mirror of
https://git.FreeBSD.org/src.git
synced 2024-12-23 11:18:54 +00:00
a4cd5630b0
non-i386, non-unix, and generatable files have been trimmed, but can easily be added in later if needed. gcc-2.7.2.1 will follow shortly, it's a very small delta to this and it's handy to have both available for reference for such little cost. The freebsd-specific changes will then be committed, and once the dust has settled, the bmakefiles will be committed to use this code.
4181 lines
125 KiB
C
4181 lines
125 KiB
C
/* Handle initialization things in C++.
|
||
Copyright (C) 1987, 89, 92, 93, 94, 1995 Free Software Foundation, Inc.
|
||
Contributed by Michael Tiemann (tiemann@cygnus.com)
|
||
|
||
This file is part of GNU CC.
|
||
|
||
GNU CC is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2, or (at your option)
|
||
any later version.
|
||
|
||
GNU CC is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GNU CC; see the file COPYING. If not, write to
|
||
the Free Software Foundation, 59 Temple Place - Suite 330,
|
||
Boston, MA 02111-1307, USA. */
|
||
|
||
|
||
/* High-level class interface. */
|
||
|
||
#include "config.h"
|
||
#include "tree.h"
|
||
#include "rtl.h"
|
||
#include "cp-tree.h"
|
||
#include "flags.h"
|
||
#include "output.h"
|
||
|
||
#undef NULL
|
||
#define NULL 0
|
||
|
||
/* In C++, structures with well-defined constructors are initialized by
|
||
those constructors, unasked. CURRENT_BASE_INIT_LIST
|
||
holds a list of stmts for a BASE_INIT term in the grammar.
|
||
This list has one element for each base class which must be
|
||
initialized. The list elements are [basename, init], with
|
||
type basetype. This allows the possibly anachronistic form
|
||
(assuming d : a, b, c) "d (int a) : c(a+5), b (a-4), a (a+3)"
|
||
where each successive term can be handed down the constructor
|
||
line. Perhaps this was not intended. */
|
||
tree current_base_init_list, current_member_init_list;
|
||
|
||
void emit_base_init ();
|
||
void check_base_init ();
|
||
static void expand_aggr_vbase_init ();
|
||
void expand_member_init ();
|
||
void expand_aggr_init ();
|
||
|
||
static void expand_aggr_init_1 ();
|
||
static void expand_recursive_init_1 ();
|
||
static void expand_recursive_init ();
|
||
static void expand_virtual_init PROTO((tree, tree));
|
||
tree expand_vec_init ();
|
||
|
||
static void add_friend (), add_friends ();
|
||
|
||
/* Cache _builtin_new and _builtin_delete exprs. */
|
||
static tree BIN, BID, BIVN, BIVD;
|
||
|
||
/* Cache the identifier nodes for the two magic field of a new cookie. */
|
||
static tree nc_nelts_field_id;
|
||
#if 0
|
||
static tree nc_ptr_2comp_field_id;
|
||
#endif
|
||
|
||
static tree minus_one;
|
||
|
||
/* Set up local variable for this file. MUST BE CALLED AFTER
|
||
INIT_DECL_PROCESSING. */
|
||
|
||
tree BI_header_type, BI_header_size;
|
||
|
||
void init_init_processing ()
|
||
{
|
||
tree fields[1];
|
||
|
||
/* Define implicit `operator new' and `operator delete' functions. */
|
||
BIN = default_conversion (get_first_fn (IDENTIFIER_GLOBAL_VALUE (ansi_opname[(int) NEW_EXPR])));
|
||
TREE_USED (TREE_OPERAND (BIN, 0)) = 0;
|
||
BID = default_conversion (get_first_fn (IDENTIFIER_GLOBAL_VALUE (ansi_opname[(int) DELETE_EXPR])));
|
||
TREE_USED (TREE_OPERAND (BID, 0)) = 0;
|
||
BIVN = default_conversion (get_first_fn (IDENTIFIER_GLOBAL_VALUE (ansi_opname[(int) VEC_NEW_EXPR])));
|
||
TREE_USED (TREE_OPERAND (BIVN, 0)) = 0;
|
||
BIVD = default_conversion (get_first_fn (IDENTIFIER_GLOBAL_VALUE (ansi_opname[(int) VEC_DELETE_EXPR])));
|
||
TREE_USED (TREE_OPERAND (BIVD, 0)) = 0;
|
||
minus_one = build_int_2 (-1, -1);
|
||
|
||
/* Define the structure that holds header information for
|
||
arrays allocated via operator new. */
|
||
BI_header_type = make_lang_type (RECORD_TYPE);
|
||
nc_nelts_field_id = get_identifier ("nelts");
|
||
fields[0] = build_lang_field_decl (FIELD_DECL, nc_nelts_field_id, sizetype);
|
||
finish_builtin_type (BI_header_type, "__new_cookie", fields,
|
||
0, double_type_node);
|
||
BI_header_size = size_in_bytes (BI_header_type);
|
||
}
|
||
|
||
/* Subroutine of emit_base_init. For BINFO, initialize all the
|
||
virtual function table pointers, except those that come from
|
||
virtual base classes. Initialize binfo's vtable pointer, if
|
||
INIT_SELF is true. CAN_ELIDE is true when we know that all virtual
|
||
function table pointers in all bases have been initialized already,
|
||
probably because their constructors have just be run. ADDR is the
|
||
pointer to the object whos vtables we are going to initialize.
|
||
|
||
REAL_BINFO is usually the same as BINFO, except when addr is not of
|
||
pointer to the type of the real derived type that we want to
|
||
initialize for. This is the case when addr is a pointer to a sub
|
||
object of a complete object, and we only want to do part of the
|
||
complete object's initialization of vtable pointers. This is done
|
||
for all virtual table pointers in virtual base classes. REAL_BINFO
|
||
is used to find the BINFO_VTABLE that we initialize with. BINFO is
|
||
used for conversions of addr to subobjects.
|
||
|
||
BINFO_TYPE (real_binfo) must be BINFO_TYPE (binfo).
|
||
|
||
Relies upon binfo being inside TYPE_BINFO (TREE_TYPE (TREE_TYPE
|
||
(addr))). */
|
||
void
|
||
expand_direct_vtbls_init (real_binfo, binfo, init_self, can_elide, addr)
|
||
tree real_binfo, binfo, addr;
|
||
int init_self, can_elide;
|
||
{
|
||
tree real_binfos = BINFO_BASETYPES (real_binfo);
|
||
tree binfos = BINFO_BASETYPES (binfo);
|
||
int i, n_baselinks = real_binfos ? TREE_VEC_LENGTH (real_binfos) : 0;
|
||
|
||
for (i = 0; i < n_baselinks; i++)
|
||
{
|
||
tree real_base_binfo = TREE_VEC_ELT (real_binfos, i);
|
||
tree base_binfo = TREE_VEC_ELT (binfos, i);
|
||
int is_not_base_vtable =
|
||
i != CLASSTYPE_VFIELD_PARENT (BINFO_TYPE (real_binfo));
|
||
if (! TREE_VIA_VIRTUAL (real_base_binfo))
|
||
expand_direct_vtbls_init (real_base_binfo, base_binfo,
|
||
is_not_base_vtable, can_elide, addr);
|
||
}
|
||
#if 0
|
||
/* Before turning this on, make sure it is correct. */
|
||
if (can_elide && ! BINFO_MODIFIED (binfo))
|
||
return;
|
||
#endif
|
||
/* Should we use something besides CLASSTYPE_VFIELDS? */
|
||
if (init_self && CLASSTYPE_VFIELDS (BINFO_TYPE (real_binfo)))
|
||
{
|
||
tree base_ptr = convert_pointer_to_real (binfo, addr);
|
||
expand_virtual_init (real_binfo, base_ptr);
|
||
}
|
||
}
|
||
|
||
/* 348 - 351 */
|
||
/* Subroutine of emit_base_init. */
|
||
static void
|
||
perform_member_init (member, name, init, explicit, protect_list)
|
||
tree member, name, init, *protect_list;
|
||
int explicit;
|
||
{
|
||
tree decl;
|
||
tree type = TREE_TYPE (member);
|
||
|
||
if (TYPE_NEEDS_CONSTRUCTING (type)
|
||
|| (init && TYPE_HAS_CONSTRUCTOR (type)))
|
||
{
|
||
/* Since `init' is already a TREE_LIST on the current_member_init_list,
|
||
only build it into one if we aren't already a list. */
|
||
if (init != NULL_TREE && TREE_CODE (init) != TREE_LIST)
|
||
init = build_tree_list (NULL_TREE, init);
|
||
|
||
decl = build_component_ref (C_C_D, name, 0, explicit);
|
||
|
||
if (explicit
|
||
&& TREE_CODE (type) == ARRAY_TYPE
|
||
&& init != NULL_TREE
|
||
&& TREE_CHAIN (init) == NULL_TREE
|
||
&& TREE_CODE (TREE_TYPE (TREE_VALUE (init))) == ARRAY_TYPE)
|
||
{
|
||
/* Initialization of one array from another. */
|
||
expand_vec_init (TREE_OPERAND (decl, 1), decl,
|
||
array_type_nelts (type), TREE_VALUE (init), 1);
|
||
}
|
||
else
|
||
expand_aggr_init (decl, init, 0, 0);
|
||
}
|
||
else
|
||
{
|
||
if (init == NULL_TREE)
|
||
{
|
||
if (explicit)
|
||
{
|
||
cp_error ("incomplete initializer for member `%D' of class `%T' which has no constructor",
|
||
member, current_class_type);
|
||
init = error_mark_node;
|
||
}
|
||
/* member traversal: note it leaves init NULL */
|
||
else if (TREE_CODE (TREE_TYPE (member)) == REFERENCE_TYPE)
|
||
cp_pedwarn ("uninitialized reference member `%D'", member);
|
||
}
|
||
else if (TREE_CODE (init) == TREE_LIST)
|
||
{
|
||
/* There was an explicit member initialization. Do some
|
||
work in that case. */
|
||
if (TREE_CHAIN (init))
|
||
{
|
||
warning ("initializer list treated as compound expression");
|
||
init = build_compound_expr (init);
|
||
}
|
||
else
|
||
init = TREE_VALUE (init);
|
||
}
|
||
|
||
/* We only build this with a null init if we got it from the
|
||
current_member_init_list. */
|
||
if (init || explicit)
|
||
{
|
||
decl = build_component_ref (C_C_D, name, 0, explicit);
|
||
expand_expr_stmt (build_modify_expr (decl, INIT_EXPR, init));
|
||
}
|
||
}
|
||
expand_cleanups_to (NULL_TREE);
|
||
|
||
if (TYPE_NEEDS_DESTRUCTOR (type))
|
||
{
|
||
tree expr = build_component_ref (C_C_D, name, 0, explicit);
|
||
expr = build_delete (type, expr, integer_zero_node,
|
||
LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR, 0);
|
||
|
||
if (expr != error_mark_node)
|
||
{
|
||
start_protect ();
|
||
*protect_list = tree_cons (NULL_TREE, expr, *protect_list);
|
||
}
|
||
}
|
||
}
|
||
|
||
extern int warn_reorder;
|
||
|
||
/* Subroutine of emit_member_init. */
|
||
static tree
|
||
sort_member_init (t)
|
||
tree t;
|
||
{
|
||
tree x, member, name, field, init;
|
||
tree init_list = NULL_TREE;
|
||
tree fields_to_unmark = NULL_TREE;
|
||
int last_pos = 0;
|
||
tree last_field;
|
||
|
||
for (member = TYPE_FIELDS (t); member ; member = TREE_CHAIN (member))
|
||
{
|
||
int pos;
|
||
|
||
/* member could be, for example, a CONST_DECL for an enumerated
|
||
tag; we don't want to try to initialize that, since it already
|
||
has a value. */
|
||
if (TREE_CODE (member) != FIELD_DECL || !DECL_NAME (member))
|
||
continue;
|
||
|
||
for (x = current_member_init_list, pos = 0; x; x = TREE_CHAIN (x), ++pos)
|
||
{
|
||
/* If we cleared this out, then pay no attention to it. */
|
||
if (TREE_PURPOSE (x) == NULL_TREE)
|
||
continue;
|
||
name = TREE_PURPOSE (x);
|
||
|
||
#if 0
|
||
field = (TREE_CODE (name) == COMPONENT_REF
|
||
? TREE_OPERAND (name, 1) : IDENTIFIER_CLASS_VALUE (name));
|
||
#else
|
||
/* Let's find out when this happens. */
|
||
my_friendly_assert (TREE_CODE (name) != COMPONENT_REF, 348);
|
||
field = IDENTIFIER_CLASS_VALUE (name);
|
||
#endif
|
||
|
||
/* If one member shadows another, get the outermost one. */
|
||
if (TREE_CODE (field) == TREE_LIST)
|
||
field = TREE_VALUE (field);
|
||
|
||
if (field == member)
|
||
{
|
||
if (warn_reorder)
|
||
{
|
||
if (pos < last_pos)
|
||
{
|
||
cp_warning_at ("member initializers for `%#D'", last_field);
|
||
cp_warning_at (" and `%#D'", field);
|
||
warning (" will be re-ordered to match declaration order");
|
||
}
|
||
last_pos = pos;
|
||
last_field = field;
|
||
}
|
||
|
||
/* Make sure we won't try to work on this init again. */
|
||
TREE_PURPOSE (x) = NULL_TREE;
|
||
x = build_tree_list (name, TREE_VALUE (x));
|
||
goto got_it;
|
||
}
|
||
}
|
||
|
||
/* If we didn't find MEMBER in the list, create a dummy entry
|
||
so the two lists (INIT_LIST and the list of members) will be
|
||
symmetrical. */
|
||
x = build_tree_list (NULL_TREE, NULL_TREE);
|
||
got_it:
|
||
init_list = chainon (init_list, x);
|
||
}
|
||
|
||
/* Initializers for base members go at the end. */
|
||
for (x = current_member_init_list ; x ; x = TREE_CHAIN (x))
|
||
{
|
||
name = TREE_PURPOSE (x);
|
||
if (name)
|
||
{
|
||
if (purpose_member (name, init_list))
|
||
{
|
||
cp_error ("multiple initializations given for member `%D'",
|
||
IDENTIFIER_CLASS_VALUE (name));
|
||
continue;
|
||
}
|
||
|
||
init_list = chainon (init_list,
|
||
build_tree_list (name, TREE_VALUE (x)));
|
||
TREE_PURPOSE (x) = NULL_TREE;
|
||
}
|
||
}
|
||
|
||
return init_list;
|
||
}
|
||
|
||
static void
|
||
sort_base_init (t, rbase_ptr, vbase_ptr)
|
||
tree t, *rbase_ptr, *vbase_ptr;
|
||
{
|
||
tree binfos = BINFO_BASETYPES (TYPE_BINFO (t));
|
||
int n_baseclasses = binfos ? TREE_VEC_LENGTH (binfos) : 0;
|
||
|
||
int i;
|
||
tree x;
|
||
tree last;
|
||
|
||
/* For warn_reorder. */
|
||
int last_pos = 0;
|
||
tree last_base = NULL_TREE;
|
||
|
||
tree rbases = NULL_TREE;
|
||
tree vbases = NULL_TREE;
|
||
|
||
/* First walk through and splice out vbase and invalid initializers.
|
||
Also replace names with binfos. */
|
||
|
||
last = tree_cons (NULL_TREE, NULL_TREE, current_base_init_list);
|
||
for (x = TREE_CHAIN (last); x; x = TREE_CHAIN (x))
|
||
{
|
||
tree basename = TREE_PURPOSE (x);
|
||
tree binfo;
|
||
|
||
if (basename == NULL_TREE)
|
||
{
|
||
/* Initializer for single base class. Must not
|
||
use multiple inheritance or this is ambiguous. */
|
||
switch (n_baseclasses)
|
||
{
|
||
case 0:
|
||
cp_error ("`%T' does not have a base class to initialize",
|
||
current_class_type);
|
||
return;
|
||
case 1:
|
||
break;
|
||
default:
|
||
cp_error ("unnamed initializer ambiguous for `%T' which uses multiple inheritance",
|
||
current_class_type);
|
||
return;
|
||
}
|
||
binfo = TREE_VEC_ELT (binfos, 0);
|
||
}
|
||
else if (is_aggr_typedef (basename, 1))
|
||
{
|
||
binfo = binfo_or_else (IDENTIFIER_TYPE_VALUE (basename), t);
|
||
if (binfo == NULL_TREE)
|
||
continue;
|
||
|
||
/* Virtual base classes are special cases. Their initializers
|
||
are recorded with this constructor, and they are used when
|
||
this constructor is the top-level constructor called. */
|
||
if (TREE_VIA_VIRTUAL (binfo))
|
||
{
|
||
tree v = CLASSTYPE_VBASECLASSES (t);
|
||
while (BINFO_TYPE (v) != BINFO_TYPE (binfo))
|
||
v = TREE_CHAIN (v);
|
||
|
||
vbases = tree_cons (v, TREE_VALUE (x), vbases);
|
||
continue;
|
||
}
|
||
else
|
||
{
|
||
/* Otherwise, if it is not an immediate base class, complain. */
|
||
for (i = n_baseclasses-1; i >= 0; i--)
|
||
if (BINFO_TYPE (binfo) == BINFO_TYPE (TREE_VEC_ELT (binfos, i)))
|
||
break;
|
||
if (i < 0)
|
||
{
|
||
cp_error ("`%T' is not an immediate base class of `%T'",
|
||
IDENTIFIER_TYPE_VALUE (basename),
|
||
current_class_type);
|
||
continue;
|
||
}
|
||
}
|
||
}
|
||
else
|
||
my_friendly_abort (365);
|
||
|
||
TREE_PURPOSE (x) = binfo;
|
||
TREE_CHAIN (last) = x;
|
||
last = x;
|
||
}
|
||
TREE_CHAIN (last) = NULL_TREE;
|
||
|
||
/* Now walk through our regular bases and make sure they're initialized. */
|
||
|
||
for (i = 0; i < n_baseclasses; ++i)
|
||
{
|
||
tree base_binfo = TREE_VEC_ELT (binfos, i);
|
||
int pos;
|
||
|
||
if (TREE_VIA_VIRTUAL (base_binfo))
|
||
continue;
|
||
|
||
for (x = current_base_init_list, pos = 0; x; x = TREE_CHAIN (x), ++pos)
|
||
{
|
||
tree binfo = TREE_PURPOSE (x);
|
||
|
||
if (binfo == NULL_TREE)
|
||
continue;
|
||
|
||
if (binfo == base_binfo)
|
||
{
|
||
if (warn_reorder)
|
||
{
|
||
if (pos < last_pos)
|
||
{
|
||
cp_warning_at ("base initializers for `%#T'", last_base);
|
||
cp_warning_at (" and `%#T'", BINFO_TYPE (binfo));
|
||
warning (" will be re-ordered to match inheritance order");
|
||
}
|
||
last_pos = pos;
|
||
last_base = BINFO_TYPE (binfo);
|
||
}
|
||
|
||
/* Make sure we won't try to work on this init again. */
|
||
TREE_PURPOSE (x) = NULL_TREE;
|
||
x = build_tree_list (binfo, TREE_VALUE (x));
|
||
goto got_it;
|
||
}
|
||
}
|
||
|
||
/* If we didn't find BASE_BINFO in the list, create a dummy entry
|
||
so the two lists (RBASES and the list of bases) will be
|
||
symmetrical. */
|
||
x = build_tree_list (NULL_TREE, NULL_TREE);
|
||
got_it:
|
||
rbases = chainon (rbases, x);
|
||
}
|
||
|
||
*rbase_ptr = rbases;
|
||
*vbase_ptr = vbases;
|
||
}
|
||
|
||
/* Perform partial cleanups for a base for exception handling. */
|
||
static tree
|
||
build_partial_cleanup_for (binfo)
|
||
tree binfo;
|
||
{
|
||
tree expr = convert_pointer_to_real (binfo,
|
||
build_unary_op (ADDR_EXPR, C_C_D, 0));
|
||
|
||
return build_delete (TREE_TYPE (expr),
|
||
expr,
|
||
integer_zero_node,
|
||
LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR, 0);
|
||
}
|
||
|
||
/* Perform whatever initializations have yet to be done on the base
|
||
class of the class variable. These actions are in the global
|
||
variable CURRENT_BASE_INIT_LIST. Such an action could be
|
||
NULL_TREE, meaning that the user has explicitly called the base
|
||
class constructor with no arguments.
|
||
|
||
If there is a need for a call to a constructor, we must surround
|
||
that call with a pushlevel/poplevel pair, since we are technically
|
||
at the PARM level of scope.
|
||
|
||
Argument IMMEDIATELY, if zero, forces a new sequence to be
|
||
generated to contain these new insns, so it can be emitted later.
|
||
This sequence is saved in the global variable BASE_INIT_EXPR.
|
||
Otherwise, the insns are emitted into the current sequence.
