mirror of
https://git.FreeBSD.org/src.git
synced 2024-12-16 10:20:30 +00:00
e3b19536fb
instead of ephemeral mappings using pmap_qenter() by the writer. The writer is still, however, responsible for wiring the pages, just not mapping them. Consequently, the allocation of KVA for the direct case is unnecessary. Remove it and the sysctls limiting it, i.e., kern.ipc.maxpipekvawired and kern.ipc.amountpipekvawired. The number of temporarily wired pages is still, however, limited by kern.ipc.maxpipekva. Note: On platforms lacking a direct virtual-to-physical mapping, uiomove_fromphys() uses sf_bufs to cache ephemeral mappings. Thus, the number of available sf_bufs can influence the performance of pipes on platforms such i386. Surprisingly, I saw the greatest gain from this change on such a machine: lmbench's pipe bandwidth result increased from ~1050MB/s to ~1850MB/s on my 2.4GHz, 400MHz FSB P4 Xeon.
1570 lines
36 KiB
C
1570 lines
36 KiB
C
/*
|
|
* Copyright (c) 1996 John S. Dyson
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice immediately at the beginning of the file, without modification,
|
|
* this list of conditions, and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Absolutely no warranty of function or purpose is made by the author
|
|
* John S. Dyson.
|
|
* 4. Modifications may be freely made to this file if the above conditions
|
|
* are met.
|
|
*/
|
|
|
|
/*
|
|
* This file contains a high-performance replacement for the socket-based
|
|
* pipes scheme originally used in FreeBSD/4.4Lite. It does not support
|
|
* all features of sockets, but does do everything that pipes normally
|
|
* do.
|
|
*/
|
|
|
|
/*
|
|
* This code has two modes of operation, a small write mode and a large
|
|
* write mode. The small write mode acts like conventional pipes with
|
|
* a kernel buffer. If the buffer is less than PIPE_MINDIRECT, then the
|
|
* "normal" pipe buffering is done. If the buffer is between PIPE_MINDIRECT
|
|
* and PIPE_SIZE in size, it is fully mapped and wired into the kernel, and
|
|
* the receiving process can copy it directly from the pages in the sending
|
|
* process.
|
|
*
|
|
* If the sending process receives a signal, it is possible that it will
|
|
* go away, and certainly its address space can change, because control
|
|
* is returned back to the user-mode side. In that case, the pipe code
|
|
* arranges to copy the buffer supplied by the user process, to a pageable
|
|
* kernel buffer, and the receiving process will grab the data from the
|
|
* pageable kernel buffer. Since signals don't happen all that often,
|
|
* the copy operation is normally eliminated.
|
|
*
|
|
* The constant PIPE_MINDIRECT is chosen to make sure that buffering will
|
|
* happen for small transfers so that the system will not spend all of
|
|
* its time context switching.
|
|
*
|
|
* In order to limit the resource use of pipes, two sysctls exist:
|
|
*
|
|
* kern.ipc.maxpipekva - This is a hard limit on the amount of pageable
|
|
* address space available to us in pipe_map. Whenever the amount in use
|
|
* exceeds half of this value, all new pipes will be created with size
|
|
* SMALL_PIPE_SIZE, rather than PIPE_SIZE. Big pipe creation will be limited
|
|
* as well. This value is loader tunable only.
|
|
*
|
|
* These values are autotuned in subr_param.c.
|
|
*
|
|
* Memory usage may be monitored through the sysctls
|
|
* kern.ipc.pipes, kern.ipc.pipekva and kern.ipc.pipekvawired.
|
|
*
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include "opt_mac.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/fcntl.h>
|
|
#include <sys/file.h>
|
|
#include <sys/filedesc.h>
|
|
#include <sys/filio.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/mac.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/ttycom.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/poll.h>
|
|
#include <sys/selinfo.h>
|
|
#include <sys/signalvar.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/sysproto.h>
|
|
#include <sys/pipe.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/vnode.h>
|
|
#include <sys/uio.h>
|
|
#include <sys/event.h>
|
|
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_param.h>
|
|
#include <vm/vm_object.h>
|
|
#include <vm/vm_kern.h>
|
|
#include <vm/vm_extern.h>
|
|
#include <vm/pmap.h>
|
|
#include <vm/vm_map.h>
|
|
#include <vm/vm_page.h>
|
|
#include <vm/uma.h>
|
|
|
|
/*
|
|
* Use this define if you want to disable *fancy* VM things. Expect an
|
|
* approx 30% decrease in transfer rate. This could be useful for
|
|
* NetBSD or OpenBSD.
|
|
*/
|
|
/* #define PIPE_NODIRECT */
|
|
|
|
/*
|
|
* interfaces to the outside world
|
|
*/
|
|
static fo_rdwr_t pipe_read;
|
|
static fo_rdwr_t pipe_write;
|
|
static fo_ioctl_t pipe_ioctl;
|
|
static fo_poll_t pipe_poll;
|
|
static fo_kqfilter_t pipe_kqfilter;
|
|
static fo_stat_t pipe_stat;
|
|
static fo_close_t pipe_close;
|
|
|
|
static struct fileops pipeops = {
|
|
.fo_read = pipe_read,
|
|
.fo_write = pipe_write,
|
|
.fo_ioctl = pipe_ioctl,
|
|
.fo_poll = pipe_poll,
|
|
.fo_kqfilter = pipe_kqfilter,
|
|
.fo_stat = pipe_stat,
|
|
.fo_close = pipe_close,
|
|
.fo_flags = DFLAG_PASSABLE
|
|
};
|
|
|
|
static void filt_pipedetach(struct knote *kn);
|
|
static int filt_piperead(struct knote *kn, long hint);
|
|
static int filt_pipewrite(struct knote *kn, long hint);
|
|
|
|
static struct filterops pipe_rfiltops =
|
|
{ 1, NULL, filt_pipedetach, filt_piperead };
|
|
static struct filterops pipe_wfiltops =
|
|
{ 1, NULL, filt_pipedetach, filt_pipewrite };
|
|
|
|
/*
|
|
* Default pipe buffer size(s), this can be kind-of large now because pipe
|
|
* space is pageable. The pipe code will try to maintain locality of
|
|
* reference for performance reasons, so small amounts of outstanding I/O
|
|
* will not wipe the cache.
