mirror of
https://git.FreeBSD.org/src.git
synced 2025-01-05 12:56:08 +00:00
1290 lines
39 KiB
C
1290 lines
39 KiB
C
/* Definitions for computing resource usage of specific insns.
|
||
Copyright (C) 1999 Free Software Foundation, Inc.
|
||
|
||
This file is part of GNU CC.
|
||
|
||
GNU CC is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2, or (at your option)
|
||
any later version.
|
||
|
||
GNU CC is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GNU CC; see the file COPYING. If not, write to
|
||
the Free Software Foundation, 59 Temple Place - Suite 330,
|
||
Boston, MA 02111-1307, USA. */
|
||
|
||
#include "config.h"
|
||
#include "toplev.h"
|
||
#include "rtl.h"
|
||
#include "hard-reg-set.h"
|
||
#include "system.h"
|
||
#include "basic-block.h"
|
||
#include "regs.h"
|
||
#include "flags.h"
|
||
#include "output.h"
|
||
#include "resource.h"
|
||
|
||
/* This structure is used to record liveness information at the targets or
|
||
fallthrough insns of branches. We will most likely need the information
|
||
at targets again, so save them in a hash table rather than recomputing them
|
||
each time. */
|
||
|
||
struct target_info
|
||
{
|
||
int uid; /* INSN_UID of target. */
|
||
struct target_info *next; /* Next info for same hash bucket. */
|
||
HARD_REG_SET live_regs; /* Registers live at target. */
|
||
int block; /* Basic block number containing target. */
|
||
int bb_tick; /* Generation count of basic block info. */
|
||
};
|
||
|
||
#define TARGET_HASH_PRIME 257
|
||
|
||
/* Indicates what resources are required at the beginning of the epilogue. */
|
||
static struct resources start_of_epilogue_needs;
|
||
|
||
/* Indicates what resources are required at function end. */
|
||
static struct resources end_of_function_needs;
|
||
|
||
/* Define the hash table itself. */
|
||
static struct target_info **target_hash_table = NULL;
|
||
|
||
/* For each basic block, we maintain a generation number of its basic
|
||
block info, which is updated each time we move an insn from the
|
||
target of a jump. This is the generation number indexed by block
|
||
number. */
|
||
|
||
static int *bb_ticks;
|
||
|
||
/* Marks registers possibly live at the current place being scanned by
|
||
mark_target_live_regs. Used only by next two function. */
|
||
|
||
static HARD_REG_SET current_live_regs;
|
||
|
||
/* Marks registers for which we have seen a REG_DEAD note but no assignment.
|
||
Also only used by the next two functions. */
|
||
|
||
static HARD_REG_SET pending_dead_regs;
|
||
|
||
static void update_live_status PROTO ((rtx, rtx));
|
||
static int find_basic_block PROTO ((rtx));
|
||
static rtx next_insn_no_annul PROTO ((rtx));
|
||
static rtx find_dead_or_set_registers PROTO ((rtx, struct resources*,
|
||
rtx*, int, struct resources,
|
||
struct resources));
|
||
|
||
/* Utility function called from mark_target_live_regs via note_stores.
|
||
It deadens any CLOBBERed registers and livens any SET registers. */
|
||
|
||
static void
|
||
update_live_status (dest, x)
|
||
rtx dest;
|
||
rtx x;
|
||
{
|
||
int first_regno, last_regno;
|
||
int i;
|
||
|
||
if (GET_CODE (dest) != REG
|
||
&& (GET_CODE (dest) != SUBREG || GET_CODE (SUBREG_REG (dest)) != REG))
|
||
return;
|
||
|
||
if (GET_CODE (dest) == SUBREG)
|
||
first_regno = REGNO (SUBREG_REG (dest)) + SUBREG_WORD (dest);
|
||
else
|
||
first_regno = REGNO (dest);
|
||
|
||
last_regno = first_regno + HARD_REGNO_NREGS (first_regno, GET_MODE (dest));
|
||
|
||
if (GET_CODE (x) == CLOBBER)
|
||
for (i = first_regno; i < last_regno; i++)
|
||
CLEAR_HARD_REG_BIT (current_live_regs, i);
|
||
else
|
||
for (i = first_regno; i < last_regno; i++)
|
||
{
|
||
SET_HARD_REG_BIT (current_live_regs, i);
|
||
CLEAR_HARD_REG_BIT (pending_dead_regs, i);
|
||
}
|
||
}
|
||
/* Find the number of the basic block that starts closest to INSN. Return -1
|
||
if we couldn't find such a basic block. */
|
||
|
||
static int
|
||
find_basic_block (insn)
|
||
rtx insn;
|
||
{
|
||
int i;
|
||
|
||
/* Scan backwards to the previous BARRIER. Then see if we can find a
|
||
label that starts a basic block. Return the basic block number. */
|
||
|
||
for (insn = prev_nonnote_insn (insn);
|
||
insn && GET_CODE (insn) != BARRIER;
|
||
insn = prev_nonnote_insn (insn))
|
||
;
|
||
|
||
/* The start of the function is basic block zero. */
|
||
if (insn == 0)
|
||
return 0;
|
||
|
||
/* See if any of the upcoming CODE_LABELs start a basic block. If we reach
|
||
anything other than a CODE_LABEL or note, we can't find this code. */
|
||
for (insn = next_nonnote_insn (insn);
|
||
insn && GET_CODE (insn) == CODE_LABEL;
|
||
insn = next_nonnote_insn (insn))
|
||
{
|
||
for (i = 0; i < n_basic_blocks; i++)
|
||
if (insn == BLOCK_HEAD (i))
|
||
return i;
|
||
}
|
||
|
||
return -1;
|
||
}
|
||
|
||
/* Similar to next_insn, but ignores insns in the delay slots of
|
||
an annulled branch. */
|
||
|
||
static rtx
|
||
next_insn_no_annul (insn)
|
||
rtx insn;
|
||
{
|
||
if (insn)
|
||
{
|
||
/* If INSN is an annulled branch, skip any insns from the target
|
||
of the branch. */
|
||
if (INSN_ANNULLED_BRANCH_P (insn)
|
||
