1
0
mirror of https://git.FreeBSD.org/src.git synced 2024-12-23 11:18:54 +00:00
freebsd/sys/contrib/octeon-sdk/cvmx-llm.c
Juli Mallett dc4ee6ca91 Merge the Cavium Octeon SDK 2.3.0 Simple Executive code and update FreeBSD to
make use of it where possible.

This primarily brings in support for newer hardware, and FreeBSD is not yet
able to support the abundance of IRQs on new hardware and many features in the
Ethernet driver.

Because of the changes to IRQs in the Simple Executive, we have to maintain our
own list of Octeon IRQs now, which probably can be pared-down and be specific
to the CIU interrupt unit soon, and when other interrupt mechanisms are added
they can maintain their own definitions.

Remove unmasking of interrupts from within the UART device now that the
function used is no longer present in the Simple Executive.  The unmasking
seems to have been gratuitous as this is more properly handled by the buses
above the UART device, and seems to work on that basis.
2012-03-11 06:17:49 +00:00

930 lines
36 KiB
C

/***********************license start***************
* Copyright (c) 2003-2010 Cavium Inc. (support@cavium.com). All rights
* reserved.
*
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of Cavium Inc. nor the names of
* its contributors may be used to endorse or promote products
* derived from this software without specific prior written
* permission.
* This Software, including technical data, may be subject to U.S. export control
* laws, including the U.S. Export Administration Act and its associated
* regulations, and may be subject to export or import regulations in other
* countries.
* TO THE MAXIMUM EXTENT PERMITTED BY LAW, THE SOFTWARE IS PROVIDED "AS IS"
* AND WITH ALL FAULTS AND CAVIUM INC. MAKES NO PROMISES, REPRESENTATIONS OR
* WARRANTIES, EITHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, WITH RESPECT TO
* THE SOFTWARE, INCLUDING ITS CONDITION, ITS CONFORMITY TO ANY REPRESENTATION OR
* DESCRIPTION, OR THE EXISTENCE OF ANY LATENT OR PATENT DEFECTS, AND CAVIUM
* SPECIFICALLY DISCLAIMS ALL IMPLIED (IF ANY) WARRANTIES OF TITLE,
* MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, LACK OF
* VIRUSES, ACCURACY OR COMPLETENESS, QUIET ENJOYMENT, QUIET POSSESSION OR
* CORRESPONDENCE TO DESCRIPTION. THE ENTIRE RISK ARISING OUT OF USE OR
* PERFORMANCE OF THE SOFTWARE LIES WITH YOU.
***********************license end**************************************/
/**
* @file
*
* Configuration functions for low latency memory.
*
* <hr>$Revision: 70030 $<hr>
*/
#include "cvmx-config.h"
#include "cvmx.h"
#include "cvmx-llm.h"
#include "cvmx-sysinfo.h"
#include "cvmx-csr-db.h"
#define MIN(a,b) (((a)<(b))?(a):(b))
typedef struct
{
uint32_t dfa_memcfg0_base;
uint32_t dfa_memcfg1_base;
uint32_t mrs_dat_p0bunk0;
uint32_t mrs_dat_p0bunk1;
uint32_t mrs_dat_p1bunk0;
uint32_t mrs_dat_p1bunk1;
uint8_t p0_ena;
uint8_t p1_ena;
uint8_t bunkport;
} rldram_csr_config_t;
int rld_csr_config_generate(llm_descriptor_t *llm_desc_ptr, rldram_csr_config_t *cfg_ptr);
void print_rld_cfg(rldram_csr_config_t *cfg_ptr);
void write_rld_cfg(rldram_csr_config_t *cfg_ptr);
static void cn31xx_dfa_memory_init(void);
static uint32_t process_address_map_str(uint32_t mrs_dat, char *addr_str);
#ifndef CVMX_LLM_NUM_PORTS
#warning WARNING: default CVMX_LLM_NUM_PORTS used. Defaults deprecated, please set in executive-config.h
#define CVMX_LLM_NUM_PORTS 1
#endif
#if (CVMX_LLM_NUM_PORTS != 1) && (CVMX_LLM_NUM_PORTS != 2)
#error "Invalid CVMX_LLM_NUM_PORTS value: must be 1 or 2\n"
#endif
int cvmx_llm_initialize()
{
if (cvmx_llm_initialize_desc(NULL) < 0)
return -1;
return 0;
}
int cvmx_llm_get_default_descriptor(llm_descriptor_t *llm_desc_ptr)
{
cvmx_sysinfo_t *sys_ptr;
sys_ptr = cvmx_sysinfo_get();
if (!llm_desc_ptr)
return -1;
memset(llm_desc_ptr, 0, sizeof(llm_descriptor_t));
llm_desc_ptr->cpu_hz = cvmx_clock_get_rate(CVMX_CLOCK_CORE);
if (sys_ptr->board_type == CVMX_BOARD_TYPE_EBT3000)
{ // N3K->RLD0 Address Swizzle
strcpy(llm_desc_ptr->addr_rld0_fb_str, "22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00");
strcpy(llm_desc_ptr->addr_rld0_bb_str, "22 21 19 20 08 07 06 05 04 03 02 01 00 09 18 17 16 15 14 13 12 11 10");
// N3K->RLD1 Address Swizzle
strcpy(llm_desc_ptr->addr_rld1_fb_str, "22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00");
strcpy(llm_desc_ptr->addr_rld1_bb_str, "22 21 20 00 08 07 06 05 04 13 02 01 03 09 18 17 16 15 14 10 12 11 19");
/* NOTE: The ebt3000 has a strange RLDRAM configuration for validation purposes. It is not recommended to have
** different amounts of memory on different ports as that renders some memory unusable */
llm_desc_ptr->rld0_bunks = 2;
llm_desc_ptr->rld1_bunks = 2;
llm_desc_ptr->rld0_mbytes = 128; // RLD0: 4x 32Mx9
