1
0
mirror of https://git.FreeBSD.org/src.git synced 2025-01-22 15:47:37 +00:00
freebsd/sbin/growfs/growfs.c
2006-07-17 20:48:36 +00:00

2520 lines
66 KiB
C

/*
* Copyright (c) 2000 Christoph Herrmann, Thomas-Henning von Kamptz
* Copyright (c) 1980, 1989, 1993 The Regents of the University of California.
* All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* Christoph Herrmann and Thomas-Henning von Kamptz, Munich and Frankfurt.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgment:
* This product includes software developed by the University of
* California, Berkeley and its contributors, as well as Christoph
* Herrmann and Thomas-Henning von Kamptz.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $TSHeader: src/sbin/growfs/growfs.c,v 1.5 2000/12/12 19:31:00 tomsoft Exp $
*
*/
#ifndef lint
static const char copyright[] =
"@(#) Copyright (c) 2000 Christoph Herrmann, Thomas-Henning von Kamptz\n\
Copyright (c) 1980, 1989, 1993 The Regents of the University of California.\n\
All rights reserved.\n";
#endif /* not lint */
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/* ********************************************************** INCLUDES ***** */
#include <sys/param.h>
#include <sys/disklabel.h>
#include <sys/ioctl.h>
#include <sys/stat.h>
#include <sys/disk.h>
#include <stdio.h>
#include <paths.h>
#include <ctype.h>
#include <err.h>
#include <fcntl.h>
#include <limits.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <time.h>
#include <unistd.h>
#include <ufs/ufs/dinode.h>
#include <ufs/ffs/fs.h>
#include "debug.h"
/* *************************************************** GLOBALS & TYPES ***** */
#ifdef FS_DEBUG
int _dbg_lvl_ = (DL_INFO); /* DL_TRC */
#endif /* FS_DEBUG */
static union {
struct fs fs;
char pad[SBLOCKSIZE];
} fsun1, fsun2;
#define sblock fsun1.fs /* the new superblock */
#define osblock fsun2.fs /* the old superblock */
/*
* Possible superblock locations ordered from most to least likely.
*/
static int sblock_try[] = SBLOCKSEARCH;
static ufs2_daddr_t sblockloc;
static union {
struct cg cg;
char pad[MAXBSIZE];
} cgun1, cgun2;
#define acg cgun1.cg /* a cylinder cgroup (new) */
#define aocg cgun2.cg /* an old cylinder group */
static char ablk[MAXBSIZE]; /* a block */
static struct csum *fscs; /* cylinder summary */
union dinode {
struct ufs1_dinode dp1;
struct ufs2_dinode dp2;
};
#define DIP(dp, field) \
((sblock.fs_magic == FS_UFS1_MAGIC) ? \
(uint32_t)(dp)->dp1.field : (dp)->dp2.field)
#define DIP_SET(dp, field, val) do { \
if (sblock.fs_magic == FS_UFS1_MAGIC) \
(dp)->dp1.field = (val); \
else \
(dp)->dp2.field = (val); \
} while (0)
static ufs2_daddr_t inoblk; /* inode block address */
static char inobuf[MAXBSIZE]; /* inode block */
ino_t maxino; /* last valid inode */
static int unlabeled; /* unlabeled partition, e.g. vinum volume etc. */
/*
* An array of elements of type struct gfs_bpp describes all blocks to
* be relocated in order to free the space needed for the cylinder group
* summary for all cylinder groups located in the first cylinder group.
*/
struct gfs_bpp {
ufs2_daddr_t old; /* old block number */
ufs2_daddr_t new; /* new block number */
#define GFS_FL_FIRST 1
#define GFS_FL_LAST 2
unsigned int flags; /* special handling required */
int found; /* how many references were updated */
};
/* ******************************************************** PROTOTYPES ***** */
static void growfs(int, int, unsigned int);
static void rdfs(ufs2_daddr_t, size_t, void *, int);
static void wtfs(ufs2_daddr_t, size_t, void *, int, unsigned int);
static ufs2_daddr_t alloc(void);
static int charsperline(void);
static void usage(void);
static int isblock(struct fs *, unsigned char *, int);
static void clrblock(struct fs *, unsigned char *, int);
static void setblock(struct fs *, unsigned char *, int);
static void initcg(int, time_t, int, unsigned int);
static void updjcg(int, time_t, int, int, unsigned int);
static void updcsloc(time_t, int, int, unsigned int);
static struct disklabel *get_disklabel(int);
static void return_disklabel(int, struct disklabel *, unsigned int);
static union dinode *ginode(ino_t, int, int);
static void frag_adjust(ufs2_daddr_t, int);
static int cond_bl_upd(ufs2_daddr_t *, struct gfs_bpp *, int, int,
unsigned int);
static void updclst(int);
static void updrefs(int, ino_t, struct gfs_bpp *, int, int, unsigned int);
static void indirchk(ufs_lbn_t, ufs_lbn_t, ufs2_daddr_t, ufs_lbn_t,
struct gfs_bpp *, int, int, unsigned int);
static void get_dev_size(int, int *);
/* ************************************************************ growfs ***** */
/*
* Here we actually start growing the file system. We basically read the
* cylinder summary from the first cylinder group as we want to update
* this on the fly during our various operations. First we handle the
* changes in the former last cylinder group. Afterwards we create all new
* cylinder groups. Now we handle the cylinder group containing the
* cylinder summary which might result in a relocation of the whole
* structure. In the end we write back the updated cylinder summary, the
* new superblock, and slightly patched versions of the super block
* copies.
*/
static void
growfs(int fsi, int fso, unsigned int Nflag)
{
DBG_FUNC("growfs")
int i;
int cylno, j;
time_t utime;
int width;
char tmpbuf[100];
#ifdef FSIRAND
static int randinit=0;
DBG_ENTER;
if (!randinit) {
randinit = 1;
srandomdev();
}
#else /* not FSIRAND */
DBG_ENTER;
#endif /* FSIRAND */
time(&utime);
/*
* Get the cylinder summary into the memory.
*/
fscs = (struct csum *)calloc((size_t)1, (size_t)sblock.fs_cssize);
if(fscs == NULL) {
errx(1, "calloc failed");
}
for (i = 0; i < osblock.fs_cssize; i += osblock.fs_bsize) {
rdfs(fsbtodb(&osblock, osblock.fs_csaddr +
numfrags(&osblock, i)), (size_t)MIN(osblock.fs_cssize - i,
osblock.fs_bsize), (void *)(((char *)fscs)+i), fsi);
}
#ifdef FS_DEBUG
{
struct csum *dbg_csp;
int dbg_csc;
char dbg_line[80];
dbg_csp=fscs;
for(dbg_csc=0; dbg_csc<osblock.fs_ncg; dbg_csc++) {
snprintf(dbg_line, sizeof(dbg_line),
"%d. old csum in old location", dbg_csc);
DBG_DUMP_CSUM(&osblock,
dbg_line,
dbg_csp++);
}
}
#endif /* FS_DEBUG */
DBG_PRINT0("fscs read\n");
/*
* Do all needed changes in the former last cylinder group.
*/
updjcg(osblock.fs_ncg-1, utime, fsi, fso, Nflag);
/*
* Dump out summary information about file system.
*/
# define B2MBFACTOR (1 / (1024.0 * 1024.0))
printf("growfs: %.1fMB (%jd sectors) block size %d, fragment size %d\n",
(float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
(intmax_t)fsbtodb(&sblock, sblock.fs_size), sblock.fs_bsize,
sblock.fs_fsize);
printf("\tusing %d cylinder groups of %.2fMB, %d blks, %d inodes.\n",
sblock.fs_ncg, (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
sblock.fs_fpg / sblock.fs_frag, sblock.fs_ipg);
if (sblock.fs_flags & FS_DOSOFTDEP)
printf("\twith soft updates\n");
# undef B2MBFACTOR
/*
* Now build the cylinders group blocks and
* then print out indices of cylinder groups.
*/
printf("super-block backups (for fsck -b #) at:\n");
i = 0;
width = charsperline();
/*
* Iterate for only the new cylinder groups.
*/
for (cylno = osblock.fs_ncg; cylno < sblock.fs_ncg; cylno++) {
initcg(cylno, utime, fso, Nflag);
j = sprintf(tmpbuf, " %d%s",
(int)fsbtodb(&sblock, cgsblock(&sblock, cylno)),
cylno < (sblock.fs_ncg-1) ? "," : "" );
if (i + j >= width) {
printf("\n");
i = 0;
}
i += j;
printf("%s", tmpbuf);
fflush(stdout);
}
printf("\n");
/*
* Do all needed changes in the first cylinder group.
* allocate blocks in new location
*/
updcsloc(utime, fsi, fso, Nflag);
/*
* Now write the cylinder summary back to disk.
*/
for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize) {
wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)),
(size_t)MIN(sblock.fs_cssize - i, sblock.fs_bsize),
(void *)(((char *)fscs) + i), fso, Nflag);
}
DBG_PRINT0("fscs written\n");
#ifdef FS_DEBUG
{
struct csum *dbg_csp;
int dbg_csc;
char dbg_line[80];
dbg_csp=fscs;
for(dbg_csc=0; dbg_csc<sblock.fs_ncg; dbg_csc++) {
snprintf(dbg_line, sizeof(dbg_line),
"%d. new csum in new location", dbg_csc);
DBG_DUMP_CSUM(&sblock,
dbg_line,
dbg_csp++);
}
}
#endif /* FS_DEBUG */
/*
* Now write the new superblock back to disk.