&& NEXT_INSN (PREV_INSN (insn)) != insn)
|
||
while (INSN_FROM_TARGET_P (NEXT_INSN (insn)))
|
||
insn = NEXT_INSN (insn);
|
||
|
||
insn = NEXT_INSN (insn);
|
||
if (insn && GET_CODE (insn) == INSN
|
||
&& GET_CODE (PATTERN (insn)) == SEQUENCE)
|
||
insn = XVECEXP (PATTERN (insn), 0, 0);
|
||
}
|
||
|
||
return insn;
|
||
}
|
||
|
||
/* Given X, some rtl, and RES, a pointer to a `struct resource', mark
|
||
which resources are references by the insn. If INCLUDE_DELAYED_EFFECTS
|
||
is TRUE, resources used by the called routine will be included for
|
||
CALL_INSNs. */
|
||
|
||
void
|
||
mark_referenced_resources (x, res, include_delayed_effects)
|
||
register rtx x;
|
||
register struct resources *res;
|
||
register int include_delayed_effects;
|
||
{
|
||
register enum rtx_code code = GET_CODE (x);
|
||
register int i, j;
|
||
register char *format_ptr;
|
||
|
||
/* Handle leaf items for which we set resource flags. Also, special-case
|
||
CALL, SET and CLOBBER operators. */
|
||
switch (code)
|
||
{
|
||
case CONST:
|
||
case CONST_INT:
|
||
case CONST_DOUBLE:
|
||
case PC:
|
||
case SYMBOL_REF:
|
||
case LABEL_REF:
|
||
return;
|
||
|
||
case SUBREG:
|
||
if (GET_CODE (SUBREG_REG (x)) != REG)
|
||
mark_referenced_resources (SUBREG_REG (x), res, 0);
|
||
else
|
||
{
|
||
int regno = REGNO (SUBREG_REG (x)) + SUBREG_WORD (x);
|
||
int last_regno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
|
||
for (i = regno; i < last_regno; i++)
|
||
SET_HARD_REG_BIT (res->regs, i);
|
||
}
|
||
return;
|
||
|
||
case REG:
|
||
for (i = 0; i < HARD_REGNO_NREGS (REGNO (x), GET_MODE (x)); i++)
|
||
SET_HARD_REG_BIT (res->regs, REGNO (x) + i);
|
||
return;
|
||
|
||
case MEM:
|
||
/* If this memory shouldn't change, it really isn't referencing
|
||
memory. */
|
||
if (RTX_UNCHANGING_P (x))
|
||
res->unch_memory = 1;
|
||
else
|
||
res->memory = 1;
|
||
res->volatil |= MEM_VOLATILE_P (x);
|
||
|
||
/* Mark registers used to access memory. */
|
||
mark_referenced_resources (XEXP (x, 0), res, 0);
|
||
return;
|
||
|
||
case CC0:
|
||
res->cc = 1;
|
||
return;
|
||
|
||
case UNSPEC_VOLATILE:
|
||
case ASM_INPUT:
|
||
/* Traditional asm's are always volatile. */
|
||
res->volatil = 1;
|
||
return;
|
||
|
||
case TRAP_IF:
|
||
res->volatil = 1;
|
||
break;
|
||
|
||
case ASM_OPERANDS:
|
||
res->volatil |= MEM_VOLATILE_P (x);
|
||
|
||
/* For all ASM_OPERANDS, we must traverse the vector of input operands.
|
||
We can not just fall through here since then we would be confused
|
||
by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
|
||
traditional asms unlike their normal usage. */
|
||
|
||
for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
|
||
mark_referenced_resources (ASM_OPERANDS_INPUT (x, i), res, 0);
|
||
return;
|
||
|
||
case CALL:
|
||
/* The first operand will be a (MEM (xxx)) but doesn't really reference
|
||
memory. The second operand may be referenced, though. */
|
||
mark_referenced_resources (XEXP (XEXP (x, 0), 0), res, 0);
|
||
mark_referenced_resources (XEXP (x, 1), res, 0);
|
||
return;
|
||
|
||
case SET:
|
||
/* Usually, the first operand of SET is set, not referenced. But
|
||
registers used to access memory are referenced. SET_DEST is
|
||
also referenced if it is a ZERO_EXTRACT or SIGN_EXTRACT. */
|
||
|
||
mark_referenced_resources (SET_SRC (x), res, 0);
|
||
|
||
x = SET_DEST (x);
|
||
if (GET_CODE (x) == SIGN_EXTRACT || GET_CODE (x) == ZERO_EXTRACT)
|
||
mark_referenced_resources (x, res, 0);
|
||
else if (GET_CODE (x) == SUBREG)
|
||
x = SUBREG_REG (x);
|
||
if (GET_CODE (x) == MEM)
|
||
mark_referenced_resources (XEXP (x, 0), res, 0);
|
||
return;
|
||
|
||
case CLOBBER:
|
||
return;
|
||
|
||
case CALL_INSN:
|
||
if (include_delayed_effects)
|
||
{
|
||
/* A CALL references memory, the frame pointer if it exists, the
|
||
stack pointer, any global registers and any registers given in
|
||
USE insns immediately in front of the CALL.
|
||
|
||
However, we may have moved some of the parameter loading insns
|
||
into the delay slot of this CALL. If so, the USE's for them
|
||
don't count and should be skipped. */
|
||
rtx insn = PREV_INSN (x);
|
||
rtx sequence = 0;
|
||
int seq_size = 0;
|
||
rtx next = NEXT_INSN (x);
|
||
int i;
|
||
|
||
/* If we are part of a delay slot sequence, point at the SEQUENCE. */
|
||
if (NEXT_INSN (insn) != x)
|
||
{
|
||
next = NEXT_INSN (NEXT_INSN (insn));
|
||
sequence = PATTERN (NEXT_INSN (insn));
|
||
seq_size = XVECLEN (sequence, 0);
|
||
if (GET_CODE (sequence) != SEQUENCE)
|
||
abort ();
|
||
}
|
||
|
||
res->memory = 1;
|
||
SET_HARD_REG_BIT (res->regs, STACK_POINTER_REGNUM);
|
||
if (frame_pointer_needed)
|
||
{
|
||
SET_HARD_REG_BIT (res->regs, FRAME_POINTER_REGNUM);
|
||
#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
|
||
SET_HARD_REG_BIT (res->regs, HARD_FRAME_POINTER_REGNUM);
|
||
#endif
|
||
}
|
||
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
if (global_regs[i])
|
||
SET_HARD_REG_BIT (res->regs, i);
|
||
|
||
/* Check for a NOTE_INSN_SETJMP. If it exists, then we must
|
||
assume that this call can need any register.
|
||
|
||
This is done to be more conservative about how we handle setjmp.