llm_desc_ptr->rld1_mbytes = 64; // RLD1: 2x 16Mx18
}
else if (sys_ptr->board_type == CVMX_BOARD_TYPE_EBT5800)
{
strcpy(llm_desc_ptr->addr_rld0_fb_str, "22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00");
strcpy(llm_desc_ptr->addr_rld0_bb_str, "22 21 20 00 08 07 06 05 04 13 02 01 03 09 18 17 16 15 14 10 12 11 19");
strcpy(llm_desc_ptr->addr_rld1_fb_str, "22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00");
strcpy(llm_desc_ptr->addr_rld1_bb_str, "22 21 20 00 08 07 06 05 04 13 02 01 03 09 18 17 16 15 14 10 12 11 19");
llm_desc_ptr->rld0_bunks = 2;
llm_desc_ptr->rld1_bunks = 2;
llm_desc_ptr->rld0_mbytes = 128;
llm_desc_ptr->rld1_mbytes = 128;
llm_desc_ptr->max_rld_clock_mhz = 400; /* CN58XX needs a max clock speed for selecting optimal divisor */
}
else if (sys_ptr->board_type == CVMX_BOARD_TYPE_EBH3000)
{
strcpy(llm_desc_ptr->addr_rld0_fb_str, "22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00");
strcpy(llm_desc_ptr->addr_rld0_bb_str, "22 21 19 20 08 07 06 05 04 03 02 01 00 09 18 17 16 15 14 13 12 11 10");
strcpy(llm_desc_ptr->addr_rld1_fb_str, "22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00");
strcpy(llm_desc_ptr->addr_rld1_bb_str, "22 21 19 20 08 07 06 05 04 03 02 01 00 09 18 17 16 15 14 13 12 11 10");
llm_desc_ptr->rld0_bunks = 2;
llm_desc_ptr->rld1_bunks = 2;
llm_desc_ptr->rld0_mbytes = 128;
llm_desc_ptr->rld1_mbytes = 128;
}
else if (sys_ptr->board_type == CVMX_BOARD_TYPE_THUNDER)
{
if (sys_ptr->board_rev_major >= 4)
{
strcpy(llm_desc_ptr->addr_rld0_fb_str, "22 21 13 11 01 02 07 19 03 18 10 12 20 06 04 08 17 05 14 16 00 09 15");
strcpy(llm_desc_ptr->addr_rld0_bb_str, "22 21 11 13 04 08 17 05 14 16 00 09 15 06 01 02 07 19 03 18 10 12 20");
strcpy(llm_desc_ptr->addr_rld1_fb_str, "22 21 02 19 18 17 16 09 14 13 20 11 10 01 08 03 06 15 04 07 05 12 00");
strcpy(llm_desc_ptr->addr_rld1_bb_str, "22 21 19 02 08 03 06 15 04 07 05 12 00 01 18 17 16 09 14 13 20 11 10");
}
else
{
strcpy(llm_desc_ptr->addr_rld0_fb_str, "22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00");
strcpy(llm_desc_ptr->addr_rld0_bb_str, "22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00");
strcpy(llm_desc_ptr->addr_rld1_fb_str, "22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00");
strcpy(llm_desc_ptr->addr_rld1_bb_str, "22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00");
}
llm_desc_ptr->rld0_bunks = 2;
llm_desc_ptr->rld1_bunks = 2;
llm_desc_ptr->rld0_mbytes = 128;
llm_desc_ptr->rld1_mbytes = 128;
}
else if (sys_ptr->board_type == CVMX_BOARD_TYPE_NICPRO2)
{
strcpy(llm_desc_ptr->addr_rld0_fb_str, "22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00");
strcpy(llm_desc_ptr->addr_rld0_bb_str, "22 21 19 20 08 07 06 05 04 03 02 01 00 09 18 17 16 15 14 13 12 11 10");
strcpy(llm_desc_ptr->addr_rld1_fb_str, "22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00");
strcpy(llm_desc_ptr->addr_rld1_bb_str, "22 21 19 20 08 07 06 05 04 03 02 01 00 09 18 17 16 15 14 13 12 11 10");
llm_desc_ptr->rld0_bunks = 2;
llm_desc_ptr->rld1_bunks = 2;
llm_desc_ptr->rld0_mbytes = 256;
llm_desc_ptr->rld1_mbytes = 256;
llm_desc_ptr->max_rld_clock_mhz = 400; /* CN58XX needs a max clock speed for selecting optimal divisor */
}
else if (sys_ptr->board_type == CVMX_BOARD_TYPE_EBH3100)
{
/* CN31xx DFA memory is DDR based, so it is completely different from the CN38XX DFA memory */
llm_desc_ptr->rld0_bunks = 1;
llm_desc_ptr->rld0_mbytes = 256;
}
else if (sys_ptr->board_type == CVMX_BOARD_TYPE_KBP)
{
strcpy(llm_desc_ptr->addr_rld0_fb_str, "");
strcpy(llm_desc_ptr->addr_rld0_bb_str, "");
llm_desc_ptr->rld0_bunks = 0;
llm_desc_ptr->rld0_mbytes = 0;
strcpy(llm_desc_ptr->addr_rld1_fb_str, "22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00");
strcpy(llm_desc_ptr->addr_rld1_bb_str, "22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00");
llm_desc_ptr->rld1_bunks = 2;
llm_desc_ptr->rld1_mbytes = 64;
}
else
{
cvmx_dprintf("No default LLM configuration available for board %s (%d)\n", cvmx_board_type_to_string(sys_ptr->board_type), sys_ptr->board_type);
return -1;
}
return(0);
}
int cvmx_llm_initialize_desc(llm_descriptor_t *llm_desc_ptr)
{
cvmx_sysinfo_t *sys_ptr;
sys_ptr = cvmx_sysinfo_get();
llm_descriptor_t default_llm_desc;
memset(&default_llm_desc, 0, sizeof(default_llm_desc));
if (sys_ptr->board_type == CVMX_BOARD_TYPE_SIM)
{
cvmx_dprintf("Skipping llm configuration for simulator.\n");
return 0;
}
if (sys_ptr->board_type == CVMX_BOARD_TYPE_EBH3100)
{
/* CN31xx DFA memory is DDR based, so it is completely different from the CN38XX DFA memory
** config descriptors are not supported yet.*/
cvmx_dprintf("Warning: preliminary DFA memory configuration\n");
cn31xx_dfa_memory_init();
return(256*1024*1024);
}
/* If no descriptor passed, generate default descriptor based on board type.