|
||
|
||
Note that emit_base_init does *not* initialize virtual base
|
||
classes. That is done specially, elsewhere. */
|
||
|
||
extern tree base_init_expr, rtl_expr_chain;
|
||
|
||
void
|
||
emit_base_init (t, immediately)
|
||
tree t;
|
||
int immediately;
|
||
{
|
||
extern tree in_charge_identifier;
|
||
|
||
tree member, x;
|
||
tree mem_init_list;
|
||
tree rbase_init_list, vbase_init_list;
|
||
tree t_binfo = TYPE_BINFO (t);
|
||
tree binfos = BINFO_BASETYPES (t_binfo);
|
||
int i, n_baseclasses = binfos ? TREE_VEC_LENGTH (binfos) : 0;
|
||
tree expr = NULL_TREE;
|
||
|
||
my_friendly_assert (protect_list == NULL_TREE, 999);
|
||
|
||
if (! immediately)
|
||
{
|
||
int momentary;
|
||
do_pending_stack_adjust ();
|
||
/* Make the RTL_EXPR node temporary, not momentary,
|
||
so that rtl_expr_chain doesn't become garbage. */
|
||
momentary = suspend_momentary ();
|
||
expr = make_node (RTL_EXPR);
|
||
resume_momentary (momentary);
|
||
start_sequence_for_rtl_expr (expr);
|
||
}
|
||
|
||
if (write_symbols == NO_DEBUG)
|
||
/* As a matter of principle, `start_sequence' should do this. */
|
||
emit_note (0, -1);
|
||
else
|
||
/* Always emit a line number note so we can step into constructors. */
|
||
emit_line_note_force (DECL_SOURCE_FILE (current_function_decl),
|
||
DECL_SOURCE_LINE (current_function_decl));
|
||
|
||
mem_init_list = sort_member_init (t);
|
||
current_member_init_list = NULL_TREE;
|
||
|
||
sort_base_init (t, &rbase_init_list, &vbase_init_list);
|
||
current_base_init_list = NULL_TREE;
|
||
|
||
if (TYPE_USES_VIRTUAL_BASECLASSES (t))
|
||
{
|
||
tree first_arg = TREE_CHAIN (DECL_ARGUMENTS (current_function_decl));
|
||
|
||
expand_start_cond (first_arg, 0);
|
||
expand_aggr_vbase_init (t_binfo, C_C_D, current_class_decl,
|
||
vbase_init_list);
|
||
expand_end_cond ();
|
||
}
|
||
|
||
/* Now, perform initialization of non-virtual base classes. */
|
||
for (i = 0; i < n_baseclasses; i++)
|
||
{
|
||
tree base = current_class_decl;
|
||
tree base_binfo = TREE_VEC_ELT (binfos, i);
|
||
tree init = void_list_node;
|
||
|
||
if (TREE_VIA_VIRTUAL (base_binfo))
|
||
continue;
|
||
|
||
#if 0 /* Once unsharing happens soon enough. */
|
||
my_friendly_assert (BINFO_INHERITANCE_CHAIN (base_binfo) == t_binfo);
|
||
#else
|
||
BINFO_INHERITANCE_CHAIN (base_binfo) = t_binfo;
|
||
#endif
|
||
|
||
if (TREE_PURPOSE (rbase_init_list))
|
||
init = TREE_VALUE (rbase_init_list);
|
||
else if (TYPE_NEEDS_CONSTRUCTING (BINFO_TYPE (base_binfo)))
|
||
init = NULL_TREE;
|
||
|
||
if (init != void_list_node)
|
||
{
|
||
member = convert_pointer_to_real (base_binfo, current_class_decl);
|
||
expand_aggr_init_1 (base_binfo, 0,
|
||
build_indirect_ref (member, NULL_PTR), init,
|
||
BINFO_OFFSET_ZEROP (base_binfo), LOOKUP_NORMAL);
|
||
expand_cleanups_to (NULL_TREE);
|
||
}
|
||
|
||
if (TYPE_NEEDS_DESTRUCTOR (BINFO_TYPE (base_binfo)))
|
||
{
|
||
start_protect ();
|
||
protect_list = tree_cons (NULL_TREE,
|
||
build_partial_cleanup_for (base_binfo),
|
||
protect_list);
|
||
}
|
||
|
||
rbase_init_list = TREE_CHAIN (rbase_init_list);
|
||
}
|
||
|
||
/* Initialize all the virtual function table fields that
|
||
do come from virtual base classes. */
|
||
if (TYPE_USES_VIRTUAL_BASECLASSES (t))
|
||
expand_indirect_vtbls_init (t_binfo, C_C_D, current_class_decl, 0);
|
||
|
||
/* Initialize all the virtual function table fields that
|
||
do not come from virtual base classes. */
|
||
expand_direct_vtbls_init (t_binfo, t_binfo, 1, 1, current_class_decl);
|
||
|
||
for (member = TYPE_FIELDS (t); member; member = TREE_CHAIN (member))
|
||
{
|
||
tree init, name;
|
||
int from_init_list;
|
||
|
||
/* member could be, for example, a CONST_DECL for an enumerated
|
||
tag; we don't want to try to initialize that, since it already
|
||
has a value. */
|
||
if (TREE_CODE (member) != FIELD_DECL || !DECL_NAME (member))
|
||
continue;
|
||
|
||
/* See if we had a user-specified member initialization. */
|
||
if (TREE_PURPOSE (mem_init_list))
|
||
{
|
||
name = TREE_PURPOSE (mem_init_list);
|
||
init = TREE_VALUE (mem_init_list);
|
||
from_init_list = 1;
|
||
|
||
/* Also see if it's ever a COMPONENT_REF here. If it is, we
|
||
need to do `expand_assignment (name, init, 0, 0);' and
|
||
a continue. */
|
||
my_friendly_assert (TREE_CODE (name) != COMPONENT_REF, 349);
|
||
}
|
||
else
|
||
{
|
||
name = DECL_NAME (member);
|
||
init = DECL_INITIAL (member);
|
||
|
||
from_init_list = 0;
|
||
}
|
||
|
||
perform_member_init (member, name, init, from_init_list, &protect_list);
|
||
mem_init_list = TREE_CHAIN (mem_init_list);
|
||
}
|
||
|
||
/* Now initialize any members from our bases. */
|
||
while (mem_init_list)
|
||
{
|
||
tree name, init, field;
|
||
|
||
if (TREE_PURPOSE (mem_init_list))
|
||
{
|
||
name = TREE_PURPOSE (mem_init_list);
|
||
init = TREE_VALUE (mem_init_list);
|
||
/* XXX: this may need the COMPONENT_REF operand 0 check if
|
||
it turns out we actually get them. */
|
||
field = IDENTIFIER_CLASS_VALUE (name);
|
||
|
||
/* If one member shadows another, get the outermost one. */
|
||
if (TREE_CODE (field) == TREE_LIST)
|
||
{
|
||
field = TREE_VALUE (field);
|
||
if (decl_type_context (field) != current_class_type)
|
||
cp_error ("field `%D' not in immediate context", field);
|
||
}
|
||
|
||
#if 0
|
||
/* It turns out if you have an anonymous union in the
|
||
class, a member from it can end up not being on the
|
||
list of fields (rather, the type is), and therefore
|
||
won't be seen by the for loop above. */
|
||
|
||
/* The code in this for loop is derived from a general loop
|
||
which had this check in it. Theoretically, we've hit
|
||
every initialization for the list of members in T, so
|
||
we shouldn't have anything but these left in this list. */
|
||
my_friendly_assert (DECL_FIELD_CONTEXT (field) != t, 351);
|
||
#endif
|
||
|
||
perform_member_init (field, name, init, 1, &protect_list);
|
||
}
|
||
mem_init_list = TREE_CHAIN (mem_init_list);
|
||
}
|
||
|
||
if (! immediately)
|
||
{
|
||
do_pending_stack_adjust ();
|
||
my_friendly_assert (base_init_expr == 0, 207);
|
||
base_init_expr = expr;
|
||
TREE_TYPE (expr) = void_type_node;
|
||
RTL_EXPR_RTL (expr) = const0_rtx;
|
||
RTL_EXPR_SEQUENCE (expr) = get_insns ();
|
||
rtl_expr_chain = tree_cons (NULL_TREE, expr, rtl_expr_chain);
|
||
end_sequence ();
|
||
TREE_SIDE_EFFECTS (expr) = 1;
|
||
}
|
||
|
||
/* All the implicit try blocks we built up will be zapped
|
||
when we come to a real binding contour boundary. */
|
||
}
|
||
|
||
/* Check that all fields are properly initialized after
|
||
an assignment to `this'. */
|
||
void
|
||
check_base_init (t)
|
||
tree t;
|
||
{
|
||
tree member;
|
||
for (member = TYPE_FIELDS (t); member; member = TREE_CHAIN (member))
|
||
if (DECL_NAME (member) && TREE_USED (member))
|
||
cp_error ("field `%D' used before initialized (after assignment to `this')",
|
||
member);
|
||
}
|
||
|
||
/* This code sets up the virtual function tables appropriate for
|
||
the pointer DECL. It is a one-ply initialization.
|
||
|
||
BINFO is the exact type that DECL is supposed to be. In
|
||
multiple inheritance, this might mean "C's A" if C : A, B. */
|
||
static void
|
||
expand_virtual_init (binfo, decl)
|
||
tree binfo, decl;
|
||
{
|
||
tree type = BINFO_TYPE (binfo);
|
||
tree vtbl, vtbl_ptr;
|
||
tree vtype, vtype_binfo;
|
||
|
||
/* This code is crusty. Should be simple, like:
|
||
vtbl = BINFO_VTABLE (binfo);
|
||
*/
|
||
vtype = DECL_CONTEXT (CLASSTYPE_VFIELD (type));
|
||
vtype_binfo = get_binfo (vtype, TREE_TYPE (TREE_TYPE (decl)), 0);
|
||
vtbl = BINFO_VTABLE (binfo_value (DECL_FIELD_CONTEXT (CLASSTYPE_VFIELD (type)), binfo));
|
||
assemble_external (vtbl);
|
||
TREE_USED (vtbl) = 1;
|
||
vtbl = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (vtbl)), vtbl);
|
||
decl = convert_pointer_to_real (vtype_binfo, decl);
|
||
vtbl_ptr = build_vfield_ref (build_indirect_ref (decl, NULL_PTR), vtype);
|
||
if (vtbl_ptr == error_mark_node)
|
||
return;
|
||
|
||
/* Have to convert VTBL since array sizes may be different. */
|
||
vtbl = convert_force (TREE_TYPE (vtbl_ptr), vtbl, 0);
|
||
expand_expr_stmt (build_modify_expr (vtbl_ptr, NOP_EXPR, vtbl));
|
||
}
|
||
|
||
/* Subroutine of `expand_aggr_vbase_init'.
|
||
BINFO is the binfo of the type that is being initialized.
|
||
INIT_LIST is the list of initializers for the virtual baseclass. */
|
||
static void
|
||
expand_aggr_vbase_init_1 (binfo, exp, addr, init_list)
|
||
tree binfo, exp, addr, init_list;
|
||
{
|
||
tree init = purpose_member (binfo, init_list);
|
||
tree ref = build_indirect_ref (addr, NULL_PTR);
|
||
if (init)
|
||
init = TREE_VALUE (init);
|
||
/* Call constructors, but don't set up vtables. */
|
||
expand_aggr_init_1 (binfo, exp, ref, init, 0, LOOKUP_COMPLAIN);
|
||
expand_cleanups_to (NULL_TREE);
|
||
}
|
||
|
||
/* Initialize this object's virtual base class pointers. This must be
|
||
done only at the top-level of the object being constructed.
|
||
|
||
INIT_LIST is list of initialization for constructor to perform. */
|
||
static void
|
||
expand_aggr_vbase_init (binfo, exp, addr, init_list)
|
||
tree binfo;
|
||
tree exp;
|
||
tree addr;
|
||
tree init_list;
|
||
{
|
||
tree type = BINFO_TYPE (binfo);
|
||
|
||
if (TYPE_USES_VIRTUAL_BASECLASSES (type))
|
||
{
|
||
tree result = init_vbase_pointers (type, addr);
|
||
tree vbases;
|
||
|
||
if (result)
|
||
expand_expr_stmt (build_compound_expr (result));
|
||
|
||
for (vbases = CLASSTYPE_VBASECLASSES (type); vbases;
|
||
vbases = TREE_CHAIN (vbases))
|
||
{
|
||
tree tmp = purpose_member (vbases, result);
|
||
expand_aggr_vbase_init_1 (vbases, exp,
|
||
TREE_OPERAND (TREE_VALUE (tmp), 0),
|
||
init_list);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Subroutine to perform parser actions for member initialization.
|
||
S_ID is the scoped identifier.
|
||
NAME is the name of the member.
|
||
INIT is the initializer, or `void_type_node' if none. */
|
||
void
|
||
do_member_init (s_id, name, init)
|
||
tree s_id, name, init;
|
||
{
|
||
tree binfo, base;
|
||
|
||
if (current_class_type == NULL_TREE
|
||
|| ! is_aggr_typedef (s_id, 1))
|
||
return;
|
||
binfo = get_binfo (IDENTIFIER_TYPE_VALUE (s_id),
|
||
current_class_type, 1);
|
||
if (binfo == error_mark_node)
|
||
return;
|
||
if (binfo == 0)
|
||
{
|
||
error_not_base_type (IDENTIFIER_TYPE_VALUE (s_id), current_class_type);
|
||
return;
|
||
}
|
||
|
||
base = convert_pointer_to (binfo, current_class_decl);
|
||
expand_member_init (build_indirect_ref (base, NULL_PTR), name, init);
|
||
}
|
||
|
||
/* Function to give error message if member initialization specification
|
||
is erroneous. FIELD is the member we decided to initialize.
|
||
TYPE is the type for which the initialization is being performed.
|
||
FIELD must be a member of TYPE, or the base type from which FIELD
|
||
comes must not need a constructor.
|
||
|
||
MEMBER_NAME is the name of the member. */
|
||
|
||
static int
|
||
member_init_ok_or_else (field, type, member_name)
|
||
tree field;
|
||
tree type;
|
||
char *member_name;
|
||
{
|
||
if (field == error_mark_node)
|
||
return 0;
|
||
if (field == NULL_TREE)
|
||
{
|
||
cp_error ("class `%T' does not have any field named `%s'", type,
|
||
member_name);
|
||
return 0;
|
||
}
|
||
if (DECL_CONTEXT (field) != type
|
||
&& TYPE_NEEDS_CONSTRUCTING (DECL_CONTEXT (field)))
|
||
{
|
||
if (current_function_decl && DECL_CONSTRUCTOR_P (current_function_decl))
|
||
cp_error ("initialization of `%D' inside constructor for `%T'",
|
||
field, type);
|
||
else
|
||
cp_error ("member `%D' comes from base class needing constructor",
|
||
field);
|
||
return 0;
|
||
}
|
||
if (TREE_STATIC (field))
|
||
{
|
||
cp_error ("field `%#D' is static; only point of initialization is its declaration",
|
||
field);
|
||
return 0;
|
||
}
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* If NAME is a viable field name for the aggregate DECL,
|
||
and PARMS is a viable parameter list, then expand an _EXPR
|
||
which describes this initialization.
|
||
|
||
Note that we do not need to chase through the class's base classes
|
||
to look for NAME, because if it's in that list, it will be handled
|
||
by the constructor for that base class.
|
||
|
||
We do not yet have a fixed-point finder to instantiate types
|
||
being fed to overloaded constructors. If there is a unique
|
||
constructor, then argument types can be got from that one.
|
||
|
||
If INIT is non-NULL, then it the initialization should
|
||
be placed in `current_base_init_list', where it will be processed
|
||
by `emit_base_init'. */
|
||
void
|
||
expand_member_init (exp, name, init)
|
||
tree exp, name, init;
|
||
{
|
||
extern tree ptr_type_node; /* should be in tree.h */
|
||
|
||
tree basetype = NULL_TREE, field;
|
||
tree parm;
|
||
tree rval, type;
|
||
tree actual_name;
|
||
|
||
if (exp == NULL_TREE)
|
||
return; /* complain about this later */
|
||
|
||
type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
|
||
|
||
if (name == NULL_TREE && IS_AGGR_TYPE (type))
|
||
switch (CLASSTYPE_N_BASECLASSES (type))
|
||
{
|
||
case 0:
|
||
error ("base class initializer specified, but no base class to initialize");
|
||
return;
|
||
case 1:
|
||
basetype = TYPE_BINFO_BASETYPE (type, 0);
|
||
break;
|
||
default:
|
||
error ("initializer for unnamed base class ambiguous");
|
||
cp_error ("(type `%T' uses multiple inheritance)", type);
|
||
return;
|
||
}
|
||
|
||
if (init)
|
||
{
|
||
/* The grammar should not allow fields which have names
|
||
that are TYPENAMEs. Therefore, if the field has
|
||
a non-NULL TREE_TYPE, we may assume that this is an
|
||
attempt to initialize a base class member of the current
|
||
type. Otherwise, it is an attempt to initialize a
|
||
member field. */
|
||
|
||
if (init == void_type_node)
|
||
init = NULL_TREE;
|
||
|
||
if (name == NULL_TREE || IDENTIFIER_HAS_TYPE_VALUE (name))
|
||
{
|
||
tree base_init;
|
||
|
||
if (name == NULL_TREE)
|
||
{
|
||
/*
|
||
if (basetype)
|
||
name = TYPE_IDENTIFIER (basetype);
|
||
else
|
||
{
|
||
error ("no base class to initialize");
|
||
return;
|
||
}
|
||
*/
|
||
}
|
||
else
|
||
{
|
||
basetype = IDENTIFIER_TYPE_VALUE (name);
|
||
if (basetype != type
|
||
&& ! binfo_member (basetype, TYPE_BINFO (type))
|
||
&& ! binfo_member (basetype, CLASSTYPE_VBASECLASSES (type)))
|
||
{
|
||
if (IDENTIFIER_CLASS_VALUE (name))
|
||
goto try_member;
|
||
if (TYPE_USES_VIRTUAL_BASECLASSES (type))
|
||
error ("type `%s' is not an immediate or virtual basetype for `%s'",
|
||
IDENTIFIER_POINTER (name),
|
||
TYPE_NAME_STRING (type));
|
||
else
|
||
error ("type `%s' is not an immediate basetype for `%s'",
|
||
IDENTIFIER_POINTER (name),
|
||
TYPE_NAME_STRING (type));
|
||
return;
|
||
}
|
||
}
|
||
|
||
if (purpose_member (name, current_base_init_list))
|
||
{
|
||
error ("base class `%s' already initialized",
|
||
IDENTIFIER_POINTER (name));
|
||
return;
|
||
}
|
||
|
||
base_init = build_tree_list (name, init);
|
||
TREE_TYPE (base_init) = basetype;
|
||
current_base_init_list = chainon (current_base_init_list, base_init);
|
||
}
|
||
else
|
||
{
|
||
tree member_init;
|
||
|
||
try_member:
|
||
field = lookup_field (type, name, 1, 0);
|
||
|
||
if (! member_init_ok_or_else (field, type, IDENTIFIER_POINTER (name)))
|
||
return;
|
||
|
||
if (purpose_member (name, current_member_init_list))
|
||
{
|
||
error ("field `%s' already initialized", IDENTIFIER_POINTER (name));
|
||
return;
|
||
}
|
||
|
||
member_init = build_tree_list (name, init);
|
||
TREE_TYPE (member_init) = TREE_TYPE (field);
|
||
current_member_init_list = chainon (current_member_init_list, member_init);
|
||
}
|
||
return;
|
||
}
|
||
else if (name == NULL_TREE)
|
||
{
|
||
compiler_error ("expand_member_init: name == NULL_TREE");
|
||
return;
|
||
}
|
||
|
||
basetype = type;
|
||
field = lookup_field (basetype, name, 0, 0);
|
||
|
||
if (! member_init_ok_or_else (field, basetype, IDENTIFIER_POINTER (name)))
|
||
return;
|
||
|
||
/* now see if there is a constructor for this type
|
||
which will take these args. */
|
||
|
||
if (TYPE_HAS_CONSTRUCTOR (TREE_TYPE (field)))
|
||
{
|
||
tree parmtypes, fndecl;
|
||
|
||
if (TREE_CODE (exp) == VAR_DECL || TREE_CODE (exp) == PARM_DECL)
|
||
{
|
||
/* just know that we've seen something for this node */
|
||
DECL_INITIAL (exp) = error_mark_node;
|
||
TREE_USED (exp) = 1;
|
||
}
|
||
type = TYPE_MAIN_VARIANT (TREE_TYPE (field));
|
||
actual_name = TYPE_IDENTIFIER (type);
|
||
parm = build_component_ref (exp, name, 0, 0);
|
||
|
||
/* Now get to the constructor. */
|
||
fndecl = TREE_VEC_ELT (CLASSTYPE_METHOD_VEC (type), 0);
|
||
/* Get past destructor, if any. */
|
||
if (TYPE_HAS_DESTRUCTOR (type))
|
||
fndecl = DECL_CHAIN (fndecl);
|
||
|
||
if (fndecl)
|
||
my_friendly_assert (TREE_CODE (fndecl) == FUNCTION_DECL, 209);
|
||
|
||
/* If the field is unique, we can use the parameter
|
||
types to guide possible type instantiation. */
|
||
if (DECL_CHAIN (fndecl) == NULL_TREE)
|
||
{
|
||
/* There was a confusion here between
|
||
FIELD and FNDECL. The following code
|
||
should be correct, but abort is here
|
||
to make sure. */
|
||
my_friendly_abort (48);
|
||
parmtypes = FUNCTION_ARG_CHAIN (fndecl);
|
||
}
|
||
else
|
||
{
|
||
parmtypes = NULL_TREE;
|
||
fndecl = NULL_TREE;
|
||
}
|
||
|
||
init = convert_arguments (parm, parmtypes, NULL_TREE, fndecl, LOOKUP_NORMAL);
|
||
if (init == NULL_TREE || TREE_TYPE (init) != error_mark_node)
|
||
rval = build_method_call (NULL_TREE, actual_name, init, NULL_TREE, LOOKUP_NORMAL);
|
||
else
|
||
return;
|
||
|
||
if (rval != error_mark_node)
|
||
{
|
||
/* Now, fill in the first parm with our guy */
|
||
TREE_VALUE (TREE_OPERAND (rval, 1))
|
||
= build_unary_op (ADDR_EXPR, parm, 0);
|
||
TREE_TYPE (rval) = ptr_type_node;
|
||
TREE_SIDE_EFFECTS (rval) = 1;
|
||
}
|
||
}
|
||
else if (TYPE_NEEDS_CONSTRUCTING (TREE_TYPE (field)))
|
||
{
|
||
parm = build_component_ref (exp, name, 0, 0);
|
||
expand_aggr_init (parm, NULL_TREE, 0, 0);
|
||
rval = error_mark_node;
|
||
}
|
||
|
||
/* Now initialize the member. It does not have to
|
||
be of aggregate type to receive initialization. */
|
||
if (rval != error_mark_node)
|
||
expand_expr_stmt (rval);
|
||
}
|
||
|
||
/* This is like `expand_member_init', only it stores one aggregate
|
||
value into another.