|
|
*/
|
|
#define MINPIPESIZE (PIPE_SIZE/3)
|
|
#define MAXPIPESIZE (2*PIPE_SIZE/3)
|
|
|
|
/*
|
|
* Limit the number of "big" pipes
|
|
*/
|
|
#define LIMITBIGPIPES 32
|
|
static int nbigpipe;
|
|
|
|
static int amountpipes;
|
|
static int amountpipekva;
|
|
|
|
SYSCTL_DECL(_kern_ipc);
|
|
|
|
SYSCTL_INT(_kern_ipc, OID_AUTO, maxpipekva, CTLFLAG_RDTUN,
|
|
&maxpipekva, 0, "Pipe KVA limit");
|
|
SYSCTL_INT(_kern_ipc, OID_AUTO, pipes, CTLFLAG_RD,
|
|
&amountpipes, 0, "Current # of pipes");
|
|
SYSCTL_INT(_kern_ipc, OID_AUTO, bigpipes, CTLFLAG_RD,
|
|
&nbigpipe, 0, "Current # of big pipes");
|
|
SYSCTL_INT(_kern_ipc, OID_AUTO, pipekva, CTLFLAG_RD,
|
|
&amountpipekva, 0, "Pipe KVA usage");
|
|
|
|
static void pipeinit(void *dummy __unused);
|
|
static void pipeclose(struct pipe *cpipe);
|
|
static void pipe_free_kmem(struct pipe *cpipe);
|
|
static int pipe_create(struct pipe *pipe);
|
|
static __inline int pipelock(struct pipe *cpipe, int catch);
|
|
static __inline void pipeunlock(struct pipe *cpipe);
|
|
static __inline void pipeselwakeup(struct pipe *cpipe);
|
|
#ifndef PIPE_NODIRECT
|
|
static int pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio);
|
|
static void pipe_destroy_write_buffer(struct pipe *wpipe);
|
|
static int pipe_direct_write(struct pipe *wpipe, struct uio *uio);
|
|
static void pipe_clone_write_buffer(struct pipe *wpipe);
|
|
#endif
|
|
static int pipespace(struct pipe *cpipe, int size);
|
|
|
|
static void pipe_zone_ctor(void *mem, int size, void *arg);
|
|
static void pipe_zone_dtor(void *mem, int size, void *arg);
|
|
static void pipe_zone_init(void *mem, int size);
|
|
static void pipe_zone_fini(void *mem, int size);
|
|
|
|
static uma_zone_t pipe_zone;
|
|
|
|
SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_ANY, pipeinit, NULL);
|
|
|
|
static void
|
|
pipeinit(void *dummy __unused)
|
|
{
|
|
|
|
pipe_zone = uma_zcreate("PIPE", sizeof(struct pipepair),
|
|
pipe_zone_ctor, pipe_zone_dtor, pipe_zone_init, pipe_zone_fini,
|
|
UMA_ALIGN_PTR, 0);
|
|
KASSERT(pipe_zone != NULL, ("pipe_zone not initialized"));
|
|
}
|
|
|
|
static void
|
|
pipe_zone_ctor(void *mem, int size, void *arg)
|
|
{
|
|
struct pipepair *pp;
|
|
struct pipe *rpipe, *wpipe;
|
|
|
|
KASSERT(size == sizeof(*pp), ("pipe_zone_ctor: wrong size"));
|
|
|
|
pp = (struct pipepair *)mem;
|
|
|
|
/*
|
|
* We zero both pipe endpoints to make sure all the kmem pointers
|
|
* are NULL, flag fields are zero'd, etc. We timestamp both
|
|
* endpoints with the same time.
|
|
*/
|
|
rpipe = &pp->pp_rpipe;
|
|
bzero(rpipe, sizeof(*rpipe));
|
|
vfs_timestamp(&rpipe->pipe_ctime);
|
|
rpipe->pipe_atime = rpipe->pipe_mtime = rpipe->pipe_ctime;
|
|
|
|
wpipe = &pp->pp_wpipe;
|
|
bzero(wpipe, sizeof(*wpipe));
|
|
wpipe->pipe_ctime = rpipe->pipe_ctime;
|
|
wpipe->pipe_atime = wpipe->pipe_mtime = rpipe->pipe_ctime;
|
|
|
|
rpipe->pipe_peer = wpipe;
|
|
rpipe->pipe_pair = pp;
|
|
wpipe->pipe_peer = rpipe;
|
|
wpipe->pipe_pair = pp;
|
|
|
|
/*
|
|
* Mark both endpoints as present; they will later get free'd
|
|
* one at a time. When both are free'd, then the whole pair
|
|
* is released.
|
|
*/
|
|
rpipe->pipe_present = 1;
|
|
wpipe->pipe_present = 1;
|
|
|
|
/*
|
|
* Eventually, the MAC Framework may initialize the label
|
|
* in ctor or init, but for now we do it elswhere to avoid
|
|
* blocking in ctor or init.
|
|
*/
|
|
pp->pp_label = NULL;
|
|
|
|
atomic_add_int(&amountpipes, 2);
|
|
}
|
|
|
|
static void
|
|
pipe_zone_dtor(void *mem, int size, void *arg)
|
|
{
|
|
struct pipepair *pp;
|
|
|
|
KASSERT(size == sizeof(*pp), ("pipe_zone_dtor: wrong size"));
|
|
|
|
pp = (struct pipepair *)mem;
|
|
|
|
atomic_subtract_int(&amountpipes, 2);
|
|
}
|
|
|
|
static void
|
|
pipe_zone_init(void *mem, int size)
|
|
{
|
|
struct pipepair *pp;
|
|
|
|
KASSERT(size == sizeof(*pp), ("pipe_zone_init: wrong size"));
|
|
|
|
pp = (struct pipepair *)mem;
|
|
|
|
mtx_init(&pp->pp_mtx, "pipe mutex", NULL, MTX_DEF | MTX_RECURSE);
|
|
}
|
|
|
|
static void
|
|
pipe_zone_fini(void *mem, int size)
|
|
{
|
|
struct pipepair *pp;
|
|
|
|
KASSERT(size == sizeof(*pp), ("pipe_zone_fini: wrong size"));
|
|
|
|
pp = (struct pipepair *)mem;
|
|
|
|
mtx_destroy(&pp->pp_mtx);
|
|
}
|
|
|
|
/*
|
|
* The pipe system call for the DTYPE_PIPE type of pipes. If we fail,
|
|
* let the zone pick up the pieces via pipeclose().
|
|
*/
|
|
|
|
/* ARGSUSED */
|
|
int
|
|
pipe(td, uap)
|
|
struct thread *td;
|
|
struct pipe_args /* {
|
|
int dummy;
|
|
} */ *uap;
|
|
{
|
|
struct filedesc *fdp = td->td_proc->p_fd;
|
|
struct file *rf, *wf;
|
|
struct pipepair *pp;
|
|
struct pipe *rpipe, *wpipe;
|
|
int fd, error;
|
|
|
|
pp = uma_zalloc(pipe_zone, M_WAITOK);
|
|
#ifdef MAC
|
|
/*
|
|
* The MAC label is shared between the connected endpoints. As a
|
|
* result mac_init_pipe() and mac_create_pipe() are called once
|
|
* for the pair, and not on the endpoints.
|
|
*/
|
|
mac_init_pipe(pp);
|
|
mac_create_pipe(td->td_ucred, pp);
|
|
#endif
|
|
rpipe = &pp->pp_rpipe;
|
|
wpipe = &pp->pp_wpipe;
|
|
|
|
if (pipe_create(rpipe) || pipe_create(wpipe)) {
|
|
pipeclose(rpipe);
|
|
pipeclose(wpipe);
|
|
return (ENFILE);
|
|
}
|
|
|
|
rpipe->pipe_state |= PIPE_DIRECTOK;
|
|
wpipe->pipe_state |= PIPE_DIRECTOK;
|
|
|
|
error = falloc(td, &rf, &fd);
|
|
if (error) {
|
|
pipeclose(rpipe);
|
|
pipeclose(wpipe);
|
|
return (error);
|
|
}
|
|
/* An extra reference on `rf' has been held for us by falloc(). */
|
|
td->td_retval[0] = fd;
|
|
|
|
/*
|
|
* Warning: once we've gotten past allocation of the fd for the
|
|
* read-side, we can only drop the read side via fdrop() in order
|
|
* to avoid races against processes which manage to dup() the read
|
|
* side while we are blocked trying to allocate the write side.