*/
sblock.fs_time = utime;
wtfs(sblockloc, (size_t)SBLOCKSIZE, (void *)&sblock, fso, Nflag);
DBG_PRINT0("sblock written\n");
DBG_DUMP_FS(&sblock,
"new initial sblock");
/*
* Clean up the dynamic fields in our superblock copies.
*/
sblock.fs_fmod = 0;
sblock.fs_clean = 1;
sblock.fs_ronly = 0;
sblock.fs_cgrotor = 0;
sblock.fs_state = 0;
memset((void *)&sblock.fs_fsmnt, 0, sizeof(sblock.fs_fsmnt));
sblock.fs_flags &= FS_DOSOFTDEP;
/*
* XXX
* The following fields are currently distributed from the superblock
* to the copies:
* fs_minfree
* fs_rotdelay
* fs_maxcontig
* fs_maxbpg
* fs_minfree,
* fs_optim
* fs_flags regarding SOFTPDATES
*
* We probably should rather change the summary for the cylinder group
* statistics here to the value of what would be in there, if the file
* system were created initially with the new size. Therefor we still
* need to find an easy way of calculating that.
* Possibly we can try to read the first superblock copy and apply the
* "diffed" stats between the old and new superblock by still copying
* certain parameters onto that.
*/
/*
* Write out the duplicate super blocks.
*/
for (cylno = 0; cylno < sblock.fs_ncg; cylno++) {
wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)),
(size_t)SBLOCKSIZE, (void *)&sblock, fso, Nflag);
}
DBG_PRINT0("sblock copies written\n");
DBG_DUMP_FS(&sblock,
"new other sblocks");
DBG_LEAVE;
return;
}
/* ************************************************************ initcg ***** */
/*
* This creates a new cylinder group structure, for more details please see
* the source of newfs(8), as this function is taken over almost unchanged.
* As this is never called for the first cylinder group, the special
* provisions for that case are removed here.
*/
static void
initcg(int cylno, time_t utime, int fso, unsigned int Nflag)
{
DBG_FUNC("initcg")
static void *iobuf;
long d, dlower, dupper, blkno, start;
ufs2_daddr_t i, cbase, dmax;
struct ufs1_dinode *dp1;
struct ufs2_dinode *dp2;
struct csum *cs;
if (iobuf == NULL && (iobuf = malloc(sblock.fs_bsize)) == NULL) {
errx(37, "panic: cannot allocate I/O buffer");
}
/*
* Determine block bounds for cylinder group.
* Allow space for super block summary information in first
* cylinder group.
*/
cbase = cgbase(&sblock, cylno);
dmax = cbase + sblock.fs_fpg;
if (dmax > sblock.fs_size)
dmax = sblock.fs_size;
dlower = cgsblock(&sblock, cylno) - cbase;
dupper = cgdmin(&sblock, cylno) - cbase;
if (cylno == 0) /* XXX fscs may be relocated */
dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
cs = &fscs[cylno];
memset(&acg, 0, sblock.fs_cgsize);
acg.cg_time = utime;
acg.cg_magic = CG_MAGIC;
acg.cg_cgx = cylno;
acg.cg_niblk = sblock.fs_ipg;
acg.cg_initediblk = sblock.fs_ipg;
acg.cg_ndblk = dmax - cbase;
if (sblock.fs_contigsumsize > 0)
acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
start = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield);
if (sblock.fs_magic == FS_UFS2_MAGIC) {
acg.cg_iusedoff = start;
} else {
acg.cg_old_ncyl = sblock.fs_old_cpg;
acg.cg_old_time = acg.cg_time;
acg.cg_time = 0;
acg.cg_old_niblk = acg.cg_niblk;
acg.cg_niblk = 0;
acg.cg_initediblk = 0;
acg.cg_old_btotoff = start;
acg.cg_old_boff = acg.cg_old_btotoff +
sblock.fs_old_cpg * sizeof(int32_t);
acg.cg_iusedoff = acg.cg_old_boff +
sblock.fs_old_cpg * sizeof(u_int16_t);
}
acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, CHAR_BIT);
acg.cg_nextfreeoff = acg.cg_freeoff + howmany(sblock.fs_fpg, CHAR_BIT);
if (sblock.fs_contigsumsize > 0) {
acg.cg_clustersumoff =
roundup(acg.cg_nextfreeoff, sizeof(u_int32_t));
acg.cg_clustersumoff -= sizeof(u_int32_t);
acg.cg_clusteroff = acg.cg_clustersumoff +
(sblock.fs_contigsumsize + 1) * sizeof(u_int32_t);
acg.cg_nextfreeoff = acg.cg_clusteroff +
howmany(fragstoblks(&sblock, sblock.fs_fpg), CHAR_BIT);
}
if (acg.cg_nextfreeoff > sblock.fs_cgsize) {
/*
* This should never happen as we would have had that panic
* already on file system creation
*/
errx(37, "panic: cylinder group too big");
}
acg.cg_cs.cs_nifree += sblock.fs_ipg;
if (cylno == 0)
for (i = 0; i < ROOTINO; i++) {
setbit(cg_inosused(&acg), i);
acg.cg_cs.cs_nifree--;
}
/*
* XXX Newfs writes out two blocks of initialized inodes
* unconditionally. Should we check here to make sure that they
* were actually written?
*/
if (sblock.fs_magic == FS_UFS1_MAGIC) {
bzero(iobuf, sblock.fs_bsize);
for (i = 2 * sblock.fs_frag; i < sblock.fs_ipg / INOPF(&sblock);
i += sblock.fs_frag) {
dp1 = (struct ufs1_dinode *)iobuf;
dp2 = (struct ufs2_dinode *)iobuf;
#ifdef FSIRAND
for (j = 0; j < INOPB(&sblock); j++)
if (sblock.fs_magic == FS_UFS1_MAGIC) {
dp1->di_gen = random();
dp1++;
} else {
dp2->di_gen = random();
dp2++;
}
#endif
wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i),
sblock.fs_bsize, iobuf, fso, Nflag);
}
}
if (cylno > 0) {
/*
* In cylno 0, beginning space is reserved
* for boot and super blocks.
*/
for (d = 0; d < dlower; d += sblock.fs_frag) {
blkno = d / sblock.fs_frag;
setblock(&sblock, cg_blksfree(&acg), blkno);
if (sblock.fs_contigsumsize > 0)
setbit(cg_clustersfree(&acg), blkno);
acg.cg_cs.cs_nbfree++;
}
sblock.fs_dsize += dlower;
}
sblock.fs_dsize += acg.cg_ndblk - dupper;
if ((i = dupper % sblock.fs_frag)) {
acg.cg_frsum[sblock.fs_frag - i]++;
for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
setbit(cg_blksfree(&acg), dupper);
acg.cg_cs.cs_nffree++;
}
}
for (d = dupper; d + sblock.fs_frag <= acg.cg_ndblk;
d += sblock.fs_frag) {
blkno = d / sblock.fs_frag;
setblock(&sblock, cg_blksfree(&acg), blkno);
if (sblock.fs_contigsumsize > 0)
setbit(cg_clustersfree(&acg), blkno);
acg.cg_cs.cs_nbfree++;
}
if (d < acg.cg_ndblk) {
acg.cg_frsum[acg.cg_ndblk - d]++;
for (; d < acg.cg_ndblk; d++) {
setbit(cg_blksfree(&acg), d);
acg.cg_cs.cs_nffree++;
}
}
if (sblock.fs_contigsumsize > 0) {
int32_t *sump = cg_clustersum(&acg);
u_char *mapp = cg_clustersfree(&acg);
int map = *mapp++;
int bit = 1;
int run = 0;
for (i = 0; i < acg.cg_nclusterblks; i++) {
if ((map & bit) != 0)
run++;
else if (run != 0) {
if (run > sblock.fs_contigsumsize)
run = sblock.fs_contigsumsize;
sump[run]++;
run = 0;
}
if ((i & (CHAR_BIT - 1)) != CHAR_BIT - 1)
bit <<= 1;
else {
map = *mapp++;
bit = 1;
}
}
if (run != 0) {
if (run > sblock.fs_contigsumsize)
run = sblock.fs_contigsumsize;
sump[run]++;
}
}
sblock.fs_cstotal.cs_ndir += acg.cg_cs.cs_ndir;
sblock.fs_cstotal.cs_nffree += acg.cg_cs.cs_nffree;
sblock.fs_cstotal.cs_nbfree += acg.cg_cs.cs_nbfree;
sblock.fs_cstotal.cs_nifree += acg.cg_cs.cs_nifree;
*cs = acg.cg_cs;
wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)),
sblock.fs_bsize, (char *)&acg, fso, Nflag);
DBG_DUMP_CG(&sblock,
"new cg",
&acg);
DBG_LEAVE;
return;
}
/* ******************************************************* frag_adjust ***** */
/*
* Here we add or subtract (sign +1/-1) the available fragments in a given
* block to or from the fragment statistics. By subtracting before and adding
* after an operation on the free frag map we can easy update the fragment
* statistic, which seems to be otherwise a rather complex operation.
*/
static void
frag_adjust(ufs2_daddr_t frag, int sign)
{
DBG_FUNC("frag_adjust")
int fragsize;
int f;
DBG_ENTER;
fragsize=0;
/*
* Here frag only needs to point to any fragment in the block we want
* to examine.
*/
for(f=rounddown(frag, sblock.fs_frag);
f<roundup(frag+1, sblock.fs_frag);
f++) {
/*
* Count contiguous free fragments.
*/
if(isset(cg_blksfree(&acg), f)) {
fragsize++;
} else {
if(fragsize && fragsize<sblock.fs_frag) {
/*
* We found something in between.