|
||
|
||
INIT comes in two flavors: it is either a value which
|
||
is to be stored in EXP, or it is a parameter list
|
||
to go to a constructor, which will operate on EXP.
|
||
If INIT is not a parameter list for a constructor, then set
|
||
LOOKUP_ONLYCONVERTING.
|
||
If FLAGS is LOOKUP_ONLYCONVERTING then it is the = init form of
|
||
the initializer, if FLAGS is 0, then it is the (init) form.
|
||
If `init' is a CONSTRUCTOR, then we emit a warning message,
|
||
explaining that such initializations are invalid.
|
||
|
||
ALIAS_THIS is nonzero iff we are initializing something which is
|
||
essentially an alias for C_C_D. In this case, the base constructor
|
||
may move it on us, and we must keep track of such deviations.
|
||
|
||
If INIT resolves to a CALL_EXPR which happens to return
|
||
something of the type we are looking for, then we know
|
||
that we can safely use that call to perform the
|
||
initialization.
|
||
|
||
The virtual function table pointer cannot be set up here, because
|
||
we do not really know its type.
|
||
|
||
Virtual baseclass pointers are also set up here.
|
||
|
||
This never calls operator=().
|
||
|
||
When initializing, nothing is CONST.
|
||
|
||
A default copy constructor may have to be used to perform the
|
||
initialization.
|
||
|
||
A constructor or a conversion operator may have to be used to
|
||
perform the initialization, but not both, as it would be ambiguous.
|
||
*/
|
||
|
||
void
|
||
expand_aggr_init (exp, init, alias_this, flags)
|
||
tree exp, init;
|
||
int alias_this;
|
||
int flags;
|
||
{
|
||
tree type = TREE_TYPE (exp);
|
||
int was_const = TREE_READONLY (exp);
|
||
int was_volatile = TREE_THIS_VOLATILE (exp);
|
||
|
||
if (init == error_mark_node)
|
||
return;
|
||
|
||
TREE_READONLY (exp) = 0;
|
||
TREE_THIS_VOLATILE (exp) = 0;
|
||
|
||
if (init && TREE_CODE (init) != TREE_LIST)
|
||
flags |= LOOKUP_ONLYCONVERTING;
|
||
|
||
if (TREE_CODE (type) == ARRAY_TYPE)
|
||
{
|
||
/* Must arrange to initialize each element of EXP
|
||
from elements of INIT. */
|
||
tree itype = init ? TREE_TYPE (init) : NULL_TREE;
|
||
if (TYPE_READONLY (TREE_TYPE (type)) || TYPE_VOLATILE (TREE_TYPE (type)))
|
||
{
|
||
TREE_TYPE (exp) = TYPE_MAIN_VARIANT (type);
|
||
if (init)
|
||
TREE_TYPE (init) = TYPE_MAIN_VARIANT (itype);
|
||
}
|
||
if (init && TREE_TYPE (init) == NULL_TREE)
|
||
{
|
||
/* Handle bad initializers like:
|
||
class COMPLEX {
|
||
public:
|
||
double re, im;
|
||
COMPLEX(double r = 0.0, double i = 0.0) {re = r; im = i;};
|
||
~COMPLEX() {};
|
||
};
|
||
|
||
int main(int argc, char **argv) {
|
||
COMPLEX zees(1.0, 0.0)[10];
|
||
}
|
||
*/
|
||
error ("bad array initializer");
|
||
return;
|
||
}
|
||
expand_vec_init (exp, exp, array_type_nelts (type), init,
|
||
init && comptypes (TREE_TYPE (init), TREE_TYPE (exp), 1));
|
||
TREE_READONLY (exp) = was_const;
|
||
TREE_THIS_VOLATILE (exp) = was_volatile;
|
||
TREE_TYPE (exp) = type;
|
||
if (init)
|
||
TREE_TYPE (init) = itype;
|
||
return;
|
||
}
|
||
|
||
if (TREE_CODE (exp) == VAR_DECL || TREE_CODE (exp) == PARM_DECL)
|
||
/* just know that we've seen something for this node */
|
||
TREE_USED (exp) = 1;
|
||
|
||
#if 0
|
||
/* If initializing from a GNU C CONSTRUCTOR, consider the elts in the
|
||
constructor as parameters to an implicit GNU C++ constructor. */
|
||
if (init && TREE_CODE (init) == CONSTRUCTOR
|
||
&& TYPE_HAS_CONSTRUCTOR (type)
|
||
&& TREE_TYPE (init) == type)
|
||
init = CONSTRUCTOR_ELTS (init);
|
||
#endif
|
||
|
||
TREE_TYPE (exp) = TYPE_MAIN_VARIANT (type);
|
||
expand_aggr_init_1 (TYPE_BINFO (type), exp, exp,
|
||
init, alias_this, LOOKUP_NORMAL|flags);
|
||
TREE_TYPE (exp) = type;
|
||
TREE_READONLY (exp) = was_const;
|
||
TREE_THIS_VOLATILE (exp) = was_volatile;
|
||
}
|
||
|
||
static void
|
||
expand_default_init (binfo, true_exp, exp, type, init, alias_this, flags)
|
||
tree binfo;
|
||
tree true_exp, exp;
|
||
tree type;
|
||
tree init;
|
||
int alias_this;
|
||
int flags;
|
||
{
|
||
/* It fails because there may not be a constructor which takes
|
||
its own type as the first (or only parameter), but which does
|
||
take other types via a conversion. So, if the thing initializing
|
||
the expression is a unit element of type X, first try X(X&),
|
||
followed by initialization by X. If neither of these work
|
||
out, then look hard. */
|
||
tree rval;
|
||
tree parms;
|
||
|
||
if (init == NULL_TREE
|
||
|| (TREE_CODE (init) == TREE_LIST && ! TREE_TYPE (init)))
|
||
{
|
||
parms = init;
|
||
if (parms)
|
||
init = TREE_VALUE (parms);
|
||
}
|
||
else if (TREE_CODE (init) == INDIRECT_REF && TREE_HAS_CONSTRUCTOR (init)
|
||
&& TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (TREE_TYPE (init)))
|
||
{
|
||
rval = convert_for_initialization (exp, type, init, 0, 0, 0, 0);
|
||
TREE_USED (rval) = 1;
|
||
expand_expr_stmt (rval);
|
||
return;
|
||
}
|
||
else
|
||
parms = build_tree_list (NULL_TREE, init);
|
||
|
||
if (TYPE_USES_VIRTUAL_BASECLASSES (type))
|
||
{
|
||
if (true_exp == exp)
|
||
parms = tree_cons (NULL_TREE, integer_one_node, parms);
|
||
else
|
||
parms = tree_cons (NULL_TREE, integer_zero_node, parms);
|
||
flags |= LOOKUP_HAS_IN_CHARGE;
|
||
}
|
||
|
||
if (init && TREE_CHAIN (parms) == NULL_TREE
|
||
&& TYPE_HAS_TRIVIAL_INIT_REF (type)
|
||
&& TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (TREE_TYPE (init)))
|
||
{
|
||
rval = build (INIT_EXPR, type, exp, init);
|
||
TREE_SIDE_EFFECTS (rval) = 1;
|
||
expand_expr_stmt (rval);
|
||
}
|
||
else
|
||
{
|
||
if (flags & LOOKUP_ONLYCONVERTING)
|
||
flags |= LOOKUP_NO_CONVERSION;
|
||
rval = build_method_call (exp, constructor_name_full (type),
|
||
parms, binfo, flags);
|
||
|
||
/* Private, protected, or otherwise unavailable. */
|
||
if (rval == error_mark_node)
|
||
{
|
||
if (flags & LOOKUP_COMPLAIN)
|
||
cp_error ("in base initialization for %sclass `%T'",
|
||
TREE_VIA_VIRTUAL (binfo) ? "virtual base " : "",
|
||
binfo);
|
||
}
|
||
else if (rval == NULL_TREE)
|
||
my_friendly_abort (361);
|
||
else
|
||
{
|
||
/* p. 222: if the base class assigns to `this', then that
|
||
value is used in the derived class. */
|
||
if ((flag_this_is_variable & 1) && alias_this)
|
||
{
|
||
TREE_TYPE (rval) = TREE_TYPE (current_class_decl);
|
||
expand_assignment (current_class_decl, rval, 0, 0);
|
||
}
|
||
else
|
||
expand_expr_stmt (rval);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* This function is responsible for initializing EXP with INIT
|
||
(if any).
|
||
|
||
BINFO is the binfo of the type for who we are performing the
|
||
initialization. For example, if W is a virtual base class of A and B,
|
||
and C : A, B.
|
||
If we are initializing B, then W must contain B's W vtable, whereas
|
||
were we initializing C, W must contain C's W vtable.
|
||
|
||
TRUE_EXP is nonzero if it is the true expression being initialized.
|
||
In this case, it may be EXP, or may just contain EXP. The reason we
|
||
need this is because if EXP is a base element of TRUE_EXP, we
|
||
don't necessarily know by looking at EXP where its virtual
|
||
baseclass fields should really be pointing. But we do know
|
||
from TRUE_EXP. In constructors, we don't know anything about
|
||
the value being initialized.
|
||
|
||
ALIAS_THIS serves the same purpose it serves for expand_aggr_init.
|
||
|
||
FLAGS is just passes to `build_method_call'. See that function for
|
||
its description. */
|
||
|
||
static void
|
||
expand_aggr_init_1 (binfo, true_exp, exp, init, alias_this, flags)
|
||
tree binfo;
|
||
tree true_exp, exp;
|
||
tree init;
|
||
int alias_this;
|
||
int flags;
|
||
{
|
||
tree type = TREE_TYPE (exp);
|
||
tree init_type = NULL_TREE;
|
||
|
||
my_friendly_assert (init != error_mark_node && type != error_mark_node, 211);
|
||
|
||
/* Use a function returning the desired type to initialize EXP for us.
|
||
If the function is a constructor, and its first argument is
|
||
NULL_TREE, know that it was meant for us--just slide exp on
|
||
in and expand the constructor. Constructors now come
|
||
as TARGET_EXPRs. */
|
||
if (init)
|
||
{
|
||
tree init_list = NULL_TREE;
|
||
|
||
if (TREE_CODE (init) == TREE_LIST)
|
||
{
|
||
init_list = init;
|
||
if (TREE_CHAIN (init) == NULL_TREE)
|
||
init = TREE_VALUE (init);
|
||
}
|
||
|
||
init_type = TREE_TYPE (init);
|
||
|
||
if (TREE_CODE (init) != TREE_LIST)
|
||
{
|
||
if (TREE_CODE (init_type) == ERROR_MARK)
|
||
return;
|
||
|
||
#if 0
|
||
/* These lines are found troublesome 5/11/89. */
|
||
if (TREE_CODE (init_type) == REFERENCE_TYPE)
|
||
init_type = TREE_TYPE (init_type);
|
||
#endif
|
||
|
||
/* This happens when we use C++'s functional cast notation.
|
||
If the types match, then just use the TARGET_EXPR
|
||
directly. Otherwise, we need to create the initializer
|
||
separately from the object being initialized. */
|
||
if (TREE_CODE (init) == TARGET_EXPR)
|
||
{
|
||
if (TYPE_MAIN_VARIANT (init_type) == TYPE_MAIN_VARIANT (type))
|
||
{
|
||
if (TREE_CODE (exp) == VAR_DECL
|
||
|| TREE_CODE (exp) == RESULT_DECL)
|
||
/* Unify the initialization targets. */
|
||
DECL_RTL (TREE_OPERAND (init, 0)) = DECL_RTL (exp);
|
||
else
|
||
DECL_RTL (TREE_OPERAND (init, 0)) = expand_expr (exp, NULL_RTX, 0, 0);
|
||
|
||
expand_expr_stmt (init);
|
||
return;
|
||
}
|
||
else
|
||
{
|
||
init = TREE_OPERAND (init, 1);
|
||
init = build (CALL_EXPR, init_type,
|
||
TREE_OPERAND (init, 0), TREE_OPERAND (init, 1), 0);
|
||
TREE_SIDE_EFFECTS (init) = 1;
|
||
if (init_list)
|
||
TREE_VALUE (init_list) = init;
|
||
}
|
||
}
|
||
|
||
if (init_type == type && TREE_CODE (init) == CALL_EXPR
|
||
#if 0
|
||
/* It is valid to directly initialize from a CALL_EXPR
|
||
without going through X(X&), apparently. */
|
||
&& ! TYPE_GETS_INIT_REF (type)
|
||
#endif
|
||
)
|
||
{
|
||
/* A CALL_EXPR is a legitimate form of initialization, so
|
||
we should not print this warning message. */
|
||
#if 0
|
||
/* Should have gone away due to 5/11/89 change. */
|
||
if (TREE_CODE (TREE_TYPE (init)) == REFERENCE_TYPE)
|
||
init = convert_from_reference (init);
|
||
#endif
|
||
expand_assignment (exp, init, 0, 0);
|
||
if (exp == DECL_RESULT (current_function_decl))
|
||
{
|
||
/* Failing this assertion means that the return value
|
||
from receives multiple initializations. */
|
||
my_friendly_assert (DECL_INITIAL (exp) == NULL_TREE
|
||
|| DECL_INITIAL (exp) == error_mark_node,
|
||
212);
|
||
DECL_INITIAL (exp) = init;
|
||
}
|
||
return;
|
||
}
|
||
else if (init_type == type
|
||
&& TREE_CODE (init) == COND_EXPR)
|
||
{
|
||
/* Push value to be initialized into the cond, where possible.
|
||
Avoid spurious warning messages when initializing the
|
||
result of this function. */
|
||
TREE_OPERAND (init, 1)
|
||
= build_modify_expr (exp, INIT_EXPR, TREE_OPERAND (init, 1));
|
||
if (exp == DECL_RESULT (current_function_decl))
|
||
DECL_INITIAL (exp) = NULL_TREE;
|
||
TREE_OPERAND (init, 2)
|
||
= build_modify_expr (exp, INIT_EXPR, TREE_OPERAND (init, 2));
|
||
if (exp == DECL_RESULT (current_function_decl))
|
||
DECL_INITIAL (exp) = init;
|
||
TREE_SIDE_EFFECTS (init) = 1;
|
||
expand_expr (init, const0_rtx, VOIDmode, 0);
|
||
free_temp_slots ();
|
||
return;
|
||
}
|
||
}
|
||
|
||
/* We did not know what we were initializing before. Now we do. */
|
||
if (TREE_CODE (init) == TARGET_EXPR)
|
||
{
|
||
tree tmp = TREE_OPERAND (TREE_OPERAND (init, 1), 1);
|
||
|
||
if (TREE_CODE (TREE_VALUE (tmp)) == NOP_EXPR
|
||
&& TREE_OPERAND (TREE_VALUE (tmp), 0) == integer_zero_node)
|
||
{
|
||
/* In order for this to work for RESULT_DECLs, if their
|
||
type has a constructor, then they must be BLKmode
|
||
so that they will be meaningfully addressable. */
|
||
tree arg = build_unary_op (ADDR_EXPR, exp, 0);
|
||
init = TREE_OPERAND (init, 1);
|
||
init = build (CALL_EXPR, build_pointer_type (TREE_TYPE (init)),
|
||
TREE_OPERAND (init, 0), TREE_OPERAND (init, 1), 0);
|
||
TREE_SIDE_EFFECTS (init) = 1;
|
||
TREE_VALUE (TREE_OPERAND (init, 1))
|
||
= convert_pointer_to (TREE_TYPE (TREE_TYPE (TREE_VALUE (tmp))), arg);
|
||
|
||
if (alias_this)
|
||
{
|
||
expand_assignment (current_function_decl, init, 0, 0);
|
||
return;
|
||
}
|
||
if (exp == DECL_RESULT (current_function_decl))
|
||
{
|
||
if (DECL_INITIAL (DECL_RESULT (current_function_decl)))
|
||
fatal ("return value from function receives multiple initializations");
|
||
DECL_INITIAL (exp) = init;
|
||
}
|
||
expand_expr_stmt (init);
|
||
return;
|
||
}
|
||
}
|
||
|
||
if (TREE_CODE (exp) == VAR_DECL
|
||
&& TREE_CODE (init) == CONSTRUCTOR
|
||
&& TREE_HAS_CONSTRUCTOR (init))
|
||
{
|
||
tree t = store_init_value (exp, init);
|
||
if (!t)
|
||
{
|
||
expand_decl_init (exp);
|
||
return;
|
||
}
|
||
t = build (INIT_EXPR, type, exp, init);
|
||
TREE_SIDE_EFFECTS (t) = 1;
|
||
expand_expr_stmt (t);
|
||
return;
|
||
}
|
||
|
||
/* Handle this case: when calling a constructor: xyzzy foo(bar);
|
||
which really means: xyzzy foo = bar; Ugh!
|
||
|
||
More useful for this case: xyzzy *foo = new xyzzy (bar); */
|
||
|
||
if (! TYPE_NEEDS_CONSTRUCTING (type) && ! IS_AGGR_TYPE (type))
|
||
{
|
||
if (init_list && TREE_CHAIN (init_list))
|
||
{
|
||
warning ("initializer list being treated as compound expression");
|
||
init = convert (type, build_compound_expr (init_list));
|
||
if (init == error_mark_node)
|
||
return;
|
||
}
|
||
|
||
expand_assignment (exp, init, 0, 0);
|
||
|
||
return;
|
||
}
|
||
/* See whether we can go through a type conversion operator.
|
||
This wins over going through a non-existent constructor. If
|
||
there is a constructor, it is ambiguous. */
|
||
if (TREE_CODE (init) != TREE_LIST)
|
||
{
|
||
tree ttype = TREE_CODE (init_type) == REFERENCE_TYPE
|
||
? TREE_TYPE (init_type) : init_type;
|
||
|
||
if (ttype != type && IS_AGGR_TYPE (ttype))
|
||
{
|
||
tree rval = build_type_conversion (CONVERT_EXPR, type, init, 0);
|
||
|
||
if (rval)
|
||
{
|
||
/* See if there is a constructor for``type'' that takes a
|
||
``ttype''-typed object. */
|
||
tree parms = build_tree_list (NULL_TREE, init);
|
||
tree as_cons = NULL_TREE;
|
||
if (TYPE_HAS_CONSTRUCTOR (type))
|
||
as_cons = build_method_call (exp, constructor_name_full (type),
|
||
parms, binfo,
|
||
LOOKUP_SPECULATIVELY|LOOKUP_NO_CONVERSION);
|
||
if (as_cons != NULL_TREE && as_cons != error_mark_node)
|
||
/* ANSI C++ June 5 1992 WP 12.3.2.6.1 */
|
||
cp_error ("ambiguity between conversion to `%T' and constructor",
|
||
type);
|
||
else
|
||
expand_assignment (exp, rval, 0, 0);
|
||
return;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Handle default copy constructors here, does not matter if there is
|
||
a constructor or not. */
|
||
if (type == init_type && IS_AGGR_TYPE (type)
|
||
&& init && TREE_CODE (init) != TREE_LIST)
|
||
expand_default_init (binfo, true_exp, exp, type, init, alias_this, flags);
|
||
/* Not sure why this is here... */
|
||
else if (TYPE_HAS_CONSTRUCTOR (type))
|
||
expand_default_init (binfo, true_exp, exp, type, init, alias_this, flags);
|
||
else if (TREE_CODE (type) == ARRAY_TYPE)
|
||
{
|
||
if (TYPE_NEEDS_CONSTRUCTING (TREE_TYPE (type)))
|
||
expand_vec_init (exp, exp, array_type_nelts (type), init, 0);
|
||
else if (TYPE_VIRTUAL_P (TREE_TYPE (type)))
|
||
sorry ("arrays of objects with virtual functions but no constructors");
|
||
}
|
||
else
|
||
expand_recursive_init (binfo, true_exp, exp, init,
|
||
CLASSTYPE_BASE_INIT_LIST (type), alias_this);
|
||
}
|
||
|
||
/* A pointer which holds the initializer. First call to
|
||
expand_aggr_init gets this value pointed to, and sets it to init_null. */
|
||
static tree *init_ptr, init_null;
|
||
|
||
/* Subroutine of expand_recursive_init:
|
||
|
||
ADDR is the address of the expression being initialized.
|
||
INIT_LIST is the cons-list of initializations to be performed.