|
|
*/
|
|
FILE_LOCK(rf);
|
|
rf->f_flag = FREAD | FWRITE;
|
|
rf->f_type = DTYPE_PIPE;
|
|
rf->f_data = rpipe;
|
|
rf->f_ops = &pipeops;
|
|
FILE_UNLOCK(rf);
|
|
error = falloc(td, &wf, &fd);
|
|
if (error) {
|
|
FILEDESC_LOCK(fdp);
|
|
if (fdp->fd_ofiles[td->td_retval[0]] == rf) {
|
|
fdp->fd_ofiles[td->td_retval[0]] = NULL;
|
|
fdunused(fdp, td->td_retval[0]);
|
|
FILEDESC_UNLOCK(fdp);
|
|
fdrop(rf, td);
|
|
} else {
|
|
FILEDESC_UNLOCK(fdp);
|
|
}
|
|
fdrop(rf, td);
|
|
/* rpipe has been closed by fdrop(). */
|
|
pipeclose(wpipe);
|
|
return (error);
|
|
}
|
|
/* An extra reference on `wf' has been held for us by falloc(). */
|
|
FILE_LOCK(wf);
|
|
wf->f_flag = FREAD | FWRITE;
|
|
wf->f_type = DTYPE_PIPE;
|
|
wf->f_data = wpipe;
|
|
wf->f_ops = &pipeops;
|
|
FILE_UNLOCK(wf);
|
|
fdrop(wf, td);
|
|
td->td_retval[1] = fd;
|
|
fdrop(rf, td);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Allocate kva for pipe circular buffer, the space is pageable
|
|
* This routine will 'realloc' the size of a pipe safely, if it fails
|
|
* it will retain the old buffer.
|
|
* If it fails it will return ENOMEM.
|
|
*/
|
|
static int
|
|
pipespace(cpipe, size)
|
|
struct pipe *cpipe;
|
|
int size;
|
|
{
|
|
caddr_t buffer;
|
|
int error;
|
|
static int curfail = 0;
|
|
static struct timeval lastfail;
|
|
|
|
KASSERT(!mtx_owned(PIPE_MTX(cpipe)), ("pipespace: pipe mutex locked"));
|
|
|
|
size = round_page(size);
|
|
/*
|
|
* XXX -- minor change needed here for NetBSD/OpenBSD VM systems.
|
|
*/
|
|
buffer = (caddr_t) vm_map_min(pipe_map);
|
|
|
|
/*
|
|
* The map entry is, by default, pageable.
|
|
* XXX -- minor change needed here for NetBSD/OpenBSD VM systems.
|
|
*/
|
|
error = vm_map_find(pipe_map, NULL, 0,
|
|
(vm_offset_t *) &buffer, size, 1,
|
|
VM_PROT_ALL, VM_PROT_ALL, 0);
|
|
if (error != KERN_SUCCESS) {
|
|
if (ppsratecheck(&lastfail, &curfail, 1))
|
|
printf("kern.ipc.maxpipekva exceeded; see tuning(7)\n");
|
|
return (ENOMEM);
|
|
}
|
|
|
|
/* free old resources if we're resizing */
|
|
pipe_free_kmem(cpipe);
|
|
cpipe->pipe_buffer.buffer = buffer;
|
|
cpipe->pipe_buffer.size = size;
|
|
cpipe->pipe_buffer.in = 0;
|
|
cpipe->pipe_buffer.out = 0;
|
|
cpipe->pipe_buffer.cnt = 0;
|
|
atomic_add_int(&amountpipekva, cpipe->pipe_buffer.size);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* lock a pipe for I/O, blocking other access
|
|
*/
|
|
static __inline int
|
|
pipelock(cpipe, catch)
|
|
struct pipe *cpipe;
|
|
int catch;
|
|
{
|
|
int error;
|
|
|
|
PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
|
|
while (cpipe->pipe_state & PIPE_LOCKFL) {
|
|
cpipe->pipe_state |= PIPE_LWANT;
|
|
error = msleep(cpipe, PIPE_MTX(cpipe),
|
|
catch ? (PRIBIO | PCATCH) : PRIBIO,
|
|
"pipelk", 0);
|
|
if (error != 0)
|
|
return (error);
|
|
}
|
|
cpipe->pipe_state |= PIPE_LOCKFL;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* unlock a pipe I/O lock
|
|
*/
|
|
static __inline void
|
|
pipeunlock(cpipe)
|
|
struct pipe *cpipe;
|
|
{
|
|
|
|
PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
|
|
cpipe->pipe_state &= ~PIPE_LOCKFL;
|
|
if (cpipe->pipe_state & PIPE_LWANT) {
|
|
cpipe->pipe_state &= ~PIPE_LWANT;
|
|
wakeup(cpipe);
|
|
}
|
|
}
|
|
|
|
static __inline void
|
|
pipeselwakeup(cpipe)
|
|
struct pipe *cpipe;
|
|
{
|
|
|
|
PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
|
|
if (cpipe->pipe_state & PIPE_SEL) {
|
|
cpipe->pipe_state &= ~PIPE_SEL;
|
|
selwakeuppri(&cpipe->pipe_sel, PSOCK);
|
|
}
|
|
if ((cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio)
|
|
pgsigio(&cpipe->pipe_sigio, SIGIO, 0);
|
|
KNOTE(&cpipe->pipe_sel.si_note, 0);
|
|
}
|
|
|
|
/*
|
|
* Initialize and allocate VM and memory for pipe. The structure
|
|
* will start out zero'd from the ctor, so we just manage the kmem.
|
|
*/
|
|
static int
|
|
pipe_create(pipe)
|
|
struct pipe *pipe;
|
|
{
|
|
int error;
|
|
|
|
PIPE_LOCK(pipe);
|
|
pipelock(pipe, 0);
|
|
PIPE_UNLOCK(pipe);
|
|
/*
|
|
* Reduce to 1/4th pipe size if we're over our global max.
|
|
*/
|
|
if (amountpipekva > maxpipekva / 2)
|
|
error = pipespace(pipe, SMALL_PIPE_SIZE);
|
|
else
|
|
error = pipespace(pipe, PIPE_SIZE);
|
|
PIPE_LOCK(pipe);
|
|
pipeunlock(pipe);
|
|
PIPE_UNLOCK(pipe);
|
|
if (error)
|
|
return (error);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
static int
|
|
pipe_read(fp, uio, active_cred, flags, td)
|
|
struct file *fp;
|
|
struct uio *uio;
|
|
struct ucred *active_cred;
|
|
struct thread *td;
|
|
int flags;
|
|
{
|
|
struct pipe *rpipe = fp->f_data;
|
|
int error;
|
|
int nread = 0;
|
|
u_int size;
|
|
|
|
PIPE_LOCK(rpipe);
|
|
++rpipe->pipe_busy;
|
|
error = pipelock(rpipe, 1);
|
|
if (error)
|
|
goto unlocked_error;
|
|
|
|
#ifdef MAC
|
|
error = mac_check_pipe_read(active_cred, rpipe->pipe_pair);
|
|
if (error)
|
|
goto locked_error;
|
|
#endif
|
|
|
|
while (uio->uio_resid) {
|
|
/*
|
|
* normal pipe buffer receive
|
|
*/
|
|
if (rpipe->pipe_buffer.cnt > 0) {
|
|
size = rpipe->pipe_buffer.size - rpipe->pipe_buffer.out;
|
|
if (size > rpipe->pipe_buffer.cnt)
|
|
size = rpipe->pipe_buffer.cnt;
|
|
if (size > (u_int) uio->uio_resid)
|
|
size = (u_int) uio->uio_resid;
|
|
|
|
PIPE_UNLOCK(rpipe);
|
|
error = uiomove(
|
|
&rpipe->pipe_buffer.buffer[rpipe->pipe_buffer.out],
|
|
size, uio);
|
|
PIPE_LOCK(rpipe);
|
|
if (error)
|
|
break;
|
|
|
|
rpipe->pipe_buffer.out += size;
|
|
if (rpipe->pipe_buffer.out >= rpipe->pipe_buffer.size)
|
|
rpipe->pipe_buffer.out = 0;
|
|
|
|
rpipe->pipe_buffer.cnt -= size;
|
|
|
|
/*
|
|
* If there is no more to read in the pipe, reset
|
|
* its pointers to the beginning. This improves
|
|
* cache hit stats.
