that, so output an insn to load RELOADREG. */
|
||
|
||
if (! special)
|
||
{
|
||
#ifdef SECONDARY_INPUT_RELOAD_CLASS
|
||
rtx second_reload_reg = 0;
|
||
enum insn_code icode;
|
||
|
||
/* If we have a secondary reload, pick up the secondary register
|
||
and icode, if any. If OLDEQUIV and OLD are different or
|
||
if this is an in-out reload, recompute whether or not we
|
||
still need a secondary register and what the icode should
|
||
be. If we still need a secondary register and the class or
|
||
icode is different, go back to reloading from OLD if using
|
||
OLDEQUIV means that we got the wrong type of register. We
|
||
cannot have different class or icode due to an in-out reload
|
||
because we don't make such reloads when both the input and
|
||
output need secondary reload registers. */
|
||
|
||
if (reload_secondary_in_reload[j] >= 0)
|
||
{
|
||
int secondary_reload = reload_secondary_in_reload[j];
|
||
rtx real_oldequiv = oldequiv;
|
||
rtx real_old = old;
|
||
rtx tmp;
|
||
|
||
/* If OLDEQUIV is a pseudo with a MEM, get the real MEM
|
||
and similarly for OLD.
|
||
See comments in get_secondary_reload in reload.c. */
|
||
/* If it is a pseudo that cannot be replaced with its
|
||
equivalent MEM, we must fall back to reload_in, which
|
||
will have all the necessary substitutions registered.
|
||
Likewise for a pseudo that can't be replaced with its
|
||
equivalent constant.
|
||
|
||
Take extra care for subregs of such pseudos. Note that
|
||
we cannot use reg_equiv_mem in this case because it is
|
||
not in the right mode. */
|
||
|
||
tmp = oldequiv;
|
||
if (GET_CODE (tmp) == SUBREG)
|
||
tmp = SUBREG_REG (tmp);
|
||
if (GET_CODE (tmp) == REG
|
||
&& REGNO (tmp) >= FIRST_PSEUDO_REGISTER
|
||
&& (reg_equiv_memory_loc[REGNO (tmp)] != 0
|
||
|| reg_equiv_constant[REGNO (tmp)] != 0))
|
||
{
|
||
if (! reg_equiv_mem[REGNO (tmp)]
|
||
|| num_not_at_initial_offset
|
||
|| GET_CODE (oldequiv) == SUBREG)
|
||
real_oldequiv = reload_in[j];
|
||
else
|
||
real_oldequiv = reg_equiv_mem[REGNO (tmp)];
|
||
}
|
||
|
||
tmp = old;
|
||
if (GET_CODE (tmp) == SUBREG)
|
||
tmp = SUBREG_REG (tmp);
|
||
if (GET_CODE (tmp) == REG
|
||
&& REGNO (tmp) >= FIRST_PSEUDO_REGISTER
|
||
&& (reg_equiv_memory_loc[REGNO (tmp)] != 0
|
||
|| reg_equiv_constant[REGNO (tmp)] != 0))
|
||
{
|
||
if (! reg_equiv_mem[REGNO (tmp)]
|
||
|| num_not_at_initial_offset
|
||
|| GET_CODE (old) == SUBREG)
|
||
real_old = reload_in[j];
|
||
else
|
||
real_old = reg_equiv_mem[REGNO (tmp)];
|
||
}
|
||
|
||
second_reload_reg = reload_reg_rtx[secondary_reload];
|
||
icode = reload_secondary_in_icode[j];
|
||
|
||
if ((old != oldequiv && ! rtx_equal_p (old, oldequiv))
|
||
|| (reload_in[j] != 0 && reload_out[j] != 0))
|
||
{
|
||
enum reg_class new_class
|
||
= SECONDARY_INPUT_RELOAD_CLASS (reload_reg_class[j],
|
||
mode, real_oldequiv);
|
||
|
||
if (new_class == NO_REGS)
|
||
second_reload_reg = 0;
|
||
else
|
||
{
|
||
enum insn_code new_icode;
|
||
enum machine_mode new_mode;
|
||
|
||
if (! TEST_HARD_REG_BIT (reg_class_contents[(int) new_class],
|
||
REGNO (second_reload_reg)))
|
||
oldequiv = old, real_oldequiv = real_old;
|
||
else
|
||
{
|
||
new_icode = reload_in_optab[(int) mode];
|
||
if (new_icode != CODE_FOR_nothing
|
||
&& ((insn_operand_predicate[(int) new_icode][0]
|
||
&& ! ((*insn_operand_predicate[(int) new_icode][0])
|
||
(reloadreg, mode)))
|
||
|| (insn_operand_predicate[(int) new_icode][1]
|
||
&& ! ((*insn_operand_predicate[(int) new_icode][1])
|
||
(real_oldequiv, mode)))))
|
||
new_icode = CODE_FOR_nothing;
|
||
|
||
if (new_icode == CODE_FOR_nothing)
|
||
new_mode = mode;
|
||
else
|
||
new_mode = insn_operand_mode[(int) new_icode][2];
|
||
|
||
if (GET_MODE (second_reload_reg) != new_mode)
|
||
{
|
||
if (!HARD_REGNO_MODE_OK (REGNO (second_reload_reg),
|
||
new_mode))
|
||
oldequiv = old, real_oldequiv = real_old;
|
||
else
|
||
second_reload_reg
|
||
= gen_rtx_REG (new_mode,
|
||
REGNO (second_reload_reg));
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* If we still need a secondary reload register, check
|
||
to see if it is being used as a scratch or intermediate
|
||
register and generate code appropriately. If we need
|
||
a scratch register, use REAL_OLDEQUIV since the form of
|
||
the insn may depend on the actual address if it is
|
||
a MEM. */
|
||
|
||
if (second_reload_reg)
|
||
{
|
||
if (icode != CODE_FOR_nothing)
|
||
{
|
||
emit_insn (GEN_FCN (icode) (reloadreg, real_oldequiv,
|
||
second_reload_reg));
|
||
special = 1;
|
||
}
|
||
else
|
||
{
|
||
/* See if we need a scratch register to load the
|
||
intermediate register (a tertiary reload). */
|
||
enum insn_code tertiary_icode
|
||
= reload_secondary_in_icode[secondary_reload];
|
||
|
||
if (tertiary_icode != CODE_FOR_nothing)
|
||
{
|
||
rtx third_reload_reg
|
||
= reload_reg_rtx[reload_secondary_in_reload[secondary_reload]];
|
||
|
||
emit_insn ((GEN_FCN (tertiary_icode)
|
||
(second_reload_reg, real_oldequiv,
|
||
third_reload_reg)));
|
||
}
|
||
else
|
||
gen_reload (second_reload_reg, real_oldequiv,
|
||
reload_opnum[j],
|
||
reload_when_needed[j]);
|
||
|
||
oldequiv = second_reload_reg;
|
||
}
|
||
}
|
||
}
|
||
#endif
|
||
|
||
if (! special && ! rtx_equal_p (reloadreg, oldequiv))
|
||
{
|
||
rtx real_oldequiv = oldequiv;
|
||
|
||
if ((GET_CODE (oldequiv) == REG
|
||
&& REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER
|
||
&& (reg_equiv_memory_loc[REGNO (oldequiv)] != 0
|
||
|| reg_equiv_constant[REGNO (oldequiv)] != 0))
|
||
|| (GET_CODE (oldequiv) == SUBREG
|
||
&& GET_CODE (SUBREG_REG (oldequiv)) == REG
|
||
&& (REGNO (SUBREG_REG (oldequiv))
|
||
>= FIRST_PSEUDO_REGISTER)
|
||
&& ((reg_equiv_memory_loc
|
||
[REGNO (SUBREG_REG (oldequiv))] != 0)
|
||
|| (reg_equiv_constant
|
||
[REGNO (SUBREG_REG (oldequiv))] != 0))))
|
||
real_oldequiv = reload_in[j];
|
||
gen_reload (reloadreg, real_oldequiv, reload_opnum[j],
|
||
reload_when_needed[j]);
|
||
}
|
||
|
||
}
|
||
|
||
this_reload_insn = get_last_insn ();
|
||
/* End this sequence. */
|
||
*where = get_insns ();
|
||
end_sequence ();
|
||
|
||
/* Update reload_override_in so that delete_address_reloads_1
|
||
can see the actual register usage. */
|
||
if (oldequiv_reg)
|
||
reload_override_in[j] = oldequiv;
|
||
}
|
||
|
||
/* When inheriting a wider reload, we have a MEM in reload_in[j],
|
||
e.g. inheriting a SImode output reload for
|
||
(mem:HI (plus:SI (reg:SI 14 fp) (const_int 10))) */
|
||
if (optimize && reload_inherited[j] && reload_in[j]
|
||
&& GET_CODE (reload_in[j]) == MEM
|
||
&& GET_CODE (reload_in_reg[j]) == MEM
|
||
&& reload_spill_index[j] >= 0
|
||
&& TEST_HARD_REG_BIT (reg_reloaded_valid, reload_spill_index[j]))
|
||
{
|
||
expect_occurrences
|
||
= count_occurrences (PATTERN (insn), reload_in[j]) == 1 ? 0 : -1;
|
||
reload_in[j]
|
||
= regno_reg_rtx[reg_reloaded_contents[reload_spill_index[j]]];
|
||
}
|
||
|
||
/* If we are reloading a register that was recently stored in with an
|
||
output-reload, see if we can prove there was
|
||
actually no need to store the old value in it. */
|
||
|
||
if (optimize
|
||
&& (reload_inherited[j] || reload_override_in[j])
|
||
&& reload_reg_rtx[j]
|
||
&& GET_CODE (reload_reg_rtx[j]) == REG
|
||
&& spill_reg_store[REGNO (reload_reg_rtx[j])] != 0
|
||
#if 0
|
||
/* There doesn't seem to be any reason to restrict this to pseudos
|
||
and doing so loses in the case where we are copying from a
|
||
register of the wrong class. */
|
||
&& REGNO (spill_reg_stored_to[REGNO (reload_reg_rtx[j])])
|
||
>= FIRST_PSEUDO_REGISTER
|
||
#endif
|
||
/* The insn might have already some references to stackslots
|
||
replaced by MEMs, while reload_out_reg still names the
|
||
original pseudo. */
|
||
&& (dead_or_set_p (insn,
|
||
spill_reg_stored_to[REGNO (reload_reg_rtx[j])])
|
||
|| rtx_equal_p (spill_reg_stored_to[REGNO (reload_reg_rtx[j])],
|
||
reload_out_reg[j])))
|
||
delete_output_reload (insn, j, REGNO (reload_reg_rtx[j]));
|
||
|
||
/* Input-reloading is done. Now do output-reloading,
|
||
storing the value from the reload-register after the main insn
|
||
if reload_out[j] is nonzero.
|
||
|
||
??? At some point we need to support handling output reloads of
|
||
JUMP_INSNs or insns that set cc0. */
|
||
|
||
/* If this is an output reload that stores something that is
|
||
not loaded in this same reload, see if we can eliminate a previous
|
||
store. */
|
||
{
|
||
rtx pseudo = reload_out_reg[j];
|
||
|
||
if (pseudo
|
||
&& GET_CODE (pseudo) == REG
|
||
&& ! rtx_equal_p (reload_in_reg[j], pseudo)
|
||
&& REGNO (pseudo) >= FIRST_PSEUDO_REGISTER
|
||
&& reg_last_reload_reg[REGNO (pseudo)])
|
||
{
|
||
int pseudo_no = REGNO (pseudo);
|
||
int last_regno = REGNO (reg_last_reload_reg[pseudo_no]);
|
||
|
||
/* We don't need to test full validity of last_regno for
|
||
inherit here; we only want to know if the store actually
|
||
matches the pseudo. */
|
||
if (TEST_HARD_REG_BIT (reg_reloaded_valid, last_regno)
|
||
&& reg_reloaded_contents[last_regno] == pseudo_no
|
||
&& spill_reg_store[last_regno]
|
||
&& rtx_equal_p (pseudo, spill_reg_stored_to[last_regno]))
|
||
delete_output_reload (insn, j, last_regno);
|
||
}
|
||
}
|
||
|
||
old = reload_out_reg[j];
|
||
if (old != 0
|
||
&& reload_reg_rtx[j] != old
|
||
&& reload_reg_rtx[j] != 0)
|
||
{
|
||
register rtx reloadreg = reload_reg_rtx[j];
|
||
#ifdef SECONDARY_OUTPUT_RELOAD_CLASS
|
||
register rtx second_reloadreg = 0;
|
||
#endif
|
||
rtx note, p;
|
||
enum machine_mode mode;
|
||
int special = 0;
|
||
|
||
/* An output operand that dies right away does need a reload,
|
||
but need not be copied from it. Show the new location in the
|
||
REG_UNUSED note. */
|
||
if ((GET_CODE (old) == REG || GET_CODE (old) == SCRATCH)
|
||
&& (note = find_reg_note (insn, REG_UNUSED, old)) != 0)
|
||
{
|
||
XEXP (note, 0) = reload_reg_rtx[j];
|
||
continue;
|
||
}
|
||
/* Likewise for a SUBREG of an operand that dies. */
|
||
else if (GET_CODE (old) == SUBREG
|
||
&& GET_CODE (SUBREG_REG (old)) == REG
|
||
&& 0 != (note = find_reg_note (insn, REG_UNUSED,
|
||
SUBREG_REG (old))))
|
||
{
|
||
XEXP (note, 0) = gen_lowpart_common (GET_MODE (old),
|
||
reload_reg_rtx[j]);
|
||
continue;
|
||
}
|
||
else if (GET_CODE (old) == SCRATCH)
|
||
/* If we aren't optimizing, there won't be a REG_UNUSED note,
|
||
but we don't want to make an output reload. */
|
||
continue;
|
||
|
||
#if 0
|
||
/* Strip off of OLD any size-increasing SUBREGs such as
|
||
(SUBREG:SI foo:QI 0). */
|
||
|
||
while (GET_CODE (old) == SUBREG && SUBREG_WORD (old) == 0
|
||
&& (GET_MODE_SIZE (GET_MODE (old))
|
||
> GET_MODE_SIZE (GET_MODE (SUBREG_REG (old)))))
|
||
old = SUBREG_REG (old);
|
||
#endif
|
||
|
||
/* If is a JUMP_INSN, we can't support output reloads yet. */
|
||
if (GET_CODE (insn) == JUMP_INSN)
|
||
abort ();
|
||
|
||
if (reload_when_needed[j] == RELOAD_OTHER)
|
||
start_sequence ();
|
||
else
|
||
push_to_sequence (output_reload_insns[reload_opnum[j]]);
|
||
|
||
old = reload_out[j];
|
||
|
||
/* Determine the mode to reload in.
|
||
See comments above (for input reloading). */
|
||
|
||
mode = GET_MODE (old);
|
||
if (mode == VOIDmode)
|
||
{
|
||
/* VOIDmode should never happen for an output. */
|
||
if (asm_noperands (PATTERN (insn)) < 0)
|
||
/* It's the compiler's fault. */
|
||
fatal_insn ("VOIDmode on an output", insn);
|
||
error_for_asm (insn, "output operand is constant in `asm'");
|
||
/* Prevent crash--use something we know is valid. */
|
||
mode = word_mode;
|
||
old = gen_rtx_REG (mode, REGNO (reloadreg));
|
||
}
|
||
|
||
if (GET_MODE (reloadreg) != mode)
|
||
reloadreg = gen_rtx_REG (mode, REGNO (reloadreg));
|
||
|
||
#ifdef SECONDARY_OUTPUT_RELOAD_CLASS
|
||
|
||
/* If we need two reload regs, set RELOADREG to the intermediate
|
||
one, since it will be stored into OLD. We might need a secondary
|
||
register only for an input reload, so check again here. */
|
||
|
||
if (reload_secondary_out_reload[j] >= 0)
|
||
{
|
||
rtx real_old = old;
|
||
|
||
if (GET_CODE (old) == REG && REGNO (old) >= FIRST_PSEUDO_REGISTER
|
||
&& reg_equiv_mem[REGNO (old)] != 0)
|
||
real_old = reg_equiv_mem[REGNO (old)];
|
||
|
||
if((SECONDARY_OUTPUT_RELOAD_CLASS (reload_reg_class[j],
|
||
mode, real_old)
|
||
!= NO_REGS))
|
||
{
|
||
second_reloadreg = reloadreg;
|
||
reloadreg = reload_reg_rtx[reload_secondary_out_reload[j]];
|
||
|
||
/* See if RELOADREG is to be used as a scratch register
|
||
or as an intermediate register. */
|
||
if (reload_secondary_out_icode[j] != CODE_FOR_nothing)
|
||
{
|
||
emit_insn ((GEN_FCN (reload_secondary_out_icode[j])
|
||
(real_old, second_reloadreg, reloadreg)));
|
||
special = 1;
|
||
}
|
||
else
|
||
{
|
||
/* See if we need both a scratch and intermediate reload
|
||
register. */
|
||
|
||
int secondary_reload = reload_secondary_out_reload[j];
|
||
enum insn_code tertiary_icode
|
||
= reload_secondary_out_icode[secondary_reload];
|
||
|
||
if (GET_MODE (reloadreg) != mode)
|
||
reloadreg = gen_rtx_REG (mode, REGNO (reloadreg));
|
||
|
||
if (tertiary_icode != CODE_FOR_nothing)
|
||
{
|
||
rtx third_reloadreg
|
||
= reload_reg_rtx[reload_secondary_out_reload[secondary_reload]];
|
||
rtx tem;
|
||
|
||
/* Copy primary reload reg to secondary reload reg.