|
||
We assume that they both use and set all registers. Using all
|
||
registers ensures that a register will not be considered dead
|
||
just because it crosses a setjmp call. A register should be
|
||
considered dead only if the setjmp call returns non-zero. */
|
||
if (next && GET_CODE (next) == NOTE
|
||
&& NOTE_LINE_NUMBER (next) == NOTE_INSN_SETJMP)
|
||
SET_HARD_REG_SET (res->regs);
|
||
|
||
{
|
||
rtx link;
|
||
|
||
for (link = CALL_INSN_FUNCTION_USAGE (x);
|
||
link;
|
||
link = XEXP (link, 1))
|
||
if (GET_CODE (XEXP (link, 0)) == USE)
|
||
{
|
||
for (i = 1; i < seq_size; i++)
|
||
{
|
||
rtx slot_pat = PATTERN (XVECEXP (sequence, 0, i));
|
||
if (GET_CODE (slot_pat) == SET
|
||
&& rtx_equal_p (SET_DEST (slot_pat),
|
||
SET_DEST (XEXP (link, 0))))
|
||
break;
|
||
}
|
||
if (i >= seq_size)
|
||
mark_referenced_resources (SET_DEST (XEXP (link, 0)),
|
||
res, 0);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* ... fall through to other INSN processing ... */
|
||
|
||
case INSN:
|
||
case JUMP_INSN:
|
||
|
||
#ifdef INSN_REFERENCES_ARE_DELAYED
|
||
if (! include_delayed_effects
|
||
&& INSN_REFERENCES_ARE_DELAYED (x))
|
||
return;
|
||
#endif
|
||
|
||
/* No special processing, just speed up. */
|
||
mark_referenced_resources (PATTERN (x), res, include_delayed_effects);
|
||
return;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
/* Process each sub-expression and flag what it needs. */
|
||
format_ptr = GET_RTX_FORMAT (code);
|
||
for (i = 0; i < GET_RTX_LENGTH (code); i++)
|
||
switch (*format_ptr++)
|
||
{
|
||
case 'e':
|
||
mark_referenced_resources (XEXP (x, i), res, include_delayed_effects);
|
||
break;
|
||
|
||
case 'E':
|
||
for (j = 0; j < XVECLEN (x, i); j++)
|
||
mark_referenced_resources (XVECEXP (x, i, j), res,
|
||
include_delayed_effects);
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* A subroutine of mark_target_live_regs. Search forward from TARGET
|
||
looking for registers that are set before they are used. These are dead.
|
||
Stop after passing a few conditional jumps, and/or a small
|
||
number of unconditional branches. */
|
||
|
||
static rtx
|
||
find_dead_or_set_registers (target, res, jump_target, jump_count, set, needed)
|
||
rtx target;
|
||
struct resources *res;
|
||
rtx *jump_target;
|
||
int jump_count;
|
||
struct resources set, needed;
|
||
{
|
||
HARD_REG_SET scratch;
|
||
rtx insn, next;
|
||
rtx jump_insn = 0;
|
||
int i;
|
||
|
||
for (insn = target; insn; insn = next)
|
||
{
|
||
rtx this_jump_insn = insn;
|
||
|
||
next = NEXT_INSN (insn);
|
||
switch (GET_CODE (insn))
|
||
{
|
||
case CODE_LABEL:
|
||
/* After a label, any pending dead registers that weren't yet
|
||
used can be made dead. */
|
||
AND_COMPL_HARD_REG_SET (pending_dead_regs, needed.regs);
|
||
AND_COMPL_HARD_REG_SET (res->regs, pending_dead_regs);
|
||
CLEAR_HARD_REG_SET (pending_dead_regs);
|
||
|
||
continue;
|
||
|
||
case BARRIER:
|
||
case NOTE:
|
||
continue;
|
||
|
||
case INSN:
|
||
if (GET_CODE (PATTERN (insn)) == USE)
|
||
{
|
||
/* If INSN is a USE made by update_block, we care about the
|
||
underlying insn. Any registers set by the underlying insn
|
||
are live since the insn is being done somewhere else. */
|
||
if (GET_RTX_CLASS (GET_CODE (XEXP (PATTERN (insn), 0))) == 'i')
|
||
mark_set_resources (XEXP (PATTERN (insn), 0), res, 0, 1);
|
||
|
||
/* All other USE insns are to be ignored. */
|
||
continue;
|
||
}
|
||
else if (GET_CODE (PATTERN (insn)) == CLOBBER)
|
||
continue;
|
||
else if (GET_CODE (PATTERN (insn)) == SEQUENCE)
|
||
{
|
||
/* An unconditional jump can be used to fill the delay slot
|
||
of a call, so search for a JUMP_INSN in any position. */
|
||
for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
|
||
{
|
||
this_jump_insn = XVECEXP (PATTERN (insn), 0, i);
|
||
if (GET_CODE (this_jump_insn) == JUMP_INSN)
|
||
break;
|
||
}
|
||
}
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
if (GET_CODE (this_jump_insn) == JUMP_INSN)
|
||
{
|
||
if (jump_count++ < 10)
|
||
{
|
||
if (simplejump_p (this_jump_insn)
|
||
|| GET_CODE (PATTERN (this_jump_insn)) == RETURN)
|
||
{
|
||
next = JUMP_LABEL (this_jump_insn);
|
||
if (jump_insn == 0)
|
||
{
|
||
jump_insn = insn;
|
||
if (jump_target)
|
||
*jump_target = JUMP_LABEL (this_jump_insn);
|
||
}
|
||
}
|
||
else if (condjump_p (this_jump_insn)
|
||
|| condjump_in_parallel_p (this_jump_insn))
|
||
{
|
||
struct resources target_set, target_res;
|
||
struct resources fallthrough_res;
|
||
|
||
/* We can handle conditional branches here by following
|
||
both paths, and then IOR the results of the two paths
|
||
together, which will give us registers that are dead
|
||
on both paths. Since this is expensive, we give it
|
||
a much higher cost than unconditional branches. The
|
||
cost was chosen so that we will follow at most 1
|
||
conditional branch. */
|
||
|
||
jump_count += 4;
|
||
if (jump_count >= 10)
|
||
break;
|
||
|
||
mark_referenced_resources (insn, &needed, 1);
|
||
|
||
/* For an annulled branch, mark_set_resources ignores slots
|
||
filled by instructions from the target. This is correct
|
||
if the branch is not taken. Since we are following both