|
|
*/
|
|
if (rpipe->pipe_buffer.cnt == 0) {
|
|
rpipe->pipe_buffer.in = 0;
|
|
rpipe->pipe_buffer.out = 0;
|
|
}
|
|
nread += size;
|
|
#ifndef PIPE_NODIRECT
|
|
/*
|
|
* Direct copy, bypassing a kernel buffer.
|
|
*/
|
|
} else if ((size = rpipe->pipe_map.cnt) &&
|
|
(rpipe->pipe_state & PIPE_DIRECTW)) {
|
|
if (size > (u_int) uio->uio_resid)
|
|
size = (u_int) uio->uio_resid;
|
|
|
|
PIPE_UNLOCK(rpipe);
|
|
error = uiomove_fromphys(rpipe->pipe_map.ms,
|
|
rpipe->pipe_map.pos, size, uio);
|
|
PIPE_LOCK(rpipe);
|
|
if (error)
|
|
break;
|
|
nread += size;
|
|
rpipe->pipe_map.pos += size;
|
|
rpipe->pipe_map.cnt -= size;
|
|
if (rpipe->pipe_map.cnt == 0) {
|
|
rpipe->pipe_state &= ~PIPE_DIRECTW;
|
|
wakeup(rpipe);
|
|
}
|
|
#endif
|
|
} else {
|
|
/*
|
|
* detect EOF condition
|
|
* read returns 0 on EOF, no need to set error
|
|
*/
|
|
if (rpipe->pipe_state & PIPE_EOF)
|
|
break;
|
|
|
|
/*
|
|
* If the "write-side" has been blocked, wake it up now.
|
|
*/
|
|
if (rpipe->pipe_state & PIPE_WANTW) {
|
|
rpipe->pipe_state &= ~PIPE_WANTW;
|
|
wakeup(rpipe);
|
|
}
|
|
|
|
/*
|
|
* Break if some data was read.
|
|
*/
|
|
if (nread > 0)
|
|
break;
|
|
|
|
/*
|
|
* Unlock the pipe buffer for our remaining processing.
|
|
* We will either break out with an error or we will
|
|
* sleep and relock to loop.
|
|
*/
|
|
pipeunlock(rpipe);
|
|
|
|
/*
|
|
* Handle non-blocking mode operation or
|
|
* wait for more data.
|
|
*/
|
|
if (fp->f_flag & FNONBLOCK) {
|
|
error = EAGAIN;
|
|
} else {
|
|
rpipe->pipe_state |= PIPE_WANTR;
|
|
if ((error = msleep(rpipe, PIPE_MTX(rpipe),
|
|
PRIBIO | PCATCH,
|
|
"piperd", 0)) == 0)
|
|
error = pipelock(rpipe, 1);
|
|
}
|
|
if (error)
|
|
goto unlocked_error;
|
|
}
|
|
}
|
|
#ifdef MAC
|
|
locked_error:
|
|
#endif
|
|
pipeunlock(rpipe);
|
|
|
|
/* XXX: should probably do this before getting any locks. */
|
|
if (error == 0)
|
|
vfs_timestamp(&rpipe->pipe_atime);
|
|
unlocked_error:
|
|
--rpipe->pipe_busy;
|
|
|
|
/*
|
|
* PIPE_WANT processing only makes sense if pipe_busy is 0.
|
|
*/
|
|
if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANT)) {
|
|
rpipe->pipe_state &= ~(PIPE_WANT|PIPE_WANTW);
|
|
wakeup(rpipe);
|
|
} else if (rpipe->pipe_buffer.cnt < MINPIPESIZE) {
|
|
/*
|
|
* Handle write blocking hysteresis.
|
|
*/
|
|
if (rpipe->pipe_state & PIPE_WANTW) {
|
|
rpipe->pipe_state &= ~PIPE_WANTW;
|
|
wakeup(rpipe);
|
|
}
|
|
}
|
|
|
|
if ((rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt) >= PIPE_BUF)
|
|
pipeselwakeup(rpipe);
|
|
|
|
PIPE_UNLOCK(rpipe);
|
|
return (error);
|
|
}
|
|
|
|
#ifndef PIPE_NODIRECT
|
|
/*
|
|
* Map the sending processes' buffer into kernel space and wire it.
|
|
* This is similar to a physical write operation.
|
|
*/
|
|
static int
|
|
pipe_build_write_buffer(wpipe, uio)
|
|
struct pipe *wpipe;
|
|
struct uio *uio;
|
|
{
|
|
pmap_t pmap;
|
|
u_int size;
|
|
int i, j;
|
|
vm_offset_t addr, endaddr;
|
|
|
|
PIPE_LOCK_ASSERT(wpipe, MA_NOTOWNED);
|
|
|
|
size = (u_int) uio->uio_iov->iov_len;
|
|
if (size > wpipe->pipe_buffer.size)
|
|
size = wpipe->pipe_buffer.size;
|
|
|
|
pmap = vmspace_pmap(curproc->p_vmspace);
|
|
endaddr = round_page((vm_offset_t)uio->uio_iov->iov_base + size);
|
|
addr = trunc_page((vm_offset_t)uio->uio_iov->iov_base);
|
|
for (i = 0; addr < endaddr; addr += PAGE_SIZE, i++) {
|
|
/*
|
|
* vm_fault_quick() can sleep. Consequently,
|
|
* vm_page_lock_queue() and vm_page_unlock_queue()
|
|
* should not be performed outside of this loop.
|
|
*/
|
|
race:
|
|
if (vm_fault_quick((caddr_t)addr, VM_PROT_READ) < 0) {
|
|
vm_page_lock_queues();
|
|
for (j = 0; j < i; j++)
|
|
vm_page_unhold(wpipe->pipe_map.ms[j]);
|
|
vm_page_unlock_queues();
|
|
return (EFAULT);
|
|
}
|
|
wpipe->pipe_map.ms[i] = pmap_extract_and_hold(pmap, addr,
|
|
VM_PROT_READ);
|
|
if (wpipe->pipe_map.ms[i] == NULL)
|
|
goto race;
|
|
}
|
|
|
|
/*
|
|
* set up the control block
|
|
*/
|
|
wpipe->pipe_map.npages = i;
|
|
wpipe->pipe_map.pos =
|
|
((vm_offset_t) uio->uio_iov->iov_base) & PAGE_MASK;
|
|
wpipe->pipe_map.cnt = size;
|
|
|
|
/*
|
|
* and update the uio data
|
|
*/
|
|
|
|
uio->uio_iov->iov_len -= size;
|
|
uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + size;
|
|
if (uio->uio_iov->iov_len == 0)
|
|
uio->uio_iov++;
|
|
uio->uio_resid -= size;
|
|
uio->uio_offset += size;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* unmap and unwire the process buffer
|
|
*/
|
|
static void
|
|
pipe_destroy_write_buffer(wpipe)
|
|
struct pipe *wpipe;
|
|
{
|
|
int i;
|
|
|
|
PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
|
|
vm_page_lock_queues();
|
|
for (i = 0; i < wpipe->pipe_map.npages; i++) {
|
|
vm_page_unhold(wpipe->pipe_map.ms[i]);
|
|
}
|
|
vm_page_unlock_queues();
|
|
wpipe->pipe_map.npages = 0;
|
|
}
|
|
|
|
/*
|
|
* In the case of a signal, the writing process might go away. This
|
|
* code copies the data into the circular buffer so that the source
|
|
* pages can be freed without loss of data.