*/
acg.cg_frsum[fragsize]+=sign;
DBG_PRINT2("frag_adjust [%d]+=%d\n",
fragsize,
sign);
}
fragsize=0;
}
}
if(fragsize && fragsize<sblock.fs_frag) {
/*
* We found something.
*/
acg.cg_frsum[fragsize]+=sign;
DBG_PRINT2("frag_adjust [%d]+=%d\n",
fragsize,
sign);
}
DBG_PRINT2("frag_adjust [[%d]]+=%d\n",
fragsize,
sign);
DBG_LEAVE;
return;
}
/* ******************************************************* cond_bl_upd ***** */
/*
* Here we conditionally update a pointer to a fragment. We check for all
* relocated blocks if any of its fragments is referenced by the current
* field, and update the pointer to the respective fragment in our new
* block. If we find a reference we write back the block immediately,
* as there is no easy way for our general block reading engine to figure
* out if a write back operation is needed.
*/
static int
cond_bl_upd(ufs2_daddr_t *block, struct gfs_bpp *field, int fsi, int fso,
unsigned int Nflag)
{
DBG_FUNC("cond_bl_upd")
struct gfs_bpp *f;
ufs2_daddr_t src, dst;
int fragnum;
void *ibuf;
DBG_ENTER;
for (f = field; f->old != 0; f++) {
src = *block;
if (fragstoblks(&sblock, src) != f->old)
continue;
/*
* The fragment is part of the block, so update.
*/
dst = blkstofrags(&sblock, f->new);
fragnum = fragnum(&sblock, src);
*block = dst + fragnum;
f->found++;
DBG_PRINT3("scg (%jd->%jd)[%d] reference updated\n",
(intmax_t)f->old,
(intmax_t)f->new,
fragnum);
/*
* Copy the block back immediately.
*
* XXX If src is is from an indirect block we have
* to implement copy on write here in case of
* active snapshots.
*/
ibuf = malloc(sblock.fs_bsize);
if (!ibuf)
errx(1, "malloc failed");
src -= fragnum;
rdfs(fsbtodb(&sblock, src), (size_t)sblock.fs_bsize, ibuf, fsi);
wtfs(dst, (size_t)sblock.fs_bsize, ibuf, fso, Nflag);
free(ibuf);
/*
* The same block can't be found again in this loop.
*/
return (1);
}
DBG_LEAVE;
return (0);
}
/* ************************************************************ updjcg ***** */
/*
* Here we do all needed work for the former last cylinder group. It has to be
* changed in any case, even if the file system ended exactly on the end of
* this group, as there is some slightly inconsistent handling of the number
* of cylinders in the cylinder group. We start again by reading the cylinder
* group from disk. If the last block was not fully available, we first handle
* the missing fragments, then we handle all new full blocks in that file
* system and finally we handle the new last fragmented block in the file
* system. We again have to handle the fragment statistics rotational layout
* tables and cluster summary during all those operations.
*/
static void
updjcg(int cylno, time_t utime, int fsi, int fso, unsigned int Nflag)
{
DBG_FUNC("updjcg")
ufs2_daddr_t cbase, dmax, dupper;
struct csum *cs;
int i,k;
int j=0;
DBG_ENTER;
/*
* Read the former last (joining) cylinder group from disk, and make
* a copy.
*/
rdfs(fsbtodb(&osblock, cgtod(&osblock, cylno)),
(size_t)osblock.fs_cgsize, (void *)&aocg, fsi);
DBG_PRINT0("jcg read\n");
DBG_DUMP_CG(&sblock,
"old joining cg",
&aocg);
memcpy((void *)&cgun1, (void *)&cgun2, sizeof(cgun2));
/*
* If the cylinder group had already its new final size almost
* nothing is to be done ... except:
* For some reason the value of cg_ncyl in the last cylinder group has
* to be zero instead of fs_cpg. As this is now no longer the last
* cylinder group we have to change that value now to fs_cpg.
*/
if(cgbase(&osblock, cylno+1) == osblock.fs_size) {
if (sblock.fs_magic == FS_UFS1_MAGIC)
acg.cg_old_ncyl=sblock.fs_old_cpg;
wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)),
(size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag);
DBG_PRINT0("jcg written\n");
DBG_DUMP_CG(&sblock,
"new joining cg",
&acg);
DBG_LEAVE;
return;
}
/*
* Set up some variables needed later.
*/
cbase = cgbase(&sblock, cylno);
dmax = cbase + sblock.fs_fpg;
if (dmax > sblock.fs_size)
dmax = sblock.fs_size;
dupper = cgdmin(&sblock, cylno) - cbase;
if (cylno == 0) { /* XXX fscs may be relocated */
dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
}
/*
* Set pointer to the cylinder summary for our cylinder group.
*/
cs = fscs + cylno;
/*
* Touch the cylinder group, update all fields in the cylinder group as
* needed, update the free space in the superblock.
*/
acg.cg_time = utime;
if (cylno == sblock.fs_ncg - 1) {
/*
* This is still the last cylinder group.
*/
if (sblock.fs_magic == FS_UFS1_MAGIC)
acg.cg_old_ncyl =
sblock.fs_old_ncyl % sblock.fs_old_cpg;
} else {
acg.cg_old_ncyl = sblock.fs_old_cpg;
}
DBG_PRINT2("jcg dbg: %d %u",
cylno,
sblock.fs_ncg);
#ifdef FS_DEBUG
if (sblock.fs_magic == FS_UFS1_MAGIC)
DBG_PRINT2("%d %u",
acg.cg_old_ncyl,
sblock.fs_old_cpg);
#endif
DBG_PRINT0("\n");
acg.cg_ndblk = dmax - cbase;
sblock.fs_dsize += acg.cg_ndblk-aocg.cg_ndblk;
if (sblock.fs_contigsumsize > 0) {
acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
}
/*
* Now we have to update the free fragment bitmap for our new free
* space. There again we have to handle the fragmentation and also
* the rotational layout tables and the cluster summary. This is
* also done per fragment for the first new block if the old file
* system end was not on a block boundary, per fragment for the new
* last block if the new file system end is not on a block boundary,
* and per block for all space in between.
*
* Handle the first new block here if it was partially available
* before.
*/
if(osblock.fs_size % sblock.fs_frag) {
if(roundup(osblock.fs_size, sblock.fs_frag)<=sblock.fs_size) {
/*
* The new space is enough to fill at least this
* block
*/
j=0;
for(i=roundup(osblock.fs_size-cbase, sblock.fs_frag)-1;
i>=osblock.fs_size-cbase;
i--) {
setbit(cg_blksfree(&acg), i);
acg.cg_cs.cs_nffree++;
j++;
}
/*
* Check if the fragment just created could join an
* already existing fragment at the former end of the
* file system.
*/
if(isblock(&sblock, cg_blksfree(&acg),
((osblock.fs_size - cgbase(&sblock, cylno))/
sblock.fs_frag))) {
/*
* The block is now completely available.
*/
DBG_PRINT0("block was\n");
acg.cg_frsum[osblock.fs_size%sblock.fs_frag]--;
acg.cg_cs.cs_nbfree++;
acg.cg_cs.cs_nffree-=sblock.fs_frag;
k=rounddown(osblock.fs_size-cbase,
sblock.fs_frag);
updclst((osblock.fs_size-cbase)/sblock.fs_frag);
} else {
/*
* Lets rejoin a possible partially growed
* fragment.
*/
k=0;
while(isset(cg_blksfree(&acg), i) &&
(i>=rounddown(osblock.fs_size-cbase,
sblock.fs_frag))) {
i--;
k++;
}
if(k) {
acg.cg_frsum[k]--;
}
acg.cg_frsum[k+j]++;
}
} else {
/*
* We only grow by some fragments within this last
* block.
*/
for(i=sblock.fs_size-cbase-1;
i>=osblock.fs_size-cbase;
i--) {
setbit(cg_blksfree(&acg), i);
acg.cg_cs.cs_nffree++;
j++;
}
/*
* Lets rejoin a possible partially growed fragment.
*/
k=0;
while(isset(cg_blksfree(&acg), i) &&
(i>=rounddown(osblock.fs_size-cbase,
sblock.fs_frag))) {
i--;
k++;
}
if(k) {
acg.cg_frsum[k]--;
}
acg.cg_frsum[k+j]++;
}
}
/*
* Handle all new complete blocks here.
*/
for(i=roundup(osblock.fs_size-cbase, sblock.fs_frag);
i+sblock.fs_frag<=dmax-cbase; /* XXX <= or only < ? */
i+=sblock.fs_frag) {
j = i / sblock.fs_frag;
setblock(&sblock, cg_blksfree(&acg), j);
updclst(j);
acg.cg_cs.cs_nbfree++;
}
/*
* Handle the last new block if there are stll some new fragments left.
* Here we don't have to bother about the cluster summary or the even
* the rotational layout table.
*/
if (i < (dmax - cbase)) {
acg.cg_frsum[dmax - cbase - i]++;
for (; i < dmax - cbase; i++) {
setbit(cg_blksfree(&acg), i);
acg.cg_cs.cs_nffree++;
}
}
sblock.fs_cstotal.cs_nffree +=
(acg.cg_cs.cs_nffree - aocg.cg_cs.cs_nffree);
sblock.fs_cstotal.cs_nbfree +=
(acg.cg_cs.cs_nbfree - aocg.cg_cs.cs_nbfree);
/*
* The following statistics are not changed here:
* sblock.fs_cstotal.cs_ndir
* sblock.fs_cstotal.cs_nifree
* As the statistics for this cylinder group are ready, copy it to
* the summary information array.