|
||
paths from the branch, we must also compute correct info
|
||
if the branch is taken. We do this by inverting all of
|
||
the INSN_FROM_TARGET_P bits, calling mark_set_resources,
|
||
and then inverting the INSN_FROM_TARGET_P bits again. */
|
||
|
||
if (GET_CODE (PATTERN (insn)) == SEQUENCE
|
||
&& INSN_ANNULLED_BRANCH_P (this_jump_insn))
|
||
{
|
||
for (i = 1; i < XVECLEN (PATTERN (insn), 0); i++)
|
||
INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i))
|
||
= ! INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i));
|
||
|
||
target_set = set;
|
||
mark_set_resources (insn, &target_set, 0, 1);
|
||
|
||
for (i = 1; i < XVECLEN (PATTERN (insn), 0); i++)
|
||
INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i))
|
||
= ! INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i));
|
||
|
||
mark_set_resources (insn, &set, 0, 1);
|
||
}
|
||
else
|
||
{
|
||
mark_set_resources (insn, &set, 0, 1);
|
||
target_set = set;
|
||
}
|
||
|
||
target_res = *res;
|
||
COPY_HARD_REG_SET (scratch, target_set.regs);
|
||
AND_COMPL_HARD_REG_SET (scratch, needed.regs);
|
||
AND_COMPL_HARD_REG_SET (target_res.regs, scratch);
|
||
|
||
fallthrough_res = *res;
|
||
COPY_HARD_REG_SET (scratch, set.regs);
|
||
AND_COMPL_HARD_REG_SET (scratch, needed.regs);
|
||
AND_COMPL_HARD_REG_SET (fallthrough_res.regs, scratch);
|
||
|
||
find_dead_or_set_registers (JUMP_LABEL (this_jump_insn),
|
||
&target_res, 0, jump_count,
|
||
target_set, needed);
|
||
find_dead_or_set_registers (next,
|
||
&fallthrough_res, 0, jump_count,
|
||
set, needed);
|
||
IOR_HARD_REG_SET (fallthrough_res.regs, target_res.regs);
|
||
AND_HARD_REG_SET (res->regs, fallthrough_res.regs);
|
||
break;
|
||
}
|
||
else
|
||
break;
|
||
}
|
||
else
|
||
{
|
||
/* Don't try this optimization if we expired our jump count
|
||
above, since that would mean there may be an infinite loop
|
||
in the function being compiled. */
|
||
jump_insn = 0;
|
||
break;
|
||
}
|
||
}
|
||
|
||
mark_referenced_resources (insn, &needed, 1);
|
||
mark_set_resources (insn, &set, 0, 1);
|
||
|
||
COPY_HARD_REG_SET (scratch, set.regs);
|
||
AND_COMPL_HARD_REG_SET (scratch, needed.regs);
|
||
AND_COMPL_HARD_REG_SET (res->regs, scratch);
|
||
}
|
||
|
||
return jump_insn;
|
||
}
|
||
|
||
/* Given X, a part of an insn, and a pointer to a `struct resource',
|
||
RES, indicate which resources are modified by the insn. If
|
||
INCLUDE_DELAYED_EFFECTS is nonzero, also mark resources potentially
|
||
set by the called routine.
|
||
|
||
If IN_DEST is nonzero, it means we are inside a SET. Otherwise,
|
||
objects are being referenced instead of set.
|
||
|
||
We never mark the insn as modifying the condition code unless it explicitly
|
||
SETs CC0 even though this is not totally correct. The reason for this is
|
||
that we require a SET of CC0 to immediately precede the reference to CC0.
|
||
So if some other insn sets CC0 as a side-effect, we know it cannot affect
|
||
our computation and thus may be placed in a delay slot. */
|
||
|
||
void
|
||
mark_set_resources (x, res, in_dest, include_delayed_effects)
|
||
register rtx x;
|
||
register struct resources *res;
|
||
int in_dest;
|
||
int include_delayed_effects;
|
||
{
|
||
register enum rtx_code code;
|
||
register int i, j;
|
||
register char *format_ptr;
|
||
|
||
restart:
|
||
|
||
code = GET_CODE (x);
|
||
|
||
switch (code)
|
||
{
|
||
case NOTE:
|
||
case BARRIER:
|
||
case CODE_LABEL:
|
||
case USE:
|
||
case CONST_INT:
|
||
case CONST_DOUBLE:
|
||
case LABEL_REF:
|
||
case SYMBOL_REF:
|
||
case CONST:
|
||
case PC:
|
||
/* These don't set any resources. */
|
||
return;
|
||
|
||
case CC0:
|
||
if (in_dest)
|
||
res->cc = 1;
|
||
return;
|
||
|
||
case CALL_INSN:
|
||
/* Called routine modifies the condition code, memory, any registers
|
||
that aren't saved across calls, global registers and anything
|
||
explicitly CLOBBERed immediately after the CALL_INSN. */
|
||
|
||
if (include_delayed_effects)
|
||
{
|
||
rtx next = NEXT_INSN (x);
|
||
rtx prev = PREV_INSN (x);
|
||
rtx link;
|
||
|
||
res->cc = res->memory = 1;
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
if (call_used_regs[i] || global_regs[i])
|
||
SET_HARD_REG_BIT (res->regs, i);
|
||
|
||
/* If X is part of a delay slot sequence, then NEXT should be
|
||
the first insn after the sequence. */
|
||
if (NEXT_INSN (prev) != x)
|
||
next = NEXT_INSN (NEXT_INSN (prev));
|
||
|
||
for (link = CALL_INSN_FUNCTION_USAGE (x);
|
||
link; link = XEXP (link, 1))
|
||
if (GET_CODE (XEXP (link, 0)) == CLOBBER)
|
||
mark_set_resources (SET_DEST (XEXP (link, 0)), res, 1, 0);
|
||
|
||
/* Check for a NOTE_INSN_SETJMP. If it exists, then we must
|
||
assume that this call can clobber any register. */
|
||
if (next && GET_CODE (next) == NOTE
|
||
&& NOTE_LINE_NUMBER (next) == NOTE_INSN_SETJMP)
|
||
SET_HARD_REG_SET (res->regs);
|
||
}
|
||
|
||
/* ... and also what its RTL says it modifies, if anything. */
|
||
|
||
case JUMP_INSN:
|
||
case INSN:
|
||
|
||
/* An insn consisting of just a CLOBBER (or USE) is just for flow
|
||
and doesn't actually do anything, so we ignore it. */
|
||
|
||