|
||
(Note that these have been swapped above, then
|
||
secondary reload reg to OLD using our insn. */
|
||
|
||
/* If REAL_OLD is a paradoxical SUBREG, remove it
|
||
and try to put the opposite SUBREG on
|
||
RELOADREG. */
|
||
if (GET_CODE (real_old) == SUBREG
|
||
&& (GET_MODE_SIZE (GET_MODE (real_old))
|
||
> GET_MODE_SIZE (GET_MODE (SUBREG_REG (real_old))))
|
||
&& 0 != (tem = gen_lowpart_common
|
||
(GET_MODE (SUBREG_REG (real_old)),
|
||
reloadreg)))
|
||
real_old = SUBREG_REG (real_old), reloadreg = tem;
|
||
|
||
gen_reload (reloadreg, second_reloadreg,
|
||
reload_opnum[j], reload_when_needed[j]);
|
||
emit_insn ((GEN_FCN (tertiary_icode)
|
||
(real_old, reloadreg, third_reloadreg)));
|
||
special = 1;
|
||
}
|
||
|
||
else
|
||
/* Copy between the reload regs here and then to
|
||
OUT later. */
|
||
|
||
gen_reload (reloadreg, second_reloadreg,
|
||
reload_opnum[j], reload_when_needed[j]);
|
||
}
|
||
}
|
||
}
|
||
#endif
|
||
|
||
/* Output the last reload insn. */
|
||
if (! special)
|
||
{
|
||
rtx set;
|
||
|
||
/* Don't output the last reload if OLD is not the dest of
|
||
INSN and is in the src and is clobbered by INSN. */
|
||
if (! flag_expensive_optimizations
|
||
|| GET_CODE (old) != REG
|
||
|| !(set = single_set (insn))
|
||
|| rtx_equal_p (old, SET_DEST (set))
|
||
|| !reg_mentioned_p (old, SET_SRC (set))
|
||
|| !regno_clobbered_p (REGNO (old), insn, reload_mode[j], 0))
|
||
gen_reload (old, reloadreg, reload_opnum[j],
|
||
reload_when_needed[j]);
|
||
}
|
||
|
||
/* Look at all insns we emitted, just to be safe. */
|
||
for (p = get_insns (); p; p = NEXT_INSN (p))
|
||
if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
|
||
{
|
||
rtx pat = PATTERN (p);
|
||
|
||
/* If this output reload doesn't come from a spill reg,
|
||
clear any memory of reloaded copies of the pseudo reg.
|
||
If this output reload comes from a spill reg,
|
||
reg_has_output_reload will make this do nothing. */
|
||
note_stores (pat, forget_old_reloads_1);
|
||
|
||
if (reg_mentioned_p (reload_reg_rtx[j], pat))
|
||
{
|
||
rtx set = single_set (insn);
|
||
if (reload_spill_index[j] < 0
|
||
&& set
|
||
&& SET_SRC (set) == reload_reg_rtx[j])
|
||
{
|
||
int src = REGNO (SET_SRC (set));
|
||
|
||
reload_spill_index[j] = src;
|
||
SET_HARD_REG_BIT (reg_is_output_reload, src);
|
||
if (find_regno_note (insn, REG_DEAD, src))
|
||
SET_HARD_REG_BIT (reg_reloaded_died, src);
|
||
}
|
||
if (REGNO (reload_reg_rtx[j]) < FIRST_PSEUDO_REGISTER)
|
||
{
|
||
int s = reload_secondary_out_reload[j];
|
||
set = single_set (p);
|
||
/* If this reload copies only to the secondary reload
|
||
register, the secondary reload does the actual
|
||
store. */
|
||
if (s >= 0 && set == NULL_RTX)
|
||
; /* We can't tell what function the secondary reload
|
||
has and where the actual store to the pseudo is
|
||
made; leave new_spill_reg_store alone. */
|
||
else if (s >= 0
|
||
&& SET_SRC (set) == reload_reg_rtx[j]
|
||
&& SET_DEST (set) == reload_reg_rtx[s])
|
||
{
|
||
/* Usually the next instruction will be the
|
||
secondary reload insn; if we can confirm
|
||
that it is, setting new_spill_reg_store to
|
||
that insn will allow an extra optimization. */
|
||
rtx s_reg = reload_reg_rtx[s];
|
||
rtx next = NEXT_INSN (p);
|
||
reload_out[s] = reload_out[j];
|
||
reload_out_reg[s] = reload_out_reg[j];
|
||
set = single_set (next);
|
||
if (set && SET_SRC (set) == s_reg
|
||
&& ! new_spill_reg_store[REGNO (s_reg)])
|
||
{
|
||
SET_HARD_REG_BIT (reg_is_output_reload,
|
||
REGNO (s_reg));
|
||
new_spill_reg_store[REGNO (s_reg)] = next;
|
||
}
|
||
}
|
||
else
|
||
new_spill_reg_store[REGNO (reload_reg_rtx[j])] = p;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (reload_when_needed[j] == RELOAD_OTHER)
|
||
{
|
||
emit_insns (other_output_reload_insns[reload_opnum[j]]);
|
||
other_output_reload_insns[reload_opnum[j]] = get_insns ();
|
||
}
|
||
else
|
||
output_reload_insns[reload_opnum[j]] = get_insns ();
|
||
|
||
end_sequence ();
|
||
}
|
||
}
|
||
|
||
/* Now write all the insns we made for reloads in the order expected by
|
||
the allocation functions. Prior to the insn being reloaded, we write
|
||
the following reloads:
|
||
|
||
RELOAD_FOR_OTHER_ADDRESS reloads for input addresses.
|
||
|
||
RELOAD_OTHER reloads.
|
||
|
||
For each operand, any RELOAD_FOR_INPADDR_ADDRESS reloads followed
|
||
by any RELOAD_FOR_INPUT_ADDRESS reloads followed by the
|
||
RELOAD_FOR_INPUT reload for the operand.
|
||
|
||
RELOAD_FOR_OPADDR_ADDRS reloads.
|
||
|
||
RELOAD_FOR_OPERAND_ADDRESS reloads.
|
||
|
||
After the insn being reloaded, we write the following:
|
||
|
||
For each operand, any RELOAD_FOR_OUTADDR_ADDRESS reloads followed
|
||
by any RELOAD_FOR_OUTPUT_ADDRESS reload followed by the
|
||
RELOAD_FOR_OUTPUT reload, followed by any RELOAD_OTHER output
|
||
reloads for the operand. The RELOAD_OTHER output reloads are
|
||
output in descending order by reload number. */
|
||
|
||
emit_insns_before (other_input_address_reload_insns, insn);
|
||
emit_insns_before (other_input_reload_insns, insn);
|
||
|
||
for (j = 0; j < reload_n_operands; j++)
|
||
{
|
||
emit_insns_before (inpaddr_address_reload_insns[j], insn);
|
||
emit_insns_before (input_address_reload_insns[j], insn);
|
||
emit_insns_before (input_reload_insns[j], insn);
|
||
}
|
||
|
||
emit_insns_before (other_operand_reload_insns, insn);
|
||
emit_insns_before (operand_reload_insns, insn);
|
||
|
||
for (j = 0; j < reload_n_operands; j++)
|
||
{
|
||
emit_insns_before (outaddr_address_reload_insns[j], following_insn);
|
||
emit_insns_before (output_address_reload_insns[j], following_insn);
|
||
emit_insns_before (output_reload_insns[j], following_insn);
|
||
emit_insns_before (other_output_reload_insns[j], following_insn);
|
||
}
|
||
|
||
/* Keep basic block info up to date. */
|
||
if (n_basic_blocks)
|
||
{
|
||
if (BLOCK_HEAD (chain->block) == insn)
|
||
BLOCK_HEAD (chain->block) = NEXT_INSN (before_insn);
|
||
if (BLOCK_END (chain->block) == insn)
|
||
BLOCK_END (chain->block) = PREV_INSN (following_insn);
|
||
}
|
||
|
||
/* For all the spill regs newly reloaded in this instruction,
|
||
record what they were reloaded from, so subsequent instructions
|
||
can inherit the reloads.
|
||
|
||
Update spill_reg_store for the reloads of this insn.
|
||
Copy the elements that were updated in the loop above. */
|
||
|
||
for (j = 0; j < n_reloads; j++)
|
||
{
|
||
register int r = reload_order[j];
|
||
register int i = reload_spill_index[r];
|
||
|
||
/* If this is a non-inherited input reload from a pseudo, we must
|
||
clear any memory of a previous store to the same pseudo. Only do
|
||
something if there will not be an output reload for the pseudo
|
||
being reloaded. */
|
||
if (reload_in_reg[r] != 0
|
||
&& ! (reload_inherited[r] || reload_override_in[r]))
|
||
{
|
||
rtx reg = reload_in_reg[r];
|
||
|
||
if (GET_CODE (reg) == SUBREG)
|
||
reg = SUBREG_REG (reg);
|
||
|
||
if (GET_CODE (reg) == REG
|
||
&& REGNO (reg) >= FIRST_PSEUDO_REGISTER
|
||
&& ! reg_has_output_reload[REGNO (reg)])
|
||
{
|
||
int nregno = REGNO (reg);
|
||
|
||
if (reg_last_reload_reg[nregno])
|
||
{
|
||
int last_regno = REGNO (reg_last_reload_reg[nregno]);
|
||
|
||
if (reg_reloaded_contents[last_regno] == nregno)
|
||
spill_reg_store[last_regno] = 0;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* I is nonneg if this reload used a register.
|
||
If reload_reg_rtx[r] is 0, this is an optional reload
|
||
that we opted to ignore. */
|
||
|
||
if (i >= 0 && reload_reg_rtx[r] != 0)
|
||
{
|
||
int nr
|
||
= HARD_REGNO_NREGS (i, GET_MODE (reload_reg_rtx[r]));
|
||
int k;
|
||
int part_reaches_end = 0;
|
||
int all_reaches_end = 1;
|
||
|
||
/* For a multi register reload, we need to check if all or part
|
||
of the value lives to the end. */
|
||
for (k = 0; k < nr; k++)
|
||
{
|
||
if (reload_reg_reaches_end_p (i + k, reload_opnum[r],
|
||
reload_when_needed[r]))
|
||
part_reaches_end = 1;
|
||
else
|
||
all_reaches_end = 0;
|
||
}
|
||
|
||
/* Ignore reloads that don't reach the end of the insn in
|
||
entirety. */
|
||
if (all_reaches_end)
|
||
{
|
||
/* First, clear out memory of what used to be in this spill reg.
|
||
If consecutive registers are used, clear them all. */
|
||
|
||
for (k = 0; k < nr; k++)
|
||
CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
|
||
|
||
/* Maybe the spill reg contains a copy of reload_out. */
|
||
if (reload_out[r] != 0
|
||
&& (GET_CODE (reload_out[r]) == REG
|
||
#ifdef AUTO_INC_DEC
|
||
|| ! reload_out_reg[r]
|
||
#endif
|
||
|| GET_CODE (reload_out_reg[r]) == REG))
|
||
{
|
||
rtx out = (GET_CODE (reload_out[r]) == REG
|
||
? reload_out[r]
|
||
: reload_out_reg[r]
|
||
? reload_out_reg[r]
|
||
/* AUTO_INC */ : XEXP (reload_in_reg[r], 0));
|
||
register int nregno = REGNO (out);
|
||
int nnr = (nregno >= FIRST_PSEUDO_REGISTER ? 1
|
||
: HARD_REGNO_NREGS (nregno,
|
||
GET_MODE (reload_reg_rtx[r])));
|
||
|
||
spill_reg_store[i] = new_spill_reg_store[i];
|
||
spill_reg_stored_to[i] = out;
|
||
reg_last_reload_reg[nregno] = reload_reg_rtx[r];
|
||
|
||
/* If NREGNO is a hard register, it may occupy more than
|
||
one register. If it does, say what is in the
|
||
rest of the registers assuming that both registers
|
||
agree on how many words the object takes. If not,
|
||
invalidate the subsequent registers. */
|
||
|
||
if (nregno < FIRST_PSEUDO_REGISTER)
|
||
for (k = 1; k < nnr; k++)
|
||
reg_last_reload_reg[nregno + k]
|
||
= (nr == nnr
|
||
? gen_rtx_REG (reg_raw_mode[REGNO (reload_reg_rtx[r]) + k],
|
||
REGNO (reload_reg_rtx[r]) + k)
|
||
: 0);
|
||
|
||
/* Now do the inverse operation. */
|
||
for (k = 0; k < nr; k++)
|
||
{
|
||
CLEAR_HARD_REG_BIT (reg_reloaded_dead, i + k);
|
||
reg_reloaded_contents[i + k]
|
||
= (nregno >= FIRST_PSEUDO_REGISTER || nr != nnr
|
||
? nregno
|
||
: nregno + k);
|
||
reg_reloaded_insn[i + k] = insn;
|
||
SET_HARD_REG_BIT (reg_reloaded_valid, i + k);
|
||
}
|
||
}
|
||
|
||
/* Maybe the spill reg contains a copy of reload_in. Only do
|
||
something if there will not be an output reload for
|
||
the register being reloaded. */
|
||
else if (reload_out_reg[r] == 0
|
||
&& reload_in[r] != 0
|
||
&& ((GET_CODE (reload_in[r]) == REG
|
||
&& REGNO (reload_in[r]) >= FIRST_PSEUDO_REGISTER
|
||
&& ! reg_has_output_reload[REGNO (reload_in[r])])
|
||
|| (GET_CODE (reload_in_reg[r]) == REG
|
||
&& ! reg_has_output_reload[REGNO (reload_in_reg[r])]))
|
||
&& ! reg_set_p (reload_reg_rtx[r], PATTERN (insn)))
|
||
{
|
||
register int nregno;
|
||
int nnr;
|
||
|
||
if (GET_CODE (reload_in[r]) == REG
|
||
&& REGNO (reload_in[r]) >= FIRST_PSEUDO_REGISTER)
|
||
nregno = REGNO (reload_in[r]);
|
||
else if (GET_CODE (reload_in_reg[r]) == REG)
|
||
nregno = REGNO (reload_in_reg[r]);
|
||
else
|
||
nregno = REGNO (XEXP (reload_in_reg[r], 0));
|
||
|
||
nnr = (nregno >= FIRST_PSEUDO_REGISTER ? 1
|
||
: HARD_REGNO_NREGS (nregno,
|
||
GET_MODE (reload_reg_rtx[r])));
|
||
|
||
reg_last_reload_reg[nregno] = reload_reg_rtx[r];
|
||
|
||
if (nregno < FIRST_PSEUDO_REGISTER)
|
||
for (k = 1; k < nnr; k++)
|
||
reg_last_reload_reg[nregno + k]
|
||
= (nr == nnr
|
||
? gen_rtx_REG (reg_raw_mode[REGNO (reload_reg_rtx[r]) + k],
|
||
REGNO (reload_reg_rtx[r]) + k)
|
||
: 0);
|
||
|
||
/* Unless we inherited this reload, show we haven't
|
||
recently done a store.
|
||
Previous stores of inherited auto_inc expressions
|
||
also have to be discarded. */
|
||
if (! reload_inherited[r]
|
||
|| (reload_out[r] && ! reload_out_reg[r]))
|
||
spill_reg_store[i] = 0;
|
||
|
||
for (k = 0; k < nr; k++)
|
||
{
|
||
CLEAR_HARD_REG_BIT (reg_reloaded_dead, i + k);
|
||
reg_reloaded_contents[i + k]
|
||
= (nregno >= FIRST_PSEUDO_REGISTER || nr != nnr
|
||
? nregno
|
||
: nregno + k);
|
||
reg_reloaded_insn[i + k] = insn;
|
||
SET_HARD_REG_BIT (reg_reloaded_valid, i + k);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* However, if part of the reload reaches the end, then we must
|
||
invalidate the old info for the part that survives to the end. */
|
||
else if (part_reaches_end)
|
||
{
|
||
for (k = 0; k < nr; k++)
|
||
if (reload_reg_reaches_end_p (i + k,
|
||
reload_opnum[r],
|
||
reload_when_needed[r]))
|
||
CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
|
||
}
|
||
}
|
||
|
||
/* The following if-statement was #if 0'd in 1.34 (or before...).
|
||
It's reenabled in 1.35 because supposedly nothing else
|
||
deals with this problem. */
|
||
|
||
/* If a register gets output-reloaded from a non-spill register,
|
||
that invalidates any previous reloaded copy of it.