** Fail if no default available for given board type
*/
if (!llm_desc_ptr)
{
/* Get default descriptor */
if (0 > cvmx_llm_get_default_descriptor(&default_llm_desc))
return -1;
/* Disable second port depending on CVMX config */
if (CVMX_LLM_NUM_PORTS == 1)
default_llm_desc.rld0_bunks = 0; // For single port: Force RLD0(P1) to appear EMPTY
cvmx_dprintf("Using default LLM configuration for board %s (%d)\n", cvmx_board_type_to_string(sys_ptr->board_type), sys_ptr->board_type);
llm_desc_ptr = &default_llm_desc;
}
rldram_csr_config_t ebt3000_rld_cfg;
if (!rld_csr_config_generate(llm_desc_ptr, &ebt3000_rld_cfg))
{
cvmx_dprintf("Configuring %d llm port(s).\n", !!llm_desc_ptr->rld0_bunks + !!llm_desc_ptr->rld1_bunks);
write_rld_cfg(&ebt3000_rld_cfg);
}
else
{
cvmx_dprintf("Error creating rldram configuration\n");
return(-1);
}
/* Compute how much memory is configured
** Memory is interleaved, so if one port has more than the other some memory is not usable */
/* If both ports are enabled, handle the case where one port has more than the other.
** This is an unusual and not recommended configuration that exists on the ebt3000 board */
if (!!llm_desc_ptr->rld0_bunks && !!llm_desc_ptr->rld1_bunks)
llm_desc_ptr->rld0_mbytes = llm_desc_ptr->rld1_mbytes = MIN(llm_desc_ptr->rld0_mbytes, llm_desc_ptr->rld1_mbytes);
return(((!!llm_desc_ptr->rld0_bunks) * llm_desc_ptr->rld0_mbytes
+ (!!llm_desc_ptr->rld1_bunks) * llm_desc_ptr->rld1_mbytes) * 1024*1024);
}
//======================
// SUPPORT FUNCTIONS:
//======================
//======================================================================
// Extracts srcvec[srcbitpos] and places it in return int (bit[0])
int bit_extract ( int srcvec, // source word (to extract)
int srcbitpos // source bit position
)
{
return(((1 << srcbitpos) & srcvec) >> srcbitpos);
}
//======================================================================
// Inserts srcvec[0] into dstvec[dstbitpos] (without affecting other bits)
int bit_insert ( int srcvec, // srcvec[0] = bit to be inserted
int dstbitpos, // Bit position to insert into returned int
int dstvec // dstvec (destination vector)
)
{
return((srcvec << dstbitpos) | dstvec); // Shift bit to insert into bit position/OR with accumulated number
}
//======================================================================
int rld_csr_config_generate(llm_descriptor_t *llm_desc_ptr, rldram_csr_config_t *cfg_ptr)
{
char *addr_rld0_fb_str;
char *addr_rld0_bb_str;
char *addr_rld1_fb_str;
char *addr_rld1_bb_str;
int eclk_ps;
int mtype = 0; // MTYPE (0: RLDRAM/1: FCRAM
int trcmin = 20; // tRC(min) - from RLDRAM data sheet
int trc_cyc; // TRC(cyc)
int trc_mod;
int trl_cyc; // TRL(cyc)
int twl_cyc; // TWL(cyc)
int tmrsc_cyc = 6; // tMRSC(cyc) [2-7]
int mclk_ps; // DFA Memory Clock(in ps) = 2x eclk
int rldcfg = 99; // RLDRAM-II CFG (1,2,3)
int mrs_odt = 0; // RLDRAM MRS A[9]=ODT (default)
int mrs_impmatch = 0; // RLDRAM MRS A[8]=Impedance Matching (default)
int mrs_dllrst = 1; // RLDRAM MRS A[7]=DLL Reset (default)
uint32_t mrs_dat;
int mrs_dat_p0bunk0 = 0; // MRS Register Data After Address Map (for Port0 Bunk0)
int mrs_dat_p0bunk1 = 0; // MRS Register Data After Address Map (for Port0 Bunk1)
int mrs_dat_p1bunk0 = 0; // MRS Register Data After Address Map (for Port1 Bunk0)
int mrs_dat_p1bunk1 = 0; // MRS Register Data After Address Map (for Port1 Bunk1)
int p0_ena = 0; // DFA Port#0 Enabled
int p1_ena = 0; // DFA Port#1 Enabled
int memport = 0; // Memory(MB) per Port [MAX=512]
int membunk; // Memory(MB) per Bunk
int bunkport = 0; // Bunks/Port [1/2]
int pbunk = 0; // Physical Bunk(or Rank) encoding for address bit
int tref_ms = 32; // tREF(ms) (RLDRAM-II overall device refresh interval
int trefi_ns; // tREFI(ns) = tREF(ns)/#rows/bank
int rows = 8; // #rows/bank (K) typically 8K
int ref512int;
int ref512mod;
int tskw_cyc = 0;
int fprch = 1;
int bprch = 0;
int dfa_memcfg0_base = 0;
int dfa_memcfg1_base = 0;
int tbl = 1; // tBL (1: 2-burst /2: 4-burst)
int rw_dly;
int wr_dly;
int r2r = 1;
int sil_lat = 1;
int clkdiv = 2; /* CN38XX is fixed at 2, CN58XX supports 2,3,4 */
int clkdiv_enc = 0x0; /* Encoded clock divisor, only used for CN58XX */
if (!llm_desc_ptr)
return -1;
/* Setup variables from descriptor */
addr_rld0_fb_str = llm_desc_ptr->addr_rld0_fb_str;
addr_rld0_bb_str = llm_desc_ptr->addr_rld0_bb_str;
addr_rld1_fb_str = llm_desc_ptr->addr_rld1_fb_str;
addr_rld1_bb_str = llm_desc_ptr->addr_rld1_bb_str;
p0_ena = !!llm_desc_ptr->rld1_bunks; // NOTE: P0 == RLD1
p1_ena = !!llm_desc_ptr->rld0_bunks; // NOTE: P1 == RLD0
// Massage the code, so that if the user had imbalanced memory per-port (or imbalanced bunks/port), we
// at least try to configure 'workable' memory.