#ifdef INSN_SETS_ARE_DELAYED
|
||
if (! include_delayed_effects
|
||
&& INSN_SETS_ARE_DELAYED (x))
|
||
return;
|
||
#endif
|
||
|
||
x = PATTERN (x);
|
||
if (GET_CODE (x) != USE && GET_CODE (x) != CLOBBER)
|
||
goto restart;
|
||
return;
|
||
|
||
case SET:
|
||
/* If the source of a SET is a CALL, this is actually done by
|
||
the called routine. So only include it if we are to include the
|
||
effects of the calling routine. */
|
||
|
||
mark_set_resources (SET_DEST (x), res,
|
||
(include_delayed_effects
|
||
|| GET_CODE (SET_SRC (x)) != CALL),
|
||
0);
|
||
|
||
mark_set_resources (SET_SRC (x), res, 0, 0);
|
||
return;
|
||
|
||
case CLOBBER:
|
||
mark_set_resources (XEXP (x, 0), res, 1, 0);
|
||
return;
|
||
|
||
case SEQUENCE:
|
||
for (i = 0; i < XVECLEN (x, 0); i++)
|
||
if (! (INSN_ANNULLED_BRANCH_P (XVECEXP (x, 0, 0))
|
||
&& INSN_FROM_TARGET_P (XVECEXP (x, 0, i))))
|
||
mark_set_resources (XVECEXP (x, 0, i), res, 0,
|
||
include_delayed_effects);
|
||
return;
|
||
|
||
case POST_INC:
|
||
case PRE_INC:
|
||
case POST_DEC:
|
||
case PRE_DEC:
|
||
mark_set_resources (XEXP (x, 0), res, 1, 0);
|
||
return;
|
||
|
||
case ZERO_EXTRACT:
|
||
mark_set_resources (XEXP (x, 0), res, in_dest, 0);
|
||
mark_set_resources (XEXP (x, 1), res, 0, 0);
|
||
mark_set_resources (XEXP (x, 2), res, 0, 0);
|
||
return;
|
||
|
||
case MEM:
|
||
if (in_dest)
|
||
{
|
||
res->memory = 1;
|
||
res->unch_memory |= RTX_UNCHANGING_P (x);
|
||
res->volatil |= MEM_VOLATILE_P (x);
|
||
}
|
||
|
||
mark_set_resources (XEXP (x, 0), res, 0, 0);
|
||
return;
|
||
|
||
case SUBREG:
|
||
if (in_dest)
|
||
{
|
||
if (GET_CODE (SUBREG_REG (x)) != REG)
|
||
mark_set_resources (SUBREG_REG (x), res,
|
||
in_dest, include_delayed_effects);
|
||
else
|
||
{
|
||
int regno = REGNO (SUBREG_REG (x)) + SUBREG_WORD (x);
|
||
int last_regno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
|
||
for (i = regno; i < last_regno; i++)
|
||
SET_HARD_REG_BIT (res->regs, i);
|
||
}
|
||
}
|
||
return;
|
||
|
||
case REG:
|
||
if (in_dest)
|
||
for (i = 0; i < HARD_REGNO_NREGS (REGNO (x), GET_MODE (x)); i++)
|
||
SET_HARD_REG_BIT (res->regs, REGNO (x) + i);
|
||
return;
|
||
|
||
case UNSPEC_VOLATILE:
|
||
case ASM_INPUT:
|
||
/* Traditional asm's are always volatile. */
|
||
res->volatil = 1;
|
||
return;
|
||
|
||
case TRAP_IF:
|
||
res->volatil = 1;
|
||
break;
|
||
|
||
case ASM_OPERANDS:
|
||
res->volatil |= MEM_VOLATILE_P (x);
|
||
|
||
/* For all ASM_OPERANDS, we must traverse the vector of input operands.
|
||
We can not just fall through here since then we would be confused
|
||
by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
|
||
traditional asms unlike their normal usage. */
|
||
|
||
for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
|
||
mark_set_resources (ASM_OPERANDS_INPUT (x, i), res, in_dest, 0);
|
||
return;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
/* Process each sub-expression and flag what it needs. */
|
||
format_ptr = GET_RTX_FORMAT (code);
|
||
for (i = 0; i < GET_RTX_LENGTH (code); i++)
|
||
switch (*format_ptr++)
|
||
{
|
||
case 'e':
|
||
mark_set_resources (XEXP (x, i), res, in_dest, include_delayed_effects);
|
||
break;
|
||
|
||
case 'E':
|
||
for (j = 0; j < XVECLEN (x, i); j++)
|
||
mark_set_resources (XVECEXP (x, i, j), res, in_dest,
|
||
include_delayed_effects);
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Set the resources that are live at TARGET.
|
||
|
||
If TARGET is zero, we refer to the end of the current function and can
|
||
return our precomputed value.
|
||
|
||
Otherwise, we try to find out what is live by consulting the basic block
|
||
information. This is tricky, because we must consider the actions of
|
||
reload and jump optimization, which occur after the basic block information
|
||
has been computed.
|
||
|
||
Accordingly, we proceed as follows::
|
||
|
||
We find the previous BARRIER and look at all immediately following labels
|
||
(with no intervening active insns) to see if any of them start a basic
|
||
block. If we hit the start of the function first, we use block 0.
|
||
|
||
Once we have found a basic block and a corresponding first insns, we can
|
||
accurately compute the live status from basic_block_live_regs and
|
||
reg_renumber. (By starting at a label following a BARRIER, we are immune
|
||
to actions taken by reload and jump.) Then we scan all insns between
|
||
that point and our target. For each CLOBBER (or for call-clobbered regs
|
||
when we pass a CALL_INSN), mark the appropriate registers are dead. For
|
||
a SET, mark them as live.
|
||
|
||
We have to be careful when using REG_DEAD notes because they are not
|
||
updated by such things as find_equiv_reg. So keep track of registers
|
||
marked as dead that haven't been assigned to, and mark them dead at the
|
||
next CODE_LABEL since reload and jump won't propagate values across labels.
|
||
|
||
If we cannot find the start of a basic block (should be a very rare
|
||
case, if it can happen at all), mark everything as potentially live.
|
||
|
||
Next, scan forward from TARGET looking for things set or clobbered
|
||
before they are used. These are not live.