|
||
But forget_old_reloads_1 won't get to see it, because
|
||
it thinks only about the original insn. So invalidate it here. */
|
||
if (i < 0 && reload_out[r] != 0
|
||
&& (GET_CODE (reload_out[r]) == REG
|
||
|| (GET_CODE (reload_out[r]) == MEM
|
||
&& GET_CODE (reload_out_reg[r]) == REG)))
|
||
{
|
||
rtx out = (GET_CODE (reload_out[r]) == REG
|
||
? reload_out[r] : reload_out_reg[r]);
|
||
register int nregno = REGNO (out);
|
||
if (nregno >= FIRST_PSEUDO_REGISTER)
|
||
{
|
||
rtx src_reg, store_insn;
|
||
|
||
reg_last_reload_reg[nregno] = 0;
|
||
|
||
/* If we can find a hard register that is stored, record
|
||
the storing insn so that we may delete this insn with
|
||
delete_output_reload. */
|
||
src_reg = reload_reg_rtx[r];
|
||
|
||
/* If this is an optional reload, try to find the source reg
|
||
from an input reload. */
|
||
if (! src_reg)
|
||
{
|
||
rtx set = single_set (insn);
|
||
if (set && SET_DEST (set) == reload_out[r])
|
||
{
|
||
int k;
|
||
|
||
src_reg = SET_SRC (set);
|
||
store_insn = insn;
|
||
for (k = 0; k < n_reloads; k++)
|
||
{
|
||
if (reload_in[k] == src_reg)
|
||
{
|
||
src_reg = reload_reg_rtx[k];
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
else
|
||
store_insn = new_spill_reg_store[REGNO (src_reg)];
|
||
if (src_reg && GET_CODE (src_reg) == REG
|
||
&& REGNO (src_reg) < FIRST_PSEUDO_REGISTER)
|
||
{
|
||
int src_regno = REGNO (src_reg);
|
||
int nr = HARD_REGNO_NREGS (src_regno, reload_mode[r]);
|
||
/* The place where to find a death note varies with
|
||
PRESERVE_DEATH_INFO_REGNO_P . The condition is not
|
||
necessarily checked exactly in the code that moves
|
||
notes, so just check both locations. */
|
||
rtx note = find_regno_note (insn, REG_DEAD, src_regno);
|
||
if (! note)
|
||
note = find_regno_note (store_insn, REG_DEAD, src_regno);
|
||
while (nr-- > 0)
|
||
{
|
||
spill_reg_store[src_regno + nr] = store_insn;
|
||
spill_reg_stored_to[src_regno + nr] = out;
|
||
reg_reloaded_contents[src_regno + nr] = nregno;
|
||
reg_reloaded_insn[src_regno + nr] = store_insn;
|
||
CLEAR_HARD_REG_BIT (reg_reloaded_dead, src_regno + nr);
|
||
SET_HARD_REG_BIT (reg_reloaded_valid, src_regno + nr);
|
||
SET_HARD_REG_BIT (reg_is_output_reload, src_regno + nr);
|
||
if (note)
|
||
SET_HARD_REG_BIT (reg_reloaded_died, src_regno);
|
||
else
|
||
CLEAR_HARD_REG_BIT (reg_reloaded_died, src_regno);
|
||
}
|
||
reg_last_reload_reg[nregno] = src_reg;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
int num_regs = HARD_REGNO_NREGS (nregno,GET_MODE (reload_out[r]));
|
||
|
||
while (num_regs-- > 0)
|
||
reg_last_reload_reg[nregno + num_regs] = 0;
|
||
}
|
||
}
|
||
}
|
||
IOR_HARD_REG_SET (reg_reloaded_dead, reg_reloaded_died);
|
||
}
|
||
|
||
/* Emit code to perform a reload from IN (which may be a reload register) to
|
||
OUT (which may also be a reload register). IN or OUT is from operand
|
||
OPNUM with reload type TYPE.
|
||
|
||
Returns first insn emitted. */
|
||
|
||
rtx
|
||
gen_reload (out, in, opnum, type)
|
||
rtx out;
|
||
rtx in;
|
||
int opnum;
|
||
enum reload_type type;
|
||
{
|
||
rtx last = get_last_insn ();
|
||
rtx tem;
|
||
|
||
/* If IN is a paradoxical SUBREG, remove it and try to put the
|
||
opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
|
||
if (GET_CODE (in) == SUBREG
|
||
&& (GET_MODE_SIZE (GET_MODE (in))
|
||
> GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
|
||
&& (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (in)), out)) != 0)
|
||
in = SUBREG_REG (in), out = tem;
|
||
else if (GET_CODE (out) == SUBREG
|
||
&& (GET_MODE_SIZE (GET_MODE (out))
|
||
> GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
|
||
&& (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (out)), in)) != 0)
|
||
out = SUBREG_REG (out), in = tem;
|
||
|
||
/* How to do this reload can get quite tricky. Normally, we are being
|
||
asked to reload a simple operand, such as a MEM, a constant, or a pseudo
|
||
register that didn't get a hard register. In that case we can just
|
||
call emit_move_insn.
|
||
|
||
We can also be asked to reload a PLUS that adds a register or a MEM to
|
||
another register, constant or MEM. This can occur during frame pointer
|
||
elimination and while reloading addresses. This case is handled by
|
||
trying to emit a single insn to perform the add. If it is not valid,
|
||
we use a two insn sequence.
|
||
|
||
Finally, we could be called to handle an 'o' constraint by putting
|
||
an address into a register. In that case, we first try to do this
|
||
with a named pattern of "reload_load_address". If no such pattern
|
||
exists, we just emit a SET insn and hope for the best (it will normally
|
||
be valid on machines that use 'o').
|
||
|
||
This entire process is made complex because reload will never
|
||
process the insns we generate here and so we must ensure that
|
||
they will fit their constraints and also by the fact that parts of
|
||
IN might be being reloaded separately and replaced with spill registers.
|
||
Because of this, we are, in some sense, just guessing the right approach
|
||
here. The one listed above seems to work.
|
||
|
||
??? At some point, this whole thing needs to be rethought. */
|
||
|
||
if (GET_CODE (in) == PLUS
|
||
&& (GET_CODE (XEXP (in, 0)) == REG
|
||
|| GET_CODE (XEXP (in, 0)) == SUBREG
|
||
|| GET_CODE (XEXP (in, 0)) == MEM)
|
||
&& (GET_CODE (XEXP (in, 1)) == REG
|
||
|| GET_CODE (XEXP (in, 1)) == SUBREG
|
||
|| CONSTANT_P (XEXP (in, 1))
|
||
|| GET_CODE (XEXP (in, 1)) == MEM))
|
||
{
|
||
/* We need to compute the sum of a register or a MEM and another
|
||
register, constant, or MEM, and put it into the reload
|
||
register. The best possible way of doing this is if the machine
|
||
has a three-operand ADD insn that accepts the required operands.
|
||
|
||
The simplest approach is to try to generate such an insn and see if it
|
||
is recognized and matches its constraints. If so, it can be used.
|
||
|
||
It might be better not to actually emit the insn unless it is valid,
|
||
but we need to pass the insn as an operand to `recog' and
|
||
`extract_insn' and it is simpler to emit and then delete the insn if
|
||
not valid than to dummy things up. */
|
||
|
||
rtx op0, op1, tem, insn;
|
||
int code;
|
||
|
||
op0 = find_replacement (&XEXP (in, 0));
|
||
op1 = find_replacement (&XEXP (in, 1));
|
||
|
||
/* Since constraint checking is strict, commutativity won't be
|
||
checked, so we need to do that here to avoid spurious failure
|
||
if the add instruction is two-address and the second operand
|
||
of the add is the same as the reload reg, which is frequently
|
||
the case. If the insn would be A = B + A, rearrange it so
|
||
it will be A = A + B as constrain_operands expects. */
|
||
|
||
if (GET_CODE (XEXP (in, 1)) == REG
|
||
&& REGNO (out) == REGNO (XEXP (in, 1)))
|
||
tem = op0, op0 = op1, op1 = tem;
|
||
|
||
if (op0 != XEXP (in, 0) || op1 != XEXP (in, 1))
|
||
in = gen_rtx_PLUS (GET_MODE (in), op0, op1);
|
||
|
||
insn = emit_insn (gen_rtx_SET (VOIDmode, out, in));
|
||
code = recog_memoized (insn);
|
||
|
||
if (code >= 0)
|
||
{
|
||
extract_insn (insn);
|
||
/* We want constrain operands to treat this insn strictly in
|
||
its validity determination, i.e., the way it would after reload
|
||
has completed. */
|
||
if (constrain_operands (1))
|
||
return insn;
|
||
}
|
||
|
||
delete_insns_since (last);
|
||
|
||
/* If that failed, we must use a conservative two-insn sequence.
|
||
use move to copy constant, MEM, or pseudo register to the reload
|
||
register since "move" will be able to handle an arbitrary operand,
|
||
unlike add which can't, in general. Then add the registers.
|
||
|
||
If there is another way to do this for a specific machine, a
|
||
DEFINE_PEEPHOLE should be specified that recognizes the sequence
|
||
we emit below. */
|
||
|
||
code = (int) add_optab->handlers[(int) GET_MODE (out)].insn_code;
|
||
|
||
if (CONSTANT_P (op1) || GET_CODE (op1) == MEM || GET_CODE (op1) == SUBREG
|
||
|| (GET_CODE (op1) == REG
|
||
&& REGNO (op1) >= FIRST_PSEUDO_REGISTER)
|
||
|| (code != CODE_FOR_nothing
|
||
&& ! (*insn_operand_predicate[code][2]) (op1, insn_operand_mode[code][2])))
|
||
tem = op0, op0 = op1, op1 = tem;
|
||
|
||
gen_reload (out, op0, opnum, type);
|
||
|
||
/* If OP0 and OP1 are the same, we can use OUT for OP1.
|
||
This fixes a problem on the 32K where the stack pointer cannot
|
||
be used as an operand of an add insn. */
|
||
|
||
if (rtx_equal_p (op0, op1))
|
||
op1 = out;
|
||
|
||
insn = emit_insn (gen_add2_insn (out, op1));
|
||
|
||
/* If that failed, copy the address register to the reload register.
|
||
Then add the constant to the reload register. */
|
||
|
||
code = recog_memoized (insn);
|
||
|
||
if (code >= 0)
|
||
{
|
||
extract_insn (insn);
|
||
/* We want constrain operands to treat this insn strictly in
|
||
its validity determination, i.e., the way it would after reload
|
||
has completed. */
|
||
if (constrain_operands (1))
|
||
{
|
||
/* Add a REG_EQUIV note so that find_equiv_reg can find it. */
|
||
REG_NOTES (insn)
|
||
= gen_rtx_EXPR_LIST (REG_EQUIV, in, REG_NOTES (insn));
|
||
return insn;
|
||
}
|
||
}
|
||
|
||
delete_insns_since (last);
|
||
|
||
gen_reload (out, op1, opnum, type);
|
||
insn = emit_insn (gen_add2_insn (out, op0));
|
||
REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EQUIV, in, REG_NOTES (insn));
|
||
}
|
||
|
||
#ifdef SECONDARY_MEMORY_NEEDED
|
||
/* If we need a memory location to do the move, do it that way. */
|
||
else if (GET_CODE (in) == REG && REGNO (in) < FIRST_PSEUDO_REGISTER
|
||
&& GET_CODE (out) == REG && REGNO (out) < FIRST_PSEUDO_REGISTER
|
||
&& SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (in)),
|
||
REGNO_REG_CLASS (REGNO (out)),
|
||
GET_MODE (out)))
|
||
{
|
||
/* Get the memory to use and rewrite both registers to its mode. */
|
||
rtx loc = get_secondary_mem (in, GET_MODE (out), opnum, type);
|
||
|
||
if (GET_MODE (loc) != GET_MODE (out))
|
||
out = gen_rtx_REG (GET_MODE (loc), REGNO (out));
|
||
|
||
if (GET_MODE (loc) != GET_MODE (in))
|
||
in = gen_rtx_REG (GET_MODE (loc), REGNO (in));
|
||
|
||
gen_reload (loc, in, opnum, type);
|
||
gen_reload (out, loc, opnum, type);
|
||
}
|
||
#endif
|
||
|
||
/* If IN is a simple operand, use gen_move_insn. */
|
||
else if (GET_RTX_CLASS (GET_CODE (in)) == 'o' || GET_CODE (in) == SUBREG)
|
||
emit_insn (gen_move_insn (out, in));
|
||
|
||
#ifdef HAVE_reload_load_address
|
||
else if (HAVE_reload_load_address)
|
||
emit_insn (gen_reload_load_address (out, in));
|
||
#endif
|
||
|
||
/* Otherwise, just write (set OUT IN) and hope for the best. */
|
||
else
|
||
emit_insn (gen_rtx_SET (VOIDmode, out, in));
|
||
|
||
/* Return the first insn emitted.
|
||
We can not just return get_last_insn, because there may have
|
||
been multiple instructions emitted. Also note that gen_move_insn may
|
||
emit more than one insn itself, so we can not assume that there is one
|
||
insn emitted per emit_insn_before call. */
|
||
|
||
return last ? NEXT_INSN (last) : get_insns ();
|
||
}
|
||
|
||
/* Delete a previously made output-reload
|
||
whose result we now believe is not needed.
|
||
First we double-check.
|
||
|
||
INSN is the insn now being processed.
|
||
LAST_RELOAD_REG is the hard register number for which we want to delete
|
||
the last output reload.
|
||
J is the reload-number that originally used REG. The caller has made
|
||
certain that reload J doesn't use REG any longer for input. */
|
||
|
||
static void
|
||
delete_output_reload (insn, j, last_reload_reg)
|
||
rtx insn;
|
||
int j;
|
||
int last_reload_reg;
|
||
{
|
||
rtx output_reload_insn = spill_reg_store[last_reload_reg];
|
||
rtx reg = spill_reg_stored_to[last_reload_reg];
|
||
int k;
|
||
int n_occurrences;
|
||
int n_inherited = 0;
|
||
register rtx i1;
|
||
rtx substed;
|
||
|
||
/* Get the raw pseudo-register referred to. */
|
||
|
||
while (GET_CODE (reg) == SUBREG)
|
||
reg = SUBREG_REG (reg);
|
||
substed = reg_equiv_memory_loc[REGNO (reg)];
|
||
|
||
/* This is unsafe if the operand occurs more often in the current
|
||
insn than it is inherited. */
|
||
for (k = n_reloads - 1; k >= 0; k--)
|
||
{
|
||
rtx reg2 = reload_in[k];
|
||
if (! reg2)
|
||
continue;
|
||
if (GET_CODE (reg2) == MEM || reload_override_in[k])
|
||
reg2 = reload_in_reg[k];
|
||
#ifdef AUTO_INC_DEC
|
||
if (reload_out[k] && ! reload_out_reg[k])
|
||
reg2 = XEXP (reload_in_reg[k], 0);
|
||
#endif
|
||
while (GET_CODE (reg2) == SUBREG)
|
||
reg2 = SUBREG_REG (reg2);
|
||
if (rtx_equal_p (reg2, reg))
|
||
{
|
||
if (reload_inherited[k] || reload_override_in[k] || k == j)
|
||
{
|
||
n_inherited++;
|
||
reg2 = reload_out_reg[k];
|
||
if (! reg2)
|
||
continue;
|
||
while (GET_CODE (reg2) == SUBREG)
|
||
reg2 = XEXP (reg2, 0);
|
||
if (rtx_equal_p (reg2, reg))
|
||
n_inherited++;
|
||
}
|
||
else
|
||
return;
|
||
}
|
||
}
|
||
n_occurrences = count_occurrences (PATTERN (insn), reg);
|
||
if (substed)
|
||
n_occurrences += count_occurrences (PATTERN (insn), substed);
|
||
if (n_occurrences > n_inherited)
|
||
return;
|
||
|
||
/* If the pseudo-reg we are reloading is no longer referenced
|
||
anywhere between the store into it and here,
|
||
and no jumps or labels intervene, then the value can get
|
||
here through the reload reg alone.
|
||
Otherwise, give up--return. */
|
||
for (i1 = NEXT_INSN (output_reload_insn);
|
||
i1 != insn; i1 = NEXT_INSN (i1))
|
||
{
|
||
if (GET_CODE (i1) == CODE_LABEL || GET_CODE (i1) == JUMP_INSN)
|
||
return;
|
||
if ((GET_CODE (i1) == INSN || GET_CODE (i1) == CALL_INSN)
|
||
&& reg_mentioned_p (reg, PATTERN (i1)))
|
||
{
|
||
/* If this is USE in front of INSN, we only have to check that
|
||
there are no more references than accounted for by inheritance. */
|
||
while (GET_CODE (i1) == INSN && GET_CODE (PATTERN (i1)) == USE)
|
||
{
|
||
n_occurrences += rtx_equal_p (reg, XEXP (PATTERN (i1), 0)) != 0;
|
||
i1 = NEXT_INSN (i1);
|
||
}
|
||
if (n_occurrences <= n_inherited && i1 == insn)
|
||
break;
|
||
return;
|
||
}
|
||
}
|
||
|
||
/* The caller has already checked that REG dies or is set in INSN.
|
||
It has also checked that we are optimizing, and thus some inaccurancies
|
||
in the debugging information are acceptable.
|
||
So we could just delete output_reload_insn.