if (p0_ena && p1_ena) // IF BOTH PORTS Enabled (imbalanced memory), select smaller of BOTH
{
memport = MIN(llm_desc_ptr->rld0_mbytes, llm_desc_ptr->rld1_mbytes);
bunkport = MIN(llm_desc_ptr->rld0_bunks, llm_desc_ptr->rld1_bunks);
}
else if (p0_ena) // P0=RLD1 Enabled
{
memport = llm_desc_ptr->rld1_mbytes;
bunkport = llm_desc_ptr->rld1_bunks;
}
else if (p1_ena) // P1=RLD0 Enabled
{
memport = llm_desc_ptr->rld0_mbytes;
bunkport = llm_desc_ptr->rld0_bunks;
}
else
return -1;
uint32_t eclk_mhz = llm_desc_ptr->cpu_hz/1000000;
/* Tweak skew based on cpu clock */
if (eclk_mhz <= 367)
{
tskw_cyc = 0;
}
else
{
tskw_cyc = 1;
}
/* Determine clock divider ratio (only required for CN58XX) */
if (OCTEON_IS_MODEL(OCTEON_CN58XX))
{
uint32_t max_llm_clock_mhz = llm_desc_ptr->max_rld_clock_mhz;
if (!max_llm_clock_mhz)
{
max_llm_clock_mhz = 400; /* Default to 400 MHz */
cvmx_dprintf("Warning, using default max_rld_clock_mhz of: %lu MHz\n", (unsigned long)max_llm_clock_mhz);
}
/* Compute the divisor, and round up */
clkdiv = eclk_mhz/max_llm_clock_mhz;
if (clkdiv * max_llm_clock_mhz < eclk_mhz)
clkdiv++;
if (clkdiv > 4)
{
cvmx_dprintf("ERROR: CN58XX LLM clock divisor out of range\n");
goto TERMINATE;
}
if (clkdiv < 2)
clkdiv = 2;
cvmx_dprintf("Using llm clock divisor: %d, llm clock is: %lu MHz\n", clkdiv, (unsigned long)eclk_mhz/clkdiv);
/* Translate divisor into bit encoding for register */
/* 0 -> div 2
** 1 -> reserved
** 2 -> div 3
** 3 -> div 4
*/
if (clkdiv == 2)
clkdiv_enc = 0;
else
clkdiv_enc = clkdiv - 1;
/* Odd divisor needs sil_lat to be 2 */
if (clkdiv == 0x3)
sil_lat = 2;
/* Increment tskw for high clock speeds */
if ((unsigned long)eclk_mhz/clkdiv >= 375)
tskw_cyc += 1;
}
eclk_ps = (1000000+(eclk_mhz-1)) / eclk_mhz; // round up if nonzero remainder
//=======================================================================
//=======================================================================
// Now, Query User for DFA Memory Type
if (mtype != 0)
{
goto TERMINATE; // Complete this code for FCRAM usage on N3K-P2
}
//=======================================================================
// Query what the tRC(min) value is from the data sheets
//=======================================================================
// Now determine the Best CFG based on Memory clock(ps) and tRCmin(ns)
mclk_ps = eclk_ps * clkdiv;
trc_cyc = ((trcmin * 1000)/mclk_ps);
trc_mod = ((trcmin * 1000) % mclk_ps);
// If remainder exists, bump up to the next integer multiple
if (trc_mod != 0)
{
trc_cyc = trc_cyc + 1;
}
// If tRC is now ODD, then bump it to the next EVEN integer (RLDRAM-II does not support odd tRC values at this time).
if (trc_cyc & 1)
{
trc_cyc = trc_cyc + 1; // Bump it to an even #
}
// RLDRAM CFG Range Check: If the computed trc_cyc is less than 4, then set it to min CFG1 [tRC=4]
if (trc_cyc < 4)
{
trc_cyc = 4; // If computed trc_cyc < 4 then clamp to 4
}
else if (trc_cyc > 8)
{ // If the computed trc_cyc > 8, then report an error (because RLDRAM cannot support a tRC>8
goto TERMINATE;
}
// Assuming all is ok(up to here)
// At this point the tRC_cyc has been clamped between 4 and 8 (and is even), So it can only be 4,6,8 which are
// the RLDRAM valid CFG range values.