|
||
|
||
Because we can be called many times on the same target, save our results
|
||
in a hash table indexed by INSN_UID. This is only done if the function
|
||
init_resource_info () was invoked before we are called. */
|
||
|
||
void
|
||
mark_target_live_regs (insns, target, res)
|
||
rtx insns;
|
||
rtx target;
|
||
struct resources *res;
|
||
{
|
||
int b = -1;
|
||
int i;
|
||
struct target_info *tinfo = NULL;
|
||
rtx insn;
|
||
rtx jump_insn = 0;
|
||
rtx jump_target;
|
||
HARD_REG_SET scratch;
|
||
struct resources set, needed;
|
||
|
||
/* Handle end of function. */
|
||
if (target == 0)
|
||
{
|
||
*res = end_of_function_needs;
|
||
return;
|
||
}
|
||
|
||
/* We have to assume memory is needed, but the CC isn't. */
|
||
res->memory = 1;
|
||
res->volatil = res->unch_memory = 0;
|
||
res->cc = 0;
|
||
|
||
/* See if we have computed this value already. */
|
||
if (target_hash_table != NULL)
|
||
{
|
||
for (tinfo = target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME];
|
||
tinfo; tinfo = tinfo->next)
|
||
if (tinfo->uid == INSN_UID (target))
|
||
break;
|
||
|
||
/* Start by getting the basic block number. If we have saved
|
||
information, we can get it from there unless the insn at the
|
||
start of the basic block has been deleted. */
|
||
if (tinfo && tinfo->block != -1
|
||
&& ! INSN_DELETED_P (BLOCK_HEAD (tinfo->block)))
|
||
b = tinfo->block;
|
||
}
|
||
|
||
if (b == -1)
|
||
b = find_basic_block (target);
|
||
|
||
if (target_hash_table != NULL)
|
||
{
|
||
if (tinfo)
|
||
{
|
||
/* If the information is up-to-date, use it. Otherwise, we will
|
||
update it below. */
|
||
if (b == tinfo->block && b != -1 && tinfo->bb_tick == bb_ticks[b])
|
||
{
|
||
COPY_HARD_REG_SET (res->regs, tinfo->live_regs);
|
||
return;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* Allocate a place to put our results and chain it into the
|
||
hash table. */
|
||
tinfo = (struct target_info *) oballoc (sizeof (struct target_info));
|
||
tinfo->uid = INSN_UID (target);
|
||
tinfo->block = b;
|
||
tinfo->next = target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME];
|
||
target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME] = tinfo;
|
||
}
|
||
}
|
||
|
||
CLEAR_HARD_REG_SET (pending_dead_regs);
|
||
|
||
/* If we found a basic block, get the live registers from it and update
|
||
them with anything set or killed between its start and the insn before
|
||
TARGET. Otherwise, we must assume everything is live. */
|
||
if (b != -1)
|
||
{
|
||
regset regs_live = BASIC_BLOCK (b)->global_live_at_start;
|
||
int j;
|
||
int regno;
|
||
rtx start_insn, stop_insn;
|
||
|
||
/* Compute hard regs live at start of block -- this is the real hard regs
|
||
marked live, plus live pseudo regs that have been renumbered to
|
||
hard regs. */
|
||
|
||
REG_SET_TO_HARD_REG_SET (current_live_regs, regs_live);
|
||
|
||
EXECUTE_IF_SET_IN_REG_SET
|
||
(regs_live, FIRST_PSEUDO_REGISTER, i,
|
||
{
|
||
if ((regno = reg_renumber[i]) >= 0)
|
||
for (j = regno;
|
||
j < regno + HARD_REGNO_NREGS (regno,
|
||
PSEUDO_REGNO_MODE (i));
|
||
j++)
|
||
SET_HARD_REG_BIT (current_live_regs, j);
|
||
});
|
||
|
||
/* Get starting and ending insn, handling the case where each might
|
||
be a SEQUENCE. */
|
||
start_insn = (b == 0 ? insns : BLOCK_HEAD (b));
|
||
stop_insn = target;
|
||
|
||
if (GET_CODE (start_insn) == INSN
|
||
&& GET_CODE (PATTERN (start_insn)) == SEQUENCE)
|
||
start_insn = XVECEXP (PATTERN (start_insn), 0, 0);
|
||
|
||
if (GET_CODE (stop_insn) == INSN
|
||
&& GET_CODE (PATTERN (stop_insn)) == SEQUENCE)
|
||
stop_insn = next_insn (PREV_INSN (stop_insn));
|
||
|
||
for (insn = start_insn; insn != stop_insn;
|
||
insn = next_insn_no_annul (insn))
|
||
{
|
||
rtx link;
|
||
rtx real_insn = insn;
|
||
|
||
/* If this insn is from the target of a branch, it isn't going to
|
||
be used in the sequel. If it is used in both cases, this
|
||
test will not be true. */
|
||
if (INSN_FROM_TARGET_P (insn))
|
||
continue;
|
||
|
||
/* If this insn is a USE made by update_block, we care about the
|
||
underlying insn. */
|
||
if (GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == USE
|
||
&& GET_RTX_CLASS (GET_CODE (XEXP (PATTERN (insn), 0))) == 'i')
|
||
real_insn = XEXP (PATTERN (insn), 0);
|
||
|
||
if (GET_CODE (real_insn) == CALL_INSN)
|
||
{
|
||
/* CALL clobbers all call-used regs that aren't fixed except
|
||
sp, ap, and fp. Do this before setting the result of the
|
||
call live. */
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
if (call_used_regs[i]
|
||
&& i != STACK_POINTER_REGNUM && i != FRAME_POINTER_REGNUM
|
||
&& i != ARG_POINTER_REGNUM
|
||
#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
|
||
&& i != HARD_FRAME_POINTER_REGNUM
|
||
#endif
|
||
#if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
|
||
&& ! (i == ARG_POINTER_REGNUM && fixed_regs[i])
|
||
#endif
|
||
#ifdef PIC_OFFSET_TABLE_REGNUM
|
||
&& ! (i == PIC_OFFSET_TABLE_REGNUM && flag_pic)
|
||
#endif
|
||
)
|
||
CLEAR_HARD_REG_BIT (current_live_regs, i);
|
||
|
||
/* A CALL_INSN sets any global register live, since it may
|
||
have been modified by the call. */
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
if (global_regs[i])
|
||
SET_HARD_REG_BIT (current_live_regs, i);
|
||
}
|
||
|
||
/* Mark anything killed in an insn to be deadened at the next
|
||
label. Ignore USE insns; the only REG_DEAD notes will be for
|
||
parameters. But they might be early. A CALL_INSN will usually
|
||
clobber registers used for parameters. It isn't worth bothering
|
||
with the unlikely case when it won't. */
|
||
if ((GET_CODE (real_insn) == INSN
|
||
&& GET_CODE (PATTERN (real_insn)) != USE
|
||
&& GET_CODE (PATTERN (real_insn)) != CLOBBER)
|
||
|| GET_CODE (real_insn) == JUMP_INSN
|
||
|| GET_CODE (real_insn) == CALL_INSN)
|
||
{
|
||
for (link = REG_NOTES (real_insn); link; link = XEXP (link, 1))
|
||
if (REG_NOTE_KIND (link) == REG_DEAD
|
||
&& GET_CODE (XEXP (link, 0)) == REG
|
||
&& REGNO (XEXP (link, 0)) < FIRST_PSEUDO_REGISTER)
|
||
{
|
||
int first_regno = REGNO (XEXP (link, 0));
|
||
int last_regno
|
||
= (first_regno
|
||
+ HARD_REGNO_NREGS (first_regno,
|
||
GET_MODE (XEXP (link, 0))));
|
||
|
||
for (i = first_regno; i < last_regno; i++)
|
||
SET_HARD_REG_BIT (pending_dead_regs, i);
|
||
}
|
||
|
||
note_stores (PATTERN (real_insn), update_live_status);
|
||
|
||
/* If any registers were unused after this insn, kill them.