|
||
But in some cases we can improve the debugging information without
|
||
sacrificing optimization - maybe even improving the code:
|
||
See if the pseudo reg has been completely replaced
|
||
with reload regs. If so, delete the store insn
|
||
and forget we had a stack slot for the pseudo. */
|
||
if (reload_out[j] != reload_in[j]
|
||
&& REG_N_DEATHS (REGNO (reg)) == 1
|
||
&& REG_N_SETS (REGNO (reg)) == 1
|
||
&& REG_BASIC_BLOCK (REGNO (reg)) >= 0
|
||
&& find_regno_note (insn, REG_DEAD, REGNO (reg)))
|
||
{
|
||
rtx i2;
|
||
|
||
/* We know that it was used only between here
|
||
and the beginning of the current basic block.
|
||
(We also know that the last use before INSN was
|
||
the output reload we are thinking of deleting, but never mind that.)
|
||
Search that range; see if any ref remains. */
|
||
for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
|
||
{
|
||
rtx set = single_set (i2);
|
||
|
||
/* Uses which just store in the pseudo don't count,
|
||
since if they are the only uses, they are dead. */
|
||
if (set != 0 && SET_DEST (set) == reg)
|
||
continue;
|
||
if (GET_CODE (i2) == CODE_LABEL
|
||
|| GET_CODE (i2) == JUMP_INSN)
|
||
break;
|
||
if ((GET_CODE (i2) == INSN || GET_CODE (i2) == CALL_INSN)
|
||
&& reg_mentioned_p (reg, PATTERN (i2)))
|
||
{
|
||
/* Some other ref remains; just delete the output reload we
|
||
know to be dead. */
|
||
delete_address_reloads (output_reload_insn, insn);
|
||
PUT_CODE (output_reload_insn, NOTE);
|
||
NOTE_SOURCE_FILE (output_reload_insn) = 0;
|
||
NOTE_LINE_NUMBER (output_reload_insn) = NOTE_INSN_DELETED;
|
||
return;
|
||
}
|
||
}
|
||
|
||
/* Delete the now-dead stores into this pseudo. */
|
||
for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
|
||
{
|
||
rtx set = single_set (i2);
|
||
|
||
if (set != 0 && SET_DEST (set) == reg)
|
||
{
|
||
delete_address_reloads (i2, insn);
|
||
/* This might be a basic block head,
|
||
thus don't use delete_insn. */
|
||
PUT_CODE (i2, NOTE);
|
||
NOTE_SOURCE_FILE (i2) = 0;
|
||
NOTE_LINE_NUMBER (i2) = NOTE_INSN_DELETED;
|
||
}
|
||
if (GET_CODE (i2) == CODE_LABEL
|
||
|| GET_CODE (i2) == JUMP_INSN)
|
||
break;
|
||
}
|
||
|
||
/* For the debugging info,
|
||
say the pseudo lives in this reload reg. */
|
||
reg_renumber[REGNO (reg)] = REGNO (reload_reg_rtx[j]);
|
||
alter_reg (REGNO (reg), -1);
|
||
}
|
||
delete_address_reloads (output_reload_insn, insn);
|
||
PUT_CODE (output_reload_insn, NOTE);
|
||
NOTE_SOURCE_FILE (output_reload_insn) = 0;
|
||
NOTE_LINE_NUMBER (output_reload_insn) = NOTE_INSN_DELETED;
|
||
|
||
}
|
||
|
||
/* We are going to delete DEAD_INSN. Recursively delete loads of
|
||
reload registers used in DEAD_INSN that are not used till CURRENT_INSN.
|
||
CURRENT_INSN is being reloaded, so we have to check its reloads too. */
|
||
static void
|
||
delete_address_reloads (dead_insn, current_insn)
|
||
rtx dead_insn, current_insn;
|
||
{
|
||
rtx set = single_set (dead_insn);
|
||
rtx set2, dst, prev, next;
|
||
if (set)
|
||
{
|
||
rtx dst = SET_DEST (set);
|
||
if (GET_CODE (dst) == MEM)
|
||
delete_address_reloads_1 (dead_insn, XEXP (dst, 0), current_insn);
|
||
}
|
||
/* If we deleted the store from a reloaded post_{in,de}c expression,
|
||
we can delete the matching adds. */
|
||
prev = PREV_INSN (dead_insn);
|
||
next = NEXT_INSN (dead_insn);
|
||
if (! prev || ! next)
|
||
return;
|
||
set = single_set (next);
|
||
set2 = single_set (prev);
|
||
if (! set || ! set2
|
||
|| GET_CODE (SET_SRC (set)) != PLUS || GET_CODE (SET_SRC (set2)) != PLUS
|
||
|| GET_CODE (XEXP (SET_SRC (set), 1)) != CONST_INT
|
||
|| GET_CODE (XEXP (SET_SRC (set2), 1)) != CONST_INT)
|
||
return;
|
||
dst = SET_DEST (set);
|
||
if (! rtx_equal_p (dst, SET_DEST (set2))
|
||
|| ! rtx_equal_p (dst, XEXP (SET_SRC (set), 0))
|
||
|| ! rtx_equal_p (dst, XEXP (SET_SRC (set2), 0))
|
||
|| (INTVAL (XEXP (SET_SRC (set), 1))
|
||
!= - INTVAL (XEXP (SET_SRC (set2), 1))))
|
||
return;
|
||
delete_insn (prev);
|
||
delete_insn (next);
|
||
}
|
||
|
||
/* Subfunction of delete_address_reloads: process registers found in X. */
|
||
static void
|
||
delete_address_reloads_1 (dead_insn, x, current_insn)
|
||
rtx dead_insn, x, current_insn;
|
||
{
|
||
rtx prev, set, dst, i2;
|
||
int i, j;
|
||
enum rtx_code code = GET_CODE (x);
|
||
|
||
if (code != REG)
|
||
{
|
||
char *fmt= GET_RTX_FORMAT (code);
|
||
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
||
{
|
||
if (fmt[i] == 'e')
|
||
delete_address_reloads_1 (dead_insn, XEXP (x, i), current_insn);
|
||
else if (fmt[i] == 'E')
|
||
{
|
||
for (j = XVECLEN (x, i) - 1; j >=0; j--)
|
||
delete_address_reloads_1 (dead_insn, XVECEXP (x, i, j),
|
||
current_insn);
|
||
}
|
||
}
|
||
return;
|
||
}
|
||
|
||
if (spill_reg_order[REGNO (x)] < 0)
|
||
return;
|
||
|
||
/* Scan backwards for the insn that sets x. This might be a way back due
|
||
to inheritance. */
|
||
for (prev = PREV_INSN (dead_insn); prev; prev = PREV_INSN (prev))
|
||
{
|
||
code = GET_CODE (prev);
|
||
if (code == CODE_LABEL || code == JUMP_INSN)
|
||
return;
|
||
if (GET_RTX_CLASS (code) != 'i')
|
||
continue;
|
||
if (reg_set_p (x, PATTERN (prev)))
|
||
break;
|
||
if (reg_referenced_p (x, PATTERN (prev)))
|
||
return;
|
||
}
|
||
if (! prev || INSN_UID (prev) < reload_first_uid)
|
||
return;
|
||
/* Check that PREV only sets the reload register. */
|
||
set = single_set (prev);
|
||
if (! set)
|
||
return;
|
||
dst = SET_DEST (set);
|
||
if (GET_CODE (dst) != REG
|
||
|| ! rtx_equal_p (dst, x))
|
||
return;
|
||
if (! reg_set_p (dst, PATTERN (dead_insn)))
|
||
{
|
||
/* Check if DST was used in a later insn -
|
||
it might have been inherited. */
|
||
for (i2 = NEXT_INSN (dead_insn); i2; i2 = NEXT_INSN (i2))
|
||
{
|
||
if (GET_CODE (i2) == CODE_LABEL)
|
||
break;
|
||
if (GET_RTX_CLASS (GET_CODE (i2)) != 'i')
|
||
continue;
|
||
if (reg_referenced_p (dst, PATTERN (i2)))
|
||
{
|
||
/* If there is a reference to the register in the current insn,
|
||
it might be loaded in a non-inherited reload. If no other
|
||
reload uses it, that means the register is set before
|
||
referenced. */
|
||
if (i2 == current_insn)
|
||
{
|
||
for (j = n_reloads - 1; j >= 0; j--)
|
||
if ((reload_reg_rtx[j] == dst && reload_inherited[j])
|
||
|| reload_override_in[j] == dst)
|
||
return;
|
||
for (j = n_reloads - 1; j >= 0; j--)
|
||
if (reload_in[j] && reload_reg_rtx[j] == dst)
|
||
break;
|
||
if (j >= 0)
|
||
break;
|
||
}
|
||
return;
|
||
}
|
||
if (GET_CODE (i2) == JUMP_INSN)
|
||
break;
|
||
/* If DST is still live at CURRENT_INSN, check if it is used for
|
||
any reload. Note that even if CURRENT_INSN sets DST, we still
|
||
have to check the reloads. */
|
||
if (i2 == current_insn)
|
||
{
|
||
for (j = n_reloads - 1; j >= 0; j--)
|
||
if ((reload_reg_rtx[j] == dst && reload_inherited[j])
|
||
|| reload_override_in[j] == dst)
|
||
return;
|
||
/* ??? We can't finish the loop here, because dst might be
|
||
allocated to a pseudo in this block if no reload in this
|
||
block needs any of the clsses containing DST - see
|
||
spill_hard_reg. There is no easy way to tell this, so we
|
||
have to scan till the end of the basic block. */
|
||
}
|
||
if (reg_set_p (dst, PATTERN (i2)))
|
||
break;
|
||
}
|
||
}
|
||
delete_address_reloads_1 (prev, SET_SRC (set), current_insn);
|
||
reg_reloaded_contents[REGNO (dst)] = -1;
|
||
/* Can't use delete_insn here because PREV might be a basic block head. */
|
||
PUT_CODE (prev, NOTE);
|
||
NOTE_LINE_NUMBER (prev) = NOTE_INSN_DELETED;
|
||
NOTE_SOURCE_FILE (prev) = 0;
|
||
}
|
||
|
||
/* Output reload-insns to reload VALUE into RELOADREG.
|
||
VALUE is an autoincrement or autodecrement RTX whose operand
|
||
is a register or memory location;
|
||
so reloading involves incrementing that location.
|
||
IN is either identical to VALUE, or some cheaper place to reload from.
|
||
|
||
INC_AMOUNT is the number to increment or decrement by (always positive).
|
||
This cannot be deduced from VALUE.
|
||
|
||
Return the instruction that stores into RELOADREG. */
|
||
|
||
static rtx
|
||
inc_for_reload (reloadreg, in, value, inc_amount)
|
||
rtx reloadreg;
|
||
rtx in, value;
|
||
int inc_amount;
|
||
{
|
||
/* REG or MEM to be copied and incremented. */
|
||
rtx incloc = XEXP (value, 0);
|
||
/* Nonzero if increment after copying. */
|
||
int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC);
|
||
rtx last;
|
||
rtx inc;
|
||
rtx add_insn;
|
||
int code;
|
||
rtx store;
|
||
rtx real_in = in == value ? XEXP (in, 0) : in;
|
||
|
||
/* No hard register is equivalent to this register after
|
||
inc/dec operation. If REG_LAST_RELOAD_REG were non-zero,
|
||
we could inc/dec that register as well (maybe even using it for
|
||
the source), but I'm not sure it's worth worrying about. */
|
||
if (GET_CODE (incloc) == REG)
|
||
reg_last_reload_reg[REGNO (incloc)] = 0;
|
||
|
||
if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
|
||
inc_amount = - inc_amount;
|
||
|
||
inc = GEN_INT (inc_amount);
|
||
|
||
/* If this is post-increment, first copy the location to the reload reg. */
|
||
if (post && real_in != reloadreg)
|
||
emit_insn (gen_move_insn (reloadreg, real_in));
|
||
|
||
if (in == value)
|
||
{
|
||
/* See if we can directly increment INCLOC. Use a method similar to
|
||
that in gen_reload. */
|
||
|
||
last = get_last_insn ();
|
||
add_insn = emit_insn (gen_rtx_SET (VOIDmode, incloc,
|
||
gen_rtx_PLUS (GET_MODE (incloc),
|
||
incloc, inc)));
|
||
|
||
code = recog_memoized (add_insn);
|
||
if (code >= 0)
|
||
{
|
||
extract_insn (add_insn);
|
||
if (constrain_operands (1))
|
||
{
|
||
/* If this is a pre-increment and we have incremented the value
|
||
where it lives, copy the incremented value to RELOADREG to
|
||
be used as an address. */
|
||
|
||
if (! post)
|
||
emit_insn (gen_move_insn (reloadreg, incloc));
|
||
|
||
return add_insn;
|
||
}
|
||
}
|
||
delete_insns_since (last);
|
||
}
|
||
|
||
/* If couldn't do the increment directly, must increment in RELOADREG.
|
||
The way we do this depends on whether this is pre- or post-increment.
|
||
For pre-increment, copy INCLOC to the reload register, increment it
|
||
there, then save back. */
|
||
|
||
if (! post)
|
||
{
|
||
if (in != reloadreg)
|
||
emit_insn (gen_move_insn (reloadreg, real_in));
|
||
emit_insn (gen_add2_insn (reloadreg, inc));
|
||
store = emit_insn (gen_move_insn (incloc, reloadreg));
|
||
}
|
||
else
|
||
{
|
||
/* Postincrement.
|
||
Because this might be a jump insn or a compare, and because RELOADREG
|
||
may not be available after the insn in an input reload, we must do
|
||
the incrementation before the insn being reloaded for.
|
||
|
||
We have already copied IN to RELOADREG. Increment the copy in
|
||
RELOADREG, save that back, then decrement RELOADREG so it has
|
||
the original value. */
|
||
|
||
emit_insn (gen_add2_insn (reloadreg, inc));
|
||
store = emit_insn (gen_move_insn (incloc, reloadreg));
|
||
emit_insn (gen_add2_insn (reloadreg, GEN_INT (-inc_amount)));
|
||
}
|
||
|
||
return store;
|
||
}
|
||
|
||
/* Return 1 if we are certain that the constraint-string STRING allows
|
||
the hard register REG. Return 0 if we can't be sure of this. */
|
||
|
||
static int
|
||
constraint_accepts_reg_p (string, reg)
|
||
const char *string;
|
||
rtx reg;
|
||
{
|
||
int value = 0;
|
||
int regno = true_regnum (reg);
|
||
int c;
|
||
|
||
/* Initialize for first alternative. */
|
||
value = 0;
|
||
/* Check that each alternative contains `g' or `r'. */
|
||
while (1)
|
||
switch (c = *string++)
|
||
{
|
||
case 0:
|
||
/* If an alternative lacks `g' or `r', we lose. */
|
||
return value;
|
||
case ',':
|
||
/* If an alternative lacks `g' or `r', we lose. */
|
||
if (value == 0)
|
||
return 0;
|
||
/* Initialize for next alternative. */
|
||
value = 0;
|
||
break;
|
||
case 'g':
|
||
case 'r':
|
||
/* Any general reg wins for this alternative. */
|
||
if (TEST_HARD_REG_BIT (reg_class_contents[(int) GENERAL_REGS], regno))
|
||
value = 1;
|
||
break;
|
||
default:
|
||
/* Any reg in specified class wins for this alternative. */
|
||
{
|
||
enum reg_class class = REG_CLASS_FROM_LETTER (c);
|
||
|
||
if (TEST_HARD_REG_BIT (reg_class_contents[(int) class], regno))
|
||
value = 1;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Return the number of places FIND appears within X, but don't count
|
||
an occurrence if some SET_DEST is FIND. */
|
||
|
||
int
|
||
count_occurrences (x, find)
|
||
register rtx x, find;
|
||
{
|
||
register int i, j;
|
||
register enum rtx_code code;
|
||
register char *format_ptr;
|
||
int count;
|
||
|
||
if (x == find)
|
||
return 1;
|
||
if (x == 0)
|
||
return 0;
|
||
|
||
code = GET_CODE (x);
|
||
|
||
switch (code)
|
||
{
|
||
case REG:
|
||
case QUEUED:
|
||
case CONST_INT:
|
||
case CONST_DOUBLE:
|
||
case SYMBOL_REF:
|
||
case CODE_LABEL:
|
||
case PC:
|
||
case CC0:
|
||
return 0;
|
||
|
||
case MEM:
|
||
if (GET_CODE (find) == MEM && rtx_equal_p (x, find))
|
||
return 1;
|
||
break;
|
||
case SET:
|
||
if (SET_DEST (x) == find)
|
||
return count_occurrences (SET_SRC (x), find);
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
format_ptr = GET_RTX_FORMAT (code);
|
||
count = 0;
|
||
|
||
for (i = 0; i < GET_RTX_LENGTH (code); i++)
|
||
{
|
||
switch (*format_ptr++)
|
||
{
|
||
case 'e':
|
||
count += count_occurrences (XEXP (x, i), find);
|
||
break;
|
||
|
||
case 'E':
|
||
if (XVEC (x, i) != NULL)
|
||
{
|
||
for (j = 0; j < XVECLEN (x, i); j++)
|
||
count += count_occurrences (XVECEXP (x, i, j), find);
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
return count;
|
||
}
|
||
|
||
/* This array holds values which are equivalent to a hard register
|
||
during reload_cse_regs. Each array element is an EXPR_LIST of
|
||
values. Each time a hard register is set, we set the corresponding
|
||
array element to the value. Each time a hard register is copied
|
||
into memory, we add the memory location to the corresponding array
|
||
element. We don't store values or memory addresses with side
|
||
effects in this array.