trl_cyc = trc_cyc; // tRL = tRC (for RLDRAM=II)
twl_cyc = trl_cyc + 1; // tWL = tRL + 1 (for RLDRAM-II)
// NOTE: RLDRAM-II (as of 4/25/05) only have 3 supported CFG encodings:
if (trc_cyc == 4)
{
rldcfg = 1; // CFG #1 (tRL=4/tRC=4/tWL=5)
}
else if (trc_cyc == 6)
{
rldcfg = 2; // CFG #2 (tRL=6/tRC=6/tWL=7)
}
else if (trc_cyc == 8)
{
rldcfg = 3; // CFG #3 (tRL=8/tRC=8/tWL=9)
}
else
{
goto TERMINATE;
}
//=======================================================================
mrs_dat = ( (mrs_odt << 9) | (mrs_impmatch << 8) | (mrs_dllrst << 7) | rldcfg );
//=======================================================================
// If there is only a single bunk, then skip over address mapping queries (which are not required)
if (bunkport == 1)
{
goto CALC_PBUNK;
}
/* Process the address mappings */
/* Note that that RLD0 pins corresponds to Port#1, and
** RLD1 pins corresponds to Port#0.
*/
mrs_dat_p1bunk0 = process_address_map_str(mrs_dat, addr_rld0_fb_str);
mrs_dat_p1bunk1 = process_address_map_str(mrs_dat, addr_rld0_bb_str);
mrs_dat_p0bunk0 = process_address_map_str(mrs_dat, addr_rld1_fb_str);
mrs_dat_p0bunk1 = process_address_map_str(mrs_dat, addr_rld1_bb_str);
//=======================================================================
CALC_PBUNK:
// Determine the PBUNK field (based on Memory/Bunk)
// This determines the addr bit used to distinguish when crossing a bunk.
// NOTE: For RLDRAM, the bunk bit is extracted from 'a' programmably selected high
// order addr bit. [linear address per-bunk]
if (bunkport == 2)
{
membunk = (memport / 2);
}
else
{
membunk = memport;
}
if (membunk == 16)
{ // 16MB/bunk MA[19]
pbunk = 0;
}
else if (membunk == 32)
{ // 32MB/bunk MA[20]
pbunk = 1;
}
else if (membunk == 64)
{ // 64MB/bunk MA[21]
pbunk = 2;
}
else if (membunk == 128)
{ // 128MB/bunk MA[22]
pbunk = 3;
}
else if (membunk == 256)
{ // 256MB/bunk MA[23]
pbunk = 4;
}
else if (membunk == 512)
{ // 512MB/bunk
}
//=======================================================================
//=======================================================================
//=======================================================================
// Now determine N3K REFINT
trefi_ns = (tref_ms * 1000 * 1000) / (rows * 1024);
ref512int = ((trefi_ns * 1000) / (eclk_ps * 512));
ref512mod = ((trefi_ns * 1000) % (eclk_ps * 512));
//=======================================================================
// Ask about tSKW
#if 0
if (tskw_ps == 0)
{
tskw_cyc = 0;
}
else
{ // CEILING function
tskw_cyc = (tskw_ps / eclk_ps);
tskw_mod = (tskw_ps % eclk_ps);
if (tskw_mod != 0)
{ // If there's a remainder - then bump to next (+1)
tskw_cyc = tskw_cyc + 1;
}
}
#endif
if (tskw_cyc > 3)
{
goto TERMINATE;
}
tbl = 1; // BLEN=2 (ALWAYs for RLDRAM)
//=======================================================================
// RW_DLY = (ROUND_UP{[[(TRL+TBL)*2 + tSKW + BPRCH] + 1] / 2}) - tWL
rw_dly = ((((trl_cyc + tbl) * 2 + tskw_cyc + bprch) + 1) / 2);
if (rw_dly & 1)
{ // If it's ODD then round up
rw_dly = rw_dly + 1;
}
rw_dly = rw_dly - twl_cyc +1 ;
if (rw_dly < 0)
{ // range check - is it positive
goto TERMINATE;
}
//=======================================================================
// WR_DLY = (ROUND_UP[[(tWL + tBL)*2 - tSKW + FPRCH] / 2]) - tRL
wr_dly = (((twl_cyc + tbl) * 2 - tskw_cyc + fprch) / 2);
if (wr_dly & 1)
{ // If it's ODD then round up
wr_dly = wr_dly + 1;
}
wr_dly = wr_dly - trl_cyc + 1;
if (wr_dly < 0)
{ // range check - is it positive
goto TERMINATE;
}
dfa_memcfg0_base = 0;
dfa_memcfg0_base = ( p0_ena |
(p1_ena << 1) |
(mtype << 3) |
(sil_lat << 4) |
(rw_dly << 6) |
(wr_dly << 10) |
(fprch << 14) |
(bprch << 16) |
(0 << 18) | // BLEN=0(2-burst for RLDRAM)
(pbunk << 19) |
(r2r << 22) | // R2R=1
(clkdiv_enc << 28 )
);
dfa_memcfg1_base = 0;
dfa_memcfg1_base = ( ref512int |
(tskw_cyc << 4) |
(trl_cyc << 8) |
(twl_cyc << 12) |
(trc_cyc << 16) |
(tmrsc_cyc << 20)
);
cfg_ptr->dfa_memcfg0_base = dfa_memcfg0_base;
cfg_ptr->dfa_memcfg1_base = dfa_memcfg1_base;
cfg_ptr->mrs_dat_p0bunk0 = mrs_dat_p0bunk0;
cfg_ptr->mrs_dat_p1bunk0 = mrs_dat_p1bunk0;
cfg_ptr->mrs_dat_p0bunk1 = mrs_dat_p0bunk1;
cfg_ptr->mrs_dat_p1bunk1 = mrs_dat_p1bunk1;
cfg_ptr->p0_ena = p0_ena;
cfg_ptr->p1_ena = p1_ena;
cfg_ptr->bunkport = bunkport;
//=======================================================================
return(0);
TERMINATE:
return(-1);
}
static uint32_t process_address_map_str(uint32_t mrs_dat, char *addr_str)
{
int count = 0;
int amap [23];
uint32_t new_mrs_dat = 0;
// cvmx_dprintf("mrs_dat: 0x%x, str: %x\n", mrs_dat, addr_str);
char *charptr = strtok(addr_str," ");
while ((charptr != NULL) & (count <= 22))
{
amap[22-count] = atoi(charptr); // Assign the AMAP Array
charptr = strtok(NULL," "); // Get Next char string (which represents next addr bit mapping)
count++;
}
// Now do the bit swap of MRSDAT (based on address mapping)
uint32_t mrsdat_bit;
for (count=0;count<=22;count++)
{
mrsdat_bit = bit_extract(mrs_dat, count);
new_mrs_dat = bit_insert(mrsdat_bit, amap[count], new_mrs_dat);
}
return new_mrs_dat;
}
//#define PRINT_LLM_CONFIG
#ifdef PRINT_LLM_CONFIG
#define ll_printf printf
#else
#define ll_printf(...)