*/
*cs = acg.cg_cs;
/*
* Write the updated "joining" cylinder group back to disk.
*/
wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)), (size_t)sblock.fs_cgsize,
(void *)&acg, fso, Nflag);
DBG_PRINT0("jcg written\n");
DBG_DUMP_CG(&sblock,
"new joining cg",
&acg);
DBG_LEAVE;
return;
}
/* ********************************************************** updcsloc ***** */
/*
* Here we update the location of the cylinder summary. We have two possible
* ways of growing the cylinder summary.
* (1) We can try to grow the summary in the current location, and relocate
* possibly used blocks within the current cylinder group.
* (2) Alternatively we can relocate the whole cylinder summary to the first
* new completely empty cylinder group. Once the cylinder summary is no
* longer in the beginning of the first cylinder group you should never
* use a version of fsck which is not aware of the possibility to have
* this structure in a non standard place.
* Option (1) is considered to be less intrusive to the structure of the file-
* system. So we try to stick to that whenever possible. If there is not enough
* space in the cylinder group containing the cylinder summary we have to use
* method (2). In case of active snapshots in the file system we probably can
* completely avoid implementing copy on write if we stick to method (2) only.
*/
static void
updcsloc(time_t utime, int fsi, int fso, unsigned int Nflag)
{
DBG_FUNC("updcsloc")
struct csum *cs;
int ocscg, ncscg;
int blocks;
ufs2_daddr_t cbase, dupper, odupper, d, f, g;
int ind;
int cylno, inc;
struct gfs_bpp *bp;
int i, l;
int lcs=0;
int block;
DBG_ENTER;
if(howmany(sblock.fs_cssize, sblock.fs_fsize) ==
howmany(osblock.fs_cssize, osblock.fs_fsize)) {
/*
* No new fragment needed.
*/
DBG_LEAVE;
return;
}
ocscg=dtog(&osblock, osblock.fs_csaddr);
cs=fscs+ocscg;
blocks = 1+howmany(sblock.fs_cssize, sblock.fs_bsize)-
howmany(osblock.fs_cssize, osblock.fs_bsize);
/*
* Read original cylinder group from disk, and make a copy.
* XXX If Nflag is set in some very rare cases we now miss
* some changes done in updjcg by reading the unmodified
* block from disk.
*/
rdfs(fsbtodb(&osblock, cgtod(&osblock, ocscg)),
(size_t)osblock.fs_cgsize, (void *)&aocg, fsi);
DBG_PRINT0("oscg read\n");
DBG_DUMP_CG(&sblock,
"old summary cg",
&aocg);
memcpy((void *)&cgun1, (void *)&cgun2, sizeof(cgun2));
/*
* Touch the cylinder group, set up local variables needed later
* and update the superblock.
*/
acg.cg_time = utime;
/*
* XXX In the case of having active snapshots we may need much more
* blocks for the copy on write. We need each block twice, and
* also up to 8*3 blocks for indirect blocks for all possible
* references.
*/
if(/*((int)sblock.fs_time&0x3)>0||*/ cs->cs_nbfree < blocks) {
/*
* There is not enough space in the old cylinder group to
* relocate all blocks as needed, so we relocate the whole
* cylinder group summary to a new group. We try to use the
* first complete new cylinder group just created. Within the
* cylinder group we align the area immediately after the
* cylinder group information location in order to be as
* close as possible to the original implementation of ffs.
*
* First we have to make sure we'll find enough space in the
* new cylinder group. If not, then we currently give up.
* We start with freeing everything which was used by the
* fragments of the old cylinder summary in the current group.
* Now we write back the group meta data, read in the needed
* meta data from the new cylinder group, and start allocating
* within that group. Here we can assume, the group to be
* completely empty. Which makes the handling of fragments and
* clusters a lot easier.
*/
DBG_TRC;
if(sblock.fs_ncg-osblock.fs_ncg < 2) {
errx(2, "panic: not enough space");
}
/*
* Point "d" to the first fragment not used by the cylinder
* summary.
*/
d=osblock.fs_csaddr+(osblock.fs_cssize/osblock.fs_fsize);
/*
* Set up last cluster size ("lcs") already here. Calculate
* the size for the trailing cluster just behind where "d"
* points to.
*/
if(sblock.fs_contigsumsize > 0) {
for(block=howmany(d%sblock.fs_fpg, sblock.fs_frag),
lcs=0; lcs<sblock.fs_contigsumsize;
block++, lcs++) {
if(isclr(cg_clustersfree(&acg), block)){
break;
}
}
}
/*
* Point "d" to the last frag used by the cylinder summary.
*/
d--;
DBG_PRINT1("d=%jd\n",
(intmax_t)d);
if((d+1)%sblock.fs_frag) {
/*
* The end of the cylinder summary is not a complete
* block.
*/
DBG_TRC;
frag_adjust(d%sblock.fs_fpg, -1);
for(; (d+1)%sblock.fs_frag; d--) {
DBG_PRINT1("d=%jd\n",
(intmax_t)d);
setbit(cg_blksfree(&acg), d%sblock.fs_fpg);
acg.cg_cs.cs_nffree++;
sblock.fs_cstotal.cs_nffree++;
}
/*
* Point "d" to the last fragment of the last
* (incomplete) block of the cylinder summary.
*/
d++;
frag_adjust(d%sblock.fs_fpg, 1);
if(isblock(&sblock, cg_blksfree(&acg),
(d%sblock.fs_fpg)/sblock.fs_frag)) {
DBG_PRINT1("d=%jd\n", (intmax_t)d);
acg.cg_cs.cs_nffree-=sblock.fs_frag;
acg.cg_cs.cs_nbfree++;
sblock.fs_cstotal.cs_nffree-=sblock.fs_frag;
sblock.fs_cstotal.cs_nbfree++;
if(sblock.fs_contigsumsize > 0) {
setbit(cg_clustersfree(&acg),
(d%sblock.fs_fpg)/sblock.fs_frag);
if(lcs < sblock.fs_contigsumsize) {
if(lcs) {
cg_clustersum(&acg)
[lcs]--;
}
lcs++;
cg_clustersum(&acg)[lcs]++;
}
}
}
/*
* Point "d" to the first fragment of the block before
* the last incomplete block.
*/
d--;
}
DBG_PRINT1("d=%jd\n", (intmax_t)d);
for(d=rounddown(d, sblock.fs_frag); d >= osblock.fs_csaddr;
d-=sblock.fs_frag) {
DBG_TRC;
DBG_PRINT1("d=%jd\n", (intmax_t)d);
setblock(&sblock, cg_blksfree(&acg),
(d%sblock.fs_fpg)/sblock.fs_frag);
acg.cg_cs.cs_nbfree++;
sblock.fs_cstotal.cs_nbfree++;
if(sblock.fs_contigsumsize > 0) {
setbit(cg_clustersfree(&acg),
(d%sblock.fs_fpg)/sblock.fs_frag);
/*
* The last cluster size is already set up.
*/
if(lcs < sblock.fs_contigsumsize) {
if(lcs) {
cg_clustersum(&acg)[lcs]--;
}
lcs++;
cg_clustersum(&acg)[lcs]++;
}
}
}
*cs = acg.cg_cs;
/*
* Now write the former cylinder group containing the cylinder
* summary back to disk.
*/
wtfs(fsbtodb(&sblock, cgtod(&sblock, ocscg)),
(size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag);
DBG_PRINT0("oscg written\n");
DBG_DUMP_CG(&sblock,
"old summary cg",
&acg);
/*
* Find the beginning of the new cylinder group containing the
* cylinder summary.
*/
sblock.fs_csaddr=cgdmin(&sblock, osblock.fs_ncg);
ncscg=dtog(&sblock, sblock.fs_csaddr);
cs=fscs+ncscg;
/*
* If Nflag is specified, we would now read random data instead
* of an empty cg structure from disk. So we can't simulate that
* part for now.
*/
if(Nflag) {
DBG_PRINT0("nscg update skipped\n");
DBG_LEAVE;
return;
}
/*
* Read the future cylinder group containing the cylinder
* summary from disk, and make a copy.
*/
rdfs(fsbtodb(&sblock, cgtod(&sblock, ncscg)),
(size_t)sblock.fs_cgsize, (void *)&aocg, fsi);
DBG_PRINT0("nscg read\n");
DBG_DUMP_CG(&sblock,
"new summary cg",
&aocg);
memcpy((void *)&cgun1, (void *)&cgun2, sizeof(cgun2));
/*
* Allocate all complete blocks used by the new cylinder
* summary.
*/
for(d=sblock.fs_csaddr; d+sblock.fs_frag <=
sblock.fs_csaddr+(sblock.fs_cssize/sblock.fs_fsize);
d+=sblock.fs_frag) {
clrblock(&sblock, cg_blksfree(&acg),
(d%sblock.fs_fpg)/sblock.fs_frag);
acg.cg_cs.cs_nbfree--;
sblock.fs_cstotal.cs_nbfree--;
if(sblock.fs_contigsumsize > 0) {
clrbit(cg_clustersfree(&acg),
(d%sblock.fs_fpg)/sblock.fs_frag);
}
}
/*
* Allocate all fragments used by the cylinder summary in the
* last block.