|
|
*/
|
|
static void
|
|
pipe_clone_write_buffer(wpipe)
|
|
struct pipe *wpipe;
|
|
{
|
|
struct uio uio;
|
|
struct iovec iov;
|
|
int size;
|
|
int pos;
|
|
|
|
PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
|
|
size = wpipe->pipe_map.cnt;
|
|
pos = wpipe->pipe_map.pos;
|
|
|
|
wpipe->pipe_buffer.in = size;
|
|
wpipe->pipe_buffer.out = 0;
|
|
wpipe->pipe_buffer.cnt = size;
|
|
wpipe->pipe_state &= ~PIPE_DIRECTW;
|
|
|
|
PIPE_UNLOCK(wpipe);
|
|
iov.iov_base = wpipe->pipe_buffer.buffer;
|
|
iov.iov_len = size;
|
|
uio.uio_iov = &iov;
|
|
uio.uio_iovcnt = 1;
|
|
uio.uio_offset = 0;
|
|
uio.uio_resid = size;
|
|
uio.uio_segflg = UIO_SYSSPACE;
|
|
uio.uio_rw = UIO_READ;
|
|
uio.uio_td = curthread;
|
|
uiomove_fromphys(wpipe->pipe_map.ms, pos, size, &uio);
|
|
PIPE_LOCK(wpipe);
|
|
pipe_destroy_write_buffer(wpipe);
|
|
}
|
|
|
|
/*
|
|
* This implements the pipe buffer write mechanism. Note that only
|
|
* a direct write OR a normal pipe write can be pending at any given time.
|
|
* If there are any characters in the pipe buffer, the direct write will
|
|
* be deferred until the receiving process grabs all of the bytes from
|
|
* the pipe buffer. Then the direct mapping write is set-up.
|
|
*/
|
|
static int
|
|
pipe_direct_write(wpipe, uio)
|
|
struct pipe *wpipe;
|
|
struct uio *uio;
|
|
{
|
|
int error;
|
|
|
|
retry:
|
|
PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
|
|
while (wpipe->pipe_state & PIPE_DIRECTW) {
|
|
if (wpipe->pipe_state & PIPE_WANTR) {
|
|
wpipe->pipe_state &= ~PIPE_WANTR;
|
|
wakeup(wpipe);
|
|
}
|
|
wpipe->pipe_state |= PIPE_WANTW;
|
|
error = msleep(wpipe, PIPE_MTX(wpipe),
|
|
PRIBIO | PCATCH, "pipdww", 0);
|
|
if (error)
|
|
goto error1;
|
|
if (wpipe->pipe_state & PIPE_EOF) {
|
|
error = EPIPE;
|
|
goto error1;
|
|
}
|
|
}
|
|
wpipe->pipe_map.cnt = 0; /* transfer not ready yet */
|
|
if (wpipe->pipe_buffer.cnt > 0) {
|
|
if (wpipe->pipe_state & PIPE_WANTR) {
|
|
wpipe->pipe_state &= ~PIPE_WANTR;
|
|
wakeup(wpipe);
|
|
}
|
|
|
|
wpipe->pipe_state |= PIPE_WANTW;
|
|
error = msleep(wpipe, PIPE_MTX(wpipe),
|
|
PRIBIO | PCATCH, "pipdwc", 0);
|
|
if (error)
|
|
goto error1;
|
|
if (wpipe->pipe_state & PIPE_EOF) {
|
|
error = EPIPE;
|
|
goto error1;
|
|
}
|
|
goto retry;
|
|
}
|
|
|
|
wpipe->pipe_state |= PIPE_DIRECTW;
|
|
|
|
pipelock(wpipe, 0);
|
|
if (wpipe->pipe_state & PIPE_EOF) {
|
|
error = EPIPE;
|
|
goto error2;
|
|
}
|
|
PIPE_UNLOCK(wpipe);
|
|
error = pipe_build_write_buffer(wpipe, uio);
|
|
PIPE_LOCK(wpipe);
|
|
pipeunlock(wpipe);
|
|
if (error) {
|
|
wpipe->pipe_state &= ~PIPE_DIRECTW;
|
|
goto error1;
|
|
}
|
|
|
|
error = 0;
|
|
while (!error && (wpipe->pipe_state & PIPE_DIRECTW)) {
|
|
if (wpipe->pipe_state & PIPE_EOF) {
|
|
pipelock(wpipe, 0);
|
|
pipe_destroy_write_buffer(wpipe);
|
|
pipeselwakeup(wpipe);
|
|
pipeunlock(wpipe);
|
|
error = EPIPE;
|
|
goto error1;
|
|
}
|
|
if (wpipe->pipe_state & PIPE_WANTR) {
|
|
wpipe->pipe_state &= ~PIPE_WANTR;
|
|
wakeup(wpipe);
|
|
}
|
|
pipeselwakeup(wpipe);
|
|
error = msleep(wpipe, PIPE_MTX(wpipe), PRIBIO | PCATCH,
|
|
"pipdwt", 0);
|
|
}
|
|
|
|
pipelock(wpipe,0);
|
|
if (wpipe->pipe_state & PIPE_EOF)
|
|
error = EPIPE;
|
|
if (wpipe->pipe_state & PIPE_DIRECTW) {
|
|
/*
|
|
* this bit of trickery substitutes a kernel buffer for
|
|
* the process that might be going away.
|
|
*/
|
|
pipe_clone_write_buffer(wpipe);
|
|
} else {
|
|
pipe_destroy_write_buffer(wpipe);
|
|
}
|
|
error2:
|
|
pipeunlock(wpipe);
|
|
return (error);
|
|
|
|
error1:
|
|
wakeup(wpipe);
|
|
return (error);
|
|
}
|
|
#endif
|
|
|
|
static int
|
|
pipe_write(fp, uio, active_cred, flags, td)
|
|
struct file *fp;
|
|
struct uio *uio;
|
|
struct ucred *active_cred;
|
|
struct thread *td;
|
|
int flags;
|
|
{
|
|
int error = 0;
|
|
int orig_resid;
|
|
struct pipe *wpipe, *rpipe;
|
|
|
|
rpipe = fp->f_data;
|
|
wpipe = rpipe->pipe_peer;
|
|
|
|
PIPE_LOCK(rpipe);
|
|
/*
|
|
* detect loss of pipe read side, issue SIGPIPE if lost.
|
|
*/
|
|
if ((!wpipe->pipe_present) || (wpipe->pipe_state & PIPE_EOF)) {
|
|
PIPE_UNLOCK(rpipe);
|
|
return (EPIPE);
|
|
}
|
|
#ifdef MAC
|
|
error = mac_check_pipe_write(active_cred, wpipe->pipe_pair);
|
|
if (error) {
|
|
PIPE_UNLOCK(rpipe);
|
|
return (error);
|
|
}
|
|
#endif
|
|
++wpipe->pipe_busy;
|
|
|
|
/*
|
|
* If it is advantageous to resize the pipe buffer, do
|
|
* so.
|
|
*/
|
|
if ((uio->uio_resid > PIPE_SIZE) &&
|
|
(amountpipekva < maxpipekva / 2) &&
|
|
(nbigpipe < LIMITBIGPIPES) &&
|
|
(wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
|
|
(wpipe->pipe_buffer.size <= PIPE_SIZE) &&
|
|
(wpipe->pipe_buffer.cnt == 0)) {
|
|
|
|
if ((error = pipelock(wpipe, 1)) == 0) {
|
|
if (wpipe->pipe_state & PIPE_EOF)
|
|
error = EPIPE;
|
|
else {
|
|
PIPE_UNLOCK(wpipe);
|
|
if (pipespace(wpipe, BIG_PIPE_SIZE) == 0)
|
|
atomic_add_int(&nbigpipe, 1);
|
|
PIPE_LOCK(wpipe);
|
|
}
|
|
pipeunlock(wpipe);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If an early error occured unbusy and return, waking up any pending
|
|
* readers.