|
||
|
||
If the value is a CONST_INT, then the mode of the containing
|
||
EXPR_LIST is the mode in which that CONST_INT was referenced.
|
||
|
||
We sometimes clobber a specific entry in a list. In that case, we
|
||
just set XEXP (list-entry, 0) to 0. */
|
||
|
||
static rtx *reg_values;
|
||
|
||
/* This is a preallocated REG rtx which we use as a temporary in
|
||
reload_cse_invalidate_regno, so that we don't need to allocate a
|
||
new one each time through a loop in that function. */
|
||
|
||
static rtx invalidate_regno_rtx;
|
||
|
||
/* Invalidate any entries in reg_values which depend on REGNO,
|
||
including those for REGNO itself. This is called if REGNO is
|
||
changing. If CLOBBER is true, then always forget anything we
|
||
currently know about REGNO. MODE is the mode of the assignment to
|
||
REGNO, which is used to determine how many hard registers are being
|
||
changed. If MODE is VOIDmode, then only REGNO is being changed;
|
||
this is used when invalidating call clobbered registers across a
|
||
call. */
|
||
|
||
static void
|
||
reload_cse_invalidate_regno (regno, mode, clobber)
|
||
int regno;
|
||
enum machine_mode mode;
|
||
int clobber;
|
||
{
|
||
int endregno;
|
||
register int i;
|
||
|
||
/* Our callers don't always go through true_regnum; we may see a
|
||
pseudo-register here from a CLOBBER or the like. We probably
|
||
won't ever see a pseudo-register that has a real register number,
|
||
for we check anyhow for safety. */
|
||
if (regno >= FIRST_PSEUDO_REGISTER)
|
||
regno = reg_renumber[regno];
|
||
if (regno < 0)
|
||
return;
|
||
|
||
if (mode == VOIDmode)
|
||
endregno = regno + 1;
|
||
else
|
||
endregno = regno + HARD_REGNO_NREGS (regno, mode);
|
||
|
||
if (clobber)
|
||
for (i = regno; i < endregno; i++)
|
||
reg_values[i] = 0;
|
||
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
{
|
||
rtx x;
|
||
|
||
for (x = reg_values[i]; x; x = XEXP (x, 1))
|
||
{
|
||
if (XEXP (x, 0) != 0
|
||
&& refers_to_regno_p (regno, endregno, XEXP (x, 0), NULL_PTR))
|
||
{
|
||
/* If this is the only entry on the list, clear
|
||
reg_values[i]. Otherwise, just clear this entry on
|
||
the list. */
|
||
if (XEXP (x, 1) == 0 && x == reg_values[i])
|
||
{
|
||
reg_values[i] = 0;
|
||
break;
|
||
}
|
||
XEXP (x, 0) = 0;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* We must look at earlier registers, in case REGNO is part of a
|
||
multi word value but is not the first register. If an earlier
|
||
register has a value in a mode which overlaps REGNO, then we must
|
||
invalidate that earlier register. Note that we do not need to
|
||
check REGNO or later registers (we must not check REGNO itself,
|
||
because we would incorrectly conclude that there was a conflict). */
|
||
|
||
for (i = 0; i < regno; i++)
|
||
{
|
||
rtx x;
|
||
|
||
for (x = reg_values[i]; x; x = XEXP (x, 1))
|
||
{
|
||
if (XEXP (x, 0) != 0)
|
||
{
|
||
PUT_MODE (invalidate_regno_rtx, GET_MODE (x));
|
||
REGNO (invalidate_regno_rtx) = i;
|
||
if (refers_to_regno_p (regno, endregno, invalidate_regno_rtx,
|
||
NULL_PTR))
|
||
{
|
||
reload_cse_invalidate_regno (i, VOIDmode, 1);
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* The memory at address MEM_BASE is being changed.
|
||
Return whether this change will invalidate VAL. */
|
||
|
||
static int
|
||
reload_cse_mem_conflict_p (mem_base, val)
|
||
rtx mem_base;
|
||
rtx val;
|
||
{
|
||
enum rtx_code code;
|
||
char *fmt;
|
||
int i;
|
||
|
||
code = GET_CODE (val);
|
||
switch (code)
|
||
{
|
||
/* Get rid of a few simple cases quickly. */
|
||
case REG:
|
||
case PC:
|
||
case CC0:
|
||
case SCRATCH:
|
||
case CONST:
|
||
case CONST_INT:
|
||
case CONST_DOUBLE:
|
||
case SYMBOL_REF:
|
||
case LABEL_REF:
|
||
return 0;
|
||
|
||
case MEM:
|
||
if (GET_MODE (mem_base) == BLKmode
|
||
|| GET_MODE (val) == BLKmode)
|
||
return 1;
|
||
if (anti_dependence (val, mem_base))
|
||
return 1;
|
||
/* The address may contain nested MEMs. */
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
fmt = GET_RTX_FORMAT (code);
|
||
|
||
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
||
{
|
||
if (fmt[i] == 'e')
|
||
{
|
||
if (reload_cse_mem_conflict_p (mem_base, XEXP (val, i)))
|
||
return 1;
|
||
}
|
||
else if (fmt[i] == 'E')
|
||
{
|
||
int j;
|
||
|
||
for (j = 0; j < XVECLEN (val, i); j++)
|
||
if (reload_cse_mem_conflict_p (mem_base, XVECEXP (val, i, j)))
|
||
return 1;
|
||
}
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Invalidate any entries in reg_values which are changed because of a
|
||
store to MEM_RTX. If this is called because of a non-const call
|
||
instruction, MEM_RTX is (mem:BLK const0_rtx). */
|
||
|
||
static void
|
||
reload_cse_invalidate_mem (mem_rtx)
|
||
rtx mem_rtx;
|
||
{
|
||
register int i;
|
||
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
{
|
||
rtx x;
|
||
|
||
for (x = reg_values[i]; x; x = XEXP (x, 1))
|
||
{
|
||
if (XEXP (x, 0) != 0
|
||
&& reload_cse_mem_conflict_p (mem_rtx, XEXP (x, 0)))
|
||
{
|
||
/* If this is the only entry on the list, clear
|
||
reg_values[i]. Otherwise, just clear this entry on
|
||
the list. */
|
||
if (XEXP (x, 1) == 0 && x == reg_values[i])
|
||
{
|
||
reg_values[i] = 0;
|
||
break;
|
||
}
|
||
XEXP (x, 0) = 0;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Invalidate DEST, which is being assigned to or clobbered. The
|
||
second parameter exists so that this function can be passed to
|
||
note_stores; it is ignored. */
|
||
|
||
static void
|
||
reload_cse_invalidate_rtx (dest, ignore)
|
||
rtx dest;
|
||
rtx ignore ATTRIBUTE_UNUSED;
|
||
{
|
||
while (GET_CODE (dest) == STRICT_LOW_PART
|
||
|| GET_CODE (dest) == SIGN_EXTRACT
|
||
|| GET_CODE (dest) == ZERO_EXTRACT
|
||
|| GET_CODE (dest) == SUBREG)
|
||
dest = XEXP (dest, 0);
|
||
|
||
if (GET_CODE (dest) == REG)
|
||
reload_cse_invalidate_regno (REGNO (dest), GET_MODE (dest), 1);
|
||
else if (GET_CODE (dest) == MEM)
|
||
reload_cse_invalidate_mem (dest);
|
||
}
|
||
|
||
/* Do a very simple CSE pass over the hard registers.
|
||
|
||
This function detects no-op moves where we happened to assign two
|
||
different pseudo-registers to the same hard register, and then
|
||
copied one to the other. Reload will generate a useless
|
||
instruction copying a register to itself.
|
||
|
||
This function also detects cases where we load a value from memory
|
||
into two different registers, and (if memory is more expensive than
|
||
registers) changes it to simply copy the first register into the
|
||
second register.
|
||
|
||
Another optimization is performed that scans the operands of each
|
||
instruction to see whether the value is already available in a
|
||
hard register. It then replaces the operand with the hard register
|
||
if possible, much like an optional reload would. */
|
||
|
||
static void
|
||
reload_cse_regs_1 (first)
|
||
rtx first;
|
||
{
|
||
char *firstobj;
|
||
rtx callmem;
|
||
register int i;
|
||
rtx insn;
|
||
|
||
init_alias_analysis ();
|
||
|
||
reg_values = (rtx *) alloca (FIRST_PSEUDO_REGISTER * sizeof (rtx));
|
||
bzero ((char *)reg_values, FIRST_PSEUDO_REGISTER * sizeof (rtx));
|
||
|
||
/* Create our EXPR_LIST structures on reload_obstack, so that we can
|
||
free them when we are done. */
|
||
push_obstacks (&reload_obstack, &reload_obstack);
|
||
firstobj = (char *) obstack_alloc (&reload_obstack, 0);
|
||
|
||
/* We pass this to reload_cse_invalidate_mem to invalidate all of
|
||
memory for a non-const call instruction. */
|
||
callmem = gen_rtx_MEM (BLKmode, const0_rtx);
|
||
|
||
/* This is used in reload_cse_invalidate_regno to avoid consing a
|
||
new REG in a loop in that function. */
|
||
invalidate_regno_rtx = gen_rtx_REG (VOIDmode, 0);
|
||
|
||
for (insn = first; insn; insn = NEXT_INSN (insn))
|
||
{
|
||
rtx body;
|
||
|
||
if (GET_CODE (insn) == CODE_LABEL)
|
||
{
|
||
/* Forget all the register values at a code label. We don't
|
||
try to do anything clever around jumps. */
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
reg_values[i] = 0;
|
||
|
||
continue;
|
||
}
|
||
|
||
#ifdef NON_SAVING_SETJMP
|
||
if (NON_SAVING_SETJMP && GET_CODE (insn) == NOTE
|
||
&& NOTE_LINE_NUMBER (insn) == NOTE_INSN_SETJMP)
|
||
{
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
reg_values[i] = 0;
|
||
|
||
continue;
|
||
}
|
||
#endif
|
||
|
||
if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
|
||
continue;
|
||
|
||
/* If this is a call instruction, forget anything stored in a
|
||
call clobbered register, or, if this is not a const call, in
|
||
memory. */
|
||
if (GET_CODE (insn) == CALL_INSN)
|
||
{
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
if (call_used_regs[i])
|
||
reload_cse_invalidate_regno (i, VOIDmode, 1);
|
||
|
||
if (! CONST_CALL_P (insn))
|
||
reload_cse_invalidate_mem (callmem);
|
||
}
|
||
|
||
|
||
/* Forget all the register values at a volatile asm. */
|
||
if (GET_CODE (insn) == INSN
|
||
&& GET_CODE (PATTERN (insn)) == ASM_OPERANDS
|
||
&& MEM_VOLATILE_P (PATTERN (insn)))
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
reg_values[i] = 0;
|
||
|
||
body = PATTERN (insn);
|
||
if (GET_CODE (body) == SET)
|
||
{
|
||
int count = 0;
|
||
if (reload_cse_noop_set_p (body, insn))
|
||
{
|
||
/* If this sets the return value of the function, we must keep
|
||
a USE around, in case this is in a different basic block
|
||
than the final USE. Otherwise, we could loose important
|
||
register lifeness information on SMALL_REGISTER_CLASSES
|
||
machines, where return registers might be used as spills:
|
||
subsequent passes assume that spill registers are dead at
|
||
the end of a basic block. */
|
||
if (REG_FUNCTION_VALUE_P (SET_DEST (body)))
|
||
{
|
||
pop_obstacks ();
|
||
PATTERN (insn) = gen_rtx_USE (VOIDmode, SET_DEST (body));
|
||
INSN_CODE (insn) = -1;
|
||
REG_NOTES (insn) = NULL_RTX;
|
||
push_obstacks (&reload_obstack, &reload_obstack);
|
||
}
|
||
else
|
||
{
|
||
PUT_CODE (insn, NOTE);
|
||
NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
|
||
NOTE_SOURCE_FILE (insn) = 0;
|
||
}
|
||
|
||
/* We're done with this insn. */
|
||
continue;
|
||
}
|
||
|
||
/* It's not a no-op, but we can try to simplify it. */
|
||
count += reload_cse_simplify_set (body, insn);
|
||
|
||
if (count > 0)
|
||
apply_change_group ();
|
||
else
|
||
reload_cse_simplify_operands (insn);
|
||
|
||
reload_cse_record_set (body, body);
|
||
}
|
||
else if (GET_CODE (body) == PARALLEL)
|
||
{
|
||
int count = 0;
|
||
rtx value = NULL_RTX;
|
||
|
||
/* If every action in a PARALLEL is a noop, we can delete
|
||
the entire PARALLEL. */
|
||
for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
|
||
{
|
||
rtx part = XVECEXP (body, 0, i);
|
||
if (GET_CODE (part) == SET)
|
||
{
|
||
if (! reload_cse_noop_set_p (part, insn))
|
||
break;
|
||
if (REG_FUNCTION_VALUE_P (SET_DEST (part)))
|
||
{
|
||
if (value)
|
||
break;
|
||
value = SET_DEST (part);
|
||
}
|
||
}
|
||
else if (GET_CODE (part) != CLOBBER)
|
||
break;
|
||
}
|
||
if (i < 0)
|
||
{
|
||
if (value)
|
||
{
|
||
pop_obstacks ();
|
||
PATTERN (insn) = gen_rtx_USE (VOIDmode, value);
|
||
INSN_CODE (insn) = -1;
|
||
REG_NOTES (insn) = NULL_RTX;
|
||
push_obstacks (&reload_obstack, &reload_obstack);
|
||
}
|
||
else
|
||
{
|
||
PUT_CODE (insn, NOTE);
|
||
NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
|
||
NOTE_SOURCE_FILE (insn) = 0;
|
||
}
|
||
|
||
/* We're done with this insn. */
|
||
continue;
|
||
}
|
||
|
||
/* It's not a no-op, but we can try to simplify it. */
|
||
for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
|
||
if (GET_CODE (XVECEXP (body, 0, i)) == SET)
|
||
count += reload_cse_simplify_set (XVECEXP (body, 0, i), insn);
|
||
|
||
if (count > 0)
|
||
apply_change_group ();
|
||
else
|
||
reload_cse_simplify_operands (insn);
|
||
|
||
/* Look through the PARALLEL and record the values being
|
||
set, if possible. Also handle any CLOBBERs. */
|
||
for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
|
||
{
|
||
rtx x = XVECEXP (body, 0, i);
|
||
|
||
if (GET_CODE (x) == SET)
|
||
reload_cse_record_set (x, body);
|
||
else
|
||
note_stores (x, reload_cse_invalidate_rtx);
|
||
}
|
||
}
|
||
else
|
||
note_stores (body, reload_cse_invalidate_rtx);
|
||
|
||
#ifdef AUTO_INC_DEC
|
||
/* Clobber any registers which appear in REG_INC notes. We
|
||
could keep track of the changes to their values, but it is
|
||
unlikely to help. */
|
||
{
|
||
rtx x;
|
||
|
||
for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
|
||
if (REG_NOTE_KIND (x) == REG_INC)
|
||
reload_cse_invalidate_rtx (XEXP (x, 0), NULL_RTX);
|
||
}
|
||
#endif
|
||
|
||
/* Look for any CLOBBERs in CALL_INSN_FUNCTION_USAGE, but only
|
||
after we have processed the insn. */
|
||
if (GET_CODE (insn) == CALL_INSN)
|
||
{
|
||
rtx x;
|
||
|
||
for (x = CALL_INSN_FUNCTION_USAGE (insn); x; x = XEXP (x, 1))
|
||
if (GET_CODE (XEXP (x, 0)) == CLOBBER)
|
||
reload_cse_invalidate_rtx (XEXP (XEXP (x, 0), 0), NULL_RTX);
|
||
}
|
||
}
|
||
|
||
/* Free all the temporary structures we created, and go back to the
|
||
regular obstacks. */
|
||
obstack_free (&reload_obstack, firstobj);
|
||
pop_obstacks ();
|
||
}
|
||
|
||
/* Call cse / combine like post-reload optimization phases.
|
||
FIRST is the first instruction. */
|
||
void
|
||
reload_cse_regs (first)
|
||
rtx first;
|
||
{
|
||
reload_cse_regs_1 (first);
|
||
reload_combine ();
|
||
reload_cse_move2add (first);
|
||
if (flag_expensive_optimizations)
|
||
reload_cse_regs_1 (first);
|
||
}
|
||
|
||
/* Return whether the values known for REGNO are equal to VAL. MODE
|
||
is the mode of the object that VAL is being copied to; this matters
|
||
if VAL is a CONST_INT. */
|
||
|
||
static int
|
||
reload_cse_regno_equal_p (regno, val, mode)
|
||
int regno;
|
||
rtx val;
|
||
enum machine_mode mode;
|
||
{
|
||
rtx x;
|
||
|
||
if (val == 0)
|
||
return 0;
|
||
|
||
for (x = reg_values[regno]; x; x = XEXP (x, 1))
|
||
if (XEXP (x, 0) != 0
|
||
&& rtx_equal_p (XEXP (x, 0), val)
|
||
&& (! flag_float_store || GET_CODE (XEXP (x, 0)) != MEM
|
||
|| GET_MODE_CLASS (GET_MODE (x)) != MODE_FLOAT)
|
||
&& (GET_CODE (val) != CONST_INT
|
||
|| mode == GET_MODE (x)
|
||
|| (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x))
|
||
/* On a big endian machine if the value spans more than
|
||
one register then this register holds the high part of
|
||
it and we can't use it.