|
||
ALIAS_THIS is its same, lovable self. */
|
||
static void
|
||
expand_recursive_init_1 (binfo, true_exp, addr, init_list, alias_this)
|
||
tree binfo, true_exp, addr;
|
||
tree init_list;
|
||
int alias_this;
|
||
{
|
||
while (init_list)
|
||
{
|
||
if (TREE_PURPOSE (init_list))
|
||
{
|
||
if (TREE_CODE (TREE_PURPOSE (init_list)) == FIELD_DECL)
|
||
{
|
||
tree member = TREE_PURPOSE (init_list);
|
||
tree subexp = build_indirect_ref (convert_pointer_to (TREE_VALUE (init_list), addr), NULL_PTR);
|
||
tree member_base = build (COMPONENT_REF, TREE_TYPE (member), subexp, member);
|
||
if (IS_AGGR_TYPE (TREE_TYPE (member)))
|
||
expand_aggr_init (member_base, DECL_INITIAL (member), 0, 0);
|
||
else if (TREE_CODE (TREE_TYPE (member)) == ARRAY_TYPE
|
||
&& TYPE_NEEDS_CONSTRUCTING (TREE_TYPE (member)))
|
||
{
|
||
member_base = save_expr (default_conversion (member_base));
|
||
expand_vec_init (member, member_base,
|
||
array_type_nelts (TREE_TYPE (member)),
|
||
DECL_INITIAL (member), 0);
|
||
}
|
||
else
|
||
expand_expr_stmt (build_modify_expr (member_base, INIT_EXPR, DECL_INITIAL (member)));
|
||
}
|
||
else if (TREE_CODE (TREE_PURPOSE (init_list)) == TREE_LIST)
|
||
{
|
||
expand_recursive_init_1 (binfo, true_exp, addr, TREE_PURPOSE (init_list), alias_this);
|
||
expand_recursive_init_1 (binfo, true_exp, addr, TREE_VALUE (init_list), alias_this);
|
||
}
|
||
else if (TREE_CODE (TREE_PURPOSE (init_list)) == ERROR_MARK)
|
||
{
|
||
/* Only initialize the virtual function tables if we
|
||
are initializing the ultimate users of those vtables. */
|
||
if (TREE_VALUE (init_list))
|
||
{
|
||
/* We have to ensure that the first argment to
|
||
expand_virtual_init is in binfo's hierarchy. */
|
||
/* Is it the case that this is exactly the right binfo? */
|
||
/* If it is ok, then fixup expand_virtual_init, to make
|
||
it much simpler. */
|
||
expand_virtual_init (get_binfo (TREE_VALUE (init_list), binfo, 0),
|
||
addr);
|
||
if (TREE_VALUE (init_list) == binfo
|
||
&& TYPE_USES_VIRTUAL_BASECLASSES (BINFO_TYPE (binfo)))
|
||
expand_indirect_vtbls_init (binfo, true_exp, addr, 1);
|
||
}
|
||
}
|
||
else
|
||
my_friendly_abort (49);
|
||
}
|
||
else if (TREE_VALUE (init_list)
|
||
&& TREE_CODE (TREE_VALUE (init_list)) == TREE_VEC)
|
||
{
|
||
tree subexp = build_indirect_ref (convert_pointer_to (TREE_VALUE (init_list), addr), NULL_PTR);
|
||
expand_aggr_init_1 (binfo, true_exp, subexp, *init_ptr,
|
||
alias_this && BINFO_OFFSET_ZEROP (TREE_VALUE (init_list)),
|
||
LOOKUP_COMPLAIN);
|
||
|
||
/* INIT_PTR is used up. */
|
||
init_ptr = &init_null;
|
||
}
|
||
else
|
||
my_friendly_abort (50);
|
||
init_list = TREE_CHAIN (init_list);
|
||
}
|
||
}
|
||
|
||
/* Initialize EXP with INIT. Type EXP does not have a constructor,
|
||
but it has a baseclass with a constructor or a virtual function
|
||
table which needs initializing.
|
||
|
||
INIT_LIST is a cons-list describing what parts of EXP actually
|
||
need to be initialized. INIT is given to the *unique*, first
|
||
constructor within INIT_LIST. If there are multiple first
|
||
constructors, such as with multiple inheritance, INIT must
|
||
be zero or an ambiguity error is reported.
|
||
|
||
ALIAS_THIS is passed from `expand_aggr_init'. See comments
|
||
there. */
|
||
|
||
static void
|
||
expand_recursive_init (binfo, true_exp, exp, init, init_list, alias_this)
|
||
tree binfo, true_exp, exp, init;
|
||
tree init_list;
|
||
int alias_this;
|
||
{
|
||
tree *old_init_ptr = init_ptr;
|
||
tree addr = build_unary_op (ADDR_EXPR, exp, 0);
|
||
init_ptr = &init;
|
||
|
||
if (true_exp == exp && TYPE_USES_VIRTUAL_BASECLASSES (BINFO_TYPE (binfo)))
|
||
{
|
||
expand_aggr_vbase_init (binfo, exp, addr, init_list);
|
||
expand_indirect_vtbls_init (binfo, true_exp, addr, 1);
|
||
}
|
||
expand_recursive_init_1 (binfo, true_exp, addr, init_list, alias_this);
|
||
|
||
if (*init_ptr)
|
||
{
|
||
tree type = TREE_TYPE (exp);
|
||
|
||
if (TREE_CODE (type) == REFERENCE_TYPE)
|
||
type = TREE_TYPE (type);
|
||
if (IS_AGGR_TYPE (type))
|
||
cp_error ("unexpected argument to constructor `%T'", type);
|
||
else
|
||
error ("unexpected argument to constructor");
|
||
}
|
||
init_ptr = old_init_ptr;
|
||
}
|
||
|
||
/* Report an error if NAME is not the name of a user-defined,
|
||
aggregate type. If OR_ELSE is nonzero, give an error message. */
|
||
int
|
||
is_aggr_typedef (name, or_else)
|
||
tree name;
|
||
int or_else;
|
||
{
|
||
tree type;
|
||
|
||
if (name == error_mark_node)
|
||
return 0;
|
||
|
||
if (IDENTIFIER_HAS_TYPE_VALUE (name))
|
||
type = IDENTIFIER_TYPE_VALUE (name);
|
||
else
|
||
{
|
||
if (or_else)
|
||
cp_error ("`%T' is not an aggregate typedef", name);
|
||
return 0;
|
||
}
|
||
|
||
if (! IS_AGGR_TYPE (type)
|
||
&& TREE_CODE (type) != TEMPLATE_TYPE_PARM)
|
||
{
|
||
if (or_else)
|
||
cp_error ("`%T' is not an aggregate type", type);
|
||
return 0;
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
/* Like is_aggr_typedef, but returns typedef if successful. */
|
||
tree
|
||
get_aggr_from_typedef (name, or_else)
|
||
tree name;
|
||
int or_else;
|
||
{
|
||
tree type;
|
||
|
||
if (name == error_mark_node)
|
||
return NULL_TREE;
|
||
|
||
if (IDENTIFIER_HAS_TYPE_VALUE (name))
|
||
type = IDENTIFIER_TYPE_VALUE (name);
|
||
else
|
||
{
|
||
if (or_else)
|
||
cp_error ("`%T' fails to be an aggregate typedef", name);
|
||
return NULL_TREE;
|
||
}
|
||
|
||
if (! IS_AGGR_TYPE (type)
|
||
&& TREE_CODE (type) != TEMPLATE_TYPE_PARM)
|
||
{
|
||
if (or_else)
|
||
cp_error ("type `%T' is of non-aggregate type", type);
|
||
return NULL_TREE;
|
||
}
|
||
return type;
|
||
}
|
||
|
||
tree
|
||
get_type_value (name)
|
||
tree name;
|
||
{
|
||
if (name == error_mark_node)
|
||
return NULL_TREE;
|
||
|
||
if (IDENTIFIER_HAS_TYPE_VALUE (name))
|
||
return IDENTIFIER_TYPE_VALUE (name);
|
||
else
|
||
return NULL_TREE;
|
||
}
|
||
|
||
|
||
/* This code could just as well go in `class.c', but is placed here for
|
||
modularity. */
|
||
|
||
/* For an expression of the form CNAME :: NAME (PARMLIST), build
|
||
the appropriate function call. */
|
||
tree
|
||
build_member_call (cname, name, parmlist)
|
||
tree cname, name, parmlist;
|
||
{
|
||
tree type, t;
|
||
tree method_name = name;
|
||
int dtor = 0;
|
||
int dont_use_this = 0;
|
||
tree basetype_path, decl;
|
||
|
||
if (TREE_CODE (method_name) == BIT_NOT_EXPR)
|
||
{
|
||
method_name = TREE_OPERAND (method_name, 0);
|
||
dtor = 1;
|
||
}
|
||
|
||
if (TREE_CODE (cname) == SCOPE_REF)
|
||
cname = resolve_scope_to_name (NULL_TREE, cname);
|
||
|
||
/* This shouldn't be here, and build_member_call shouldn't appear in
|
||
parse.y! (mrs) */
|
||
if (cname && get_aggr_from_typedef (cname, 0) == 0
|
||
&& TREE_CODE (cname) == IDENTIFIER_NODE)
|
||
{
|
||
tree ns = lookup_name (cname, 0);
|
||
if (ns && TREE_CODE (ns) == NAMESPACE_DECL)
|
||
{
|
||
return build_x_function_call (build_offset_ref (cname, name), parmlist, current_class_decl);
|
||
}
|
||
}
|
||
|
||
if (cname == NULL_TREE || ! (type = get_aggr_from_typedef (cname, 1)))
|
||
return error_mark_node;
|
||
|
||
/* An operator we did not like. */
|
||
if (name == NULL_TREE)
|
||
return error_mark_node;
|
||
|
||
if (dtor)
|
||
{
|
||
#if 0
|
||
/* Everything can explicitly call a destructor; see 12.4 */
|
||
if (! TYPE_HAS_DESTRUCTOR (type))
|
||
cp_error ("type `%#T' does not have a destructor", type);
|
||
else
|
||
#endif
|
||
cp_error ("cannot call destructor `%T::~%T' without object", type,
|
||
method_name);
|
||
return error_mark_node;
|
||
}
|
||
|
||
/* No object? Then just fake one up, and let build_method_call
|
||
figure out what to do. */
|
||
if (current_class_type == 0
|
||
|| get_base_distance (type, current_class_type, 0, &basetype_path) == -1)
|
||
dont_use_this = 1;
|
||
|
||
if (dont_use_this)
|
||
{
|
||
basetype_path = TYPE_BINFO (type);
|
||
decl = build1 (NOP_EXPR, build_pointer_type (type), error_mark_node);
|
||
}
|
||
else if (current_class_decl == 0)
|
||
{
|
||
dont_use_this = 1;
|
||
decl = build1 (NOP_EXPR, build_pointer_type (type), error_mark_node);
|
||
}
|
||
else
|
||
{
|
||
tree olddecl = current_class_decl;
|
||
tree oldtype = TREE_TYPE (TREE_TYPE (olddecl));
|
||
if (oldtype != type)
|
||
{
|
||
tree newtype = build_type_variant (type, TYPE_READONLY (oldtype),
|
||
TYPE_VOLATILE (oldtype));
|
||
decl = convert_force (build_pointer_type (newtype), olddecl, 0);
|
||
}
|
||
else
|
||
decl = olddecl;
|
||
}
|
||
|
||
decl = build_indirect_ref (decl, NULL_PTR);
|
||
|
||
if (method_name == constructor_name (type)
|
||
|| method_name == constructor_name_full (type))
|
||
return build_functional_cast (type, parmlist);
|
||
if (t = lookup_fnfields (basetype_path, method_name, 0))
|
||
return build_method_call (decl, method_name, parmlist, basetype_path,
|
||
LOOKUP_NORMAL|LOOKUP_NONVIRTUAL);
|
||
if (TREE_CODE (name) == IDENTIFIER_NODE
|
||
&& ((t = lookup_field (TYPE_BINFO (type), name, 1, 0))))
|
||
{
|
||
if (t == error_mark_node)
|
||
return error_mark_node;
|
||
if (TREE_CODE (t) == FIELD_DECL)
|
||
{
|
||
if (dont_use_this)
|
||
{
|
||
cp_error ("invalid use of non-static field `%D'", t);
|
||
return error_mark_node;
|
||
}
|
||
decl = build (COMPONENT_REF, TREE_TYPE (t), decl, t);
|
||
}
|
||
else if (TREE_CODE (t) == VAR_DECL)
|
||
decl = t;
|
||
else
|
||
{
|
||
cp_error ("invalid use of member `%D'", t);
|
||
return error_mark_node;
|
||
}
|
||
if (TYPE_LANG_SPECIFIC (TREE_TYPE (decl))
|
||
&& TYPE_OVERLOADS_CALL_EXPR (TREE_TYPE (decl)))
|
||
return build_opfncall (CALL_EXPR, LOOKUP_NORMAL, decl, parmlist, NULL_TREE);
|
||
return build_function_call (decl, parmlist);
|
||
}
|
||
else
|
||
{
|
||
cp_error ("no method `%T::%D'", type, name);
|
||
return error_mark_node;
|
||
}
|
||
}
|
||
|
||
/* Build a reference to a member of an aggregate. This is not a
|
||
C++ `&', but really something which can have its address taken,
|
||
and then act as a pointer to member, for example CNAME :: FIELD
|
||
can have its address taken by saying & CNAME :: FIELD.
|
||
|
||
@@ Prints out lousy diagnostics for operator <typename>
|
||
@@ fields.
|
||
|
||
@@ This function should be rewritten and placed in search.c. */
|
||
tree
|
||
build_offset_ref (cname, name)
|
||
tree cname, name;
|
||
{
|
||
tree decl, type, fnfields, fields, t = error_mark_node;
|
||
tree basetypes = NULL_TREE;
|
||
int dtor = 0;
|
||
|
||
if (TREE_CODE (cname) == SCOPE_REF)
|
||
cname = resolve_scope_to_name (NULL_TREE, cname);
|
||
|
||
/* Handle namespace names fully here. */
|
||
if (TREE_CODE (cname) == IDENTIFIER_NODE
|
||
&& get_aggr_from_typedef (cname, 0) == 0)
|
||
{
|
||
tree ns = lookup_name (cname, 0);
|
||
tree val;
|
||
if (ns && TREE_CODE (ns) == NAMESPACE_DECL)
|
||
{
|
||
val = lookup_namespace_name (ns, name);
|
||
if (val)
|
||
return val;
|
||
cp_error ("namespace `%D' has no member named `%D'", ns, name);
|
||
return error_mark_node;
|
||
}
|
||
}
|
||
|
||
if (cname == NULL_TREE || ! is_aggr_typedef (cname, 1))
|
||
return error_mark_node;
|
||
|
||
type = IDENTIFIER_TYPE_VALUE (cname);
|
||
|
||
if (TREE_CODE (name) == BIT_NOT_EXPR)
|
||
{
|
||
dtor = 1;
|
||
name = TREE_OPERAND (name, 0);
|
||
}
|
||
|
||
if (TYPE_SIZE (type) == 0)
|
||
{
|
||
t = IDENTIFIER_CLASS_VALUE (name);
|
||
if (t == 0)
|
||
{
|
||
cp_error ("incomplete type `%T' does not have member `%D'", type,
|
||
name);
|
||
return error_mark_node;
|
||
}
|
||
if (TREE_CODE (t) == TYPE_DECL || TREE_CODE (t) == VAR_DECL
|
||
|| TREE_CODE (t) == CONST_DECL)
|
||
{
|
||
TREE_USED (t) = 1;
|
||
return t;
|
||
}
|
||
if (TREE_CODE (t) == FIELD_DECL)
|
||
sorry ("use of member in incomplete aggregate type");
|
||
else if (TREE_CODE (t) == FUNCTION_DECL)
|
||
sorry ("use of member function in incomplete aggregate type");
|
||
else
|
||
my_friendly_abort (52);
|
||
return error_mark_node;
|
||
}
|
||
|
||
#if 0
|
||
if (TREE_CODE (name) == TYPE_EXPR)
|
||
/* Pass a TYPE_DECL to build_component_type_expr. */
|
||
return build_component_type_expr (TYPE_NAME (TREE_TYPE (cname)),
|
||
name, NULL_TREE, 1);
|
||
#endif
|
||
|
||
if (current_class_type == 0
|
||
|| get_base_distance (type, current_class_type, 0, &basetypes) == -1)
|
||
{
|
||
basetypes = TYPE_BINFO (type);
|
||
decl = build1 (NOP_EXPR,
|
||
IDENTIFIER_TYPE_VALUE (cname),
|
||
error_mark_node);
|
||
}
|
||
else if (current_class_decl == 0)
|
||
decl = build1 (NOP_EXPR, IDENTIFIER_TYPE_VALUE (cname),
|
||
error_mark_node);
|
||
else
|
||
decl = C_C_D;
|
||
|
||
fnfields = lookup_fnfields (basetypes, name, 1);
|
||
fields = lookup_field (basetypes, name, 0, 0);
|
||
|
||
if (fields == error_mark_node || fnfields == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
/* A lot of this logic is now handled in lookup_field and
|
||
lookup_fnfield. */
|
||
if (fnfields)
|
||
{
|
||
basetypes = TREE_PURPOSE (fnfields);
|
||
|
||
/* Go from the TREE_BASELINK to the member function info. */
|
||
t = TREE_VALUE (fnfields);
|
||
|
||
if (fields)
|
||
{
|
||
if (DECL_FIELD_CONTEXT (fields) == DECL_FIELD_CONTEXT (t))
|
||
{
|
||
error ("ambiguous member reference: member `%s' defined as both field and function",
|
||
IDENTIFIER_POINTER (name));
|
||
return error_mark_node;
|
||
}
|
||
if (UNIQUELY_DERIVED_FROM_P (DECL_FIELD_CONTEXT (fields), DECL_FIELD_CONTEXT (t)))
|
||
;
|
||
else if (UNIQUELY_DERIVED_FROM_P (DECL_FIELD_CONTEXT (t), DECL_FIELD_CONTEXT (fields)))
|
||
t = fields;
|
||
else
|
||
{
|
||
error ("ambiguous member reference: member `%s' derives from distinct classes in multiple inheritance lattice");
|
||
return error_mark_node;
|
||
}
|
||
}
|
||
|
||
if (t == TREE_VALUE (fnfields))
|
||
{
|
||
extern int flag_save_memoized_contexts;
|
||
|
||
if (DECL_CHAIN (t) == NULL_TREE || dtor)
|
||
{
|
||
enum access_type access;
|
||
|
||
/* unique functions are handled easily. */
|
||
unique:
|
||
access = compute_access (basetypes, t);
|
||
if (access == access_protected)
|
||
{
|
||
cp_error_at ("member function `%#D' is protected", t);
|
||
error ("in this context");
|
||
return error_mark_node;
|
||
}
|
||
if (access == access_private)
|
||
{
|
||
cp_error_at ("member function `%#D' is private", t);
|
||
error ("in this context");
|
||
return error_mark_node;
|
||
}
|
||
assemble_external (t);
|
||
return build (OFFSET_REF, TREE_TYPE (t), decl, t);
|
||
}
|
||
|
||
/* overloaded functions may need more work. */
|
||
if (cname == name)
|
||
{
|
||
if (TYPE_HAS_DESTRUCTOR (type)
|
||
&& DECL_CHAIN (DECL_CHAIN (t)) == NULL_TREE)
|
||
{
|
||
t = DECL_CHAIN (t);
|
||
goto unique;
|
||
}
|
||
}
|
||
/* FNFIELDS is most likely allocated on the search_obstack,
|
||
which will go away after this class scope. If we need
|
||
to save this value for later (either for memoization
|
||
or for use as an initializer for a static variable), then
|
||
do so here.
|
||
|
||
??? The smart thing to do for the case of saving initializers
|
||
is to resolve them before we're done with this scope. */
|
||
if (!TREE_PERMANENT (fnfields)
|
||
&& ((flag_save_memoized_contexts && global_bindings_p ())
|
||
|| ! allocation_temporary_p ()))
|
||
fnfields = copy_list (fnfields);
|
||
|
||
for (t = TREE_VALUE (fnfields); t; t = DECL_CHAIN (t))
|
||
assemble_external (t);
|
||
|
||
t = build_tree_list (error_mark_node, fnfields);
|
||
TREE_TYPE (t) = build_offset_type (type, unknown_type_node);
|
||
return t;
|
||
}
|
||
}
|
||
|
||
/* Now that we know we are looking for a field, see if we
|
||
have access to that field. Lookup_field will give us the
|
||
error message. */
|
||
|
||
t = lookup_field (basetypes, name, 1, 0);
|
||
|
||
if (t == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
if (t == NULL_TREE)
|
||
{
|
||
cp_error ("`%D' is not a member of type `%T'", name, type);
|
||
return error_mark_node;
|
||
}
|
||
|
||
if (TREE_CODE (t) == TYPE_DECL)
|
||
{
|
||
TREE_USED (t) = 1;
|
||
return t;
|
||
}
|
||
/* static class members and class-specific enum
|
||
values can be returned without further ado. */
|
||
if (TREE_CODE (t) == VAR_DECL || TREE_CODE (t) == CONST_DECL)
|
||
{
|
||
assemble_external (t);
|
||
TREE_USED (t) = 1;
|
||
return t;
|
||
}
|
||
|
||
if (TREE_CODE (t) == FIELD_DECL && DECL_BIT_FIELD (t))
|
||
{
|
||
cp_error ("illegal pointer to bit field `%D'", t);
|
||
return error_mark_node;
|
||
}
|
||
|
||
/* static class functions too. */
|
||
if (TREE_CODE (t) == FUNCTION_DECL && TREE_CODE (TREE_TYPE (t)) == FUNCTION_TYPE)
|
||
my_friendly_abort (53);
|
||
|
||
/* In member functions, the form `cname::name' is no longer
|
||
equivalent to `this->cname::name'. */
|
||
return build (OFFSET_REF, build_offset_type (type, TREE_TYPE (t)), decl, t);
|
||
}
|
||
|
||
/* Given an object EXP and a member function reference MEMBER,
|
||
return the address of the actual member function. */
|
||
tree
|
||
get_member_function (exp_addr_ptr, exp, member)
|
||
tree *exp_addr_ptr;
|
||
tree exp, member;
|
||
{
|
||
tree ctype = TREE_TYPE (exp);
|
||
tree function = save_expr (build_unary_op (ADDR_EXPR, member, 0));
|
||
|
||
if (TYPE_VIRTUAL_P (ctype)
|
||
|| (flag_all_virtual == 1 && TYPE_OVERLOADS_METHOD_CALL_EXPR (ctype)))
|
||
{
|
||
tree e0, e1, e3;
|
||
tree exp_addr;
|
||
|
||
/* Save away the unadulterated `this' pointer. */
|
||
exp_addr = save_expr (*exp_addr_ptr);
|
||
|
||
/* Cast function to signed integer. */
|
||
e0 = build1 (NOP_EXPR, integer_type_node, function);
|
||
|
||
/* There is a hack here that takes advantage of
|
||
twos complement arithmetic, and the fact that
|
||
there are more than one UNITS to the WORD.