#define cvmx_csr_db_decode(...)
#endif
static void cn31xx_dfa_memory_init(void)
{
if (OCTEON_IS_MODEL(OCTEON_CN31XX))
{
cvmx_dfa_ddr2_cfg_t dfaCfg;
cvmx_dfa_eclkcfg_t dfaEcklCfg;
cvmx_dfa_ddr2_addr_t dfaAddr;
cvmx_dfa_ddr2_tmg_t dfaTmg;
cvmx_dfa_ddr2_pll_t dfaPll;
int mem_freq_hz = 533*1000000;
int ref_freq_hz = cvmx_sysinfo_get()->dfa_ref_clock_hz;
if (!ref_freq_hz)
ref_freq_hz = 33*1000000;
cvmx_dprintf ("Configuring DFA memory for %d MHz operation.\n",mem_freq_hz/1000000);
/* Turn on the DFA memory port. */
dfaCfg.u64 = cvmx_read_csr (CVMX_DFA_DDR2_CFG);
dfaCfg.s.prtena = 1;
cvmx_write_csr (CVMX_DFA_DDR2_CFG, dfaCfg.u64);
/* Start the PLL alignment sequence */
dfaPll.u64 = 0;
dfaPll.s.pll_ratio = mem_freq_hz/ref_freq_hz /*400Mhz / 33MHz*/;
dfaPll.s.pll_div2 = 1 /*400 - 1 */;
dfaPll.s.pll_bypass = 0;
cvmx_write_csr (CVMX_DFA_DDR2_PLL, dfaPll.u64);
dfaPll.s.pll_init = 1;
cvmx_write_csr (CVMX_DFA_DDR2_PLL, dfaPll.u64);
cvmx_wait (RLD_INIT_DELAY); //want 150uS
dfaPll.s.qdll_ena = 1;
cvmx_write_csr (CVMX_DFA_DDR2_PLL, dfaPll.u64);
cvmx_wait (RLD_INIT_DELAY); //want 10us
dfaEcklCfg.u64 = 0;
dfaEcklCfg.s.dfa_frstn = 1;
cvmx_write_csr (CVMX_DFA_ECLKCFG, dfaEcklCfg.u64);
/* Configure the DFA Memory */
dfaCfg.s.silo_hc = 1 /*400 - 1 */;
dfaCfg.s.silo_qc = 0 /*400 - 0 */;
dfaCfg.s.tskw = 1 /*400 - 1 */;
dfaCfg.s.ref_int = 0x820 /*533 - 0x820 400 - 0x618*/;
dfaCfg.s.trfc = 0x1A /*533 - 0x23 400 - 0x1A*/;
dfaCfg.s.fprch = 0; /* 1 more conservative*/
dfaCfg.s.bprch = 0; /* 1 */
cvmx_write_csr (CVMX_DFA_DDR2_CFG, dfaCfg.u64);
dfaEcklCfg.u64 = cvmx_read_csr (CVMX_DFA_ECLKCFG);
dfaEcklCfg.s.maxbnk = 1;
cvmx_write_csr (CVMX_DFA_ECLKCFG, dfaEcklCfg.u64);
dfaAddr.u64 = cvmx_read_csr (CVMX_DFA_DDR2_ADDR);
dfaAddr.s.num_cols = 0x1;
dfaAddr.s.num_colrows = 0x2;
dfaAddr.s.num_rnks = 0x1;
cvmx_write_csr (CVMX_DFA_DDR2_ADDR, dfaAddr.u64);
dfaTmg.u64 = cvmx_read_csr (CVMX_DFA_DDR2_TMG);
dfaTmg.s.ddr2t = 0;
dfaTmg.s.tmrd = 0x2;
dfaTmg.s.caslat = 0x4 /*400 - 0x3, 500 - 0x4*/;
dfaTmg.s.pocas = 0;
dfaTmg.s.addlat = 0;
dfaTmg.s.trcd = 4 /*400 - 3, 500 - 4*/;
dfaTmg.s.trrd = 2;
dfaTmg.s.tras = 0xB /*400 - 8, 500 - 0xB*/;
dfaTmg.s.trp = 4 /*400 - 3, 500 - 4*/;
dfaTmg.s.twr = 4 /*400 - 3, 500 - 4*/;
dfaTmg.s.twtr = 2 /*400 - 2 */;
dfaTmg.s.tfaw = 0xE /*400 - 0xA, 500 - 0xE*/;
dfaTmg.s.r2r_slot = 0;
dfaTmg.s.dic = 0; /*400 - 0 */
dfaTmg.s.dqsn_ena = 0;
dfaTmg.s.odt_rtt = 0;
cvmx_write_csr (CVMX_DFA_DDR2_TMG, dfaTmg.u64);
/* Turn on the DDR2 interface and wait a bit for the hardware to setup. */
dfaCfg.s.init = 1;
cvmx_write_csr (CVMX_DFA_DDR2_CFG, dfaCfg.u64);
cvmx_wait(RLD_INIT_DELAY); // want at least 64K cycles
}
}
void write_rld_cfg(rldram_csr_config_t *cfg_ptr)
{
cvmx_dfa_memcfg0_t memcfg0;
cvmx_dfa_memcfg2_t memcfg2;
memcfg0.u64 = cfg_ptr->dfa_memcfg0_base;
if ((OCTEON_IS_MODEL(OCTEON_CN38XX) || OCTEON_IS_MODEL(OCTEON_CN58XX)))
{
uint32_t dfa_memcfg0;
if (OCTEON_IS_MODEL (OCTEON_CN58XX)) {
// Set RLDQK90_RST and RDLCK_RST to reset all three DLLs.