|
||
|
||
??? We should also compare with the high part of the
|
||
value. */
|
||
&& !(WORDS_BIG_ENDIAN
|
||
&& HARD_REGNO_NREGS (regno, GET_MODE (x)) > 1)
|
||
&& TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
|
||
GET_MODE_BITSIZE (GET_MODE (x))))))
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* See whether a single set is a noop. SET is the set instruction we
|
||
are should check, and INSN is the instruction from which it came. */
|
||
|
||
static int
|
||
reload_cse_noop_set_p (set, insn)
|
||
rtx set;
|
||
rtx insn;
|
||
{
|
||
rtx src, dest;
|
||
enum machine_mode dest_mode;
|
||
int dreg, sreg;
|
||
int ret;
|
||
|
||
src = SET_SRC (set);
|
||
dest = SET_DEST (set);
|
||
dest_mode = GET_MODE (dest);
|
||
|
||
if (side_effects_p (src))
|
||
return 0;
|
||
|
||
dreg = true_regnum (dest);
|
||
sreg = true_regnum (src);
|
||
|
||
/* Check for setting a register to itself. In this case, we don't
|
||
have to worry about REG_DEAD notes. */
|
||
if (dreg >= 0 && dreg == sreg)
|
||
return 1;
|
||
|
||
ret = 0;
|
||
if (dreg >= 0)
|
||
{
|
||
/* Check for setting a register to itself. */
|
||
if (dreg == sreg)
|
||
ret = 1;
|
||
|
||
/* Check for setting a register to a value which we already know
|
||
is in the register. */
|
||
else if (reload_cse_regno_equal_p (dreg, src, dest_mode))
|
||
ret = 1;
|
||
|
||
/* Check for setting a register DREG to another register SREG
|
||
where SREG is equal to a value which is already in DREG. */
|
||
else if (sreg >= 0)
|
||
{
|
||
rtx x;
|
||
|
||
for (x = reg_values[sreg]; x; x = XEXP (x, 1))
|
||
{
|
||
rtx tmp;
|
||
|
||
if (XEXP (x, 0) == 0)
|
||
continue;
|
||
|
||
if (dest_mode == GET_MODE (x))
|
||
tmp = XEXP (x, 0);
|
||
else if (GET_MODE_BITSIZE (dest_mode)
|
||
< GET_MODE_BITSIZE (GET_MODE (x)))
|
||
tmp = gen_lowpart_common (dest_mode, XEXP (x, 0));
|
||
else
|
||
continue;
|
||
|
||
if (tmp
|
||
&& reload_cse_regno_equal_p (dreg, tmp, dest_mode))
|
||
{
|
||
ret = 1;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
else if (GET_CODE (dest) == MEM)
|
||
{
|
||
/* Check for storing a register to memory when we know that the
|
||
register is equivalent to the memory location. */
|
||
if (sreg >= 0
|
||
&& reload_cse_regno_equal_p (sreg, dest, dest_mode)
|
||
&& ! side_effects_p (dest))
|
||
ret = 1;
|
||
}
|
||
|
||
return ret;
|
||
}
|
||
|
||
/* Try to simplify a single SET instruction. SET is the set pattern.
|
||
INSN is the instruction it came from.
|
||
This function only handles one case: if we set a register to a value
|
||
which is not a register, we try to find that value in some other register
|
||
and change the set into a register copy. */
|
||
|
||
static int
|
||
reload_cse_simplify_set (set, insn)
|
||
rtx set;
|
||
rtx insn;
|
||
{
|
||
int dreg;
|
||
rtx src;
|
||
enum machine_mode dest_mode;
|
||
enum reg_class dclass;
|
||
register int i;
|
||
|
||
dreg = true_regnum (SET_DEST (set));
|
||
if (dreg < 0)
|
||
return 0;
|
||
|
||
src = SET_SRC (set);
|
||
if (side_effects_p (src) || true_regnum (src) >= 0)
|
||
return 0;
|
||
|
||
dclass = REGNO_REG_CLASS (dreg);
|
||
|
||
/* If memory loads are cheaper than register copies, don't change them. */
|
||
if (GET_CODE (src) == MEM
|
||
&& MEMORY_MOVE_COST (GET_MODE (src), dclass, 1) < 2)
|
||
return 0;
|
||
|
||
/* If the constant is cheaper than a register, don't change it. */
|
||
if (CONSTANT_P (src)
|
||
&& rtx_cost (src, SET) < 2)
|
||
return 0;
|
||
|
||
dest_mode = GET_MODE (SET_DEST (set));
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
{
|
||
if (i != dreg
|
||
&& REGISTER_MOVE_COST (REGNO_REG_CLASS (i), dclass) == 2
|
||
&& reload_cse_regno_equal_p (i, src, dest_mode))
|
||
{
|
||
int validated;
|
||
|
||
/* Pop back to the real obstacks while changing the insn. */
|
||
pop_obstacks ();
|
||
|
||
validated = validate_change (insn, &SET_SRC (set),
|
||
gen_rtx_REG (dest_mode, i), 1);
|
||
|
||
/* Go back to the obstack we are using for temporary
|
||
storage. */
|
||
push_obstacks (&reload_obstack, &reload_obstack);
|
||
|
||
if (validated)
|
||
return 1;
|
||
}
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/* Try to replace operands in INSN with equivalent values that are already
|
||
in registers. This can be viewed as optional reloading.
|
||
|
||
For each non-register operand in the insn, see if any hard regs are
|
||
known to be equivalent to that operand. Record the alternatives which
|
||
can accept these hard registers. Among all alternatives, select the
|
||
ones which are better or equal to the one currently matching, where
|
||
"better" is in terms of '?' and '!' constraints. Among the remaining
|
||
alternatives, select the one which replaces most operands with
|
||
hard registers. */
|
||
|
||
static int
|
||
reload_cse_simplify_operands (insn)
|
||
rtx insn;
|
||
{
|
||
#ifdef REGISTER_CONSTRAINTS
|
||
int i,j;
|
||
|
||
const char *constraints[MAX_RECOG_OPERANDS];
|
||
|
||
/* Vector recording how bad an alternative is. */
|
||
int *alternative_reject;
|
||
/* Vector recording how many registers can be introduced by choosing
|
||
this alternative. */
|
||
int *alternative_nregs;
|
||
/* Array of vectors recording, for each operand and each alternative,
|
||
which hard register to substitute, or -1 if the operand should be
|
||
left as it is. */
|
||
int *op_alt_regno[MAX_RECOG_OPERANDS];
|
||
/* Array of alternatives, sorted in order of decreasing desirability. */
|
||
int *alternative_order;
|
||
rtx reg = gen_rtx_REG (VOIDmode, -1);
|
||
|
||
extract_insn (insn);
|
||
|
||
if (recog_n_alternatives == 0 || recog_n_operands == 0)
|
||
return 0;
|
||
|
||
/* Figure out which alternative currently matches. */
|
||
if (! constrain_operands (1))
|
||
fatal_insn_not_found (insn);
|
||
|
||
alternative_reject = (int *) alloca (recog_n_alternatives * sizeof (int));
|
||
alternative_nregs = (int *) alloca (recog_n_alternatives * sizeof (int));
|
||
alternative_order = (int *) alloca (recog_n_alternatives * sizeof (int));
|
||
bzero ((char *)alternative_reject, recog_n_alternatives * sizeof (int));
|
||
bzero ((char *)alternative_nregs, recog_n_alternatives * sizeof (int));
|
||
|
||
for (i = 0; i < recog_n_operands; i++)
|
||
{
|
||
enum machine_mode mode;
|
||
int regno;
|
||
const char *p;
|
||
|
||
op_alt_regno[i] = (int *) alloca (recog_n_alternatives * sizeof (int));
|
||
for (j = 0; j < recog_n_alternatives; j++)
|
||
op_alt_regno[i][j] = -1;
|
||
|
||
p = constraints[i] = recog_constraints[i];
|
||
mode = recog_operand_mode[i];
|
||
|
||
/* Add the reject values for each alternative given by the constraints
|
||
for this operand. */
|
||
j = 0;
|
||
while (*p != '\0')
|
||
{
|
||
char c = *p++;
|
||
if (c == ',')
|
||
j++;
|
||
else if (c == '?')
|
||
alternative_reject[j] += 3;
|
||
else if (c == '!')
|
||
alternative_reject[j] += 300;
|
||
}
|
||
|
||
/* We won't change operands which are already registers. We
|
||
also don't want to modify output operands. */
|
||
regno = true_regnum (recog_operand[i]);
|
||
if (regno >= 0
|
||
|| constraints[i][0] == '='
|
||
|| constraints[i][0] == '+')
|
||
continue;
|
||
|
||
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
|
||
{
|
||
int class = (int) NO_REGS;
|
||
|
||
if (! reload_cse_regno_equal_p (regno, recog_operand[i], mode))
|
||
continue;
|
||
|
||
REGNO (reg) = regno;
|
||
PUT_MODE (reg, mode);
|
||
|
||
/* We found a register equal to this operand. Now look for all
|
||
alternatives that can accept this register and have not been
|
||
assigned a register they can use yet. */
|
||
j = 0;
|
||
p = constraints[i];
|
||
for (;;)
|
||
{
|
||
char c = *p++;
|
||
|
||
switch (c)
|
||
{
|
||
case '=': case '+': case '?':
|
||
case '#': case '&': case '!':
|
||
case '*': case '%':
|
||
case '0': case '1': case '2': case '3': case '4':
|
||
case 'm': case '<': case '>': case 'V': case 'o':
|
||
case 'E': case 'F': case 'G': case 'H':
|
||
case 's': case 'i': case 'n':
|
||
case 'I': case 'J': case 'K': case 'L':
|
||
case 'M': case 'N': case 'O': case 'P':
|
||
#ifdef EXTRA_CONSTRAINT
|
||
case 'Q': case 'R': case 'S': case 'T': case 'U':
|
||
#endif
|
||
case 'p': case 'X':
|
||
/* These don't say anything we care about. */
|
||
break;
|
||
|
||
case 'g': case 'r':
|
||
class = reg_class_subunion[(int) class][(int) GENERAL_REGS];
|
||
break;
|
||
|
||
default:
|
||
class
|
||
= reg_class_subunion[(int) class][(int) REG_CLASS_FROM_LETTER ((unsigned char)c)];
|
||
break;
|
||
|
||
case ',': case '\0':
|
||
/* See if REGNO fits this alternative, and set it up as the
|
||
replacement register if we don't have one for this
|
||
alternative yet and the operand being replaced is not
|
||
a cheap CONST_INT. */
|
||
if (op_alt_regno[i][j] == -1
|
||
&& reg_fits_class_p (reg, class, 0, mode)
|
||
&& (GET_CODE (recog_operand[i]) != CONST_INT
|
||
|| rtx_cost (recog_operand[i], SET) > rtx_cost (reg, SET)))
|
||
{
|
||
alternative_nregs[j]++;
|
||
op_alt_regno[i][j] = regno;
|
||
}
|
||
j++;
|
||
break;
|
||
}
|
||
|
||
if (c == '\0')
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Record all alternatives which are better or equal to the currently
|
||
matching one in the alternative_order array. */
|
||
for (i = j = 0; i < recog_n_alternatives; i++)
|
||
if (alternative_reject[i] <= alternative_reject[which_alternative])
|
||
alternative_order[j++] = i;
|
||
recog_n_alternatives = j;
|
||
|
||
/* Sort it. Given a small number of alternatives, a dumb algorithm
|
||
won't hurt too much. */
|
||
for (i = 0; i < recog_n_alternatives - 1; i++)
|
||
{
|
||
int best = i;
|
||
int best_reject = alternative_reject[alternative_order[i]];
|
||
int best_nregs = alternative_nregs[alternative_order[i]];
|
||
int tmp;
|
||
|
||
for (j = i + 1; j < recog_n_alternatives; j++)
|
||
{
|
||
int this_reject = alternative_reject[alternative_order[j]];
|
||
int this_nregs = alternative_nregs[alternative_order[j]];
|
||
|
||
if (this_reject < best_reject
|
||
|| (this_reject == best_reject && this_nregs < best_nregs))
|
||
{
|
||
best = j;
|
||
best_reject = this_reject;
|
||
best_nregs = this_nregs;
|
||
}
|
||
}
|
||
|
||
tmp = alternative_order[best];
|
||
alternative_order[best] = alternative_order[i];
|
||
alternative_order[i] = tmp;
|
||
}
|
||
|
||
/* Substitute the operands as determined by op_alt_regno for the best
|
||
alternative. */
|
||
j = alternative_order[0];
|
||
|
||
/* Pop back to the real obstacks while changing the insn. */
|
||
pop_obstacks ();
|
||
|
||
for (i = 0; i < recog_n_operands; i++)
|
||
{
|
||
enum machine_mode mode = recog_operand_mode[i];
|
||
if (op_alt_regno[i][j] == -1)
|
||
continue;
|
||
|
||
validate_change (insn, recog_operand_loc[i],
|
||
gen_rtx_REG (mode, op_alt_regno[i][j]), 1);
|
||
}
|
||
|
||
for (i = recog_n_dups - 1; i >= 0; i--)
|
||
{
|
||
int op = recog_dup_num[i];
|
||
enum machine_mode mode = recog_operand_mode[op];
|
||
|
||
if (op_alt_regno[op][j] == -1)
|
||
continue;
|
||
|
||
validate_change (insn, recog_dup_loc[i],
|
||
gen_rtx_REG (mode, op_alt_regno[op][j]), 1);
|
||
}
|
||
|
||
/* Go back to the obstack we are using for temporary
|
||
storage. */
|
||
push_obstacks (&reload_obstack, &reload_obstack);
|
||
|
||
return apply_change_group ();
|
||
#else
|
||
return 0;
|
||
#endif
|
||
}
|
||
|
||
/* These two variables are used to pass information from
|
||
reload_cse_record_set to reload_cse_check_clobber. */
|
||
|
||
static int reload_cse_check_clobbered;
|
||
static rtx reload_cse_check_src;
|
||
|
||
/* See if DEST overlaps with RELOAD_CSE_CHECK_SRC. If it does, set
|
||
RELOAD_CSE_CHECK_CLOBBERED. This is called via note_stores. The
|
||
second argument, which is passed by note_stores, is ignored. */
|
||
|
||
static void
|
||
reload_cse_check_clobber (dest, ignore)
|
||
rtx dest;
|
||
rtx ignore ATTRIBUTE_UNUSED;
|
||
{
|
||
if (reg_overlap_mentioned_p (dest, reload_cse_check_src))
|
||
reload_cse_check_clobbered = 1;
|
||
}
|
||
|
||
/* Record the result of a SET instruction. SET is the set pattern.