*/
if(d<sblock.fs_csaddr+(sblock.fs_cssize/sblock.fs_fsize)) {
for(; d-sblock.fs_csaddr<
sblock.fs_cssize/sblock.fs_fsize;
d++) {
clrbit(cg_blksfree(&acg), d%sblock.fs_fpg);
acg.cg_cs.cs_nffree--;
sblock.fs_cstotal.cs_nffree--;
}
acg.cg_cs.cs_nbfree--;
acg.cg_cs.cs_nffree+=sblock.fs_frag;
sblock.fs_cstotal.cs_nbfree--;
sblock.fs_cstotal.cs_nffree+=sblock.fs_frag;
if(sblock.fs_contigsumsize > 0) {
clrbit(cg_clustersfree(&acg),
(d%sblock.fs_fpg)/sblock.fs_frag);
}
frag_adjust(d%sblock.fs_fpg, +1);
}
/*
* XXX Handle the cluster statistics here in the case this
* cylinder group is now almost full, and the remaining
* space is less then the maximum cluster size. This is
* probably not needed, as you would hardly find a file
* system which has only MAXCSBUFS+FS_MAXCONTIG of free
* space right behind the cylinder group information in
* any new cylinder group.
*/
/*
* Update our statistics in the cylinder summary.
*/
*cs = acg.cg_cs;
/*
* Write the new cylinder group containing the cylinder summary
* back to disk.
*/
wtfs(fsbtodb(&sblock, cgtod(&sblock, ncscg)),
(size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag);
DBG_PRINT0("nscg written\n");
DBG_DUMP_CG(&sblock,
"new summary cg",
&acg);
DBG_LEAVE;
return;
}
/*
* We have got enough of space in the current cylinder group, so we
* can relocate just a few blocks, and let the summary information
* grow in place where it is right now.
*/
DBG_TRC;
cbase = cgbase(&osblock, ocscg); /* old and new are equal */
dupper = sblock.fs_csaddr - cbase +
howmany(sblock.fs_cssize, sblock.fs_fsize);
odupper = osblock.fs_csaddr - cbase +
howmany(osblock.fs_cssize, osblock.fs_fsize);
sblock.fs_dsize -= dupper-odupper;
/*
* Allocate the space for the array of blocks to be relocated.
*/
bp=(struct gfs_bpp *)malloc(((dupper-odupper)/sblock.fs_frag+2)*
sizeof(struct gfs_bpp));
if(bp == NULL) {
errx(1, "malloc failed");
}
memset((char *)bp, 0, ((dupper-odupper)/sblock.fs_frag+2)*
sizeof(struct gfs_bpp));
/*
* Lock all new frags needed for the cylinder group summary. This is
* done per fragment in the first and last block of the new required
* area, and per block for all other blocks.
*
* Handle the first new block here (but only if some fragments where
* already used for the cylinder summary).
*/
ind=0;
frag_adjust(odupper, -1);
for(d=odupper; ((d<dupper)&&(d%sblock.fs_frag)); d++) {
DBG_PRINT1("scg first frag check loop d=%jd\n",
(intmax_t)d);
if(isclr(cg_blksfree(&acg), d)) {
if (!ind) {
bp[ind].old=d/sblock.fs_frag;
bp[ind].flags|=GFS_FL_FIRST;
if(roundup(d, sblock.fs_frag) >= dupper) {
bp[ind].flags|=GFS_FL_LAST;
}
ind++;
}
} else {
clrbit(cg_blksfree(&acg), d);
acg.cg_cs.cs_nffree--;
sblock.fs_cstotal.cs_nffree--;
}
/*
* No cluster handling is needed here, as there was at least
* one fragment in use by the cylinder summary in the old
* file system.
* No block-free counter handling here as this block was not
* a free block.
*/
}
frag_adjust(odupper, 1);
/*
* Handle all needed complete blocks here.
*/
for(; d+sblock.fs_frag<=dupper; d+=sblock.fs_frag) {
DBG_PRINT1("scg block check loop d=%jd\n",
(intmax_t)d);
if(!isblock(&sblock, cg_blksfree(&acg), d/sblock.fs_frag)) {
for(f=d; f<d+sblock.fs_frag; f++) {
if(isset(cg_blksfree(&aocg), f)) {
acg.cg_cs.cs_nffree--;
sblock.fs_cstotal.cs_nffree--;
}
}
clrblock(&sblock, cg_blksfree(&acg), d/sblock.fs_frag);
bp[ind].old=d/sblock.fs_frag;
ind++;
} else {
clrblock(&sblock, cg_blksfree(&acg), d/sblock.fs_frag);
acg.cg_cs.cs_nbfree--;
sblock.fs_cstotal.cs_nbfree--;
if(sblock.fs_contigsumsize > 0) {
clrbit(cg_clustersfree(&acg), d/sblock.fs_frag);
for(lcs=0, l=(d/sblock.fs_frag)+1;
lcs<sblock.fs_contigsumsize;
l++, lcs++ ) {
if(isclr(cg_clustersfree(&acg),l)){
break;
}
}
if(lcs < sblock.fs_contigsumsize) {
cg_clustersum(&acg)[lcs+1]--;
if(lcs) {
cg_clustersum(&acg)[lcs]++;
}
}
}
}
/*
* No fragment counter handling is needed here, as this finally
* doesn't change after the relocation.
*/
}
/*
* Handle all fragments needed in the last new affected block.
*/
if(d<dupper) {
frag_adjust(dupper-1, -1);
if(isblock(&sblock, cg_blksfree(&acg), d/sblock.fs_frag)) {
acg.cg_cs.cs_nbfree--;
sblock.fs_cstotal.cs_nbfree--;
acg.cg_cs.cs_nffree+=sblock.fs_frag;
sblock.fs_cstotal.cs_nffree+=sblock.fs_frag;
if(sblock.fs_contigsumsize > 0) {
clrbit(cg_clustersfree(&acg), d/sblock.fs_frag);
for(lcs=0, l=(d/sblock.fs_frag)+1;
lcs<sblock.fs_contigsumsize;
l++, lcs++ ) {
if(isclr(cg_clustersfree(&acg),l)){
break;
}
}
if(lcs < sblock.fs_contigsumsize) {
cg_clustersum(&acg)[lcs+1]--;
if(lcs) {
cg_clustersum(&acg)[lcs]++;
}
}
}
}
for(; d<dupper; d++) {
DBG_PRINT1("scg second frag check loop d=%jd\n",
(intmax_t)d);
if(isclr(cg_blksfree(&acg), d)) {
bp[ind].old=d/sblock.fs_frag;
bp[ind].flags|=GFS_FL_LAST;
} else {
clrbit(cg_blksfree(&acg), d);
acg.cg_cs.cs_nffree--;
sblock.fs_cstotal.cs_nffree--;
}
}
if(bp[ind].flags & GFS_FL_LAST) { /* we have to advance here */
ind++;
}
frag_adjust(dupper-1, 1);
}
/*
* If we found a block to relocate just do so.
*/
if(ind) {
for(i=0; i<ind; i++) {
if(!bp[i].old) { /* no more blocks listed */
/*
* XXX A relative blocknumber should not be
* zero, which is not explicitly
* guaranteed by our code.
*/
break;
}
/*
* Allocate a complete block in the same (current)
* cylinder group.
*/
bp[i].new=alloc()/sblock.fs_frag;
/*
* There is no frag_adjust() needed for the new block
* as it will have no fragments yet :-).
*/
for(f=bp[i].old*sblock.fs_frag,
g=bp[i].new*sblock.fs_frag;
f<(bp[i].old+1)*sblock.fs_frag;
f++, g++) {
if(isset(cg_blksfree(&aocg), f)) {
setbit(cg_blksfree(&acg), g);
acg.cg_cs.cs_nffree++;
sblock.fs_cstotal.cs_nffree++;
}
}
/*
* Special handling is required if this was the first
* block. We have to consider the fragments which were
* used by the cylinder summary in the original block
* which re to be free in the copy of our block. We
* have to be careful if this first block happens to
* be also the last block to be relocated.
*/
if(bp[i].flags & GFS_FL_FIRST) {
for(f=bp[i].old*sblock.fs_frag,
g=bp[i].new*sblock.fs_frag;
f<odupper;
f++, g++) {
setbit(cg_blksfree(&acg), g);
acg.cg_cs.cs_nffree++;
sblock.fs_cstotal.cs_nffree++;
}
if(!(bp[i].flags & GFS_FL_LAST)) {
frag_adjust(bp[i].new*sblock.fs_frag,1);
}
}
/*
* Special handling is required if this is the last
* block to be relocated.
*/
if(bp[i].flags & GFS_FL_LAST) {
frag_adjust(bp[i].new*sblock.fs_frag, 1);
frag_adjust(bp[i].old*sblock.fs_frag, -1);
for(f=dupper;
f<roundup(dupper, sblock.fs_frag);
f++) {
if(isclr(cg_blksfree(&acg), f)) {
setbit(cg_blksfree(&acg), f);
acg.cg_cs.cs_nffree++;
sblock.fs_cstotal.cs_nffree++;
}
}
frag_adjust(bp[i].old*sblock.fs_frag, 1);
}
/*
* !!! Attach the cylindergroup offset here.
*/
bp[i].old+=cbase/sblock.fs_frag;
bp[i].new+=cbase/sblock.fs_frag;
/*
* Copy the content of the block.
*/
/*
* XXX Here we will have to implement a copy on write
* in the case we have any active snapshots.
*/
rdfs(fsbtodb(&sblock, bp[i].old*sblock.fs_frag),
(size_t)sblock.fs_bsize, (void *)&ablk, fsi);
wtfs(fsbtodb(&sblock, bp[i].new*sblock.fs_frag),
(size_t)sblock.fs_bsize, (void *)&ablk, fso, Nflag);
DBG_DUMP_HEX(&sblock,
"copied full block",
(unsigned char *)&ablk);
DBG_PRINT2("scg (%jd->%jd) block relocated\n",
(intmax_t)bp[i].old,
(intmax_t)bp[i].new);
}
/*
* Now we have to update all references to any fragment which
* belongs to any block relocated. We iterate now over all
* cylinder groups, within those over all non zero length
* inodes.