memcfg0.s.rldck_rst = 1;
memcfg0.s.rldqck90_rst = 1;
cvmx_write_csr(CVMX_DFA_MEMCFG0, memcfg0.u64);
ll_printf("CVMX_DFA_MEMCFG0: 0x%08x clk/qk90 reset\n", (uint32_t) memcfg0.u64);
cvmx_csr_db_decode(cvmx_get_proc_id(), CVMX_DFA_MEMCFG0 & ~(1ull<<63), memcfg0.u64);
// Clear RDLCK_RST while asserting RLDQK90_RST to bring RLDCK DLL out of reset.
memcfg0.s.rldck_rst = 0;
memcfg0.s.rldqck90_rst = 1;
cvmx_write_csr(CVMX_DFA_MEMCFG0, memcfg0.u64);
cvmx_wait(4000000); /* Wait */
ll_printf("CVMX_DFA_MEMCFG0: 0x%08x qk90 reset\n", (uint32_t) memcfg0.u64);
cvmx_csr_db_decode(cvmx_get_proc_id(), CVMX_DFA_MEMCFG0 & ~(1ull<<63), memcfg0.u64);
// Clear both RDLCK90_RST and RLDQK90_RST to bring the RLDQK90 DLL out of reset.
memcfg0.s.rldck_rst = 0;
memcfg0.s.rldqck90_rst = 0;
cvmx_write_csr(CVMX_DFA_MEMCFG0, memcfg0.u64);
cvmx_wait(4000000); /* Wait */
ll_printf("CVMX_DFA_MEMCFG0: 0x%08x DLL out of reset\n", (uint32_t) memcfg0.u64);
cvmx_csr_db_decode(cvmx_get_proc_id(), CVMX_DFA_MEMCFG0 & ~(1ull<<63), memcfg0.u64);
}
//=======================================================================
// Now print out the sequence of events:
cvmx_write_csr(CVMX_DFA_MEMCFG0, cfg_ptr->dfa_memcfg0_base);
ll_printf("CVMX_DFA_MEMCFG0: 0x%08x port enables\n", cfg_ptr->dfa_memcfg0_base);
cvmx_csr_db_decode(cvmx_get_proc_id(), CVMX_DFA_MEMCFG0 & ~(1ull<<63), cfg_ptr->dfa_memcfg0_base);
cvmx_wait(4000000); /* Wait */
cvmx_write_csr(CVMX_DFA_MEMCFG1, cfg_ptr->dfa_memcfg1_base);
ll_printf("CVMX_DFA_MEMCFG1: 0x%08x\n", cfg_ptr->dfa_memcfg1_base);
cvmx_csr_db_decode(cvmx_get_proc_id(), CVMX_DFA_MEMCFG1 & ~(1ull<<63), cfg_ptr->dfa_memcfg1_base);
if (cfg_ptr->p0_ena ==1)
{
cvmx_write_csr(CVMX_DFA_MEMRLD, cfg_ptr->mrs_dat_p0bunk0);
ll_printf("CVMX_DFA_MEMRLD : 0x%08x p0_ena memrld\n", cfg_ptr->mrs_dat_p0bunk0);
cvmx_csr_db_decode(cvmx_get_proc_id(), CVMX_DFA_MEMRLD & ~(1ull<<63), cfg_ptr->mrs_dat_p0bunk0);
dfa_memcfg0 = ( cfg_ptr->dfa_memcfg0_base |
(1 << 23) | // P0_INIT
(1 << 25) // BUNK_INIT[1:0]=Bunk#0
);
cvmx_write_csr(CVMX_DFA_MEMCFG0, dfa_memcfg0);
ll_printf("CVMX_DFA_MEMCFG0: 0x%08x p0_init/bunk_init\n", dfa_memcfg0);
cvmx_csr_db_decode(cvmx_get_proc_id(), CVMX_DFA_MEMCFG0 & ~(1ull<<63), dfa_memcfg0);
cvmx_wait(RLD_INIT_DELAY);
ll_printf("Delay.....\n");
cvmx_write_csr(CVMX_DFA_MEMCFG0, cfg_ptr->dfa_memcfg0_base);
ll_printf("CVMX_DFA_MEMCFG0: 0x%08x back to base\n", cfg_ptr->dfa_memcfg0_base);
cvmx_csr_db_decode(cvmx_get_proc_id(), CVMX_DFA_MEMCFG0 & ~(1ull<<63), cfg_ptr->dfa_memcfg0_base);
}
if (cfg_ptr->p1_ena ==1)
{
cvmx_write_csr(CVMX_DFA_MEMRLD, cfg_ptr->mrs_dat_p1bunk0);
ll_printf("CVMX_DFA_MEMRLD : 0x%08x p1_ena memrld\n", cfg_ptr->mrs_dat_p1bunk0);
cvmx_csr_db_decode(cvmx_get_proc_id(), CVMX_DFA_MEMRLD & ~(1ull<<63), cfg_ptr->mrs_dat_p1bunk0);
dfa_memcfg0 = ( cfg_ptr->dfa_memcfg0_base |
(1 << 24) | // P1_INIT
(1 << 25) // BUNK_INIT[1:0]=Bunk#0
);
cvmx_write_csr(CVMX_DFA_MEMCFG0, dfa_memcfg0);