|
||
If the high bit is set for the `function',
|
||
then we pretend it is a virtual function,
|
||
and the array indexing will knock this bit
|
||
out the top, leaving a valid index. */
|
||
if (UNITS_PER_WORD <= 1)
|
||
my_friendly_abort (54);
|
||
|
||
e1 = build (GT_EXPR, boolean_type_node, e0, integer_zero_node);
|
||
e1 = build_compound_expr (tree_cons (NULL_TREE, exp_addr,
|
||
build_tree_list (NULL_TREE, e1)));
|
||
e1 = save_expr (e1);
|
||
|
||
if (TREE_SIDE_EFFECTS (*exp_addr_ptr))
|
||
{
|
||
exp = build_indirect_ref (exp_addr, NULL_PTR);
|
||
*exp_addr_ptr = exp_addr;
|
||
}
|
||
|
||
/* This is really hairy: if the function pointer is a pointer
|
||
to a non-virtual member function, then we can't go mucking
|
||
with the `this' pointer (any more than we already have to
|
||
this point). If it is a pointer to a virtual member function,
|
||
then we have to adjust the `this' pointer according to
|
||
what the virtual function table tells us. */
|
||
|
||
e3 = build_vfn_ref (exp_addr_ptr, exp, e0);
|
||
my_friendly_assert (e3 != error_mark_node, 213);
|
||
|
||
/* Change this pointer type from `void *' to the
|
||
type it is really supposed to be. */
|
||
TREE_TYPE (e3) = TREE_TYPE (function);
|
||
|
||
/* If non-virtual, use what we had originally. Otherwise,
|
||
use the value we get from the virtual function table. */
|
||
*exp_addr_ptr = build_conditional_expr (e1, exp_addr, *exp_addr_ptr);
|
||
|
||
function = build_conditional_expr (e1, function, e3);
|
||
}
|
||
return build_indirect_ref (function, NULL_PTR);
|
||
}
|
||
|
||
/* If a OFFSET_REF made it through to here, then it did
|
||
not have its address taken. */
|
||
|
||
tree
|
||
resolve_offset_ref (exp)
|
||
tree exp;
|
||
{
|
||
tree type = TREE_TYPE (exp);
|
||
tree base = NULL_TREE;
|
||
tree member;
|
||
tree basetype, addr;
|
||
|
||
if (TREE_CODE (exp) == TREE_LIST)
|
||
return build_unary_op (ADDR_EXPR, exp, 0);
|
||
|
||
if (TREE_CODE (exp) != OFFSET_REF)
|
||
{
|
||
my_friendly_assert (TREE_CODE (type) == OFFSET_TYPE, 214);
|
||
if (TYPE_OFFSET_BASETYPE (type) != current_class_type)
|
||
{
|
||
error ("object missing in use of pointer-to-member construct");
|
||
return error_mark_node;
|
||
}
|
||
member = exp;
|
||
type = TREE_TYPE (type);
|
||
base = C_C_D;
|
||
}
|
||
else
|
||
{
|
||
member = TREE_OPERAND (exp, 1);
|
||
base = TREE_OPERAND (exp, 0);
|
||
}
|
||
|
||
if ((TREE_CODE (member) == VAR_DECL
|
||
&& ! TYPE_PTRMEMFUNC_P (TREE_TYPE (member)))
|
||
|| TREE_CODE (TREE_TYPE (member)) == FUNCTION_TYPE)
|
||
{
|
||
/* These were static members. */
|
||
if (mark_addressable (member) == 0)
|
||
return error_mark_node;
|
||
return member;
|
||
}
|
||
|
||
/* Syntax error can cause a member which should
|
||
have been seen as static to be grok'd as non-static. */
|
||
if (TREE_CODE (member) == FIELD_DECL && C_C_D == NULL_TREE)
|
||
{
|
||
if (TREE_ADDRESSABLE (member) == 0)
|
||
{
|
||
cp_error_at ("member `%D' is non-static but referenced as a static member",
|
||
member);
|
||
error ("at this point in file");
|
||
TREE_ADDRESSABLE (member) = 1;
|
||
}
|
||
return error_mark_node;
|
||
}
|
||
|
||
/* The first case is really just a reference to a member of `this'. */
|
||
if (TREE_CODE (member) == FIELD_DECL
|
||
&& (base == C_C_D
|
||
|| (TREE_CODE (base) == NOP_EXPR
|
||
&& TREE_OPERAND (base, 0) == error_mark_node)))
|
||
{
|
||
tree basetype_path;
|
||
enum access_type access;
|
||
|
||
if (TREE_CODE (exp) == OFFSET_REF && TREE_CODE (type) == OFFSET_TYPE)
|
||
basetype = TYPE_OFFSET_BASETYPE (type);
|
||
else
|
||
basetype = DECL_CONTEXT (member);
|
||
|
||
base = current_class_decl;
|
||
|
||
if (get_base_distance (basetype, TREE_TYPE (TREE_TYPE (base)), 0, &basetype_path) < 0)
|
||
{
|
||
error_not_base_type (basetype, TREE_TYPE (TREE_TYPE (base)));
|
||
return error_mark_node;
|
||
}
|
||
addr = convert_pointer_to (basetype, base);
|
||
access = compute_access (basetype_path, member);
|
||
if (access == access_public)
|
||
return build (COMPONENT_REF, TREE_TYPE (member),
|
||
build_indirect_ref (addr, NULL_PTR), member);
|
||
if (access == access_protected)
|
||
{
|
||
cp_error_at ("member `%D' is protected", member);
|
||
error ("in this context");
|
||
return error_mark_node;
|
||
}
|
||
if (access == access_private)
|
||
{
|
||
cp_error_at ("member `%D' is private", member);
|
||
error ("in this context");
|
||
return error_mark_node;
|
||
}
|
||
my_friendly_abort (55);
|
||
}
|
||
|
||
/* If this is a reference to a member function, then return
|
||
the address of the member function (which may involve going
|
||
through the object's vtable), otherwise, return an expression
|
||
for the dereferenced pointer-to-member construct. */
|
||
addr = build_unary_op (ADDR_EXPR, base, 0);
|
||
|
||
if (TREE_CODE (TREE_TYPE (member)) == METHOD_TYPE)
|
||
{
|
||
basetype = DECL_CLASS_CONTEXT (member);
|
||
addr = convert_pointer_to (basetype, addr);
|
||
return build_unary_op (ADDR_EXPR, get_member_function (&addr, build_indirect_ref (addr, NULL_PTR), member), 0);
|
||
}
|
||
else if (TREE_CODE (TREE_TYPE (member)) == OFFSET_TYPE)
|
||
{
|
||
basetype = TYPE_OFFSET_BASETYPE (TREE_TYPE (member));
|
||
addr = convert_pointer_to (basetype, addr);
|
||
member = convert (ptrdiff_type_node,
|
||
build_unary_op (ADDR_EXPR, member, 0));
|
||
return build1 (INDIRECT_REF, type,
|
||
build (PLUS_EXPR, build_pointer_type (type),
|
||
addr, member));
|
||
}
|
||
else if (TYPE_PTRMEMFUNC_P (TREE_TYPE (member)))
|
||
{
|
||
return get_member_function_from_ptrfunc (&addr, member);
|
||
}
|
||
my_friendly_abort (56);
|
||
/* NOTREACHED */
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Return either DECL or its known constant value (if it has one). */
|
||
|
||
tree
|
||
decl_constant_value (decl)
|
||
tree decl;
|
||
{
|
||
if (! TREE_THIS_VOLATILE (decl)
|
||
#if 0
|
||
/* These may be necessary for C, but they break C++. */
|
||
! TREE_PUBLIC (decl)
|
||
/* Don't change a variable array bound or initial value to a constant
|
||
in a place where a variable is invalid. */
|
||
&& ! pedantic
|
||
#endif /* 0 */
|
||
&& DECL_INITIAL (decl) != 0
|
||
&& TREE_CODE (DECL_INITIAL (decl)) != ERROR_MARK
|
||
/* This is invalid if initial value is not constant.
|
||
If it has either a function call, a memory reference,
|
||
or a variable, then re-evaluating it could give different results. */
|
||
&& TREE_CONSTANT (DECL_INITIAL (decl))
|
||
/* Check for cases where this is sub-optimal, even though valid. */
|
||
&& TREE_CODE (DECL_INITIAL (decl)) != CONSTRUCTOR
|
||
#if 0
|
||
/* We must allow this to work outside of functions so that
|
||
static constants can be used for array sizes. */
|
||
&& current_function_decl != 0
|
||
&& DECL_MODE (decl) != BLKmode
|
||
#endif
|
||
)
|
||
return DECL_INITIAL (decl);
|
||
return decl;
|
||
}
|
||
|
||
/* Friend handling routines. */
|
||
/* Friend data structures:
|
||
|
||
Lists of friend functions come from TYPE_DECL nodes. Since all
|
||
aggregate types are automatically typedef'd, these nodes are guaranteed
|
||
to exist.
|
||
|
||
The TREE_PURPOSE of a friend list is the name of the friend,
|
||
and its TREE_VALUE is another list.
|
||
|
||
For each element of that list, either the TREE_VALUE or the TREE_PURPOSE
|
||
will be filled in, but not both. The TREE_VALUE of that list is an
|
||
individual function which is a friend. The TREE_PURPOSE of that list
|
||
indicates a type in which all functions by that name are friends.
|
||
|
||
Lists of friend classes come from _TYPE nodes. Love that consistency
|
||
thang. */
|
||
|
||
int
|
||
is_friend_type (type1, type2)
|
||
tree type1, type2;
|
||
{
|
||
return is_friend (type1, type2);
|
||
}
|
||
|
||
int
|
||
is_friend (type, supplicant)
|
||
tree type, supplicant;
|
||
{
|
||
int declp;
|
||
register tree list;
|
||
|
||
if (supplicant == NULL_TREE || type == NULL_TREE)
|
||
return 0;
|
||
|
||
declp = (TREE_CODE_CLASS (TREE_CODE (supplicant)) == 'd');
|
||
|
||
if (declp)
|
||
/* It's a function decl. */
|
||
{
|
||
tree list = DECL_FRIENDLIST (TYPE_NAME (type));
|
||
tree name = DECL_NAME (supplicant);
|
||
tree ctype;
|
||
|
||
if (DECL_FUNCTION_MEMBER_P (supplicant))
|
||
ctype = DECL_CLASS_CONTEXT (supplicant);
|
||
else
|
||
ctype = NULL_TREE;
|
||
|
||
for (; list ; list = TREE_CHAIN (list))
|
||
{
|
||
if (name == TREE_PURPOSE (list))
|
||
{
|
||
tree friends = TREE_VALUE (list);
|
||
name = DECL_ASSEMBLER_NAME (supplicant);
|
||
for (; friends ; friends = TREE_CHAIN (friends))
|
||
{
|
||
if (ctype == TREE_PURPOSE (friends))
|
||
return 1;
|
||
if (name == DECL_ASSEMBLER_NAME (TREE_VALUE (friends)))
|
||
return 1;
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
else
|
||
/* It's a type. */
|
||
{
|
||
if (type == supplicant)
|
||
return 1;
|
||
|
||
list = CLASSTYPE_FRIEND_CLASSES (TREE_TYPE (TYPE_NAME (type)));
|
||
for (; list ; list = TREE_CHAIN (list))
|
||
if (supplicant == TREE_VALUE (list))
|
||
return 1;
|
||
}
|
||
|
||
{
|
||
tree context;
|
||
|
||
if (! declp)
|
||
context = DECL_CONTEXT (TYPE_NAME (supplicant));
|
||
else if (DECL_FUNCTION_MEMBER_P (supplicant))
|
||
context = DECL_CLASS_CONTEXT (supplicant);
|
||
else
|
||
context = NULL_TREE;
|
||
|
||
if (context)
|
||
return is_friend (type, context);
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Add a new friend to the friends of the aggregate type TYPE.
|
||
DECL is the FUNCTION_DECL of the friend being added. */
|
||
static void
|
||
add_friend (type, decl)
|
||
tree type, decl;
|
||
{
|
||
tree typedecl = TYPE_NAME (type);
|
||
tree list = DECL_FRIENDLIST (typedecl);
|
||
tree name = DECL_NAME (decl);
|
||
|
||
while (list)
|
||
{
|
||
if (name == TREE_PURPOSE (list))
|
||
{
|
||
tree friends = TREE_VALUE (list);
|
||
for (; friends ; friends = TREE_CHAIN (friends))
|
||
{
|
||
if (decl == TREE_VALUE (friends))
|
||
{
|
||
cp_warning ("`%D' is already a friend of class `%T'",
|
||
decl, type);
|
||
cp_warning_at ("previous friend declaration of `%D'",
|
||
TREE_VALUE (friends));
|
||
return;
|
||
}
|
||
}
|
||
TREE_VALUE (list) = tree_cons (error_mark_node, decl,
|
||
TREE_VALUE (list));
|
||
return;
|
||
}
|
||
list = TREE_CHAIN (list);
|
||
}
|
||
DECL_FRIENDLIST (typedecl)
|
||
= tree_cons (DECL_NAME (decl), build_tree_list (error_mark_node, decl),
|
||
DECL_FRIENDLIST (typedecl));
|
||
if (DECL_NAME (decl) == ansi_opname[(int) MODIFY_EXPR])
|
||
{
|
||
tree parmtypes = TYPE_ARG_TYPES (TREE_TYPE (decl));
|
||
TYPE_HAS_ASSIGNMENT (TREE_TYPE (typedecl)) = 1;
|
||
if (parmtypes && TREE_CHAIN (parmtypes))
|
||
{
|
||
tree parmtype = TREE_VALUE (TREE_CHAIN (parmtypes));
|
||
if (TREE_CODE (parmtype) == REFERENCE_TYPE
|
||
&& TREE_TYPE (parmtypes) == TREE_TYPE (typedecl))
|
||
TYPE_HAS_ASSIGN_REF (TREE_TYPE (typedecl)) = 1;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Declare that every member function NAME in FRIEND_TYPE
|
||
(which may be NULL_TREE) is a friend of type TYPE. */
|
||
static void
|
||
add_friends (type, name, friend_type)
|
||
tree type, name, friend_type;
|
||
{
|
||
tree typedecl = TYPE_NAME (type);
|
||
tree list = DECL_FRIENDLIST (typedecl);
|
||
|
||
while (list)
|
||
{
|
||
if (name == TREE_PURPOSE (list))
|
||
{
|
||
tree friends = TREE_VALUE (list);
|
||
while (friends && TREE_PURPOSE (friends) != friend_type)
|
||
friends = TREE_CHAIN (friends);
|
||
if (friends)
|
||
if (friend_type)
|
||
warning ("method `%s::%s' is already a friend of class",
|
||
TYPE_NAME_STRING (friend_type),
|
||
IDENTIFIER_POINTER (name));
|
||
else
|
||
warning ("function `%s' is already a friend of class `%s'",
|
||
IDENTIFIER_POINTER (name),
|
||
IDENTIFIER_POINTER (DECL_NAME (typedecl)));
|
||
else
|
||
TREE_VALUE (list) = tree_cons (friend_type, NULL_TREE,
|
||
TREE_VALUE (list));
|
||
return;
|
||
}
|
||
list = TREE_CHAIN (list);
|
||
}
|
||
DECL_FRIENDLIST (typedecl) =
|
||
tree_cons (name,
|
||
build_tree_list (friend_type, NULL_TREE),
|
||
DECL_FRIENDLIST (typedecl));
|
||
if (! strncmp (IDENTIFIER_POINTER (name),
|
||
IDENTIFIER_POINTER (ansi_opname[(int) MODIFY_EXPR]),
|
||
strlen (IDENTIFIER_POINTER (ansi_opname[(int) MODIFY_EXPR]))))
|
||
{
|
||
TYPE_HAS_ASSIGNMENT (TREE_TYPE (typedecl)) = 1;
|
||
sorry ("declaring \"friend operator =\" will not find \"operator = (X&)\" if it exists");
|
||
}
|
||
}
|
||
|
||
/* Set up a cross reference so that type TYPE will make member function
|
||
CTYPE::DECL a friend when CTYPE is finally defined. For more than
|
||
one, set up a cross reference so that functions with the name DECL
|
||
and type CTYPE know that they are friends of TYPE. */
|
||
static void
|
||
xref_friend (type, decl, ctype)
|
||
tree type, decl, ctype;
|
||
{
|
||
tree friend_decl = TYPE_NAME (ctype);
|
||
#if 0
|
||
tree typedecl = TYPE_NAME (type);
|
||
tree t = tree_cons (NULL_TREE, ctype, DECL_UNDEFINED_FRIENDS (typedecl));
|
||
|
||
DECL_UNDEFINED_FRIENDS (typedecl) = t;
|
||
#else
|
||
tree t = 0;
|
||
#endif
|
||
SET_DECL_WAITING_FRIENDS (friend_decl,
|
||
tree_cons (type, t,
|
||
DECL_WAITING_FRIENDS (friend_decl)));
|
||
TREE_TYPE (DECL_WAITING_FRIENDS (friend_decl)) = decl;
|
||
}
|
||
|
||
/* Make FRIEND_TYPE a friend class to TYPE. If FRIEND_TYPE has already
|
||
been defined, we make all of its member functions friends of
|
||
TYPE. If not, we make it a pending friend, which can later be added
|
||
when its definition is seen. If a type is defined, then its TYPE_DECL's
|
||
DECL_UNDEFINED_FRIENDS contains a (possibly empty) list of friend
|
||
classes that are not defined. If a type has not yet been defined,
|
||
then the DECL_WAITING_FRIENDS contains a list of types
|
||
waiting to make it their friend. Note that these two can both
|
||
be in use at the same time! */
|
||
void
|
||
make_friend_class (type, friend_type)
|
||
tree type, friend_type;
|
||
{
|
||
tree classes;
|
||
|
||
if (IS_SIGNATURE (type))
|
||
{
|
||
error ("`friend' declaration in signature definition");
|
||
return;
|
||
}
|
||
if (IS_SIGNATURE (friend_type))
|
||
{
|
||
error ("signature type `%s' declared `friend'",
|
||
IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (friend_type))));
|
||
return;
|
||
}
|
||
if (type == friend_type)
|
||
{
|
||
pedwarn ("class `%s' is implicitly friends with itself",
|
||
TYPE_NAME_STRING (type));
|
||
return;
|
||
}
|
||
|
||
GNU_xref_hier (TYPE_NAME_STRING (type),
|
||
TYPE_NAME_STRING (friend_type), 0, 0, 1);
|
||
|
||
classes = CLASSTYPE_FRIEND_CLASSES (type);
|
||
while (classes && TREE_VALUE (classes) != friend_type)
|
||
classes = TREE_CHAIN (classes);
|
||
if (classes)
|
||
warning ("class `%s' is already friends with class `%s'",
|
||
TYPE_NAME_STRING (TREE_VALUE (classes)), TYPE_NAME_STRING (type));
|
||
else
|
||
{
|
||
CLASSTYPE_FRIEND_CLASSES (type)
|
||
= tree_cons (NULL_TREE, friend_type, CLASSTYPE_FRIEND_CLASSES (type));
|
||
}
|
||
}
|
||
|
||
/* Main friend processor. This is large, and for modularity purposes,
|
||
has been removed from grokdeclarator. It returns `void_type_node'
|
||
to indicate that something happened, though a FIELD_DECL is
|
||
not returned.
|
||
|
||
CTYPE is the class this friend belongs to.
|
||
|
||
DECLARATOR is the name of the friend.
|
||
|
||
DECL is the FUNCTION_DECL that the friend is.
|
||
|
||
In case we are parsing a friend which is part of an inline
|
||
definition, we will need to store PARM_DECL chain that comes
|
||
with it into the DECL_ARGUMENTS slot of the FUNCTION_DECL.
|
||
|
||
FLAGS is just used for `grokclassfn'.