*/
for(cylno=0; cylno<osblock.fs_ncg; cylno++) {
DBG_PRINT1("scg doing cg (%d)\n",
cylno);
for(inc=osblock.fs_ipg-1 ; inc>0 ; inc--) {
updrefs(cylno, (ino_t)inc, bp, fsi, fso, Nflag);
}
}
/*
* All inodes are checked, now make sure the number of
* references found make sense.
*/
for(i=0; i<ind; i++) {
if(!bp[i].found || (bp[i].found>sblock.fs_frag)) {
warnx("error: %jd refs found for block %jd.",
(intmax_t)bp[i].found, (intmax_t)bp[i].old);
}
}
}
/*
* The following statistics are not changed here:
* sblock.fs_cstotal.cs_ndir
* sblock.fs_cstotal.cs_nifree
* The following statistics were already updated on the fly:
* sblock.fs_cstotal.cs_nffree
* sblock.fs_cstotal.cs_nbfree
* As the statistics for this cylinder group are ready, copy it to
* the summary information array.
*/
*cs = acg.cg_cs;
/*
* Write summary cylinder group back to disk.
*/
wtfs(fsbtodb(&sblock, cgtod(&sblock, ocscg)), (size_t)sblock.fs_cgsize,
(void *)&acg, fso, Nflag);
DBG_PRINT0("scg written\n");
DBG_DUMP_CG(&sblock,
"new summary cg",
&acg);
DBG_LEAVE;
return;
}
/* ************************************************************** rdfs ***** */
/*
* Here we read some block(s) from disk.
*/
static void
rdfs(ufs2_daddr_t bno, size_t size, void *bf, int fsi)
{
DBG_FUNC("rdfs")
ssize_t n;
DBG_ENTER;
if (bno < 0) {
err(32, "rdfs: attempting to read negative block number");
}
if (lseek(fsi, (off_t)bno * DEV_BSIZE, 0) < 0) {
err(33, "rdfs: seek error: %jd", (intmax_t)bno);
}
n = read(fsi, bf, size);
if (n != (ssize_t)size) {
err(34, "rdfs: read error: %jd", (intmax_t)bno);
}
DBG_LEAVE;
return;
}
/* ************************************************************** wtfs ***** */
/*
* Here we write some block(s) to disk.
*/
static void
wtfs(ufs2_daddr_t bno, size_t size, void *bf, int fso, unsigned int Nflag)
{
DBG_FUNC("wtfs")
ssize_t n;
DBG_ENTER;
if (Nflag) {
DBG_LEAVE;
return;
}
if (lseek(fso, (off_t)bno * DEV_BSIZE, SEEK_SET) < 0) {
err(35, "wtfs: seek error: %ld", (long)bno);
}
n = write(fso, bf, size);
if (n != (ssize_t)size) {
err(36, "wtfs: write error: %ld", (long)bno);
}
DBG_LEAVE;
return;
}
/* ************************************************************* alloc ***** */
/*
* Here we allocate a free block in the current cylinder group. It is assumed,
* that acg contains the current cylinder group. As we may take a block from
* somewhere in the file system we have to handle cluster summary here.
*/
static ufs2_daddr_t
alloc(void)
{
DBG_FUNC("alloc")
ufs2_daddr_t d, blkno;
int lcs1, lcs2;
int l;
int csmin, csmax;
int dlower, dupper, dmax;
DBG_ENTER;
if (acg.cg_magic != CG_MAGIC) {
warnx("acg: bad magic number");
DBG_LEAVE;
return (0);
}
if (acg.cg_cs.cs_nbfree == 0) {
warnx("error: cylinder group ran out of space");
DBG_LEAVE;
return (0);
}
/*
* We start seeking for free blocks only from the space available after
* the end of the new grown cylinder summary. Otherwise we allocate a
* block here which we have to relocate a couple of seconds later again
* again, and we are not prepared to to this anyway.
*/
blkno=-1;
dlower=cgsblock(&sblock, acg.cg_cgx)-cgbase(&sblock, acg.cg_cgx);
dupper=cgdmin(&sblock, acg.cg_cgx)-cgbase(&sblock, acg.cg_cgx);
dmax=cgbase(&sblock, acg.cg_cgx)+sblock.fs_fpg;
if (dmax > sblock.fs_size) {
dmax = sblock.fs_size;
}
dmax-=cgbase(&sblock, acg.cg_cgx); /* retransform into cg */
csmin=sblock.fs_csaddr-cgbase(&sblock, acg.cg_cgx);
csmax=csmin+howmany(sblock.fs_cssize, sblock.fs_fsize);
DBG_PRINT3("seek range: dl=%d, du=%d, dm=%d\n",
dlower,
dupper,
dmax);
DBG_PRINT2("range cont: csmin=%d, csmax=%d\n",
csmin,
csmax);
for(d=0; (d<dlower && blkno==-1); d+=sblock.fs_frag) {
if(d>=csmin && d<=csmax) {
continue;
}
if(isblock(&sblock, cg_blksfree(&acg), fragstoblks(&sblock,
d))) {
blkno = fragstoblks(&sblock, d);/* Yeah found a block */
break;
}
}
for(d=dupper; (d<dmax && blkno==-1); d+=sblock.fs_frag) {
if(d>=csmin && d<=csmax) {
continue;
}
if(isblock(&sblock, cg_blksfree(&acg), fragstoblks(&sblock,
d))) {
blkno = fragstoblks(&sblock, d);/* Yeah found a block */
break;
}
}
if(blkno==-1) {
warnx("internal error: couldn't find promised block in cg");
DBG_LEAVE;
return (0);
}
/*
* This is needed if the block was found already in the first loop.
*/
d=blkstofrags(&sblock, blkno);
clrblock(&sblock, cg_blksfree(&acg), blkno);
if (sblock.fs_contigsumsize > 0) {
/*
* Handle the cluster allocation bitmap.
*/
clrbit(cg_clustersfree(&acg), blkno);
/*
* We possibly have split a cluster here, so we have to do
* recalculate the sizes of the remaining cluster halves now,
* and use them for updating the cluster summary information.
*
* Lets start with the blocks before our allocated block ...
*/
for(lcs1=0, l=blkno-1; lcs1<sblock.fs_contigsumsize;
l--, lcs1++ ) {
if(isclr(cg_clustersfree(&acg),l)){
break;
}
}
/*
* ... and continue with the blocks right after our allocated
* block.
*/
for(lcs2=0, l=blkno+1; lcs2<sblock.fs_contigsumsize;
l++, lcs2++ ) {
if(isclr(cg_clustersfree(&acg),l)){
break;
}
}
/*
* Now update all counters.
*/
cg_clustersum(&acg)[MIN(lcs1+lcs2+1,sblock.fs_contigsumsize)]--;
if(lcs1) {
cg_clustersum(&acg)[lcs1]++;
}
if(lcs2) {
cg_clustersum(&acg)[lcs2]++;
}
}
/*
* Update all statistics based on blocks.
*/
acg.cg_cs.cs_nbfree--;
sblock.fs_cstotal.cs_nbfree--;
DBG_LEAVE;
return (d);
}
/* *********************************************************** isblock ***** */
/*
* Here we check if all frags of a block are free. For more details again
* please see the source of newfs(8), as this function is taken over almost
* unchanged.
*/
static int
isblock(struct fs *fs, unsigned char *cp, int h)
{
DBG_FUNC("isblock")
unsigned char mask;
DBG_ENTER;
switch (fs->fs_frag) {
case 8:
DBG_LEAVE;
return (cp[h] == 0xff);
case 4:
mask = 0x0f << ((h & 0x1) << 2);
DBG_LEAVE;
return ((cp[h >> 1] & mask) == mask);
case 2:
mask = 0x03 << ((h & 0x3) << 1);
DBG_LEAVE;
return ((cp[h >> 2] & mask) == mask);
case 1:
mask = 0x01 << (h & 0x7);
DBG_LEAVE;
return ((cp[h >> 3] & mask) == mask);
default:
fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag);
DBG_LEAVE;
return (0);
}
}
/* ********************************************************** clrblock ***** */
/*
* Here we allocate a complete block in the block map. For more details again
* please see the source of newfs(8), as this function is taken over almost
* unchanged.
*/
static void
clrblock(struct fs *fs, unsigned char *cp, int h)
{
DBG_FUNC("clrblock")
DBG_ENTER;
switch ((fs)->fs_frag) {
case 8:
cp[h] = 0;
break;
case 4:
cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
break;
case 2:
cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
break;
case 1:
cp[h >> 3] &= ~(0x01 << (h & 0x7));
break;
default:
warnx("clrblock bad fs_frag %d", fs->fs_frag);
break;
}
DBG_LEAVE;
return;
}
/* ********************************************************** setblock ***** */
/*
* Here we free a complete block in the free block map. For more details again
* please see the source of newfs(8), as this function is taken over almost
* unchanged.
*/
static void
setblock(struct fs *fs, unsigned char *cp, int h)
{
DBG_FUNC("setblock")
DBG_ENTER;
switch (fs->fs_frag) {
case 8:
cp[h] = 0xff;
break;
case 4:
cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
break;
case 2:
cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
break;
case 1:
cp[h >> 3] |= (0x01 << (h & 0x7));
break;
default:
warnx("setblock bad fs_frag %d", fs->fs_frag);
break;
}
DBG_LEAVE;
return;
}
/* ************************************************************ ginode ***** */
/*
* This function provides access to an individual inode. We find out in which
* block the requested inode is located, read it from disk if needed, and
* return the pointer into that block. We maintain a cache of one block to
* not read the same block again and again if we iterate linearly over all
* inodes.