|
||
BODY is the pattern of the insn that it came from. */
|
||
|
||
static void
|
||
reload_cse_record_set (set, body)
|
||
rtx set;
|
||
rtx body;
|
||
{
|
||
rtx dest, src, x;
|
||
int dreg, sreg;
|
||
enum machine_mode dest_mode;
|
||
|
||
dest = SET_DEST (set);
|
||
src = SET_SRC (set);
|
||
dreg = true_regnum (dest);
|
||
sreg = true_regnum (src);
|
||
dest_mode = GET_MODE (dest);
|
||
|
||
/* Some machines don't define AUTO_INC_DEC, but they still use push
|
||
instructions. We need to catch that case here in order to
|
||
invalidate the stack pointer correctly. Note that invalidating
|
||
the stack pointer is different from invalidating DEST. */
|
||
x = dest;
|
||
while (GET_CODE (x) == SUBREG
|
||
|| GET_CODE (x) == ZERO_EXTRACT
|
||
|| GET_CODE (x) == SIGN_EXTRACT
|
||
|| GET_CODE (x) == STRICT_LOW_PART)
|
||
x = XEXP (x, 0);
|
||
if (push_operand (x, GET_MODE (x)))
|
||
{
|
||
reload_cse_invalidate_rtx (stack_pointer_rtx, NULL_RTX);
|
||
reload_cse_invalidate_rtx (dest, NULL_RTX);
|
||
return;
|
||
}
|
||
|
||
/* We can only handle an assignment to a register, or a store of a
|
||
register to a memory location. For other cases, we just clobber
|
||
the destination. We also have to just clobber if there are side
|
||
effects in SRC or DEST. */
|
||
if ((dreg < 0 && GET_CODE (dest) != MEM)
|
||
|| side_effects_p (src)
|
||
|| side_effects_p (dest))
|
||
{
|
||
reload_cse_invalidate_rtx (dest, NULL_RTX);
|
||
return;
|
||
}
|
||
|
||
#ifdef HAVE_cc0
|
||
/* We don't try to handle values involving CC, because it's a pain
|
||
to keep track of when they have to be invalidated. */
|
||
if (reg_mentioned_p (cc0_rtx, src)
|
||
|| reg_mentioned_p (cc0_rtx, dest))
|
||
{
|
||
reload_cse_invalidate_rtx (dest, NULL_RTX);
|
||
return;
|
||
}
|
||
#endif
|
||
|
||
/* If BODY is a PARALLEL, then we need to see whether the source of
|
||
SET is clobbered by some other instruction in the PARALLEL. */
|
||
if (GET_CODE (body) == PARALLEL)
|
||
{
|
||
int i;
|
||
|
||
for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
|
||
{
|
||
rtx x;
|
||
|
||
x = XVECEXP (body, 0, i);
|
||
if (x == set)
|
||
continue;
|
||
|
||
reload_cse_check_clobbered = 0;
|
||
reload_cse_check_src = src;
|
||
note_stores (x, reload_cse_check_clobber);
|
||
if (reload_cse_check_clobbered)
|
||
{
|
||
reload_cse_invalidate_rtx (dest, NULL_RTX);
|
||
return;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (dreg >= 0)
|
||
{
|
||
int i;
|
||
|
||
/* This is an assignment to a register. Update the value we
|
||
have stored for the register. */
|
||
if (sreg >= 0)
|
||
{
|
||
rtx x;
|
||
|
||
/* This is a copy from one register to another. Any values
|
||
which were valid for SREG are now valid for DREG. If the
|
||
mode changes, we use gen_lowpart_common to extract only
|
||
the part of the value that is copied. */
|
||
reg_values[dreg] = 0;
|
||
for (x = reg_values[sreg]; x; x = XEXP (x, 1))
|
||
{
|
||
rtx tmp;
|
||
|
||
if (XEXP (x, 0) == 0)
|
||
continue;
|
||
if (dest_mode == GET_MODE (XEXP (x, 0)))
|
||
tmp = XEXP (x, 0);
|
||
else if (GET_MODE_BITSIZE (dest_mode)
|
||
> GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
|
||
continue;
|
||
else
|
||
tmp = gen_lowpart_common (dest_mode, XEXP (x, 0));
|
||
if (tmp)
|
||
reg_values[dreg] = gen_rtx_EXPR_LIST (dest_mode, tmp,
|
||
reg_values[dreg]);
|
||
}
|
||
}
|
||
else
|
||
reg_values[dreg] = gen_rtx_EXPR_LIST (dest_mode, src, NULL_RTX);
|
||
|
||
/* We've changed DREG, so invalidate any values held by other
|
||
registers that depend upon it. */
|
||
reload_cse_invalidate_regno (dreg, dest_mode, 0);
|
||
|
||
/* If this assignment changes more than one hard register,
|
||
forget anything we know about the others. */
|
||
for (i = 1; i < HARD_REGNO_NREGS (dreg, dest_mode); i++)
|
||
reg_values[dreg + i] = 0;
|
||
}
|
||
else if (GET_CODE (dest) == MEM)
|
||
{
|
||
/* Invalidate conflicting memory locations. */
|
||
reload_cse_invalidate_mem (dest);
|
||
|
||
/* If we're storing a register to memory, add DEST to the list
|
||
in REG_VALUES. */
|
||
if (sreg >= 0 && ! side_effects_p (dest))
|
||
reg_values[sreg] = gen_rtx_EXPR_LIST (dest_mode, dest,
|
||
reg_values[sreg]);
|
||
}
|
||
else
|
||
{
|
||
/* We should have bailed out earlier. */
|
||
abort ();
|
||
}
|
||
}
|
||
|
||
/* If reload couldn't use reg+reg+offset addressing, try to use reg+reg
|
||
addressing now.
|
||
This code might also be useful when reload gave up on reg+reg addresssing
|
||
because of clashes between the return register and INDEX_REG_CLASS. */
|
||
|
||
/* The maximum number of uses of a register we can keep track of to
|
||
replace them with reg+reg addressing. */
|
||
#define RELOAD_COMBINE_MAX_USES 6
|
||
|
||
/* INSN is the insn where a register has ben used, and USEP points to the
|
||
location of the register within the rtl. */
|
||
struct reg_use { rtx insn, *usep; };
|
||
|
||
/* If the register is used in some unknown fashion, USE_INDEX is negative.
|
||
If it is dead, USE_INDEX is RELOAD_COMBINE_MAX_USES, and STORE_RUID
|
||
indicates where it becomes live again.
|
||
Otherwise, USE_INDEX is the index of the last encountered use of the
|
||
register (which is first among these we have seen since we scan backwards),
|
||
OFFSET contains the constant offset that is added to the register in
|
||
all encountered uses, and USE_RUID indicates the first encountered, i.e.
|
||
last, of these uses.
|
||
STORE_RUID is always meaningful if we only want to use a value in a
|
||
register in a different place: it denotes the next insn in the insn
|
||
stream (i.e. the last ecountered) that sets or clobbers the register. */
|
||
static struct
|
||
{
|
||
struct reg_use reg_use[RELOAD_COMBINE_MAX_USES];
|
||
int use_index;
|
||
rtx offset;
|
||
int store_ruid;
|
||
int use_ruid;
|
||
} reg_state[FIRST_PSEUDO_REGISTER];
|
||
|
||
/* Reverse linear uid. This is increased in reload_combine while scanning
|
||
the instructions from last to first. It is used to set last_label_ruid
|
||
and the store_ruid / use_ruid fields in reg_state. */
|
||
static int reload_combine_ruid;
|
||
|
||
#define LABEL_LIVE(LABEL) \
|
||
(label_live[CODE_LABEL_NUMBER (LABEL) - min_labelno])
|
||
|
||
static void
|
||
reload_combine ()
|
||
{
|
||
rtx insn, set;
|
||
int first_index_reg = 1, last_index_reg = 0;
|
||
int i;
|
||
int last_label_ruid;
|
||
int min_labelno, n_labels;
|
||
HARD_REG_SET ever_live_at_start, *label_live;
|
||
|
||
/* If reg+reg can be used in offsetable memory adresses, the main chunk of
|
||
reload has already used it where appropriate, so there is no use in
|
||
trying to generate it now. */
|
||
if (double_reg_address_ok && INDEX_REG_CLASS != NO_REGS)
|
||
return;
|
||
|
||
/* To avoid wasting too much time later searching for an index register,
|
||
determine the minimum and maximum index register numbers. */
|
||
for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; --i)
|
||
{
|
||
if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], i))
|
||
{
|
||
if (! last_index_reg)
|
||
last_index_reg = i;
|
||
first_index_reg = i;
|
||
}
|
||
}
|
||
/* If no index register is available, we can quit now. */
|
||
if (first_index_reg > last_index_reg)
|
||
return;
|
||
|
||
/* Set up LABEL_LIVE and EVER_LIVE_AT_START. The register lifetime
|
||
information is a bit fuzzy immediately after reload, but it's
|
||
still good enough to determine which registers are live at a jump
|
||
destination. */
|
||
min_labelno = get_first_label_num ();
|
||
n_labels = max_label_num () - min_labelno;
|
||
label_live = (HARD_REG_SET *) xmalloc (n_labels * sizeof (HARD_REG_SET));
|
||
CLEAR_HARD_REG_SET (ever_live_at_start);
|
||
for (i = n_basic_blocks - 1; i >= 0; i--)
|
||
{
|
||
insn = BLOCK_HEAD (i);
|
||
if (GET_CODE (insn) == CODE_LABEL)
|
||
{
|
||
HARD_REG_SET live;
|
||
|
||
REG_SET_TO_HARD_REG_SET (live, BASIC_BLOCK (i)->global_live_at_start);
|
||
compute_use_by_pseudos (&live, BASIC_BLOCK (i)->global_live_at_start);
|
||
COPY_HARD_REG_SET (LABEL_LIVE (insn), live);
|
||
IOR_HARD_REG_SET (ever_live_at_start, live);
|
||
}
|
||
}
|
||
|
||
/* Initialize last_label_ruid, reload_combine_ruid and reg_state. */
|
||
last_label_ruid = reload_combine_ruid = 0;
|
||
for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; --i)
|
||
{
|
||
reg_state[i].store_ruid = reload_combine_ruid;
|
||
if (fixed_regs[i])
|
||
reg_state[i].use_index = -1;
|
||
else
|
||
reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
|
||
}
|
||
|
||
for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
|
||
{
|
||
rtx note;
|
||
|
||
/* We cannot do our optimization across labels. Invalidating all the use
|
||
information we have would be costly, so we just note where the label
|
||
is and then later disable any optimization that would cross it. */
|
||
if (GET_CODE (insn) == CODE_LABEL)
|
||
last_label_ruid = reload_combine_ruid;
|
||
if (GET_CODE (insn) == BARRIER)
|
||
{
|
||
for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; --i)
|
||
reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
|
||
}
|
||
if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
|
||
continue;
|
||
reload_combine_ruid++;
|
||
|
||
/* Look for (set (REGX) (CONST_INT))
|
||
(set (REGX) (PLUS (REGX) (REGY)))
|
||
...
|
||
... (MEM (REGX)) ...
|
||
and convert it to
|
||
(set (REGZ) (CONST_INT))
|
||
...
|
||
... (MEM (PLUS (REGZ) (REGY)))... .
|
||
|
||
First, check that we have (set (REGX) (PLUS (REGX) (REGY)))
|
||
and that we know all uses of REGX before it dies. */
|
||
set = single_set (insn);
|
||
if (set != NULL_RTX
|
||
&& GET_CODE (SET_DEST (set)) == REG
|
||
&& (HARD_REGNO_NREGS (REGNO (SET_DEST (set)),
|
||
GET_MODE (SET_DEST (set)))
|
||
== 1)
|
||
&& GET_CODE (SET_SRC (set)) == PLUS
|
||
&& GET_CODE (XEXP (SET_SRC (set), 1)) == REG
|
||
&& rtx_equal_p (XEXP (SET_SRC (set), 0), SET_DEST (set))
|
||
&& last_label_ruid < reg_state[REGNO (SET_DEST (set))].use_ruid)
|
||
{
|
||
rtx reg = SET_DEST (set);
|
||
rtx plus = SET_SRC (set);
|
||
rtx base = XEXP (plus, 1);
|
||
rtx prev = prev_nonnote_insn (insn);
|
||
rtx prev_set = prev ? single_set (prev) : NULL_RTX;
|
||
int regno = REGNO (reg);
|
||
rtx const_reg;
|
||
rtx reg_sum = NULL_RTX;
|
||
|
||
/* Now, we need an index register.
|
||
We'll set index_reg to this index register, const_reg to the
|
||
register that is to be loaded with the constant
|
||
(denoted as REGZ in the substitution illustration above),
|
||
and reg_sum to the register-register that we want to use to
|
||
substitute uses of REG (typically in MEMs) with.
|
||
First check REG and BASE for being index registers;
|
||
we can use them even if they are not dead. */
|
||
if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], regno)
|
||
|| TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
|
||
REGNO (base)))
|
||
{
|
||
const_reg = reg;
|
||
reg_sum = plus;
|
||
}
|
||
else
|
||
{
|
||
/* Otherwise, look for a free index register. Since we have
|
||
checked above that neiter REG nor BASE are index registers,
|
||
if we find anything at all, it will be different from these
|
||
two registers. */
|
||
for (i = first_index_reg; i <= last_index_reg; i++)
|
||
{
|
||
if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], i)
|
||
&& reg_state[i].use_index == RELOAD_COMBINE_MAX_USES
|
||
&& reg_state[i].store_ruid <= reg_state[regno].use_ruid
|
||
&& HARD_REGNO_NREGS (i, GET_MODE (reg)) == 1)
|
||
{
|
||
rtx index_reg = gen_rtx_REG (GET_MODE (reg), i);
|
||
const_reg = index_reg;
|
||
reg_sum = gen_rtx_PLUS (GET_MODE (reg), index_reg, base);
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
/* Check that PREV_SET is indeed (set (REGX) (CONST_INT)) and that
|
||
(REGY), i.e. BASE, is not clobbered before the last use we'll
|
||
create. */
|
||
if (prev_set
|
||
&& GET_CODE (SET_SRC (prev_set)) == CONST_INT
|
||
&& rtx_equal_p (SET_DEST (prev_set), reg)
|
||
&& reg_state[regno].use_index >= 0
|
||
&& reg_state[REGNO (base)].store_ruid <= reg_state[regno].use_ruid
|
||
&& reg_sum)
|
||
{
|
||
int i;
|
||
|
||
/* Change destination register and - if necessary - the
|
||
constant value in PREV, the constant loading instruction. */
|
||
validate_change (prev, &SET_DEST (prev_set), const_reg, 1);
|
||
if (reg_state[regno].offset != const0_rtx)
|
||
validate_change (prev,
|
||
&SET_SRC (prev_set),
|
||
GEN_INT (INTVAL (SET_SRC (prev_set))
|
||
+ INTVAL (reg_state[regno].offset)),
|
||
1);
|
||
/* Now for every use of REG that we have recorded, replace REG
|
||
with REG_SUM. */
|
||
for (i = reg_state[regno].use_index;
|
||
i < RELOAD_COMBINE_MAX_USES; i++)
|
||
validate_change (reg_state[regno].reg_use[i].insn,
|
||
reg_state[regno].reg_use[i].usep,
|
||
reg_sum, 1);
|
||
|
||
if (apply_change_group ())
|
||
{
|
||
rtx *np;
|
||
|
||
/* Delete the reg-reg addition. */
|
||
PUT_CODE (insn, NOTE);
|
||
NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
|
||
NOTE_SOURCE_FILE (insn) = 0;
|
||
|
||
if (reg_state[regno].offset != const0_rtx)
|
||
{
|
||
/* Previous REG_EQUIV / REG_EQUAL notes for PREV
|
||
are now invalid. */
|
||
for (np = ®_NOTES (prev); *np; )
|
||
{
|
||
if (REG_NOTE_KIND (*np) == REG_EQUAL
|
||
|| REG_NOTE_KIND (*np) == REG_EQUIV)
|
||
*np = XEXP (*np, 1);
|
||
else
|
||
np = &XEXP (*np, 1);
|
||
}
|
||
}
|
||
reg_state[regno].use_index = RELOAD_COMBINE_MAX_USES;
|
||
reg_state[REGNO (const_reg)].store_ruid = reload_combine_ruid;
|
||
continue;
|
||
}
|
||
}
|
||
}
|
||
note_stores (PATTERN (insn), reload_combine_note_store);
|
||
if (GET_CODE (insn) == CALL_INSN)
|
||
{
|
||
rtx link;
|
||
|
||
for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; --i)
|
||
{
|
||
if (call_used_regs[i])
|
||
{
|
||
reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
|
||
reg_state[i].store_ruid = reload_combine_ruid;
|
||
}
|
||
}
|
||
for (link = CALL_INSN_FUNCTION_USAGE (insn); link;
|
||
link = XEXP (link, 1))
|
||
{
|
||
rtx use = XEXP (link, 0);
|
||
int regno = REGNO (XEXP (use, 0));
|
||
if (GET_CODE (use) == CLOBBER)
|
||
{
|
||
reg_state[regno].use_index = RELOAD_COMBINE_MAX_USES;
|
||
reg_state[regno].store_ruid = reload_combine_ruid;
|
||
}
|
||
else
|
||
reg_state[regno].use_index = -1;
|
||
}
|
||
}
|
||
if (GET_CODE (insn) == JUMP_INSN && GET_CODE (PATTERN (insn)) != RETURN)
|
||
{
|
||
/* Non-spill registers might be used at the call destination in
|
||
some unknown fashion, so we have to mark the unknown use. */
|
||
HARD_REG_SET *live;
|
||
if ((condjump_p (insn) || condjump_in_parallel_p (insn))
|
||
&& JUMP_LABEL (insn))
|
||
live = &LABEL_LIVE (JUMP_LABEL (insn));
|
||
else
|
||
live = &ever_live_at_start;
|
||
for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; --i)
|
||
{
|
||
if (TEST_HARD_REG_BIT (*live, i))
|
||
reg_state[i].use_index = -1;
|
||
}
|
||
}
|
||
reload_combine_note_use (&PATTERN (insn), insn);
|
||
for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
|
||
{
|
||
if (REG_NOTE_KIND (note) == REG_INC
|
||
&& GET_CODE (XEXP (note, 0)) == REG)
|
||
{
|
||
int regno = REGNO (XEXP (note, 0));
|
||
|
||
reg_state[regno].store_ruid = reload_combine_ruid;
|
||
reg_state[regno].use_index = -1;
|
||
}
|
||
}
|
||
}
|
||
free (label_live);
|
||
}
|
||
|
||
/* Check if DST is a register or a subreg of a register; if it is,
|
||
update reg_state[regno].store_ruid and reg_state[regno].use_index
|
||
accordingly. Called via note_stores from reload_combine. */
|
||
static void
|
||
reload_combine_note_store (dst, set)
|
||
rtx dst, set;
|
||
{
|
||
int regno = 0;
|
||
int i;
|
||
unsigned size = GET_MODE_SIZE (GET_MODE (dst));
|
||
|
||
if (GET_CODE (dst) == SUBREG)
|
||
{
|
||
regno = SUBREG_WORD (dst);
|
||
dst = SUBREG_REG (dst);
|
||
}
|
||
if (GET_CODE (dst) != REG)
|
||
return;
|
||
regno += REGNO (dst);
|
||
|
||
/* note_stores might have stripped a STRICT_LOW_PART, so we have to be
|
||
careful with registers / register parts that are not full words.