|
||
These notes will always be accurate. */
|
||
for (link = REG_NOTES (real_insn); link; link = XEXP (link, 1))
|
||
if (REG_NOTE_KIND (link) == REG_UNUSED
|
||
&& GET_CODE (XEXP (link, 0)) == REG
|
||
&& REGNO (XEXP (link, 0)) < FIRST_PSEUDO_REGISTER)
|
||
{
|
||
int first_regno = REGNO (XEXP (link, 0));
|
||
int last_regno
|
||
= (first_regno
|
||
+ HARD_REGNO_NREGS (first_regno,
|
||
GET_MODE (XEXP (link, 0))));
|
||
|
||
for (i = first_regno; i < last_regno; i++)
|
||
CLEAR_HARD_REG_BIT (current_live_regs, i);
|
||
}
|
||
}
|
||
|
||
else if (GET_CODE (real_insn) == CODE_LABEL)
|
||
{
|
||
/* A label clobbers the pending dead registers since neither
|
||
reload nor jump will propagate a value across a label. */
|
||
AND_COMPL_HARD_REG_SET (current_live_regs, pending_dead_regs);
|
||
CLEAR_HARD_REG_SET (pending_dead_regs);
|
||
}
|
||
|
||
/* The beginning of the epilogue corresponds to the end of the
|
||
RTL chain when there are no epilogue insns. Certain resources
|
||
are implicitly required at that point. */
|
||
else if (GET_CODE (real_insn) == NOTE
|
||
&& NOTE_LINE_NUMBER (real_insn) == NOTE_INSN_EPILOGUE_BEG)
|
||
IOR_HARD_REG_SET (current_live_regs, start_of_epilogue_needs.regs);
|
||
}
|
||
|
||
COPY_HARD_REG_SET (res->regs, current_live_regs);
|
||
if (tinfo != NULL)
|
||
{
|
||
tinfo->block = b;
|
||
tinfo->bb_tick = bb_ticks[b];
|
||
}
|
||
}
|
||
else
|
||
/* We didn't find the start of a basic block. Assume everything
|
||
in use. This should happen only extremely rarely. */
|
||
SET_HARD_REG_SET (res->regs);
|
||
|
||
CLEAR_RESOURCE (&set);
|
||
CLEAR_RESOURCE (&needed);
|
||
|
||
jump_insn = find_dead_or_set_registers (target, res, &jump_target, 0,
|
||
set, needed);
|
||
|
||
/* If we hit an unconditional branch, we have another way of finding out
|
||
what is live: we can see what is live at the branch target and include
|
||
anything used but not set before the branch. The only things that are
|
||
live are those that are live using the above test and the test below. */
|
||
|
||
if (jump_insn)
|
||
{
|
||
struct resources new_resources;
|
||
rtx stop_insn = next_active_insn (jump_insn);
|
||
|
||
mark_target_live_regs (insns, next_active_insn (jump_target),
|
||
&new_resources);
|
||
CLEAR_RESOURCE (&set);
|
||
CLEAR_RESOURCE (&needed);
|
||
|
||
/* Include JUMP_INSN in the needed registers. */
|
||
for (insn = target; insn != stop_insn; insn = next_active_insn (insn))
|
||
{
|
||
mark_referenced_resources (insn, &needed, 1);
|
||
|
||
COPY_HARD_REG_SET (scratch, needed.regs);
|
||
AND_COMPL_HARD_REG_SET (scratch, set.regs);
|
||
IOR_HARD_REG_SET (new_resources.regs, scratch);
|
||
|
||
mark_set_resources (insn, &set, 0, 1);
|
||
}
|
||
|
||
AND_HARD_REG_SET (res->regs, new_resources.regs);
|
||
}
|
||
|
||
if (tinfo != NULL)
|
||
{
|
||
COPY_HARD_REG_SET (tinfo->live_regs, res->regs);
|
||
}
|
||
}
|
||
|
||
/* Initialize the resources required by mark_target_live_regs ().