*/
static union dinode *
ginode(ino_t inumber, int fsi, int cg)
{
DBG_FUNC("ginode")
static ino_t startinum = 0; /* first inode in cached block */
DBG_ENTER;
/*
* The inumber passed in is relative to the cg, so use it here to see
* if the inode has been allocated yet.
*/
if (isclr(cg_inosused(&aocg), inumber)) {
DBG_LEAVE;
return NULL;
}
/*
* Now make the inumber relative to the entire inode space so it can
* be sanity checked.
*/
inumber += (cg * sblock.fs_ipg);
if (inumber < ROOTINO) {
DBG_LEAVE;
return NULL;
}
if (inumber > maxino)
errx(8, "bad inode number %d to ginode", inumber);
if (startinum == 0 ||
inumber < startinum || inumber >= startinum + INOPB(&sblock)) {
inoblk = fsbtodb(&sblock, ino_to_fsba(&sblock, inumber));
rdfs(inoblk, (size_t)sblock.fs_bsize, inobuf, fsi);
startinum = (inumber / INOPB(&sblock)) * INOPB(&sblock);
}
DBG_LEAVE;
if (sblock.fs_magic == FS_UFS1_MAGIC)
return (union dinode *)((uintptr_t)inobuf +
(inumber % INOPB(&sblock)) * sizeof(struct ufs1_dinode));
return (union dinode *)((uintptr_t)inobuf +
(inumber % INOPB(&sblock)) * sizeof(struct ufs2_dinode));
}
/* ****************************************************** charsperline ***** */
/*
* Figure out how many lines our current terminal has. For more details again
* please see the source of newfs(8), as this function is taken over almost
* unchanged.
*/
static int
charsperline(void)
{
DBG_FUNC("charsperline")
int columns;
char *cp;
struct winsize ws;
DBG_ENTER;
columns = 0;
if (ioctl(0, TIOCGWINSZ, &ws) != -1) {
columns = ws.ws_col;
}
if (columns == 0 && (cp = getenv("COLUMNS"))) {
columns = atoi(cp);
}
if (columns == 0) {
columns = 80; /* last resort */
}
DBG_LEAVE;
return columns;
}
/* ****************************************************** get_dev_size ***** */
/*
* Get the size of the partition if we can't figure it out from the disklabel,
* e.g. from vinum volumes.
*/
static void
get_dev_size(int fd, int *size)
{
int sectorsize;
off_t mediasize;
if (ioctl(fd, DIOCGSECTORSIZE, &sectorsize) == -1)
err(1,"DIOCGSECTORSIZE");
if (ioctl(fd, DIOCGMEDIASIZE, &mediasize) == -1)
err(1,"DIOCGMEDIASIZE");
if (sectorsize <= 0)
errx(1, "bogus sectorsize: %d", sectorsize);
*size = mediasize / sectorsize;
}
/* ************************************************************** main ***** */
/*
* growfs(8) is a utility which allows to increase the size of an existing
* ufs file system. Currently this can only be done on unmounted file system.
* It recognizes some command line options to specify the new desired size,
* and it does some basic checkings. The old file system size is determined
* and after some more checks like we can really access the new last block
* on the disk etc. we calculate the new parameters for the superblock. After
* having done this we just call growfs() which will do the work. Before
* we finish the only thing left is to update the disklabel.
* We still have to provide support for snapshots. Therefore we first have to
* understand what data structures are always replicated in the snapshot on
* creation, for all other blocks we touch during our procedure, we have to
* keep the old blocks unchanged somewhere available for the snapshots. If we
* are lucky, then we only have to handle our blocks to be relocated in that
* way.
* Also we have to consider in what order we actually update the critical
* data structures of the file system to make sure, that in case of a disaster
* fsck(8) is still able to restore any lost data.
* The foreseen last step then will be to provide for growing even mounted
* file systems. There we have to extend the mount() system call to provide
* userland access to the file system locking facility.
*/
int
main(int argc, char **argv)
{
DBG_FUNC("main")
char *device, *special, *cp;
int ch;
unsigned int size=0;
size_t len;
unsigned int Nflag=0;
int ExpertFlag=0;
struct stat st;
struct disklabel *lp;
struct partition *pp;
int i,fsi,fso;
u_int32_t p_size;
char reply[5];
#ifdef FSMAXSNAP
int j;
#endif /* FSMAXSNAP */
DBG_ENTER;
while((ch=getopt(argc, argv, "Ns:vy")) != -1) {
switch(ch) {
case 'N':
Nflag=1;
break;
case 's':
size=(size_t)atol(optarg);
if(size<1) {
usage();
}
break;
case 'v': /* for compatibility to newfs */
break;
case 'y':
ExpertFlag=1;
break;
case '?':
/* FALLTHROUGH */
default:
usage();
}
}
argc -= optind;
argv += optind;
if(argc != 1) {
usage();
}
device=*argv;
/*
* Now try to guess the (raw)device name.
*/
if (0 == strrchr(device, '/')) {
/*
* No path prefix was given, so try in that order:
* /dev/r%s
* /dev/%s
* /dev/vinum/r%s
* /dev/vinum/%s.
*
* FreeBSD now doesn't distinguish between raw and block
* devices any longer, but it should still work this way.
*/
len=strlen(device)+strlen(_PATH_DEV)+2+strlen("vinum/");
special=(char *)malloc(len);
if(special == NULL) {
errx(1, "malloc failed");
}
snprintf(special, len, "%sr%s", _PATH_DEV, device);
if (stat(special, &st) == -1) {
snprintf(special, len, "%s%s", _PATH_DEV, device);
if (stat(special, &st) == -1) {
snprintf(special, len, "%svinum/r%s",
_PATH_DEV, device);
if (stat(special, &st) == -1) {
/* For now this is the 'last resort' */
snprintf(special, len, "%svinum/%s",
_PATH_DEV, device);
}
}
}
device = special;
}
/*
* Try to access our devices for writing ...
*/
if (Nflag) {
fso = -1;
} else {
fso = open(device, O_WRONLY);
if (fso < 0) {
err(1, "%s", device);
}
}
/*
* ... and reading.
*/
fsi = open(device, O_RDONLY);
if (fsi < 0) {
err(1, "%s", device);
}
/*
* Try to read a label and guess the slice if not specified. This
* code should guess the right thing and avoid to bother the user
* with the task of specifying the option -v on vinum volumes.
*/
cp=device+strlen(device)-1;
lp = get_disklabel(fsi);
pp = NULL;
if (lp != NULL) {
if (isdigit(*cp)) {
pp = &lp->d_partitions[2];
} else if (*cp>='a' && *cp<='h') {
pp = &lp->d_partitions[*cp - 'a'];
} else {
errx(1, "unknown device");
}
p_size = pp->p_size;
} else {
get_dev_size(fsi, &p_size);
}
/*
* Check if that partition is suitable for growing a file system.
*/
if (p_size < 1) {
errx(1, "partition is unavailable");
}
/*
* Read the current superblock, and take a backup.
*/
for (i = 0; sblock_try[i] != -1; i++) {
sblockloc = sblock_try[i] / DEV_BSIZE;
rdfs(sblockloc, (size_t)SBLOCKSIZE, (void *)&(osblock), fsi);
if ((osblock.fs_magic == FS_UFS1_MAGIC ||
(osblock.fs_magic == FS_UFS2_MAGIC &&
osblock.fs_sblockloc == sblock_try[i])) &&
osblock.fs_bsize <= MAXBSIZE &&
osblock.fs_bsize >= (int32_t) sizeof(struct fs))
break;
}
if (sblock_try[i] == -1) {
errx(1, "superblock not recognized");
}
memcpy((void *)&fsun1, (void *)&fsun2, sizeof(fsun2));
maxino = sblock.fs_ncg * sblock.fs_ipg;
DBG_OPEN("/tmp/growfs.debug"); /* already here we need a superblock */
DBG_DUMP_FS(&sblock,
"old sblock");
/*
* Determine size to grow to. Default to the full size specified in
* the disk label.
*/
sblock.fs_size = dbtofsb(&osblock, p_size);
if (size != 0) {
if (size > p_size){
errx(1, "there is not enough space (%d < %d)",
p_size, size);
}
sblock.fs_size = dbtofsb(&osblock, size);
}
/*
* Are we really growing ?
*/
if(osblock.fs_size >= sblock.fs_size) {
errx(1, "we are not growing (%jd->%jd)",
(intmax_t)osblock.fs_size, (intmax_t)sblock.fs_size);
}
#ifdef FSMAXSNAP
/*
* Check if we find an active snapshot.
*/
if(ExpertFlag == 0) {
for(j=0; j<FSMAXSNAP; j++) {
if(sblock.fs_snapinum[j]) {
errx(1, "active snapshot found in file system\n"
" please remove all snapshots before "
"using growfs");
}
if(!sblock.fs_snapinum[j]) { /* list is dense */
break;
}
}
}
#endif
if (ExpertFlag == 0 && Nflag == 0) {
printf("We strongly recommend you to make a backup "
"before growing the Filesystem\n\n"
" Did you backup your data (Yes/No) ? ");
fgets(reply, (int)sizeof(reply), stdin);
if (strcmp(reply, "Yes\n")){
printf("\n Nothing done \n");
exit (0);
}
}
printf("new file systemsize is: %jd frags\n", (intmax_t)sblock.fs_size);
/*
* Try to access our new last block in the file system. Even if we
* later on realize we have to abort our operation, on that block
* there should be no data, so we can't destroy something yet.