|
||
|
||
QUALS say what special qualifies should apply to the object
|
||
pointed to by `this'. */
|
||
tree
|
||
do_friend (ctype, declarator, decl, parmdecls, flags, quals)
|
||
tree ctype, declarator, decl, parmdecls;
|
||
enum overload_flags flags;
|
||
tree quals;
|
||
{
|
||
/* Every decl that gets here is a friend of something. */
|
||
DECL_FRIEND_P (decl) = 1;
|
||
|
||
if (ctype)
|
||
{
|
||
tree cname = TYPE_NAME (ctype);
|
||
if (TREE_CODE (cname) == TYPE_DECL)
|
||
cname = DECL_NAME (cname);
|
||
|
||
/* A method friend. */
|
||
if (TREE_CODE (decl) == FUNCTION_DECL)
|
||
{
|
||
if (flags == NO_SPECIAL && ctype && declarator == cname)
|
||
DECL_CONSTRUCTOR_P (decl) = 1;
|
||
|
||
/* This will set up DECL_ARGUMENTS for us. */
|
||
grokclassfn (ctype, cname, decl, flags, quals);
|
||
if (TYPE_SIZE (ctype) != 0)
|
||
check_classfn (ctype, cname, decl);
|
||
|
||
if (TREE_TYPE (decl) != error_mark_node)
|
||
{
|
||
if (TYPE_SIZE (ctype))
|
||
{
|
||
/* We don't call pushdecl here yet, or ever on this
|
||
actual FUNCTION_DECL. We must preserve its TREE_CHAIN
|
||
until the end. */
|
||
make_decl_rtl (decl, NULL_PTR, 1);
|
||
add_friend (current_class_type, decl);
|
||
}
|
||
else
|
||
{
|
||
register char *classname
|
||
= IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (ctype)));
|
||
|
||
error ("member declared as friend before type `%s' defined",
|
||
classname);
|
||
}
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* Possibly a bunch of method friends. */
|
||
|
||
/* Get the class they belong to. */
|
||
tree ctype = IDENTIFIER_TYPE_VALUE (cname);
|
||
|
||
/* This class is defined, use its methods now. */
|
||
if (TYPE_SIZE (ctype))
|
||
{
|
||
tree fields = lookup_fnfields (TYPE_BINFO (ctype), declarator, 0);
|
||
if (fields)
|
||
add_friends (current_class_type, declarator, ctype);
|
||
else
|
||
error ("method `%s' is not a member of class `%s'",
|
||
IDENTIFIER_POINTER (declarator),
|
||
IDENTIFIER_POINTER (cname));
|
||
}
|
||
else
|
||
/* Note: DECLARATOR actually has more than one; in this
|
||
case, we're making sure that fns with the name DECLARATOR
|
||
and type CTYPE know they are friends of the current
|
||
class type. */
|
||
xref_friend (current_class_type, declarator, ctype);
|
||
decl = void_type_node;
|
||
}
|
||
}
|
||
else if (TREE_CODE (decl) == FUNCTION_DECL
|
||
&& ((IDENTIFIER_LENGTH (declarator) == 4
|
||
&& IDENTIFIER_POINTER (declarator)[0] == 'm'
|
||
&& ! strcmp (IDENTIFIER_POINTER (declarator), "main"))
|
||
|| (IDENTIFIER_LENGTH (declarator) > 10
|
||
&& IDENTIFIER_POINTER (declarator)[0] == '_'
|
||
&& IDENTIFIER_POINTER (declarator)[1] == '_'
|
||
&& strncmp (IDENTIFIER_POINTER (declarator)+2,
|
||
"builtin_", 8) == 0)))
|
||
{
|
||
/* raw "main", and builtin functions never gets overloaded,
|
||
but they can become friends. */
|
||
add_friend (current_class_type, decl);
|
||
DECL_FRIEND_P (decl) = 1;
|
||
decl = void_type_node;
|
||
}
|
||
/* A global friend.
|
||
@@ or possibly a friend from a base class ?!? */
|
||
else if (TREE_CODE (decl) == FUNCTION_DECL)
|
||
{
|
||
/* Friends must all go through the overload machinery,
|
||
even though they may not technically be overloaded.
|
||
|
||
Note that because classes all wind up being top-level
|
||
in their scope, their friend wind up in top-level scope as well. */
|
||
DECL_ASSEMBLER_NAME (decl)
|
||
= build_decl_overload (declarator, TYPE_ARG_TYPES (TREE_TYPE (decl)),
|
||
TREE_CODE (TREE_TYPE (decl)) == METHOD_TYPE);
|
||
DECL_ARGUMENTS (decl) = parmdecls;
|
||
DECL_CLASS_CONTEXT (decl) = current_class_type;
|
||
|
||
/* We can call pushdecl here, because the TREE_CHAIN of this
|
||
FUNCTION_DECL is not needed for other purposes. */
|
||
decl = pushdecl (decl);
|
||
|
||
make_decl_rtl (decl, NULL_PTR, 1);
|
||
add_friend (current_class_type, decl);
|
||
|
||
DECL_FRIEND_P (decl) = 1;
|
||
#if 0
|
||
TREE_OVERLOADED (declarator) = 1;
|
||
#endif
|
||
}
|
||
else
|
||
{
|
||
/* @@ Should be able to ingest later definitions of this function
|
||
before use. */
|
||
tree decl = lookup_name_nonclass (declarator);
|
||
if (decl == NULL_TREE)
|
||
{
|
||
warning ("implicitly declaring `%s' as struct",
|
||
IDENTIFIER_POINTER (declarator));
|
||
decl = xref_tag (record_type_node, declarator, NULL_TREE, 1);
|
||
decl = TYPE_NAME (decl);
|
||
}
|
||
|
||
/* Allow abbreviated declarations of overloaded functions,
|
||
but not if those functions are really class names. */
|
||
if (TREE_CODE (decl) == TREE_LIST && TREE_TYPE (TREE_PURPOSE (decl)))
|
||
{
|
||
warning ("`friend %s' archaic, use `friend class %s' instead",
|
||
IDENTIFIER_POINTER (declarator),
|
||
IDENTIFIER_POINTER (declarator));
|
||
decl = TREE_TYPE (TREE_PURPOSE (decl));
|
||
}
|
||
|
||
if (TREE_CODE (decl) == TREE_LIST)
|
||
add_friends (current_class_type, TREE_PURPOSE (decl), NULL_TREE);
|
||
else
|
||
make_friend_class (current_class_type, TREE_TYPE (decl));
|
||
decl = void_type_node;
|
||
}
|
||
return decl;
|
||
}
|
||
|
||
/* TYPE has now been defined. It may, however, have a number of things
|
||
waiting make make it their friend. We resolve these references
|
||
here. */
|
||
void
|
||
embrace_waiting_friends (type)
|
||
tree type;
|
||
{
|
||
tree decl = TYPE_NAME (type);
|
||
tree waiters;
|
||
|
||
if (TREE_CODE (decl) != TYPE_DECL)
|
||
return;
|
||
|
||
for (waiters = DECL_WAITING_FRIENDS (decl); waiters;
|
||
waiters = TREE_CHAIN (waiters))
|
||
{
|
||
tree waiter = TREE_PURPOSE (waiters);
|
||
#if 0
|
||
tree waiter_prev = TREE_VALUE (waiters);
|
||
#endif
|
||
tree decl = TREE_TYPE (waiters);
|
||
tree name = decl ? (TREE_CODE (decl) == IDENTIFIER_NODE
|
||
? decl : DECL_NAME (decl)) : NULL_TREE;
|
||
if (name)
|
||
{
|
||
/* @@ There may be work to be done since we have not verified
|
||
@@ consistency between original and friend declarations
|
||
@@ of the functions waiting to become friends. */
|
||
tree field = lookup_fnfields (TYPE_BINFO (type), name, 0);
|
||
if (field)
|
||
if (decl == name)
|
||
add_friends (waiter, name, type);
|
||
else
|
||
add_friend (waiter, decl);
|
||
else
|
||
error_with_file_and_line (DECL_SOURCE_FILE (TYPE_NAME (waiter)),
|
||
DECL_SOURCE_LINE (TYPE_NAME (waiter)),
|
||
"no method `%s' defined in class `%s' to be friend",
|
||
IDENTIFIER_POINTER (DECL_NAME (TREE_TYPE (waiters))),
|
||
TYPE_NAME_STRING (type));
|
||
}
|
||
else
|
||
make_friend_class (type, waiter);
|
||
|
||
#if 0
|
||
if (TREE_CHAIN (waiter_prev))
|
||
TREE_CHAIN (waiter_prev) = TREE_CHAIN (TREE_CHAIN (waiter_prev));
|
||
else
|
||
DECL_UNDEFINED_FRIENDS (TYPE_NAME (waiter)) = NULL_TREE;
|
||
#endif
|
||
}
|
||
}
|
||
|
||
/* Common subroutines of build_new and build_vec_delete. */
|
||
|
||
/* Common interface for calling "builtin" functions that are not
|
||
really builtin. */
|
||
|
||
tree
|
||
build_builtin_call (type, node, arglist)
|
||
tree type;
|
||
tree node;
|
||
tree arglist;
|
||
{
|
||
tree rval = build (CALL_EXPR, type, node, arglist, 0);
|
||
TREE_SIDE_EFFECTS (rval) = 1;
|
||
assemble_external (TREE_OPERAND (node, 0));
|
||
TREE_USED (TREE_OPERAND (node, 0)) = 1;
|
||
return rval;
|
||
}
|
||
|
||
/* Generate a C++ "new" expression. DECL is either a TREE_LIST
|
||
(which needs to go through some sort of groktypename) or it
|
||
is the name of the class we are newing. INIT is an initialization value.
|
||
It is either an EXPRLIST, an EXPR_NO_COMMAS, or something in braces.
|
||
If INIT is void_type_node, it means do *not* call a constructor
|
||
for this instance.
|
||
|
||
For types with constructors, the data returned is initialized
|
||
by the appropriate constructor.
|
||
|
||
Whether the type has a constructor or not, if it has a pointer
|
||
to a virtual function table, then that pointer is set up
|
||
here.
|
||
|
||
Unless I am mistaken, a call to new () will return initialized
|
||
data regardless of whether the constructor itself is private or
|
||
not. NOPE; new fails if the constructor is private (jcm).
|
||
|
||
Note that build_new does nothing to assure that any special
|
||
alignment requirements of the type are met. Rather, it leaves
|
||
it up to malloc to do the right thing. Otherwise, folding to
|
||
the right alignment cal cause problems if the user tries to later
|
||
free the memory returned by `new'.
|
||
|
||
PLACEMENT is the `placement' list for user-defined operator new (). */
|
||
|
||
extern int flag_check_new;
|
||
|
||
tree
|
||
build_new (placement, decl, init, use_global_new)
|
||
tree placement;
|
||
tree decl, init;
|
||
int use_global_new;
|
||
{
|
||
tree type, true_type, size, rval;
|
||
tree nelts;
|
||
tree alloc_expr, alloc_temp;
|
||
int has_array = 0;
|
||
enum tree_code code = NEW_EXPR;
|
||
|
||
tree pending_sizes = NULL_TREE;
|
||
|
||
if (decl == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
if (TREE_CODE (decl) == TREE_LIST)
|
||
{
|
||
tree absdcl = TREE_VALUE (decl);
|
||
tree last_absdcl = NULL_TREE;
|
||
int old_immediate_size_expand;
|
||
|
||
if (current_function_decl
|
||
&& DECL_CONSTRUCTOR_P (current_function_decl))
|
||
{
|
||
old_immediate_size_expand = immediate_size_expand;
|
||
immediate_size_expand = 0;
|
||
}
|
||
|
||
nelts = integer_one_node;
|
||
|
||
if (absdcl && TREE_CODE (absdcl) == CALL_EXPR)
|
||
my_friendly_abort (215);
|
||
while (absdcl && TREE_CODE (absdcl) == INDIRECT_REF)
|
||
{
|
||
last_absdcl = absdcl;
|
||
absdcl = TREE_OPERAND (absdcl, 0);
|
||
}
|
||
|
||
if (absdcl && TREE_CODE (absdcl) == ARRAY_REF)
|
||
{
|
||
/* probably meant to be a vec new */
|
||
tree this_nelts;
|
||
|
||
while (TREE_OPERAND (absdcl, 0)
|
||
&& TREE_CODE (TREE_OPERAND (absdcl, 0)) == ARRAY_REF)
|
||
{
|
||
last_absdcl = absdcl;
|
||
absdcl = TREE_OPERAND (absdcl, 0);
|
||
}
|
||
|
||
has_array = 1;
|
||
this_nelts = TREE_OPERAND (absdcl, 1);
|
||
if (this_nelts != error_mark_node)
|
||
{
|
||
if (this_nelts == NULL_TREE)
|
||
error ("new of array type fails to specify size");
|
||
else
|
||
{
|
||
this_nelts = save_expr (convert (sizetype, this_nelts));
|
||
absdcl = TREE_OPERAND (absdcl, 0);
|
||
if (this_nelts == integer_zero_node)
|
||
{
|
||
warning ("zero size array reserves no space");
|
||
nelts = integer_zero_node;
|
||
}
|
||
else
|
||
nelts = build_binary_op (MULT_EXPR, nelts, this_nelts, 1);
|
||
}
|
||
}
|
||
else
|
||
nelts = integer_zero_node;
|
||
}
|
||
|
||
if (last_absdcl)
|
||
TREE_OPERAND (last_absdcl, 0) = absdcl;
|
||
else
|
||
TREE_VALUE (decl) = absdcl;
|
||
|
||
type = true_type = groktypename (decl);
|
||
if (! type || type == error_mark_node)
|
||
{
|
||
immediate_size_expand = old_immediate_size_expand;
|
||
return error_mark_node;
|
||
}
|
||
|
||
if (current_function_decl
|
||
&& DECL_CONSTRUCTOR_P (current_function_decl))
|
||
{
|
||
pending_sizes = get_pending_sizes ();
|
||
immediate_size_expand = old_immediate_size_expand;
|
||
}
|
||
}
|
||
else if (TREE_CODE (decl) == IDENTIFIER_NODE)
|
||
{
|
||
if (IDENTIFIER_HAS_TYPE_VALUE (decl))
|
||
{
|
||
/* An aggregate type. */
|
||
type = IDENTIFIER_TYPE_VALUE (decl);
|
||
decl = TYPE_NAME (type);
|
||
}
|
||
else
|
||
{
|
||
/* A builtin type. */
|
||
decl = lookup_name (decl, 1);
|
||
my_friendly_assert (TREE_CODE (decl) == TYPE_DECL, 215);
|
||
type = TREE_TYPE (decl);
|
||
}
|
||
true_type = type;
|
||
}
|
||
else if (TREE_CODE (decl) == TYPE_DECL)
|
||
{
|
||
type = TREE_TYPE (decl);
|
||
true_type = type;
|
||
}
|
||
else
|
||
{
|
||
type = decl;
|
||
true_type = type;
|
||
decl = TYPE_NAME (type);
|
||
}
|
||
|
||
/* ``A reference cannot be created by the new operator. A reference
|
||
is not an object (8.2.2, 8.4.3), so a pointer to it could not be
|
||
returned by new.'' ARM 5.3.3 */
|
||
if (TREE_CODE (type) == REFERENCE_TYPE)
|
||
{
|
||
error ("new cannot be applied to a reference type");
|
||
type = true_type = TREE_TYPE (type);
|
||
}
|
||
|
||
if (TREE_CODE (type) == FUNCTION_TYPE)
|
||
{
|
||
error ("new cannot be applied to a function type");
|
||
return error_mark_node;
|
||
}
|
||
|
||
/* When the object being created is an array, the new-expression yields a
|
||
pointer to the initial element (if any) of the array. For example,
|
||
both new int and new int[10] return an int*. 5.3.4. */
|
||
if (TREE_CODE (type) == ARRAY_TYPE && has_array == 0)
|
||
{
|
||
nelts = array_type_nelts_top (type);
|
||
has_array = 1;
|
||
type = true_type = TREE_TYPE (type);
|
||
}
|
||
|
||
if (TYPE_READONLY (type) || TYPE_VOLATILE (type))
|
||
type = TYPE_MAIN_VARIANT (type);
|
||
|
||
/* If our base type is an array, then make sure we know how many elements
|
||
it has. */
|
||
while (TREE_CODE (true_type) == ARRAY_TYPE)
|
||
{
|
||
tree this_nelts = array_type_nelts_top (true_type);
|
||
nelts = build_binary_op (MULT_EXPR, nelts, this_nelts, 1);
|
||
true_type = TREE_TYPE (true_type);
|
||
}
|
||
if (has_array)
|
||
size = fold (build_binary_op (MULT_EXPR, size_in_bytes (true_type),
|
||
nelts, 1));
|
||
else
|
||
size = size_in_bytes (type);
|
||
|
||
if (true_type == void_type_node)
|
||
{
|
||
error ("invalid type `void' for new");
|
||
return error_mark_node;
|
||
}
|
||
|
||
if (TYPE_SIZE (true_type) == 0)
|
||
{
|
||
incomplete_type_error (0, true_type);
|
||
return error_mark_node;
|
||
}
|
||
|
||
if (TYPE_LANG_SPECIFIC (true_type)
|
||
&& CLASSTYPE_ABSTRACT_VIRTUALS (true_type))
|
||
{
|
||
abstract_virtuals_error (NULL_TREE, true_type);
|
||
return error_mark_node;
|
||
}
|
||
|
||
if (TYPE_LANG_SPECIFIC (true_type) && IS_SIGNATURE (true_type))
|
||
{
|
||
signature_error (NULL_TREE, true_type);
|
||
return error_mark_node;
|
||
}
|
||
|
||
/* Get a little extra space to store a couple of things before the new'ed
|
||
array. */
|
||
if (has_array && TYPE_VEC_NEW_USES_COOKIE (true_type))
|
||
{
|
||
tree extra = BI_header_size;
|
||
|
||
size = size_binop (PLUS_EXPR, size, extra);
|
||
}
|
||
|
||
if (has_array)
|
||
code = VEC_NEW_EXPR;
|
||
|
||
/* Allocate the object. */
|
||
if (! use_global_new && TYPE_LANG_SPECIFIC (true_type)
|
||
&& (TYPE_GETS_NEW (true_type) & (1 << has_array)))
|
||
rval = build_opfncall (code, LOOKUP_NORMAL,
|
||
build_pointer_type (true_type), size, placement);
|
||
else if (placement)
|
||
{
|
||
rval = build_opfncall (code, LOOKUP_GLOBAL|LOOKUP_COMPLAIN,
|
||
ptr_type_node, size, placement);
|
||
rval = convert (build_pointer_type (true_type), rval);
|
||
}
|
||
else if (! has_array && flag_this_is_variable > 0
|
||
&& TYPE_NEEDS_CONSTRUCTING (true_type) && init != void_type_node)
|
||
{
|
||
if (init == NULL_TREE || TREE_CODE (init) == TREE_LIST)
|
||
rval = NULL_TREE;
|
||
else
|
||
{
|
||
error ("constructors take parameter lists");
|
||
return error_mark_node;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
rval = build_builtin_call (build_pointer_type (true_type),
|
||
has_array ? BIVN : BIN,
|
||
build_tree_list (NULL_TREE, size));
|
||
#if 0
|
||
/* See comment above as to why this is disabled. */
|
||
if (alignment)
|
||
{
|
||
rval = build (PLUS_EXPR, build_pointer_type (true_type), rval,
|
||
alignment);
|
||
rval = build (BIT_AND_EXPR, build_pointer_type (true_type),
|
||
rval, build1 (BIT_NOT_EXPR, integer_type_node,
|
||
alignment));
|
||
}
|
||
#endif
|
||
TREE_CALLS_NEW (rval) = 1;
|
||
}
|
||
|
||
if (flag_check_new && rval)
|
||
{
|
||
/* For array new, we need to make sure that the call to new is
|
||
not expanded as part of the RTL_EXPR for the initialization,
|
||
so we can't just use save_expr here. */
|
||
|
||
alloc_temp = get_temp_name (TREE_TYPE (rval), 0);
|
||
alloc_expr = build (MODIFY_EXPR, TREE_TYPE (rval), alloc_temp, rval);
|
||
TREE_SIDE_EFFECTS (alloc_expr) = 1;
|
||
rval = alloc_temp;
|
||
}
|
||
else
|
||
alloc_expr = NULL_TREE;
|
||
|
||
/* if rval is NULL_TREE I don't have to allocate it, but are we totally
|
||
sure we have some extra bytes in that case for the BI_header_size
|
||
cookies? And how does that interact with the code below? (mrs) */
|
||
/* Finish up some magic for new'ed arrays */
|
||
if (has_array && TYPE_VEC_NEW_USES_COOKIE (true_type) && rval != NULL_TREE)
|
||
{
|
||
tree extra = BI_header_size;
|
||
tree cookie, exp1;
|
||
rval = convert (ptr_type_node, rval); /* convert to void * first */
|
||
rval = convert (string_type_node, rval); /* lets not add void* and ints */
|
||
rval = save_expr (build_binary_op (PLUS_EXPR, rval, extra, 1));
|
||
/* Store header info. */
|
||
cookie = build_indirect_ref (build (MINUS_EXPR, build_pointer_type (BI_header_type),
|
||
rval, extra), NULL_PTR);
|
||
exp1 = build (MODIFY_EXPR, void_type_node,
|
||
build_component_ref (cookie, nc_nelts_field_id, 0, 0),
|
||
nelts);
|
||
TREE_SIDE_EFFECTS (exp1) = 1;
|
||
rval = convert (build_pointer_type (true_type), rval);
|
||
TREE_CALLS_NEW (rval) = 1;
|
||
TREE_SIDE_EFFECTS (rval) = 1;
|
||
rval = build_compound_expr (tree_cons (NULL_TREE, exp1,
|
||
build_tree_list (NULL_TREE, rval)));
|
||
}
|
||
|
||
if (rval == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
/* Don't call any constructors or do any initialization. */
|
||
if (init == void_type_node)
|
||
goto done;
|
||
|
||
if (TYPE_NEEDS_CONSTRUCTING (type) || init)
|
||
{
|
||
if (! TYPE_NEEDS_CONSTRUCTING (type)
|
||
&& ! IS_AGGR_TYPE (type) && ! has_array)
|
||
{
|
||