|
|
*/
|
|
if (error) {
|
|
--wpipe->pipe_busy;
|
|
if ((wpipe->pipe_busy == 0) &&
|
|
(wpipe->pipe_state & PIPE_WANT)) {
|
|
wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
|
|
wakeup(wpipe);
|
|
}
|
|
PIPE_UNLOCK(rpipe);
|
|
return(error);
|
|
}
|
|
|
|
orig_resid = uio->uio_resid;
|
|
|
|
while (uio->uio_resid) {
|
|
int space;
|
|
|
|
#ifndef PIPE_NODIRECT
|
|
/*
|
|
* If the transfer is large, we can gain performance if
|
|
* we do process-to-process copies directly.
|
|
* If the write is non-blocking, we don't use the
|
|
* direct write mechanism.
|
|
*
|
|
* The direct write mechanism will detect the reader going
|
|
* away on us.
|
|
*/
|
|
if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT) &&
|
|
(fp->f_flag & FNONBLOCK) == 0) {
|
|
error = pipe_direct_write(wpipe, uio);
|
|
if (error)
|
|
break;
|
|
continue;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Pipe buffered writes cannot be coincidental with
|
|
* direct writes. We wait until the currently executing
|
|
* direct write is completed before we start filling the
|
|
* pipe buffer. We break out if a signal occurs or the
|
|
* reader goes away.
|
|
*/
|
|
retrywrite:
|
|
while (wpipe->pipe_state & PIPE_DIRECTW) {
|
|
if (wpipe->pipe_state & PIPE_WANTR) {
|
|
wpipe->pipe_state &= ~PIPE_WANTR;
|
|
wakeup(wpipe);
|
|
}
|
|
error = msleep(wpipe, PIPE_MTX(rpipe), PRIBIO | PCATCH,
|
|
"pipbww", 0);
|
|
if (wpipe->pipe_state & PIPE_EOF) {
|
|
error = EPIPE;
|
|
break;
|
|
}
|
|
if (error)
|
|
break;
|
|
}
|
|
|
|
space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
|
|
|
|
/* Writes of size <= PIPE_BUF must be atomic. */
|
|
if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF))
|
|
space = 0;
|
|
|
|
if (space > 0) {
|
|
if ((error = pipelock(wpipe,1)) == 0) {
|
|
int size; /* Transfer size */
|
|
int segsize; /* first segment to transfer */
|
|
|
|
/*
|
|
* It is possible for a direct write/EOF to
|
|
* slip in on us... handle them here...
|
|
*/
|
|
if (wpipe->pipe_state & PIPE_EOF)
|
|
goto lost_wpipe;
|
|
if (wpipe->pipe_state & PIPE_DIRECTW) {
|
|
pipeunlock(wpipe);
|
|
goto retrywrite;
|
|
}
|
|
/*
|
|
* If a process blocked in uiomove, our
|
|
* value for space might be bad.
|
|
*
|
|
* XXX will we be ok if the reader has gone
|
|
* away here?
|
|
*/
|
|
if (space > wpipe->pipe_buffer.size -
|
|
wpipe->pipe_buffer.cnt) {
|
|
pipeunlock(wpipe);
|
|
goto retrywrite;
|
|
}
|
|
|
|
/*
|
|
* Transfer size is minimum of uio transfer
|
|
* and free space in pipe buffer.
|
|
*/
|
|
if (space > uio->uio_resid)
|
|
size = uio->uio_resid;
|
|
else
|
|
size = space;
|
|
/*
|
|
* First segment to transfer is minimum of
|
|
* transfer size and contiguous space in
|
|
* pipe buffer. If first segment to transfer
|
|
* is less than the transfer size, we've got
|
|
* a wraparound in the buffer.
|
|
*/
|
|
segsize = wpipe->pipe_buffer.size -
|
|
wpipe->pipe_buffer.in;
|
|
if (segsize > size)
|
|
segsize = size;
|
|
|
|
/* Transfer first segment */
|
|
|
|
PIPE_UNLOCK(rpipe);
|
|
error = uiomove(&wpipe->pipe_buffer.buffer[wpipe->pipe_buffer.in],
|
|
segsize, uio);
|
|
PIPE_LOCK(rpipe);
|
|
|
|
if (error == 0 && segsize < size) {
|
|
/*
|
|
* Transfer remaining part now, to
|
|
* support atomic writes. Wraparound
|
|
* happened.
|
|
*/
|
|
if (wpipe->pipe_buffer.in + segsize !=
|
|
wpipe->pipe_buffer.size)
|
|
panic("Expected pipe buffer "
|
|
"wraparound disappeared");
|
|
|
|
PIPE_UNLOCK(rpipe);
|
|
error = uiomove(
|
|
&wpipe->pipe_buffer.buffer[0],
|
|
size - segsize, uio);
|
|
PIPE_LOCK(rpipe);
|
|
}
|
|
if (error == 0) {
|
|
wpipe->pipe_buffer.in += size;
|
|
if (wpipe->pipe_buffer.in >=
|
|
wpipe->pipe_buffer.size) {
|
|
if (wpipe->pipe_buffer.in !=
|
|
size - segsize +
|
|
wpipe->pipe_buffer.size)
|
|
panic("Expected "
|
|
"wraparound bad");
|
|
wpipe->pipe_buffer.in = size -
|
|
segsize;
|
|
}
|
|
|
|
wpipe->pipe_buffer.cnt += size;
|
|
if (wpipe->pipe_buffer.cnt >
|
|
wpipe->pipe_buffer.size)
|
|
panic("Pipe buffer overflow");
|
|
|
|
}
|
|
lost_wpipe:
|
|
pipeunlock(wpipe);
|
|
}
|
|
if (error)
|
|
break;
|
|
|
|
} else {
|
|
/*
|
|
* If the "read-side" has been blocked, wake it up now.
|
|
*/
|
|
if (wpipe->pipe_state & PIPE_WANTR) {
|
|
wpipe->pipe_state &= ~PIPE_WANTR;
|
|
wakeup(wpipe);
|
|
}
|
|
|
|
/*
|
|
* don't block on non-blocking I/O
|
|
*/
|
|
if (fp->f_flag & FNONBLOCK) {
|
|
error = EAGAIN;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* We have no more space and have something to offer,
|
|
* wake up select/poll.
|
|
*/
|
|
pipeselwakeup(wpipe);
|
|
|
|
wpipe->pipe_state |= PIPE_WANTW;
|
|
error = msleep(wpipe, PIPE_MTX(rpipe),
|
|
PRIBIO | PCATCH, "pipewr", 0);
|
|
if (error != 0)
|
|
break;
|
|
/*
|
|
* If read side wants to go away, we just issue a signal
|
|
* to ourselves.
|
|
*/
|
|
if (wpipe->pipe_state & PIPE_EOF) {
|
|
error = EPIPE;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
--wpipe->pipe_busy;
|
|
|
|
if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANT)) {
|
|
wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
|
|
wakeup(wpipe);
|
|
} else if (wpipe->pipe_buffer.cnt > 0) {
|
|
/*
|
|
* If we have put any characters in the buffer, we wake up
|
|
* the reader.