ll_printf("CVMX_DFA_MEMCFG0: 0x%08x p1_init/bunk_init\n", dfa_memcfg0);
cvmx_csr_db_decode(cvmx_get_proc_id(), CVMX_DFA_MEMCFG0 & ~(1ull<<63), dfa_memcfg0);
cvmx_wait(RLD_INIT_DELAY);
ll_printf("Delay.....\n");
cvmx_write_csr(CVMX_DFA_MEMCFG0, cfg_ptr->dfa_memcfg0_base);
ll_printf("CVMX_DFA_MEMCFG0: 0x%08x back to base\n", cfg_ptr->dfa_memcfg0_base);
cvmx_csr_db_decode(cvmx_get_proc_id(), CVMX_DFA_MEMCFG0 & ~(1ull<<63), cfg_ptr->dfa_memcfg0_base);
}
// P0 Bunk#1
if ((cfg_ptr->p0_ena ==1) && (cfg_ptr->bunkport == 2))
{
cvmx_write_csr(CVMX_DFA_MEMRLD, cfg_ptr->mrs_dat_p0bunk1);
ll_printf("CVMX_DFA_MEMRLD : 0x%08x p0_ena memrld\n", cfg_ptr->mrs_dat_p0bunk1);
cvmx_csr_db_decode(cvmx_get_proc_id(), CVMX_DFA_MEMRLD & ~(1ull<<63), cfg_ptr->mrs_dat_p0bunk1);
dfa_memcfg0 = ( cfg_ptr->dfa_memcfg0_base |
(1 << 23) | // P0_INIT
(2 << 25) // BUNK_INIT[1:0]=Bunk#1
);
cvmx_write_csr(CVMX_DFA_MEMCFG0, dfa_memcfg0);
ll_printf("CVMX_DFA_MEMCFG0: 0x%08x p0_init/bunk_init\n", dfa_memcfg0);
cvmx_csr_db_decode(cvmx_get_proc_id(), CVMX_DFA_MEMCFG0 & ~(1ull<<63), dfa_memcfg0);
cvmx_wait(RLD_INIT_DELAY);
ll_printf("Delay.....\n");
if (cfg_ptr->p1_ena == 1)
{ // Re-arm Px_INIT if P1-B1 init is required
cvmx_write_csr(CVMX_DFA_MEMCFG0, cfg_ptr->dfa_memcfg0_base);
ll_printf("CVMX_DFA_MEMCFG0: 0x%08x px_init rearm\n", cfg_ptr->dfa_memcfg0_base);
cvmx_csr_db_decode(cvmx_get_proc_id(), CVMX_DFA_MEMCFG0 & ~(1ull<<63), cfg_ptr->dfa_memcfg0_base);
}
}
if ((cfg_ptr->p1_ena == 1) && (cfg_ptr->bunkport == 2))
{
cvmx_write_csr(CVMX_DFA_MEMRLD, cfg_ptr->mrs_dat_p1bunk1);
ll_printf("CVMX_DFA_MEMRLD : 0x%08x p1_ena memrld\n", cfg_ptr->mrs_dat_p1bunk1);
cvmx_csr_db_decode(cvmx_get_proc_id(), CVMX_DFA_MEMRLD & ~(1ull<<63), cfg_ptr->mrs_dat_p1bunk1);
dfa_memcfg0 = ( cfg_ptr->dfa_memcfg0_base |
(1 << 24) | // P1_INIT
(2 << 25) // BUNK_INIT[1:0]=10
);
cvmx_write_csr(CVMX_DFA_MEMCFG0, dfa_memcfg0);
ll_printf("CVMX_DFA_MEMCFG0: 0x%08x p1_init/bunk_init\n", dfa_memcfg0);
cvmx_csr_db_decode(cvmx_get_proc_id(), CVMX_DFA_MEMCFG0 & ~(1ull<<63), dfa_memcfg0);
}
cvmx_wait(4000000); // 1/100S, 0.01S, 10mS
ll_printf("Delay.....\n");
/* Enable bunks */
dfa_memcfg0 = cfg_ptr->dfa_memcfg0_base |((cfg_ptr->bunkport >= 1) << 25) | ((cfg_ptr->bunkport == 2) << 26);
cvmx_write_csr(CVMX_DFA_MEMCFG0, dfa_memcfg0);
ll_printf("CVMX_DFA_MEMCFG0: 0x%08x enable bunks\n", dfa_memcfg0);
cvmx_csr_db_decode(cvmx_get_proc_id(), CVMX_DFA_MEMCFG0 & ~(1ull<<63), dfa_memcfg0);
cvmx_wait(RLD_INIT_DELAY);
ll_printf("Delay.....\n");
/* Issue a Silo reset by toggling SILRST in memcfg2. */
memcfg2.u64 = cvmx_read_csr (CVMX_DFA_MEMCFG2);
memcfg2.s.silrst = 1;
cvmx_write_csr (CVMX_DFA_MEMCFG2, memcfg2.u64);
ll_printf("CVMX_DFA_MEMCFG2: 0x%08x silo reset start\n", (uint32_t) memcfg2.u64);
memcfg2.s.silrst = 0;
cvmx_write_csr (CVMX_DFA_MEMCFG2, memcfg2.u64);
ll_printf("CVMX_DFA_MEMCFG2: 0x%08x silo reset done\n", (uint32_t) memcfg2.u64);
}
}