/* New 2.0 interpretation: `new int (10)' means
|
||
allocate an int, and initialize it with 10. */
|
||
tree deref;
|
||
|
||
rval = save_expr (rval);
|
||
deref = build_indirect_ref (rval, NULL_PTR);
|
||
TREE_READONLY (deref) = 0;
|
||
|
||
if (TREE_CHAIN (init) != NULL_TREE)
|
||
pedwarn ("initializer list being treated as compound expression");
|
||
else if (TREE_CODE (init) == CONSTRUCTOR)
|
||
{
|
||
pedwarn ("initializer list appears where operand should be used");
|
||
init = TREE_OPERAND (init, 1);
|
||
}
|
||
init = build_compound_expr (init);
|
||
|
||
init = convert_for_initialization (deref, type, init, LOOKUP_NORMAL,
|
||
"new", NULL_TREE, 0);
|
||
rval = build (COMPOUND_EXPR, TREE_TYPE (rval),
|
||
build_modify_expr (deref, NOP_EXPR, init),
|
||
rval);
|
||
TREE_NO_UNUSED_WARNING (rval) = 1;
|
||
TREE_SIDE_EFFECTS (rval) = 1;
|
||
TREE_CALLS_NEW (rval) = 1;
|
||
}
|
||
else if (! has_array)
|
||
{
|
||
tree newrval;
|
||
/* Constructors are never virtual. If it has an initialization, we
|
||
need to complain if we aren't allowed to use the ctor that took
|
||
that argument. */
|
||
int flags = LOOKUP_NORMAL|LOOKUP_NONVIRTUAL|LOOKUP_COMPLAIN;
|
||
|
||
if (rval && TYPE_USES_VIRTUAL_BASECLASSES (true_type))
|
||
{
|
||
init = tree_cons (NULL_TREE, integer_one_node, init);
|
||
flags |= LOOKUP_HAS_IN_CHARGE;
|
||
}
|
||
|
||
newrval = rval;
|
||
|
||
if (newrval && TREE_CODE (TREE_TYPE (newrval)) == POINTER_TYPE)
|
||
newrval = build_indirect_ref (newrval, NULL_PTR);
|
||
|
||
newrval = build_method_call (newrval, constructor_name_full (true_type),
|
||
init, NULL_TREE, flags);
|
||
|
||
if (newrval)
|
||
{
|
||
rval = newrval;
|
||
TREE_HAS_CONSTRUCTOR (rval) = 1;
|
||
}
|
||
else
|
||
rval = error_mark_node;
|
||
}
|
||
else if (current_function_decl == NULL_TREE)
|
||
{
|
||
extern tree static_aggregates;
|
||
|
||
/* In case of static initialization, SAVE_EXPR is good enough. */
|
||
rval = save_expr (rval);
|
||
rval = copy_to_permanent (rval);
|
||
init = copy_to_permanent (init);
|
||
init = expand_vec_init (decl, rval,
|
||
build_binary_op (MINUS_EXPR, nelts,
|
||
integer_one_node, 1),
|
||
init, 0);
|
||
init = copy_to_permanent (init);
|
||
static_aggregates = perm_tree_cons (init, rval, static_aggregates);
|
||
}
|
||
else
|
||
{
|
||
/* Have to wrap this in RTL_EXPR for two cases:
|
||
in base or member initialization and if we
|
||
are a branch of a ?: operator. Since we
|
||
can't easily know the latter, just do it always. */
|
||
tree xval = make_node (RTL_EXPR);
|
||
|
||
/* If we want to check the value of the allocation expression,
|
||
and the number of elements in the array is not a constant, we
|
||
*must* expand the SAVE_EXPR for nelts in alloc_expr before we
|
||
expand it in the actual initialization. So we need to build up
|
||
an RTL_EXPR for alloc_expr. Sigh. */
|
||
if (alloc_expr && ! TREE_CONSTANT (nelts))
|
||
{
|
||
tree xval = make_node (RTL_EXPR);
|
||
rtx rtxval;
|
||
TREE_TYPE (xval) = TREE_TYPE (alloc_expr);
|
||
do_pending_stack_adjust ();
|
||
start_sequence_for_rtl_expr (xval);
|
||
emit_note (0, -1);
|
||
rtxval = expand_expr (alloc_expr, NULL, VOIDmode, 0);
|
||
do_pending_stack_adjust ();
|
||
TREE_SIDE_EFFECTS (xval) = 1;
|
||
RTL_EXPR_SEQUENCE (xval) = get_insns ();
|
||
end_sequence ();
|
||
RTL_EXPR_RTL (xval) = rtxval;
|
||
TREE_TYPE (xval) = TREE_TYPE (alloc_expr);
|
||
alloc_expr = xval;
|
||
}
|
||
|
||
TREE_TYPE (xval) = TREE_TYPE (rval);
|
||
do_pending_stack_adjust ();
|
||
start_sequence_for_rtl_expr (xval);
|
||
|
||
/* As a matter of principle, `start_sequence' should do this. */
|
||
emit_note (0, -1);
|
||
|
||
rval = save_expr (rval);
|
||
rval = expand_vec_init (decl, rval,
|
||
build_binary_op (MINUS_EXPR, nelts,
|
||
integer_one_node, 1),
|
||
init, 0);
|
||
|
||
do_pending_stack_adjust ();
|
||
|
||
TREE_SIDE_EFFECTS (xval) = 1;
|
||
TREE_CALLS_NEW (xval) = 1;
|
||
RTL_EXPR_SEQUENCE (xval) = get_insns ();
|
||
end_sequence ();
|
||
|
||
if (TREE_CODE (rval) == SAVE_EXPR)
|
||
{
|
||
/* Errors may cause this to not get evaluated. */
|
||
if (SAVE_EXPR_RTL (rval) == 0)
|
||
SAVE_EXPR_RTL (rval) = const0_rtx;
|
||
RTL_EXPR_RTL (xval) = SAVE_EXPR_RTL (rval);
|
||
}
|
||
else
|
||
{
|
||
my_friendly_assert (TREE_CODE (rval) == VAR_DECL, 217);
|
||
RTL_EXPR_RTL (xval) = DECL_RTL (rval);
|
||
}
|
||
rval = xval;
|
||
}
|
||
}
|
||
else if (TYPE_READONLY (true_type))
|
||
cp_error ("uninitialized const in `new' of `%#T'", true_type);
|
||
|
||
done:
|
||
|
||
if (alloc_expr)
|
||
{
|
||
/* Did we modify the storage? */
|
||
if (rval != alloc_temp)
|
||
{
|
||
tree ifexp = build_binary_op (NE_EXPR, alloc_expr,
|
||
integer_zero_node, 1);
|
||
rval = build_conditional_expr (ifexp, rval, alloc_temp);
|
||
}
|
||
else
|
||
rval = alloc_expr;
|
||
}
|
||
|
||
if (rval && TREE_TYPE (rval) != build_pointer_type (type))
|
||
{
|
||
/* The type of new int [3][3] is not int *, but int [3] * */
|
||
rval = build_c_cast (build_pointer_type (type), rval, 0);
|
||
}
|
||
|
||
if (pending_sizes)
|
||
rval = build_compound_expr (chainon (pending_sizes,
|
||
build_tree_list (NULL_TREE, rval)));
|
||
|
||
if (flag_gc)
|
||
{
|
||
extern tree gc_visible;
|
||
tree objbits;
|
||
tree update_expr;
|
||
|
||
rval = save_expr (rval);
|
||
/* We don't need a `headof' operation to do this because
|
||
we know where the object starts. */
|
||
objbits = build1 (INDIRECT_REF, unsigned_type_node,
|
||
build (MINUS_EXPR, ptr_type_node,
|
||
rval, c_sizeof_nowarn (unsigned_type_node)));
|
||
update_expr = build_modify_expr (objbits, BIT_IOR_EXPR, gc_visible);
|
||
rval = build_compound_expr (tree_cons (NULL_TREE, rval,
|
||
tree_cons (NULL_TREE, update_expr,
|
||
build_tree_list (NULL_TREE, rval))));
|
||
}
|
||
|
||
return rval;
|
||
}
|
||
|
||
static tree
|
||
build_vec_delete_1 (base, maxindex, type, auto_delete_vec, auto_delete,
|
||
use_global_delete)
|
||
tree base, maxindex, type;
|
||
tree auto_delete_vec, auto_delete;
|
||
int use_global_delete;
|
||
{
|
||
tree virtual_size;
|
||
tree ptype = build_pointer_type (type);
|
||
tree size_exp = size_in_bytes (type);
|
||
|
||
/* Temporary variables used by the loop. */
|
||
tree tbase, tbase_init;
|
||
|
||
/* This is the body of the loop that implements the deletion of a
|
||
single element, and moves temp variables to next elements. */
|
||
tree body;
|
||
|
||
/* This is the LOOP_EXPR that governs the deletion of the elements. */
|
||
tree loop;
|
||
|
||
/* This is the thing that governs what to do after the loop has run. */
|
||
tree deallocate_expr = 0;
|
||
|
||
/* This is the BIND_EXPR which holds the outermost iterator of the
|
||
loop. It is convenient to set this variable up and test it before
|
||
executing any other code in the loop.
|
||
This is also the containing expression returned by this function. */
|
||
tree controller = NULL_TREE;
|
||
|
||
/* This is the BLOCK to record the symbol binding for debugging. */
|
||
tree block;
|
||
|
||
if (! IS_AGGR_TYPE (type) || ! TYPE_NEEDS_DESTRUCTOR (type))
|
||
{
|
||
loop = integer_zero_node;
|
||
goto no_destructor;
|
||
}
|
||
|
||
/* The below is short by BI_header_size */
|
||
virtual_size = fold (size_binop (MULT_EXPR, size_exp, maxindex));
|
||
|
||
tbase = build_decl (VAR_DECL, NULL_TREE, ptype);
|
||
tbase_init = build_modify_expr (tbase, NOP_EXPR,
|
||
fold (build (PLUS_EXPR, ptype,
|
||
base,
|
||
virtual_size)));
|
||
DECL_REGISTER (tbase) = 1;
|
||
controller = build (BIND_EXPR, void_type_node, tbase, 0, 0);
|
||
TREE_SIDE_EFFECTS (controller) = 1;
|
||
block = build_block (tbase, 0, 0, 0, 0);
|
||
add_block_current_level (block);
|
||
|
||
if (auto_delete != integer_zero_node
|
||
&& auto_delete != integer_two_node)
|
||
{
|
||
tree base_tbd = convert (ptype,
|
||
build_binary_op (MINUS_EXPR,
|
||
convert (ptr_type_node, base),
|
||
BI_header_size,
|
||
1));
|
||
/* This is the real size */
|
||
virtual_size = size_binop (PLUS_EXPR, virtual_size, BI_header_size);
|
||
body = build_tree_list (NULL_TREE,
|
||
build_x_delete (ptype, base_tbd,
|
||
2 | use_global_delete,
|
||
virtual_size));
|
||
body = build (COND_EXPR, void_type_node,
|
||
build (BIT_AND_EXPR, integer_type_node,
|
||
auto_delete, integer_one_node),
|
||
body, integer_zero_node);
|
||
}
|
||
else
|
||
body = NULL_TREE;
|
||
|
||
body = tree_cons (NULL_TREE,
|
||
build_delete (ptype, tbase, auto_delete,
|
||
LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 1),
|
||
body);
|
||
|
||
body = tree_cons (NULL_TREE,
|
||
build_modify_expr (tbase, NOP_EXPR, build (MINUS_EXPR, ptype, tbase, size_exp)),
|
||
body);
|
||
|
||
body = tree_cons (NULL_TREE,
|
||
build (EXIT_EXPR, void_type_node,
|
||
build (EQ_EXPR, boolean_type_node, base, tbase)),
|
||
body);
|
||
|
||
loop = build (LOOP_EXPR, void_type_node, build_compound_expr (body));
|
||
|
||
loop = tree_cons (NULL_TREE, tbase_init,
|
||
tree_cons (NULL_TREE, loop, NULL_TREE));
|
||
loop = build_compound_expr (loop);
|
||
|
||
no_destructor:
|
||
/* If the delete flag is one, or anything else with the low bit set,
|
||
delete the storage. */
|
||
if (auto_delete_vec == integer_zero_node
|
||
|| auto_delete_vec == integer_two_node)
|
||
deallocate_expr = integer_zero_node;
|
||
else
|
||
{
|
||
tree base_tbd;
|
||
|
||
/* The below is short by BI_header_size */
|
||
virtual_size = fold (size_binop (MULT_EXPR, size_exp, maxindex));
|
||
|
||
if (! TYPE_VEC_NEW_USES_COOKIE (type))
|
||
/* no header */
|
||
base_tbd = base;
|
||
else
|
||
{
|
||
base_tbd = convert (ptype,
|
||
build_binary_op (MINUS_EXPR,
|
||
convert (string_type_node, base),
|
||
BI_header_size,
|
||
1));
|
||
/* True size with header. */
|
||
virtual_size = size_binop (PLUS_EXPR, virtual_size, BI_header_size);
|
||
}
|
||
deallocate_expr = build_x_delete (ptype, base_tbd,
|
||
2 | use_global_delete,
|
||
virtual_size);
|
||
if (auto_delete_vec != integer_one_node)
|
||
deallocate_expr = build (COND_EXPR, void_type_node,
|
||
build (BIT_AND_EXPR, integer_type_node,
|
||
auto_delete_vec, integer_one_node),
|
||
deallocate_expr, integer_zero_node);
|
||
}
|
||
|
||
if (loop && deallocate_expr != integer_zero_node)
|
||
{
|
||
body = tree_cons (NULL_TREE, loop,
|
||
tree_cons (NULL_TREE, deallocate_expr, NULL_TREE));
|
||
body = build_compound_expr (body);
|
||
}
|
||
else
|
||
body = loop;
|
||
|
||
/* Outermost wrapper: If pointer is null, punt. */
|
||
body = build (COND_EXPR, void_type_node,
|
||
build (NE_EXPR, boolean_type_node, base, integer_zero_node),
|
||
body, integer_zero_node);
|
||
body = build1 (NOP_EXPR, void_type_node, body);
|
||
|
||
if (controller)
|
||
{
|
||
TREE_OPERAND (controller, 1) = body;
|
||
return controller;
|
||
}
|
||
else
|
||
return convert (void_type_node, body);
|
||
}
|
||
|
||
/* Build a tree to cleanup partially built arrays.
|
||
BASE is that starting address of the array.
|
||
COUNT is the count of objects that have been built, that need destroying.
|
||
TYPE is the type of elements in the array. */
|
||
static tree
|
||
build_array_eh_cleanup (base, count, type)
|
||
tree base, count, type;
|
||
{
|
||
tree expr = build_vec_delete_1 (base, count, type, integer_two_node,
|
||
integer_zero_node, 0);
|
||
return expr;
|
||
}
|
||
|
||
/* `expand_vec_init' performs initialization of a vector of aggregate
|
||
types.
|
||
|
||
DECL is passed only for error reporting, and provides line number
|
||
and source file name information.
|
||
BASE is the space where the vector will be.
|
||
MAXINDEX is the maximum index of the array (one less than the
|
||
number of elements).
|
||
INIT is the (possibly NULL) initializer.
|
||
|
||
FROM_ARRAY is 0 if we should init everything with INIT
|
||
(i.e., every element initialized from INIT).
|
||
FROM_ARRAY is 1 if we should index into INIT in parallel
|
||
with initialization of DECL.
|
||
FROM_ARRAY is 2 if we should index into INIT in parallel,
|
||
but use assignment instead of initialization. */
|
||
|
||
tree
|
||
expand_vec_init (decl, base, maxindex, init, from_array)
|
||
tree decl, base, maxindex, init;
|
||
int from_array;
|
||
{
|
||
tree rval;
|
||
tree iterator, base2 = NULL_TREE;
|
||
tree type = TREE_TYPE (TREE_TYPE (base));
|
||
tree size;
|
||
|
||
maxindex = convert (integer_type_node, maxindex);
|
||
if (maxindex == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
if (current_function_decl == NULL_TREE)
|
||
{
|
||
rval = make_tree_vec (3);
|
||
TREE_VEC_ELT (rval, 0) = base;
|
||
TREE_VEC_ELT (rval, 1) = maxindex;
|
||
TREE_VEC_ELT (rval, 2) = init;
|
||
return rval;
|
||
}
|
||
|
||
size = size_in_bytes (type);
|
||
|
||
/* Set to zero in case size is <= 0. Optimizer will delete this if
|
||
it is not needed. */
|
||
rval = get_temp_regvar (build_pointer_type (type),
|
||
convert (build_pointer_type (type), null_pointer_node));
|
||
base = default_conversion (base);
|
||
base = convert (build_pointer_type (type), base);
|
||
expand_assignment (rval, base, 0, 0);
|
||
base = get_temp_regvar (build_pointer_type (type), base);
|
||
|
||
if (init != NULL_TREE
|
||
&& TREE_CODE (init) == CONSTRUCTOR
|
||
&& TREE_TYPE (init) == TREE_TYPE (decl))
|
||
{
|
||
/* Initialization of array from {...}. */
|
||
tree elts = CONSTRUCTOR_ELTS (init);
|
||
tree baseref = build1 (INDIRECT_REF, type, base);
|
||
tree baseinc = build (PLUS_EXPR, build_pointer_type (type), base, size);
|
||
int host_i = TREE_INT_CST_LOW (maxindex);
|
||
|
||
if (IS_AGGR_TYPE (type))
|
||
{
|
||
while (elts)
|
||
{
|
||
host_i -= 1;
|
||
expand_aggr_init (baseref, TREE_VALUE (elts), 0, 0);
|
||
|
||
expand_assignment (base, baseinc, 0, 0);
|
||
elts = TREE_CHAIN (elts);
|
||
}
|
||
/* Initialize any elements by default if possible. */
|
||
if (host_i >= 0)
|
||
{
|
||
if (TYPE_NEEDS_CONSTRUCTING (type) == 0)
|
||
{
|
||
if (obey_regdecls)
|
||
use_variable (DECL_RTL (base));
|
||
goto done_init;
|
||
}
|
||
|
||
iterator = get_temp_regvar (integer_type_node,
|
||
build_int_2 (host_i, 0));
|
||
init = NULL_TREE;
|
||
goto init_by_default;
|
||
}
|
||
}
|
||
else
|
||
while (elts)
|
||
{
|
||
expand_assignment (baseref, TREE_VALUE (elts), 0, 0);
|
||
|
||
expand_assignment (base, baseinc, 0, 0);
|
||
elts = TREE_CHAIN (elts);
|
||
}
|
||
|
||
if (obey_regdecls)
|
||
use_variable (DECL_RTL (base));
|
||
}
|
||
else
|
||
{
|
||
tree itype;
|
||
|
||
iterator = get_temp_regvar (integer_type_node, maxindex);
|
||
|
||
init_by_default:
|
||
|
||
/* If initializing one array from another,
|
||
initialize element by element. */
|
||
if (from_array)
|
||
{
|
||
/* We rely upon the below calls the do argument checking */
|
||
if (decl == NULL_TREE)
|
||
{
|
||
sorry ("initialization of array from dissimilar array type");
|
||
return error_mark_node;
|
||
}
|
||
if (init)
|
||
{
|
||
base2 = default_conversion (init);
|
||
itype = TREE_TYPE (base2);
|
||
base2 = get_temp_regvar (itype, base2);
|
||
itype = TREE_TYPE (itype);
|
||
}
|
||
else if (TYPE_LANG_SPECIFIC (type)
|
||
&& TYPE_NEEDS_CONSTRUCTING (type)
|
||
&& ! TYPE_HAS_DEFAULT_CONSTRUCTOR (type))
|
||
{
|
||
error ("initializer ends prematurely");
|
||
return error_mark_node;
|
||
}
|
||
}
|
||
|
||
expand_start_cond (build (GE_EXPR, boolean_type_node,
|
||
iterator, integer_zero_node), 0);
|
||
if (TYPE_NEEDS_DESTRUCTOR (type))
|
||
start_protect ();
|
||
expand_start_loop_continue_elsewhere (1);
|
||
|
||
if (from_array)
|
||
{
|
||
tree to = build1 (INDIRECT_REF, type, base);
|
||
tree from;
|
||
|
||
if (base2)
|
||
from = build1 (INDIRECT_REF, itype, base2);
|
||
else
|
||
from = NULL_TREE;
|
||
|
||
if (from_array == 2)
|
||
expand_expr_stmt (build_modify_expr (to, NOP_EXPR, from));
|
||
else if (TYPE_NEEDS_CONSTRUCTING (type))
|
||
expand_aggr_init (to, from, 0, 0);
|
||
else if (from)
|
||
expand_assignment (to, from, 0, 0);
|
||
else
|
||
my_friendly_abort (57);
|
||
}
|
||
else if (TREE_CODE (type) == ARRAY_TYPE)
|
||
{
|
||
if (init != 0)
|
||
sorry ("cannot initialize multi-dimensional array with initializer");
|
||
expand_vec_init (decl, build1 (NOP_EXPR, build_pointer_type (TREE_TYPE (type)), base),
|
||
array_type_nelts (type), 0, 0);
|
||
}
|
||
else
|
||
expand_aggr_init (build1 (INDIRECT_REF, type, base), init, 0, 0);
|
||
|
||
expand_assignment (base,
|
||
build (PLUS_EXPR, build_pointer_type (type), base, size),
|
||
0, 0);
|
||
if (base2)
|
||
expand_assignment (base2,
|
||
build (PLUS_EXPR, build_pointer_type (type), base2, size), 0, 0);
|
||
expand_loop_continue_here ();
|
||
expand_exit_loop_if_false (0, build (NE_EXPR, boolean_type_node,
|
||
build (PREDECREMENT_EXPR, integer_type_node, iterator, integer_one_node), minus_one));
|
||
|
||
if (obey_regdecls)
|
||
{
|
||
use_variable (DECL_RTL (base));
|
||
if (base2)
|
||
use_variable (DECL_RTL (base2));
|
||
}
|
||
expand_end_loop ();
|
||
if (TYPE_NEEDS_DESTRUCTOR (type))
|
||
end_protect (build_array_eh_cleanup (rval,
|
||
build_binary_op (MINUS_EXPR,
|
||
maxindex,
|
||
iterator,
|
||
1),
|
||
type));
|
||
expand_end_cond ();
|
||
if (obey_regdecls)
|
||
use_variable (DECL_RTL (iterator));
|
||
}
|
||
done_init:
|
||
|
||
if (obey_regdecls)
|
||
use_variable (DECL_RTL (rval));
|
||
return rval;
|
||
}
|
||
|
||
/* Free up storage of type TYPE, at address ADDR.