|
||
This should be invoked before the first call to mark_target_live_regs. */
|
||
|
||
void
|
||
init_resource_info (epilogue_insn)
|
||
rtx epilogue_insn;
|
||
{
|
||
int i;
|
||
|
||
/* Indicate what resources are required to be valid at the end of the current
|
||
function. The condition code never is and memory always is. If the
|
||
frame pointer is needed, it is and so is the stack pointer unless
|
||
EXIT_IGNORE_STACK is non-zero. If the frame pointer is not needed, the
|
||
stack pointer is. Registers used to return the function value are
|
||
needed. Registers holding global variables are needed. */
|
||
|
||
end_of_function_needs.cc = 0;
|
||
end_of_function_needs.memory = 1;
|
||
end_of_function_needs.unch_memory = 0;
|
||
CLEAR_HARD_REG_SET (end_of_function_needs.regs);
|
||
|
||
if (frame_pointer_needed)
|
||
{
|
||
SET_HARD_REG_BIT (end_of_function_needs.regs, FRAME_POINTER_REGNUM);
|
||
#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
|
||
SET_HARD_REG_BIT (end_of_function_needs.regs, HARD_FRAME_POINTER_REGNUM);
|
||
#endif
|
||
#ifdef EXIT_IGNORE_STACK
|
||
if (! EXIT_IGNORE_STACK
|
||
|| current_function_sp_is_unchanging)
|
||
#endif
|
||
SET_HARD_REG_BIT (end_of_function_needs.regs, STACK_POINTER_REGNUM);
|
||
}
|
||
else
|
||
SET_HARD_REG_BIT (end_of_function_needs.regs, STACK_POINTER_REGNUM);
|
||
|
||
if (current_function_return_rtx != 0)
|
||
mark_referenced_resources (current_function_return_rtx,
|
||
&end_of_function_needs, 1);
|
||
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
if (global_regs[i]
|
||
#ifdef EPILOGUE_USES
|
||
|| EPILOGUE_USES (i)
|
||
#endif
|
||
)
|
||
SET_HARD_REG_BIT (end_of_function_needs.regs, i);
|
||
|
||
/* The registers required to be live at the end of the function are
|
||
represented in the flow information as being dead just prior to
|
||
reaching the end of the function. For example, the return of a value
|
||
might be represented by a USE of the return register immediately
|
||
followed by an unconditional jump to the return label where the
|
||
return label is the end of the RTL chain. The end of the RTL chain
|
||
is then taken to mean that the return register is live.
|
||
|
||
This sequence is no longer maintained when epilogue instructions are
|
||
added to the RTL chain. To reconstruct the original meaning, the
|
||
start of the epilogue (NOTE_INSN_EPILOGUE_BEG) is regarded as the
|
||
point where these registers become live (start_of_epilogue_needs).
|
||
If epilogue instructions are present, the registers set by those
|
||
instructions won't have been processed by flow. Thus, those
|
||
registers are additionally required at the end of the RTL chain
|
||
(end_of_function_needs). */
|
||
|
||
start_of_epilogue_needs = end_of_function_needs;
|
||
|
||
while ((epilogue_insn = next_nonnote_insn (epilogue_insn)))
|
||
mark_set_resources (epilogue_insn, &end_of_function_needs, 0, 1);
|
||
|
||
/* Allocate and initialize the tables used by mark_target_live_regs. */
|
||
target_hash_table
|
||
= (struct target_info **) xmalloc ((TARGET_HASH_PRIME
|
||
* sizeof (struct target_info *)));
|
||
bzero ((char *) target_hash_table,
|
||
TARGET_HASH_PRIME * sizeof (struct target_info *));
|
||
|
||
bb_ticks = (int *) xmalloc (n_basic_blocks * sizeof (int));
|
||
bzero ((char *) bb_ticks, n_basic_blocks * sizeof (int));
|
||
}
|
||
|
||
/* Free up the resources allcated to mark_target_live_regs (). This
|
||
should be invoked after the last call to mark_target_live_regs (). */
|
||
|
||
void
|
||
free_resource_info ()
|
||
{
|
||
if (target_hash_table != NULL)
|
||
{
|
||
free (target_hash_table);
|
||
target_hash_table = NULL;
|
||
}
|
||
|
||
if (bb_ticks != NULL)
|
||
{
|
||
free (bb_ticks);
|
||
bb_ticks = NULL;
|
||
}
|
||
}
|
||
|
||
/* Clear any hashed information that we have stored for INSN. */
|
||
|
||
void
|
||
clear_hashed_info_for_insn (insn)
|
||
rtx insn;
|
||
{
|
||
struct target_info *tinfo;
|
||
|
||
if (target_hash_table != NULL)
|
||
{
|
||
for (tinfo = target_hash_table[INSN_UID (insn) % TARGET_HASH_PRIME];
|
||
tinfo; tinfo = tinfo->next)
|
||
if (tinfo->uid == INSN_UID (insn))
|
||
break;
|
||
|
||
if (tinfo)
|
||
tinfo->block = -1;
|
||
}
|
||
}
|
||
|
||
/* Increment the tick count for the basic block that contains INSN. */
|
||
|
||
void
|
||
incr_ticks_for_insn (insn)
|
||
rtx insn;
|
||
{
|
||
int b = find_basic_block (insn);
|
||
|
||
if (b != -1)
|
||
bb_ticks[b]++;
|
||
}
|
||
|
||
/* Add TRIAL to the set of resources used at the end of the current
|
||
function. */
|
||
void
|
||
mark_end_of_function_resources (trial, include_delayed_effects)
|
||
rtx trial;
|
||
int include_delayed_effects;
|
||
{
|
||
mark_referenced_resources (trial, &end_of_function_needs,
|
||
include_delayed_effects);
|
||
}
|
||
|
||
/* Try to find an available hard register of mode MODE at
|
||
CURRENT_INSN, matching the register class in CLASS_STR. Registers
|
||
that already have bits set in REG_SET will not be considered.
|
||
|
||
If an appropriate register is available, it will be returned and the
|
||
corresponding bit(s) in REG_SET will be set; otherwise, NULL_RTX is
|
||
returned. */
|
||
|
||
rtx
|
||
find_free_register (current_insn, class_str, mode, reg_set)
|
||
rtx current_insn;
|
||
char *class_str;
|
||
int mode;
|
||
HARD_REG_SET *reg_set;
|
||
{
|
||
int i, j;
|
||
struct resources used;
|
||
unsigned char clet = class_str[0];
|
||
enum reg_class class
|
||
= (clet == 'r' ? GENERAL_REGS : REG_CLASS_FROM_LETTER (clet));
|
||
|
||
mark_target_live_regs (get_insns (), current_insn, &used);
|
||
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
{
|
||
int success = 1;
|
||
|
||
if (! TEST_HARD_REG_BIT (reg_class_contents[class], i))
|
||
continue;
|
||
for (j = HARD_REGNO_NREGS (i, mode) - 1; j >= 0; j--)
|
||
{
|
||
if (TEST_HARD_REG_BIT (*reg_set, i + j)
|
||
|| TEST_HARD_REG_BIT (used.regs, i + j))
|
||
{
|
||
success = 0;
|
||
break;
|
||
}
|
||
}
|
||
if (success)
|
||
{
|
||
for (j = HARD_REGNO_NREGS (i, mode) - 1; j >= 0; j--)
|
||
{
|
||
SET_HARD_REG_BIT (*reg_set, i + j);
|
||
}
|
||
return gen_rtx_REG (mode, i);
|
||
}
|
||
}
|
||
return NULL_RTX;
|
||
}
|