*/
wtfs((ufs2_daddr_t)p_size-1, (size_t)DEV_BSIZE, (void *)&sblock,
fso, Nflag);
/*
* Now calculate new superblock values and check for reasonable
* bound for new file system size:
* fs_size: is derived from label or user input
* fs_dsize: should get updated in the routines creating or
* updating the cylinder groups on the fly
* fs_cstotal: should get updated in the routines creating or
* updating the cylinder groups
*/
/*
* Update the number of cylinders and cylinder groups in the file system.
*/
if (sblock.fs_magic == FS_UFS1_MAGIC) {
sblock.fs_old_ncyl =
sblock.fs_size * sblock.fs_old_nspf / sblock.fs_old_spc;
if (sblock.fs_size * sblock.fs_old_nspf >
sblock.fs_old_ncyl * sblock.fs_old_spc)
sblock.fs_old_ncyl++;
}
sblock.fs_ncg = howmany(sblock.fs_size, sblock.fs_fpg);
maxino = sblock.fs_ncg * sblock.fs_ipg;
if (sblock.fs_size % sblock.fs_fpg != 0 &&
sblock.fs_size % sblock.fs_fpg < cgdmin(&sblock, sblock.fs_ncg)) {
/*
* The space in the new last cylinder group is too small,
* so revert back.
*/
sblock.fs_ncg--;
if (sblock.fs_magic == FS_UFS1_MAGIC)
sblock.fs_old_ncyl = sblock.fs_ncg * sblock.fs_old_cpg;
printf("Warning: %jd sector(s) cannot be allocated.\n",
(intmax_t)fsbtodb(&sblock, sblock.fs_size % sblock.fs_fpg));
sblock.fs_size = sblock.fs_ncg * sblock.fs_fpg;
}
/*
* Update the space for the cylinder group summary information in the
* respective cylinder group data area.
*/
sblock.fs_cssize =
fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
if(osblock.fs_size >= sblock.fs_size) {
errx(1, "not enough new space");
}
DBG_PRINT0("sblock calculated\n");
/*
* Ok, everything prepared, so now let's do the tricks.
*/
growfs(fsi, fso, Nflag);
/*
* Update the disk label.
*/
if (!unlabeled) {
pp->p_fsize = sblock.fs_fsize;
pp->p_frag = sblock.fs_frag;
pp->p_cpg = sblock.fs_fpg;
return_disklabel(fso, lp, Nflag);
DBG_PRINT0("label rewritten\n");
}
close(fsi);
if(fso>-1) close(fso);
DBG_CLOSE;
DBG_LEAVE;
return 0;
}
/* ************************************************** return_disklabel ***** */
/*
* Write the updated disklabel back to disk.
*/
static void
return_disklabel(int fd, struct disklabel *lp, unsigned int Nflag)
{
DBG_FUNC("return_disklabel")
u_short sum;
u_short *ptr;
DBG_ENTER;
if(!lp) {
DBG_LEAVE;
return;
}
if(!Nflag) {
lp->d_checksum=0;
sum = 0;
ptr=(u_short *)lp;
/*
* recalculate checksum
*/
while(ptr < (u_short *)&lp->d_partitions[lp->d_npartitions]) {
sum ^= *ptr++;
}
lp->d_checksum=sum;
if (ioctl(fd, DIOCWDINFO, (char *)lp) < 0) {
errx(1, "DIOCWDINFO failed");
}
}
free(lp);
DBG_LEAVE;
return ;
}
/* ***************************************************** get_disklabel ***** */
/*
* Read the disklabel from disk.
*/
static struct disklabel *
get_disklabel(int fd)
{
DBG_FUNC("get_disklabel")
static struct disklabel *lab;
DBG_ENTER;
lab=(struct disklabel *)malloc(sizeof(struct disklabel));
if (!lab)
errx(1, "malloc failed");
if (!ioctl(fd, DIOCGDINFO, (char *)lab))
return (lab);
unlabeled++;
DBG_LEAVE;
return (NULL);
}
/* ************************************************************* usage ***** */
/*
* Dump a line of usage.
*/
static void
usage(void)
{
DBG_FUNC("usage")
DBG_ENTER;
fprintf(stderr, "usage: growfs [-Ny] [-s size] special\n");
DBG_LEAVE;
exit(1);
}
/* *********************************************************** updclst ***** */
/*
* This updates most parameters and the bitmap related to cluster. We have to
* assume that sblock, osblock, acg are set up.
*/
static void
updclst(int block)
{
DBG_FUNC("updclst")
static int lcs=0;
DBG_ENTER;
if(sblock.fs_contigsumsize < 1) { /* no clustering */
return;
}
/*
* update cluster allocation map
*/
setbit(cg_clustersfree(&acg), block);
/*
* update cluster summary table
*/
if(!lcs) {
/*
* calculate size for the trailing cluster
*/
for(block--; lcs<sblock.fs_contigsumsize; block--, lcs++ ) {
if(isclr(cg_clustersfree(&acg), block)){
break;
}
}
}
if(lcs < sblock.fs_contigsumsize) {
if(lcs) {
cg_clustersum(&acg)[lcs]--;
}
lcs++;
cg_clustersum(&acg)[lcs]++;
}
DBG_LEAVE;
return;
}
/* *********************************************************** updrefs ***** */
/*
* This updates all references to relocated blocks for the given inode. The
* inode is given as number within the cylinder group, and the number of the
* cylinder group.
*/
static void
updrefs(int cg, ino_t in, struct gfs_bpp *bp, int fsi, int fso, unsigned int
Nflag)
{
DBG_FUNC("updrefs")
ufs_lbn_t len, lbn, numblks;
ufs2_daddr_t iptr, blksperindir;
union dinode *ino;
int i, mode, inodeupdated;
DBG_ENTER;
ino = ginode(in, fsi, cg);
if (ino == NULL) {
DBG_LEAVE;
return;
}
mode = DIP(ino, di_mode) & IFMT;
if (mode != IFDIR && mode != IFREG && mode != IFLNK) {
DBG_LEAVE;
return; /* only check DIR, FILE, LINK */
}
if (mode == IFLNK &&
DIP(ino, di_size) < (u_int64_t) sblock.fs_maxsymlinklen) {
DBG_LEAVE;
return; /* skip short symlinks */
}
numblks = howmany(DIP(ino, di_size), sblock.fs_bsize);
if (numblks == 0) {
DBG_LEAVE;
return; /* skip empty file */
}
if (DIP(ino, di_blocks) == 0) {
DBG_LEAVE;
return; /* skip empty swiss cheesy file or old fastlink */
}
DBG_PRINT2("scg checking inode (%d in %d)\n",
in,
cg);
/*
* Check all the blocks.
*/
inodeupdated = 0;
len = numblks < NDADDR ? numblks : NDADDR;
for (i = 0; i < len; i++) {
iptr = DIP(ino, di_db[i]);
if (iptr == 0)
continue;
if (cond_bl_upd(&iptr, bp, fsi, fso, Nflag)) {
DIP_SET(ino, di_db[i], iptr);
inodeupdated++;
}
}
DBG_PRINT0("~~scg direct blocks checked\n");
blksperindir = 1;
len = numblks - NDADDR;
lbn = NDADDR;
for (i = 0; len > 0 && i < NIADDR; i++) {
iptr = DIP(ino, di_ib[i]);
if (iptr == 0)
continue;
if (cond_bl_upd(&iptr, bp, fsi, fso, Nflag)) {
DIP_SET(ino, di_ib[i], iptr);
inodeupdated++;
}
indirchk(blksperindir, lbn, iptr, numblks, bp, fsi, fso, Nflag);
blksperindir *= NINDIR(&sblock);
lbn += blksperindir;
len -= blksperindir;
DBG_PRINT1("scg indirect_%d blocks checked\n", i + 1);
}
if (inodeupdated)
wtfs(inoblk, sblock.fs_bsize, inobuf, fso, Nflag);
DBG_LEAVE;
return;
}
/*
* Recursively check all the indirect blocks.
*/
static void
indirchk(ufs_lbn_t blksperindir, ufs_lbn_t lbn, ufs2_daddr_t blkno,
ufs_lbn_t lastlbn, struct gfs_bpp *bp, int fsi, int fso, unsigned int Nflag)
{
DBG_FUNC("indirchk")
void *ibuf;
int i, last;
ufs2_daddr_t iptr;
DBG_ENTER;
/* read in the indirect block. */
ibuf = malloc(sblock.fs_bsize);
if (!ibuf)
errx(1, "malloc failed");
rdfs(fsbtodb(&sblock, blkno), (size_t)sblock.fs_bsize, ibuf, fsi);
last = howmany(lastlbn - lbn, blksperindir) < NINDIR(&sblock) ?
howmany(lastlbn - lbn, blksperindir) : NINDIR(&sblock);
for (i = 0; i < last; i++) {
if (sblock.fs_magic == FS_UFS1_MAGIC)
iptr = ((ufs1_daddr_t *)ibuf)[i];
else
iptr = ((ufs2_daddr_t *)ibuf)[i];
if (iptr == 0)
continue;
if (cond_bl_upd(&iptr, bp, fsi, fso, Nflag)) {
if (sblock.fs_magic == FS_UFS1_MAGIC)
((ufs1_daddr_t *)ibuf)[i] = iptr;
else
((ufs2_daddr_t *)ibuf)[i] = iptr;
}
if (blksperindir == 1)
continue;
indirchk(blksperindir / NINDIR(&sblock), lbn + blksperindir * i,
iptr, lastlbn, bp, fsi, fso, Nflag);
}
free(ibuf);
DBG_LEAVE;
return;
}