|
||
|
||
TYPE is a POINTER_TYPE and can be ptr_type_node for no special type
|
||
of pointer.
|
||
|
||
VIRTUAL_SIZE is the amount of storage that was allocated, and is
|
||
used as the second argument to operator delete. It can include
|
||
things like padding and magic size cookies. It has virtual in it,
|
||
because if you have a base pointer and you delete through a virtual
|
||
destructor, it should be the size of the dynamic object, not the
|
||
static object, see Free Store 12.5 ANSI C++ WP.
|
||
|
||
This does not call any destructors. */
|
||
tree
|
||
build_x_delete (type, addr, which_delete, virtual_size)
|
||
tree type, addr;
|
||
int which_delete;
|
||
tree virtual_size;
|
||
{
|
||
int use_global_delete = which_delete & 1;
|
||
int use_vec_delete = !!(which_delete & 2);
|
||
tree rval;
|
||
enum tree_code code = use_vec_delete ? VEC_DELETE_EXPR : DELETE_EXPR;
|
||
|
||
if (! use_global_delete && TYPE_LANG_SPECIFIC (TREE_TYPE (type))
|
||
&& (TYPE_GETS_DELETE (TREE_TYPE (type)) & (1 << use_vec_delete)))
|
||
rval = build_opfncall (code, LOOKUP_NORMAL, addr, virtual_size, NULL_TREE);
|
||
else
|
||
rval = build_builtin_call (void_type_node, use_vec_delete ? BIVD : BID,
|
||
build_tree_list (NULL_TREE, addr));
|
||
return rval;
|
||
}
|
||
|
||
/* Generate a call to a destructor. TYPE is the type to cast ADDR to.
|
||
ADDR is an expression which yields the store to be destroyed.
|
||
AUTO_DELETE is nonzero if a call to DELETE should be made or not.
|
||
If in the program, (AUTO_DELETE & 2) is non-zero, we tear down the
|
||
virtual baseclasses.
|
||
If in the program, (AUTO_DELETE & 1) is non-zero, then we deallocate.
|
||
|
||
FLAGS is the logical disjunction of zero or more LOOKUP_
|
||
flags. See cp-tree.h for more info.
|
||
|
||
This function does not delete an object's virtual base classes. */
|
||
tree
|
||
build_delete (type, addr, auto_delete, flags, use_global_delete)
|
||
tree type, addr;
|
||
tree auto_delete;
|
||
int flags;
|
||
int use_global_delete;
|
||
{
|
||
tree function, parms;
|
||
tree member;
|
||
tree expr;
|
||
tree ref;
|
||
int ptr;
|
||
|
||
if (addr == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
/* Can happen when CURRENT_EXCEPTION_OBJECT gets its type
|
||
set to `error_mark_node' before it gets properly cleaned up. */
|
||
if (type == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
type = TYPE_MAIN_VARIANT (type);
|
||
|
||
if (TREE_CODE (type) == POINTER_TYPE)
|
||
{
|
||
type = TYPE_MAIN_VARIANT (TREE_TYPE (type));
|
||
if (TYPE_SIZE (type) == 0)
|
||
{
|
||
incomplete_type_error (0, type);
|
||
return error_mark_node;
|
||
}
|
||
if (TREE_CODE (type) == ARRAY_TYPE)
|
||
goto handle_array;
|
||
if (! IS_AGGR_TYPE (type))
|
||
{
|
||
/* Call the builtin operator delete. */
|
||
return build_builtin_call (void_type_node, BID,
|
||
build_tree_list (NULL_TREE, addr));
|
||
}
|
||
if (TREE_SIDE_EFFECTS (addr))
|
||
addr = save_expr (addr);
|
||
|
||
/* throw away const and volatile on target type of addr */
|
||
addr = convert_force (build_pointer_type (type), addr, 0);
|
||
ref = build_indirect_ref (addr, NULL_PTR);
|
||
ptr = 1;
|
||
}
|
||
else if (TREE_CODE (type) == ARRAY_TYPE)
|
||
{
|
||
handle_array:
|
||
if (TREE_SIDE_EFFECTS (addr))
|
||
addr = save_expr (addr);
|
||
if (TYPE_DOMAIN (type) == NULL_TREE)
|
||
{
|
||
error ("unknown array size in delete");
|
||
return error_mark_node;
|
||
}
|
||
return build_vec_delete (addr, array_type_nelts (type),
|
||
c_sizeof_nowarn (TREE_TYPE (type)),
|
||
auto_delete, integer_two_node,
|
||
use_global_delete);
|
||
}
|
||
else
|
||
{
|
||
/* Don't check PROTECT here; leave that decision to the
|
||
destructor. If the destructor is accessible, call it,
|
||
else report error. */
|
||
addr = build_unary_op (ADDR_EXPR, addr, 0);
|
||
if (TREE_SIDE_EFFECTS (addr))
|
||
addr = save_expr (addr);
|
||
|
||
if (TREE_CONSTANT (addr))
|
||
addr = convert_pointer_to (type, addr);
|
||
else
|
||
addr = convert_force (build_pointer_type (type), addr, 0);
|
||
|
||
if (TREE_CODE (addr) == NOP_EXPR
|
||
&& TREE_OPERAND (addr, 0) == current_class_decl)
|
||
ref = C_C_D;
|
||
else
|
||
ref = build_indirect_ref (addr, NULL_PTR);
|
||
ptr = 0;
|
||
}
|
||
|
||
my_friendly_assert (IS_AGGR_TYPE (type), 220);
|
||
|
||
if (! TYPE_NEEDS_DESTRUCTOR (type))
|
||
{
|
||
if (auto_delete == integer_zero_node)
|
||
return void_zero_node;
|
||
|
||
/* Pass the size of the object down to the operator delete() in
|
||
addition to the ADDR. */
|
||
if (TYPE_GETS_REG_DELETE (type) && !use_global_delete)
|
||
{
|
||
tree virtual_size = c_sizeof_nowarn (type);
|
||
return build_opfncall (DELETE_EXPR, LOOKUP_NORMAL, addr,
|
||
virtual_size, NULL_TREE);
|
||
}
|
||
|
||
/* Call the builtin operator delete. */
|
||
return build_builtin_call (void_type_node, BID,
|
||
build_tree_list (NULL_TREE, addr));
|
||
}
|
||
parms = build_tree_list (NULL_TREE, addr);
|
||
|
||
/* Below, we will reverse the order in which these calls are made.
|
||
If we have a destructor, then that destructor will take care
|
||
of the base classes; otherwise, we must do that here. */
|
||
if (TYPE_HAS_DESTRUCTOR (type))
|
||
{
|
||
tree dtor = DECL_MAIN_VARIANT (TREE_VEC_ELT (CLASSTYPE_METHOD_VEC (type), 0));
|
||
tree basetypes = TYPE_BINFO (type);
|
||
tree passed_auto_delete;
|
||
tree do_delete = NULL_TREE;
|
||
|
||
if (use_global_delete)
|
||
{
|
||
tree cond = fold (build (BIT_AND_EXPR, integer_type_node,
|
||
auto_delete, integer_one_node));
|
||
tree call = build_builtin_call
|
||
(void_type_node, BID, build_tree_list (NULL_TREE, addr));
|
||
|
||
cond = fold (build (COND_EXPR, void_type_node, cond,
|
||
call, void_zero_node));
|
||
if (cond != void_zero_node)
|
||
do_delete = cond;
|
||
|
||
passed_auto_delete = fold (build (BIT_AND_EXPR, integer_type_node,
|
||
auto_delete, integer_two_node));
|
||
}
|
||
else
|
||
passed_auto_delete = auto_delete;
|
||
|
||
if (flags & LOOKUP_PROTECT)
|
||
{
|
||
enum access_type access = compute_access (basetypes, dtor);
|
||
|
||
if (access == access_private)
|
||
{
|
||
if (flags & LOOKUP_COMPLAIN)
|
||
cp_error ("destructor for type `%T' is private in this scope", type);
|
||
return error_mark_node;
|
||
}
|
||
else if (access == access_protected)
|
||
{
|
||
if (flags & LOOKUP_COMPLAIN)
|
||
cp_error ("destructor for type `%T' is protected in this scope", type);
|
||
return error_mark_node;
|
||
}
|
||
}
|
||
|
||
/* Once we are in a destructor, try not going through
|
||
the virtual function table to find the next destructor. */
|
||
if (DECL_VINDEX (dtor)
|
||
&& ! (flags & LOOKUP_NONVIRTUAL)
|
||
&& TREE_CODE (auto_delete) != PARM_DECL
|
||
&& (ptr == 1 || ! resolves_to_fixed_type_p (ref, 0)))
|
||
{
|
||
tree binfo, basetype;
|
||
/* The code below is probably all broken. See call.c for the
|
||
complete right way to do this. this offsets may not be right
|
||
in the below. (mrs) */
|
||
/* This destructor must be called via virtual function table. */
|
||
dtor = TREE_VEC_ELT (CLASSTYPE_METHOD_VEC (DECL_CONTEXT (dtor)), 0);
|
||
basetype = DECL_CLASS_CONTEXT (dtor);
|
||
binfo = get_binfo (basetype,
|
||
TREE_TYPE (TREE_TYPE (TREE_VALUE (parms))),
|
||
0);
|
||
expr = convert_pointer_to_real (binfo, TREE_VALUE (parms));
|
||
if (expr != TREE_VALUE (parms))
|
||
{
|
||
expr = fold (expr);
|
||
ref = build_indirect_ref (expr, NULL_PTR);
|
||
TREE_VALUE (parms) = expr;
|
||
}
|
||
function = build_vfn_ref (&TREE_VALUE (parms), ref, DECL_VINDEX (dtor));
|
||
if (function == error_mark_node)
|
||
return error_mark_node;
|
||
TREE_TYPE (function) = build_pointer_type (TREE_TYPE (dtor));
|
||
TREE_CHAIN (parms) = build_tree_list (NULL_TREE, passed_auto_delete);
|
||
expr = build_function_call (function, parms);
|
||
if (do_delete)
|
||
expr = build (COMPOUND_EXPR, void_type_node, expr, do_delete);
|
||
if (ptr && (flags & LOOKUP_DESTRUCTOR) == 0)
|
||
{
|
||
/* Handle the case where a virtual destructor is
|
||
being called on an item that is 0.
|
||
|
||
@@ Does this really need to be done? */
|
||
tree ifexp = build_binary_op(NE_EXPR, addr, integer_zero_node,1);
|
||
#if 0
|
||
if (TREE_CODE (ref) == VAR_DECL
|
||
|| TREE_CODE (ref) == COMPONENT_REF)
|
||
warning ("losing in build_delete");
|
||
#endif
|
||
expr = build (COND_EXPR, void_type_node,
|
||
ifexp, expr, void_zero_node);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
tree ifexp;
|
||
|
||
if ((flags & LOOKUP_DESTRUCTOR)
|
||
|| TREE_CODE (ref) == VAR_DECL
|
||
|| TREE_CODE (ref) == PARM_DECL
|
||
|| TREE_CODE (ref) == COMPONENT_REF
|
||
|| TREE_CODE (ref) == ARRAY_REF)
|
||
/* These can't be 0. */
|
||
ifexp = integer_one_node;
|
||
else
|
||
/* Handle the case where a non-virtual destructor is
|
||
being called on an item that is 0. */
|
||
ifexp = build_binary_op (NE_EXPR, addr, integer_zero_node, 1);
|
||
|
||
/* Used to mean that this destructor was known to be empty,
|
||
but that's now obsolete. */
|
||
my_friendly_assert (DECL_INITIAL (dtor) != void_type_node, 221);
|
||
|
||
TREE_CHAIN (parms) = build_tree_list (NULL_TREE, passed_auto_delete);
|
||
expr = build_function_call (dtor, parms);
|
||
if (do_delete)
|
||
expr = build (COMPOUND_EXPR, void_type_node, expr, do_delete);
|
||
|
||
if (ifexp != integer_one_node)
|
||
expr = build (COND_EXPR, void_type_node,
|
||
ifexp, expr, void_zero_node);
|
||
}
|
||
return expr;
|
||
}
|
||
else
|
||
{
|
||
/* This can get visibilities wrong. */
|
||
tree binfos = BINFO_BASETYPES (TYPE_BINFO (type));
|
||
int i, n_baseclasses = binfos ? TREE_VEC_LENGTH (binfos) : 0;
|
||
tree base_binfo = n_baseclasses > 0 ? TREE_VEC_ELT (binfos, 0) : NULL_TREE;
|
||
tree exprstmt = NULL_TREE;
|
||
tree parent_auto_delete = auto_delete;
|
||
tree cond;
|
||
|
||
/* If this type does not have a destructor, but does have
|
||
operator delete, call the parent parent destructor (if any),
|
||
but let this node do the deleting. Otherwise, it is ok
|
||
to let the parent destructor do the deleting. */
|
||
if (TYPE_GETS_REG_DELETE (type) && !use_global_delete)
|
||
{
|
||
parent_auto_delete = integer_zero_node;
|
||
if (auto_delete == integer_zero_node)
|
||
cond = NULL_TREE;
|
||
else
|
||
{
|
||
tree virtual_size;
|
||
|
||
/* This is probably wrong. It should be the size of the
|
||
virtual object being deleted. */
|
||
virtual_size = c_sizeof_nowarn (type);
|
||
|
||
expr = build_opfncall (DELETE_EXPR, LOOKUP_NORMAL, addr,
|
||
virtual_size, NULL_TREE);
|
||
if (expr == error_mark_node)
|
||
return error_mark_node;
|
||
if (auto_delete != integer_one_node)
|
||
cond = build (COND_EXPR, void_type_node,
|
||
build (BIT_AND_EXPR, integer_type_node,
|
||
auto_delete, integer_one_node),
|
||
expr, void_zero_node);
|
||
else
|
||
cond = expr;
|
||
}
|
||
}
|
||
else if (base_binfo == NULL_TREE
|
||
|| (TREE_VIA_VIRTUAL (base_binfo) == 0
|
||
&& ! TYPE_NEEDS_DESTRUCTOR (BINFO_TYPE (base_binfo))))
|
||
{
|
||
tree virtual_size;
|
||
|
||
/* This is probably wrong. It should be the size of the virtual
|
||
object being deleted. */
|
||
virtual_size = c_sizeof_nowarn (type);
|
||
|
||
cond = build (COND_EXPR, void_type_node,
|
||
build (BIT_AND_EXPR, integer_type_node, auto_delete, integer_one_node),
|
||
build_builtin_call (void_type_node, BID,
|
||
build_tree_list (NULL_TREE, addr)),
|
||
void_zero_node);
|
||
}
|
||
else
|
||
cond = NULL_TREE;
|
||
|
||
if (cond)
|
||
exprstmt = build_tree_list (NULL_TREE, cond);
|
||
|
||
if (base_binfo
|
||
&& ! TREE_VIA_VIRTUAL (base_binfo)
|
||
&& TYPE_NEEDS_DESTRUCTOR (BINFO_TYPE (base_binfo)))
|
||
{
|
||
tree this_auto_delete;
|
||
|
||
if (BINFO_OFFSET_ZEROP (base_binfo))
|
||
this_auto_delete = parent_auto_delete;
|
||
else
|
||
this_auto_delete = integer_zero_node;
|
||
|
||
expr = build_delete (build_pointer_type (BINFO_TYPE (base_binfo)), addr,
|
||
this_auto_delete, flags, 0);
|
||
exprstmt = tree_cons (NULL_TREE, expr, exprstmt);
|
||
}
|
||
|
||
/* Take care of the remaining baseclasses. */
|
||
for (i = 1; i < n_baseclasses; i++)
|
||
{
|
||
base_binfo = TREE_VEC_ELT (binfos, i);
|
||
if (! TYPE_NEEDS_DESTRUCTOR (BINFO_TYPE (base_binfo))
|
||
|| TREE_VIA_VIRTUAL (base_binfo))
|
||
continue;
|
||
|
||
/* May be zero offset if other baseclasses are virtual. */
|
||
expr = fold (build (PLUS_EXPR, build_pointer_type (BINFO_TYPE (base_binfo)),
|
||
addr, BINFO_OFFSET (base_binfo)));
|
||
|
||
expr = build_delete (build_pointer_type (BINFO_TYPE (base_binfo)), expr,
|
||
integer_zero_node,
|
||
flags, 0);
|
||
|
||
exprstmt = tree_cons (NULL_TREE, expr, exprstmt);
|
||
}
|
||
|
||
for (member = TYPE_FIELDS (type); member; member = TREE_CHAIN (member))
|
||
{
|
||
if (TREE_CODE (member) != FIELD_DECL)
|
||
continue;
|
||
if (TYPE_NEEDS_DESTRUCTOR (TREE_TYPE (member)))
|
||
{
|
||
tree this_member = build_component_ref (ref, DECL_NAME (member), 0, 0);
|
||
tree this_type = TREE_TYPE (member);
|
||
expr = build_delete (this_type, this_member, integer_two_node, flags, 0);
|
||
exprstmt = tree_cons (NULL_TREE, expr, exprstmt);
|
||
}
|
||
}
|
||
|
||
if (exprstmt)
|
||
return build_compound_expr (exprstmt);
|
||
/* Virtual base classes make this function do nothing. */
|
||
return void_zero_node;
|
||
}
|
||
}
|
||
|
||
/* For type TYPE, delete the virtual baseclass objects of DECL. */
|
||
|
||
tree
|
||
build_vbase_delete (type, decl)
|
||
tree type, decl;
|
||
{
|
||
tree vbases = CLASSTYPE_VBASECLASSES (type);
|
||
tree result = NULL_TREE;
|
||
tree addr = build_unary_op (ADDR_EXPR, decl, 0);
|
||
|
||
my_friendly_assert (addr != error_mark_node, 222);
|
||
|
||
while (vbases)
|
||
{
|
||
tree this_addr = convert_force (build_pointer_type (BINFO_TYPE (vbases)),
|
||
addr, 0);
|
||
result = tree_cons (NULL_TREE,
|
||
build_delete (TREE_TYPE (this_addr), this_addr,
|
||
integer_zero_node,
|
||
LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 0),
|
||
result);
|
||
vbases = TREE_CHAIN (vbases);
|
||
}
|
||
return build_compound_expr (nreverse (result));
|
||
}
|
||
|
||
/* Build a C++ vector delete expression.
|
||
MAXINDEX is the number of elements to be deleted.
|
||
ELT_SIZE is the nominal size of each element in the vector.
|
||
BASE is the expression that should yield the store to be deleted.
|
||
This function expands (or synthesizes) these calls itself.
|
||
AUTO_DELETE_VEC says whether the container (vector) should be deallocated.
|
||
AUTO_DELETE say whether each item in the container should be deallocated.
|
||
|
||
This also calls delete for virtual baseclasses of elements of the vector.
|
||
|
||
Update: MAXINDEX is no longer needed. The size can be extracted from the
|
||
start of the vector for pointers, and from the type for arrays. We still
|
||
use MAXINDEX for arrays because it happens to already have one of the
|
||
values we'd have to extract. (We could use MAXINDEX with pointers to
|
||
confirm the size, and trap if the numbers differ; not clear that it'd
|
||
be worth bothering.) */
|
||
tree
|
||
build_vec_delete (base, maxindex, elt_size, auto_delete_vec, auto_delete,
|
||
use_global_delete)
|
||
tree base, maxindex, elt_size;
|
||
tree auto_delete_vec, auto_delete;
|
||
int use_global_delete;
|
||
{
|
||
tree type;
|
||
|
||
if (TREE_CODE (base) == OFFSET_REF)
|
||
base = resolve_offset_ref (base);
|
||
|
||
type = TREE_TYPE (base);
|
||
|
||
base = stabilize_reference (base);
|
||
|
||
/* Since we can use base many times, save_expr it. */
|
||
if (TREE_SIDE_EFFECTS (base))
|
||
base = save_expr (base);
|
||
|
||
if (TREE_CODE (type) == POINTER_TYPE)
|
||
{
|
||
/* Step back one from start of vector, and read dimension. */
|
||
tree cookie_addr = build (MINUS_EXPR, build_pointer_type (BI_header_type),
|
||
base, BI_header_size);
|
||
tree cookie = build_indirect_ref (cookie_addr, NULL_PTR);
|
||
maxindex = build_component_ref (cookie, nc_nelts_field_id, 0, 0);
|
||
do
|
||
type = TREE_TYPE (type);
|
||
while (TREE_CODE (type) == ARRAY_TYPE);
|
||
}
|
||
else if (TREE_CODE (type) == ARRAY_TYPE)
|
||
{
|
||
/* get the total number of things in the array, maxindex is a bad name */
|
||
maxindex = array_type_nelts_total (type);
|
||
while (TREE_CODE (type) == ARRAY_TYPE)
|
||
type = TREE_TYPE (type);
|
||
base = build_unary_op (ADDR_EXPR, base, 1);
|
||
}
|
||
else
|
||
{
|
||
error ("type to vector delete is neither pointer or array type");
|
||
return error_mark_node;
|
||
}
|
||
|
||
return build_vec_delete_1 (base, maxindex, type, auto_delete_vec, auto_delete,
|
||
use_global_delete);
|
||
}
|