|
|
*/
|
|
if (wpipe->pipe_state & PIPE_WANTR) {
|
|
wpipe->pipe_state &= ~PIPE_WANTR;
|
|
wakeup(wpipe);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Don't return EPIPE if I/O was successful
|
|
*/
|
|
if ((wpipe->pipe_buffer.cnt == 0) &&
|
|
(uio->uio_resid == 0) &&
|
|
(error == EPIPE)) {
|
|
error = 0;
|
|
}
|
|
|
|
if (error == 0)
|
|
vfs_timestamp(&wpipe->pipe_mtime);
|
|
|
|
/*
|
|
* We have something to offer,
|
|
* wake up select/poll.
|
|
*/
|
|
if (wpipe->pipe_buffer.cnt)
|
|
pipeselwakeup(wpipe);
|
|
|
|
PIPE_UNLOCK(rpipe);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* we implement a very minimal set of ioctls for compatibility with sockets.
|
|
*/
|
|
static int
|
|
pipe_ioctl(fp, cmd, data, active_cred, td)
|
|
struct file *fp;
|
|
u_long cmd;
|
|
void *data;
|
|
struct ucred *active_cred;
|
|
struct thread *td;
|
|
{
|
|
struct pipe *mpipe = fp->f_data;
|
|
#ifdef MAC
|
|
int error;
|
|
#endif
|
|
|
|
PIPE_LOCK(mpipe);
|
|
|
|
#ifdef MAC
|
|
error = mac_check_pipe_ioctl(active_cred, mpipe->pipe_pair, cmd, data);
|
|
if (error) {
|
|
PIPE_UNLOCK(mpipe);
|
|
return (error);
|
|
}
|
|
#endif
|
|
|
|
switch (cmd) {
|
|
|
|
case FIONBIO:
|
|
PIPE_UNLOCK(mpipe);
|
|
return (0);
|
|
|
|
case FIOASYNC:
|
|
if (*(int *)data) {
|
|
mpipe->pipe_state |= PIPE_ASYNC;
|
|
} else {
|
|
mpipe->pipe_state &= ~PIPE_ASYNC;
|
|
}
|
|
PIPE_UNLOCK(mpipe);
|
|
return (0);
|
|
|
|
case FIONREAD:
|
|
if (mpipe->pipe_state & PIPE_DIRECTW)
|
|
*(int *)data = mpipe->pipe_map.cnt;
|
|
else
|
|
*(int *)data = mpipe->pipe_buffer.cnt;
|
|
PIPE_UNLOCK(mpipe);
|
|
return (0);
|
|
|
|
case FIOSETOWN:
|
|
PIPE_UNLOCK(mpipe);
|
|
return (fsetown(*(int *)data, &mpipe->pipe_sigio));
|
|
|
|
case FIOGETOWN:
|
|
PIPE_UNLOCK(mpipe);
|
|
*(int *)data = fgetown(&mpipe->pipe_sigio);
|
|
return (0);
|
|
|
|
/* This is deprecated, FIOSETOWN should be used instead. */
|
|
case TIOCSPGRP:
|
|
PIPE_UNLOCK(mpipe);
|
|
return (fsetown(-(*(int *)data), &mpipe->pipe_sigio));
|
|
|
|
/* This is deprecated, FIOGETOWN should be used instead. */
|
|
case TIOCGPGRP:
|
|
PIPE_UNLOCK(mpipe);
|
|
*(int *)data = -fgetown(&mpipe->pipe_sigio);
|
|
return (0);
|
|
|
|
}
|
|
PIPE_UNLOCK(mpipe);
|
|
return (ENOTTY);
|
|
}
|
|
|
|
static int
|
|
pipe_poll(fp, events, active_cred, td)
|
|
struct file *fp;
|
|
int events;
|
|
struct ucred *active_cred;
|
|
struct thread *td;
|
|
{
|
|
struct pipe *rpipe = fp->f_data;
|
|
struct pipe *wpipe;
|
|
int revents = 0;
|
|
#ifdef MAC
|
|
int error;
|
|
#endif
|
|
|
|
wpipe = rpipe->pipe_peer;
|
|
PIPE_LOCK(rpipe);
|
|
#ifdef MAC
|
|
error = mac_check_pipe_poll(active_cred, rpipe->pipe_pair);
|
|
if (error)
|
|
goto locked_error;
|
|
#endif
|
|
if (events & (POLLIN | POLLRDNORM))
|
|
if ((rpipe->pipe_state & PIPE_DIRECTW) ||
|
|
(rpipe->pipe_buffer.cnt > 0) ||
|
|
(rpipe->pipe_state & PIPE_EOF))
|
|
revents |= events & (POLLIN | POLLRDNORM);
|
|
|
|
if (events & (POLLOUT | POLLWRNORM))
|
|
if (!wpipe->pipe_present || (wpipe->pipe_state & PIPE_EOF) ||
|
|
(((wpipe->pipe_state & PIPE_DIRECTW) == 0) &&
|
|
(wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
|
|
revents |= events & (POLLOUT | POLLWRNORM);
|
|
|
|
if ((rpipe->pipe_state & PIPE_EOF) ||
|
|
(!wpipe->pipe_present) ||
|
|
(wpipe->pipe_state & PIPE_EOF))
|
|
revents |= POLLHUP;
|
|
|
|
if (revents == 0) {
|
|
if (events & (POLLIN | POLLRDNORM)) {
|
|
selrecord(td, &rpipe->pipe_sel);
|
|
rpipe->pipe_state |= PIPE_SEL;
|
|
}
|
|
|
|
if (events & (POLLOUT | POLLWRNORM)) {
|
|
selrecord(td, &wpipe->pipe_sel);
|
|
wpipe->pipe_state |= PIPE_SEL;
|
|
}
|
|
}
|
|
#ifdef MAC
|
|
locked_error:
|
|
#endif
|
|
PIPE_UNLOCK(rpipe);
|
|
|
|
return (revents);
|
|
}
|
|
|
|
/*
|
|
* We shouldn't need locks here as we're doing a read and this should
|
|
* be a natural race.
|
|
*/
|
|
static int
|
|
pipe_stat(fp, ub, active_cred, td)
|
|
struct file *fp;
|
|
struct stat *ub;
|
|
struct ucred *active_cred;
|
|
struct thread *td;
|
|
{
|
|
struct pipe *pipe = fp->f_data;
|
|
#ifdef MAC
|
|
int error;
|
|
|
|
PIPE_LOCK(pipe);
|
|
error = mac_check_pipe_stat(active_cred, pipe->pipe_pair);
|
|
PIPE_UNLOCK(pipe);
|
|
if (error)
|
|
return (error);
|
|
#endif
|
|
bzero(ub, sizeof(*ub));
|
|
ub->st_mode = S_IFIFO;
|
|
ub->st_blksize = pipe->pipe_buffer.size;
|
|
ub->st_size = pipe->pipe_buffer.cnt;
|
|
ub->st_blocks = (ub->st_size + ub->st_blksize - 1) / ub->st_blksize;
|
|
ub->st_atimespec = pipe->pipe_atime;
|
|
ub->st_mtimespec = pipe->pipe_mtime;
|
|
ub->st_ctimespec = pipe->pipe_ctime;
|
|
ub->st_uid = fp->f_cred->cr_uid;
|
|
ub->st_gid = fp->f_cred->cr_gid;
|
|
/*
|
|
* Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen.
|
|
* XXX (st_dev, st_ino) should be unique.