|
||
|
||
Similarly for ZERO_EXTRACT and SIGN_EXTRACT. */
|
||
if (GET_CODE (set) != SET
|
||
|| GET_CODE (SET_DEST (set)) == ZERO_EXTRACT
|
||
|| GET_CODE (SET_DEST (set)) == SIGN_EXTRACT
|
||
|| GET_CODE (SET_DEST (set)) == STRICT_LOW_PART)
|
||
{
|
||
for (i = (size - 1) / UNITS_PER_WORD + regno; i >= regno; i--)
|
||
{
|
||
reg_state[i].use_index = -1;
|
||
reg_state[i].store_ruid = reload_combine_ruid;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
for (i = (size - 1) / UNITS_PER_WORD + regno; i >= regno; i--)
|
||
{
|
||
reg_state[i].store_ruid = reload_combine_ruid;
|
||
reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* XP points to a piece of rtl that has to be checked for any uses of
|
||
registers.
|
||
*XP is the pattern of INSN, or a part of it.
|
||
Called from reload_combine, and recursively by itself. */
|
||
static void
|
||
reload_combine_note_use (xp, insn)
|
||
rtx *xp, insn;
|
||
{
|
||
rtx x = *xp;
|
||
enum rtx_code code = x->code;
|
||
char *fmt;
|
||
int i, j;
|
||
rtx offset = const0_rtx; /* For the REG case below. */
|
||
|
||
switch (code)
|
||
{
|
||
case SET:
|
||
if (GET_CODE (SET_DEST (x)) == REG)
|
||
{
|
||
reload_combine_note_use (&SET_SRC (x), insn);
|
||
return;
|
||
}
|
||
break;
|
||
|
||
case CLOBBER:
|
||
if (GET_CODE (SET_DEST (x)) == REG)
|
||
return;
|
||
break;
|
||
|
||
case PLUS:
|
||
/* We are interested in (plus (reg) (const_int)) . */
|
||
if (GET_CODE (XEXP (x, 0)) != REG || GET_CODE (XEXP (x, 1)) != CONST_INT)
|
||
break;
|
||
offset = XEXP (x, 1);
|
||
x = XEXP (x, 0);
|
||
/* Fall through. */
|
||
case REG:
|
||
{
|
||
int regno = REGNO (x);
|
||
int use_index;
|
||
|
||
/* Some spurious USEs of pseudo registers might remain.
|
||
Just ignore them. */
|
||
if (regno >= FIRST_PSEUDO_REGISTER)
|
||
return;
|
||
|
||
/* If this register is already used in some unknown fashion, we
|
||
can't do anything.
|
||
If we decrement the index from zero to -1, we can't store more
|
||
uses, so this register becomes used in an unknown fashion. */
|
||
use_index = --reg_state[regno].use_index;
|
||
if (use_index < 0)
|
||
return;
|
||
|
||
if (use_index != RELOAD_COMBINE_MAX_USES - 1)
|
||
{
|
||
/* We have found another use for a register that is already
|
||
used later. Check if the offsets match; if not, mark the
|
||
register as used in an unknown fashion. */
|
||
if (! rtx_equal_p (offset, reg_state[regno].offset))
|
||
{
|
||
reg_state[regno].use_index = -1;
|
||
return;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* This is the first use of this register we have seen since we
|
||
marked it as dead. */
|
||
reg_state[regno].offset = offset;
|
||
reg_state[regno].use_ruid = reload_combine_ruid;
|
||
}
|
||
reg_state[regno].reg_use[use_index].insn = insn;
|
||
reg_state[regno].reg_use[use_index].usep = xp;
|
||
return;
|
||
}
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
/* Recursively process the components of X. */
|
||
fmt = GET_RTX_FORMAT (code);
|
||
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
||
{
|
||
if (fmt[i] == 'e')
|
||
reload_combine_note_use (&XEXP (x, i), insn);
|
||
else if (fmt[i] == 'E')
|
||
{
|
||
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
|
||
reload_combine_note_use (&XVECEXP (x, i, j), insn);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* See if we can reduce the cost of a constant by replacing a move with
|
||
an add. */
|
||
/* We cannot do our optimization across labels. Invalidating all the
|
||
information about register contents we have would be costly, so we
|
||
use last_label_luid (local variable of reload_cse_move2add) to note
|
||
where the label is and then later disable any optimization that would
|
||
cross it.
|
||
reg_offset[n] / reg_base_reg[n] / reg_mode[n] are only valid if
|
||
reg_set_luid[n] is larger than last_label_luid[n] . */
|
||
static int reg_set_luid[FIRST_PSEUDO_REGISTER];
|
||
/* reg_offset[n] has to be CONST_INT for it and reg_base_reg[n] /
|
||
reg_mode[n] to be valid.
|
||
If reg_offset[n] is a CONST_INT and reg_base_reg[n] is negative, register n
|
||
has been set to reg_offset[n] in mode reg_mode[n] .
|
||
If reg_offset[n] is a CONST_INT and reg_base_reg[n] is non-negative,
|
||
register n has been set to the sum of reg_offset[n] and register
|
||
reg_base_reg[n], calculated in mode reg_mode[n] . */
|
||
static rtx reg_offset[FIRST_PSEUDO_REGISTER];
|
||
static int reg_base_reg[FIRST_PSEUDO_REGISTER];
|
||
static enum machine_mode reg_mode[FIRST_PSEUDO_REGISTER];
|
||
/* move2add_luid is linearily increased while scanning the instructions
|
||
from first to last. It is used to set reg_set_luid in
|
||
reload_cse_move2add and move2add_note_store. */
|
||
static int move2add_luid;
|
||
|
||
/* Generate a CONST_INT and force it in the range of MODE. */
|
||
static rtx
|
||
gen_mode_int (mode, value)
|
||
enum machine_mode mode;
|
||
HOST_WIDE_INT value;
|
||
{
|
||
HOST_WIDE_INT cval = value & GET_MODE_MASK (mode);
|
||
int width = GET_MODE_BITSIZE (mode);
|
||
|
||
/* If MODE is narrower than HOST_WIDE_INT and CVAL is a negative number,
|
||
sign extend it. */
|
||
if (width > 0 && width < HOST_BITS_PER_WIDE_INT
|
||
&& (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
|
||
cval |= (HOST_WIDE_INT) -1 << width;
|
||
|
||
return GEN_INT (cval);
|
||
}
|
||
|
||
static void
|
||
reload_cse_move2add (first)
|
||
rtx first;
|
||
{
|
||
int i;
|
||
rtx insn;
|
||
int last_label_luid;
|
||
|
||
for (i = FIRST_PSEUDO_REGISTER-1; i >= 0; i--)
|
||
reg_set_luid[i] = 0;
|
||
|
||
last_label_luid = 0;
|
||
move2add_luid = 1;
|
||
for (insn = first; insn; insn = NEXT_INSN (insn), move2add_luid++)
|
||
{
|
||
rtx pat, note;
|
||
|
||
if (GET_CODE (insn) == CODE_LABEL)
|
||
last_label_luid = move2add_luid;
|
||
if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
|
||
continue;
|
||
pat = PATTERN (insn);
|
||
/* For simplicity, we only perform this optimization on
|
||
straightforward SETs. */
|
||
if (GET_CODE (pat) == SET
|
||
&& GET_CODE (SET_DEST (pat)) == REG)
|
||
{
|
||
rtx reg = SET_DEST (pat);
|
||
int regno = REGNO (reg);
|
||
rtx src = SET_SRC (pat);
|
||
|
||
/* Check if we have valid information on the contents of this
|
||
register in the mode of REG. */
|
||
/* ??? We don't know how zero / sign extension is handled, hence
|
||
we can't go from a narrower to a wider mode. */
|
||
if (reg_set_luid[regno] > last_label_luid
|
||
&& (GET_MODE_SIZE (GET_MODE (reg))
|
||
<= GET_MODE_SIZE (reg_mode[regno]))
|
||
&& GET_CODE (reg_offset[regno]) == CONST_INT)
|
||
{
|
||
/* Try to transform (set (REGX) (CONST_INT A))
|
||
...
|
||
(set (REGX) (CONST_INT B))
|
||
to
|
||
(set (REGX) (CONST_INT A))
|
||
...
|
||
(set (REGX) (plus (REGX) (CONST_INT B-A))) */
|
||
|
||
if (GET_CODE (src) == CONST_INT && reg_base_reg[regno] < 0)
|
||
{
|
||
int success = 0;
|
||
rtx new_src
|
||
= gen_mode_int (GET_MODE (reg),
|
||
INTVAL (src) - INTVAL (reg_offset[regno]));
|
||
/* (set (reg) (plus (reg) (const_int 0))) is not canonical;
|
||
use (set (reg) (reg)) instead.
|
||
We don't delete this insn, nor do we convert it into a
|
||
note, to avoid losing register notes or the return
|
||
value flag. jump2 already knowns how to get rid of
|
||
no-op moves. */
|
||
if (new_src == const0_rtx)
|
||
success = validate_change (insn, &SET_SRC (pat), reg, 0);
|
||
else if (rtx_cost (new_src, PLUS) < rtx_cost (src, SET)
|
||
&& have_add2_insn (GET_MODE (reg)))
|
||
success = validate_change (insn, &PATTERN (insn),
|
||
gen_add2_insn (reg, new_src), 0);
|
||
reg_set_luid[regno] = move2add_luid;
|
||
reg_mode[regno] = GET_MODE (reg);
|
||
reg_offset[regno] = src;
|
||
continue;
|
||
}
|
||
|
||
/* Try to transform (set (REGX) (REGY))
|
||
(set (REGX) (PLUS (REGX) (CONST_INT A)))
|
||
...
|
||
(set (REGX) (REGY))
|
||
(set (REGX) (PLUS (REGX) (CONST_INT B)))
|
||
to
|
||
(REGX) (REGY))
|
||
(set (REGX) (PLUS (REGX) (CONST_INT A)))
|
||
...
|
||
(set (REGX) (plus (REGX) (CONST_INT B-A))) */
|
||
else if (GET_CODE (src) == REG
|
||
&& reg_base_reg[regno] == REGNO (src)
|
||
&& reg_set_luid[regno] > reg_set_luid[REGNO (src)])
|
||
{
|
||
rtx next = next_nonnote_insn (insn);
|
||
rtx set;
|
||
if (next)
|
||
set = single_set (next);
|
||
if (next
|
||
&& set
|
||
&& SET_DEST (set) == reg
|
||
&& GET_CODE (SET_SRC (set)) == PLUS
|
||
&& XEXP (SET_SRC (set), 0) == reg
|
||
&& GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
|
||
{
|
||
rtx src3 = XEXP (SET_SRC (set), 1);
|
||
rtx new_src
|
||
= gen_mode_int (GET_MODE (reg),
|
||
INTVAL (src3)
|
||
- INTVAL (reg_offset[regno]));
|
||
int success = 0;
|
||
|
||
if (new_src == const0_rtx)
|
||
/* See above why we create (set (reg) (reg)) here. */
|
||
success
|
||
= validate_change (next, &SET_SRC (set), reg, 0);
|
||
else if ((rtx_cost (new_src, PLUS)
|
||
< 2 + rtx_cost (src3, SET))
|
||
&& have_add2_insn (GET_MODE (reg)))
|
||
success
|
||
= validate_change (next, &PATTERN (next),
|
||
gen_add2_insn (reg, new_src), 0);
|
||
if (success)
|
||
{
|
||
/* INSN might be the first insn in a basic block
|
||
if the preceding insn is a conditional jump
|
||
or a possible-throwing call. */
|
||
PUT_CODE (insn, NOTE);
|
||
NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
|
||
NOTE_SOURCE_FILE (insn) = 0;
|
||
}
|
||
insn = next;
|
||
reg_set_luid[regno] = move2add_luid;
|
||
reg_mode[regno] = GET_MODE (reg);
|
||
reg_offset[regno] = src3;
|
||
continue;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
|
||
{
|
||
if (REG_NOTE_KIND (note) == REG_INC
|
||
&& GET_CODE (XEXP (note, 0)) == REG)
|
||
{
|
||
/* Indicate that this register has been recently written to,
|
||
but the exact contents are not available. */
|
||
int regno = REGNO (XEXP (note, 0));
|
||
if (regno < FIRST_PSEUDO_REGISTER)
|
||
{
|
||
reg_set_luid[regno] = move2add_luid;
|
||
reg_offset[regno] = note;
|
||
}
|
||
}
|
||
}
|
||
note_stores (PATTERN (insn), move2add_note_store);
|
||
/* If this is a CALL_INSN, all call used registers are stored with
|
||
unknown values. */
|
||
if (GET_CODE (insn) == CALL_INSN)
|
||
{
|
||
for (i = FIRST_PSEUDO_REGISTER-1; i >= 0; i--)
|
||
{
|
||
if (call_used_regs[i])
|
||
{
|
||
reg_set_luid[i] = move2add_luid;
|
||
reg_offset[i] = insn; /* Invalidate contents. */
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* SET is a SET or CLOBBER that sets DST.
|
||
Update reg_set_luid, reg_offset and reg_base_reg accordingly.
|
||
Called from reload_cse_move2add via note_stores. */
|
||
static void
|
||
move2add_note_store (dst, set)
|
||
rtx dst, set;
|
||
{
|
||
int regno = 0;
|
||
int i;
|
||
|
||
enum machine_mode mode = GET_MODE (dst);
|
||
if (GET_CODE (dst) == SUBREG)
|
||
{
|
||
regno = SUBREG_WORD (dst);
|
||
dst = SUBREG_REG (dst);
|
||
}
|
||
if (GET_CODE (dst) != REG)
|
||
return;
|
||
|
||
regno += REGNO (dst);
|
||
|
||
if (HARD_REGNO_NREGS (regno, mode) == 1 && GET_CODE (set) == SET
|
||
&& GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
|
||
&& GET_CODE (SET_DEST (set)) != SIGN_EXTRACT
|
||
&& GET_CODE (SET_DEST (set)) != STRICT_LOW_PART)
|
||
{
|
||
rtx src = SET_SRC (set);
|
||
|
||
reg_mode[regno] = mode;
|
||
switch (GET_CODE (src))
|
||
{
|
||
case PLUS:
|
||
{
|
||
rtx src0 = XEXP (src, 0);
|
||
if (GET_CODE (src0) == REG)
|
||
{
|
||
if (REGNO (src0) != regno
|
||
|| reg_offset[regno] != const0_rtx)
|
||
{
|
||
reg_base_reg[regno] = REGNO (src0);
|
||
reg_set_luid[regno] = move2add_luid;
|
||
}
|
||
reg_offset[regno] = XEXP (src, 1);
|
||
break;
|
||
}
|
||
reg_set_luid[regno] = move2add_luid;
|
||
reg_offset[regno] = set; /* Invalidate contents. */
|
||
break;
|
||
}
|
||
|
||
case REG:
|
||
reg_base_reg[regno] = REGNO (SET_SRC (set));
|
||
reg_offset[regno] = const0_rtx;
|
||
reg_set_luid[regno] = move2add_luid;
|
||
break;
|
||
|
||
default:
|
||
reg_base_reg[regno] = -1;
|
||
reg_offset[regno] = SET_SRC (set);
|
||
reg_set_luid[regno] = move2add_luid;
|
||
break;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
for (i = regno + HARD_REGNO_NREGS (regno, mode) - 1; i >= regno; i--)
|
||
{
|
||
/* Indicate that this register has been recently written to,
|
||
but the exact contents are not available. */
|
||
reg_set_luid[i] = move2add_luid;
|
||
reg_offset[i] = dst;
|
||
}
|
||
}
|
||
}
|
||
|
||
#ifdef AUTO_INC_DEC
|
||
static void
|
||
add_auto_inc_notes (insn, x)
|
||
rtx insn;
|
||
rtx x;
|
||
{
|
||
enum rtx_code code = GET_CODE (x);
|
||
char *fmt;
|
||
int i, j;
|
||
|
||
if (code == MEM && auto_inc_p (XEXP (x, 0)))
|
||
{
|
||
REG_NOTES (insn)
|
||
= gen_rtx_EXPR_LIST (REG_INC, XEXP (XEXP (x, 0), 0), REG_NOTES (insn));
|
||
return;
|
||
}
|
||
|
||
/* Scan all the operand sub-expressions. */
|
||
fmt = GET_RTX_FORMAT (code);
|
||
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
||
{
|
||
if (fmt[i] == 'e')
|
||
add_auto_inc_notes (insn, XEXP (x, i));
|
||
else if (fmt[i] == 'E')
|
||
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
|
||
add_auto_inc_notes (insn, XVECEXP (x, i, j));
|
||
}
|
||
}
|
||
#endif
|