|
|
*/
|
|
return (0);
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
static int
|
|
pipe_close(fp, td)
|
|
struct file *fp;
|
|
struct thread *td;
|
|
{
|
|
struct pipe *cpipe = fp->f_data;
|
|
|
|
fp->f_ops = &badfileops;
|
|
fp->f_data = NULL;
|
|
funsetown(&cpipe->pipe_sigio);
|
|
pipeclose(cpipe);
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
pipe_free_kmem(cpipe)
|
|
struct pipe *cpipe;
|
|
{
|
|
|
|
KASSERT(!mtx_owned(PIPE_MTX(cpipe)),
|
|
("pipe_free_kmem: pipe mutex locked"));
|
|
|
|
if (cpipe->pipe_buffer.buffer != NULL) {
|
|
if (cpipe->pipe_buffer.size > PIPE_SIZE)
|
|
atomic_subtract_int(&nbigpipe, 1);
|
|
atomic_subtract_int(&amountpipekva, cpipe->pipe_buffer.size);
|
|
vm_map_remove(pipe_map,
|
|
(vm_offset_t)cpipe->pipe_buffer.buffer,
|
|
(vm_offset_t)cpipe->pipe_buffer.buffer + cpipe->pipe_buffer.size);
|
|
cpipe->pipe_buffer.buffer = NULL;
|
|
}
|
|
#ifndef PIPE_NODIRECT
|
|
{
|
|
cpipe->pipe_map.cnt = 0;
|
|
cpipe->pipe_map.pos = 0;
|
|
cpipe->pipe_map.npages = 0;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* shutdown the pipe
|
|
*/
|
|
static void
|
|
pipeclose(cpipe)
|
|
struct pipe *cpipe;
|
|
{
|
|
struct pipepair *pp;
|
|
struct pipe *ppipe;
|
|
|
|
KASSERT(cpipe != NULL, ("pipeclose: cpipe == NULL"));
|
|
|
|
PIPE_LOCK(cpipe);
|
|
pp = cpipe->pipe_pair;
|
|
|
|
pipeselwakeup(cpipe);
|
|
|
|
/*
|
|
* If the other side is blocked, wake it up saying that
|
|
* we want to close it down.
|
|
*/
|
|
cpipe->pipe_state |= PIPE_EOF;
|
|
while (cpipe->pipe_busy) {
|
|
wakeup(cpipe);
|
|
cpipe->pipe_state |= PIPE_WANT;
|
|
msleep(cpipe, PIPE_MTX(cpipe), PRIBIO, "pipecl", 0);
|
|
}
|
|
|
|
|
|
/*
|
|
* Disconnect from peer, if any.
|
|
*/
|
|
ppipe = cpipe->pipe_peer;
|
|
if (ppipe->pipe_present != 0) {
|
|
pipeselwakeup(ppipe);
|
|
|
|
ppipe->pipe_state |= PIPE_EOF;
|
|
wakeup(ppipe);
|
|
KNOTE(&ppipe->pipe_sel.si_note, 0);
|
|
}
|
|
|
|
/*
|
|
* Mark this endpoint as free. Release kmem resources. We
|
|
* don't mark this endpoint as unused until we've finished
|
|
* doing that, or the pipe might disappear out from under
|
|
* us.
|
|
*/
|
|
pipelock(cpipe, 0);
|
|
PIPE_UNLOCK(cpipe);
|
|
pipe_free_kmem(cpipe);
|
|
PIPE_LOCK(cpipe);
|
|
cpipe->pipe_present = 0;
|
|
pipeunlock(cpipe);
|
|
|
|
/*
|
|
* If both endpoints are now closed, release the memory for the
|
|
* pipe pair. If not, unlock.
|
|
*/
|
|
if (ppipe->pipe_present == 0) {
|
|
PIPE_UNLOCK(cpipe);
|
|
#ifdef MAC
|
|
mac_destroy_pipe(pp);
|
|
#endif
|
|
uma_zfree(pipe_zone, cpipe->pipe_pair);
|
|
} else
|
|
PIPE_UNLOCK(cpipe);
|
|
}
|
|
|
|
/*ARGSUSED*/
|
|
static int
|
|
pipe_kqfilter(struct file *fp, struct knote *kn)
|
|
{
|
|
struct pipe *cpipe;
|
|
|
|
cpipe = kn->kn_fp->f_data;
|
|
PIPE_LOCK(cpipe);
|
|
switch (kn->kn_filter) {
|
|
case EVFILT_READ:
|
|
kn->kn_fop = &pipe_rfiltops;
|
|
break;
|
|
case EVFILT_WRITE:
|
|
kn->kn_fop = &pipe_wfiltops;
|
|
if (!cpipe->pipe_peer->pipe_present) {
|
|
/* other end of pipe has been closed */
|
|
PIPE_UNLOCK(cpipe);
|
|
return (EPIPE);
|
|
}
|
|
cpipe = cpipe->pipe_peer;
|
|
break;
|
|
default:
|
|
PIPE_UNLOCK(cpipe);
|
|
return (1);
|
|
}
|
|
|
|
SLIST_INSERT_HEAD(&cpipe->pipe_sel.si_note, kn, kn_selnext);
|
|
PIPE_UNLOCK(cpipe);
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
filt_pipedetach(struct knote *kn)
|
|
{
|
|
struct pipe *cpipe = (struct pipe *)kn->kn_fp->f_data;
|
|
|
|
PIPE_LOCK(cpipe);
|
|
if (kn->kn_filter == EVFILT_WRITE) {
|
|
if (!cpipe->pipe_peer->pipe_present) {
|
|
PIPE_UNLOCK(cpipe);
|
|
return;
|
|
}
|
|
cpipe = cpipe->pipe_peer;
|
|
}
|
|
SLIST_REMOVE(&cpipe->pipe_sel.si_note, kn, knote, kn_selnext);
|
|
PIPE_UNLOCK(cpipe);
|
|
}
|
|
|
|
/*ARGSUSED*/
|
|
static int
|
|
filt_piperead(struct knote *kn, long hint)
|
|
{
|
|
struct pipe *rpipe = kn->kn_fp->f_data;
|
|
struct pipe *wpipe = rpipe->pipe_peer;
|
|
|
|
PIPE_LOCK(rpipe);
|
|
kn->kn_data = rpipe->pipe_buffer.cnt;
|
|
if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
|
|
kn->kn_data = rpipe->pipe_map.cnt;
|
|
|
|
if ((rpipe->pipe_state & PIPE_EOF) ||
|
|
(!wpipe->pipe_present) || (wpipe->pipe_state & PIPE_EOF)) {
|
|
kn->kn_flags |= EV_EOF;
|
|
PIPE_UNLOCK(rpipe);
|
|
return (1);
|
|
}
|
|
PIPE_UNLOCK(rpipe);
|
|
return (kn->kn_data > 0);
|
|
}
|
|
|
|
/*ARGSUSED*/
|
|
static int
|
|
filt_pipewrite(struct knote *kn, long hint)
|
|
{
|
|
struct pipe *rpipe = kn->kn_fp->f_data;
|
|
struct pipe *wpipe = rpipe->pipe_peer;
|
|
|
|
PIPE_LOCK(rpipe);
|
|
if ((!wpipe->pipe_present) || (wpipe->pipe_state & PIPE_EOF)) {
|
|
kn->kn_data = 0;
|
|
kn->kn_flags |= EV_EOF;
|
|
PIPE_UNLOCK(rpipe);
|
|
return (1);
|
|
}
|
|
kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
|
|
if (wpipe->pipe_state & PIPE_DIRECTW)
|
|
kn->kn_data = 0;
|
|
|
|
PIPE_UNLOCK(rpipe);
|
|
return (kn->kn_data >= PIPE_BUF);
|
|
}
|