mirror of
https://git.FreeBSD.org/src.git
synced 2024-12-21 11:13:30 +00:00
b8152ba793
directly to a merged model where only one callout, the next to fire, is registered. Instead of callout_reset(9) and callout_stop(9) the new function tcp_timer_activate() is used which then internally manages the callout. The single new callout is a mutex callout on inpcb simplifying the locking a bit. tcp_timer() is the called function which handles all race conditions in one place and then dispatches the individual timer functions. Reviewed by: rwatson (earlier version)
704 lines
22 KiB
C
704 lines
22 KiB
C
/*-
|
|
* Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)tcp_sack.c 8.12 (Berkeley) 5/24/95
|
|
* $FreeBSD$
|
|
*/
|
|
|
|
/*-
|
|
* Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @@(#)COPYRIGHT 1.1 (NRL) 17 January 1995
|
|
*
|
|
* NRL grants permission for redistribution and use in source and binary
|
|
* forms, with or without modification, of the software and documentation
|
|
* created at NRL provided that the following conditions are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgements:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* This product includes software developed at the Information
|
|
* Technology Division, US Naval Research Laboratory.
|
|
* 4. Neither the name of the NRL nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
|
|
* IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
|
|
* PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NRL OR
|
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
* The views and conclusions contained in the software and documentation
|
|
* are those of the authors and should not be interpreted as representing
|
|
* official policies, either expressed or implied, of the US Naval
|
|
* Research Laboratory (NRL).
|
|
*/
|
|
#include "opt_inet.h"
|
|
#include "opt_inet6.h"
|
|
#include "opt_tcpdebug.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/proc.h> /* for proc0 declaration */
|
|
#include <sys/protosw.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/socketvar.h>
|
|
#include <sys/syslog.h>
|
|
#include <sys/systm.h>
|
|
|
|
#include <machine/cpu.h> /* before tcp_seq.h, for tcp_random18() */
|
|
|
|
#include <vm/uma.h>
|
|
|
|
#include <net/if.h>
|
|
#include <net/route.h>
|
|
|
|
#include <netinet/in.h>
|
|
#include <netinet/in_systm.h>
|
|
#include <netinet/ip.h>
|
|
#include <netinet/in_var.h>
|
|
#include <netinet/in_pcb.h>
|
|
#include <netinet/ip_var.h>
|
|
#include <netinet/ip6.h>
|
|
#include <netinet/icmp6.h>
|
|
#include <netinet6/nd6.h>
|
|
#include <netinet6/ip6_var.h>
|
|
#include <netinet6/in6_pcb.h>
|
|
#include <netinet/tcp.h>
|
|
#include <netinet/tcp_fsm.h>
|
|
#include <netinet/tcp_seq.h>
|
|
#include <netinet/tcp_timer.h>
|
|
#include <netinet/tcp_var.h>
|
|
#include <netinet6/tcp6_var.h>
|
|
#include <netinet/tcpip.h>
|
|
#ifdef TCPDEBUG
|
|
#include <netinet/tcp_debug.h>
|
|
#endif /* TCPDEBUG */
|
|
|
|
#include <machine/in_cksum.h>
|
|
|
|
extern struct uma_zone *sack_hole_zone;
|
|
|
|
SYSCTL_NODE(_net_inet_tcp, OID_AUTO, sack, CTLFLAG_RW, 0, "TCP SACK");
|
|
int tcp_do_sack = 1;
|
|
SYSCTL_INT(_net_inet_tcp_sack, OID_AUTO, enable, CTLFLAG_RW,
|
|
&tcp_do_sack, 0, "Enable/Disable TCP SACK support");
|
|
TUNABLE_INT("net.inet.tcp.sack.enable", &tcp_do_sack);
|
|
|
|
static int tcp_sack_maxholes = 128;
|
|
SYSCTL_INT(_net_inet_tcp_sack, OID_AUTO, maxholes, CTLFLAG_RW,
|
|
&tcp_sack_maxholes, 0,
|
|
"Maximum number of TCP SACK holes allowed per connection");
|
|
|
|
static int tcp_sack_globalmaxholes = 65536;
|
|
SYSCTL_INT(_net_inet_tcp_sack, OID_AUTO, globalmaxholes, CTLFLAG_RW,
|
|
&tcp_sack_globalmaxholes, 0,
|
|
"Global maximum number of TCP SACK holes");
|
|
|
|
static int tcp_sack_globalholes = 0;
|
|
SYSCTL_INT(_net_inet_tcp_sack, OID_AUTO, globalholes, CTLFLAG_RD,
|
|
&tcp_sack_globalholes, 0,
|
|
"Global number of TCP SACK holes currently allocated");
|
|
|
|
/*
|
|
* This function is called upon receipt of new valid data (while not in header
|
|
* prediction mode), and it updates the ordered list of sacks.
|
|
*/
|
|
void
|
|
tcp_update_sack_list(struct tcpcb *tp, tcp_seq rcv_start, tcp_seq rcv_end)
|
|
{
|
|
/*
|
|
* First reported block MUST be the most recent one. Subsequent
|
|
* blocks SHOULD be in the order in which they arrived at the
|
|
* receiver. These two conditions make the implementation fully
|
|
* compliant with RFC 2018.
|
|
*/
|
|
struct sackblk head_blk, saved_blks[MAX_SACK_BLKS];
|
|
int num_head, num_saved, i;
|
|
|
|
INP_LOCK_ASSERT(tp->t_inpcb);
|
|
|
|
/* Check arguments */
|
|
KASSERT(SEQ_LT(rcv_start, rcv_end), ("rcv_start < rcv_end"));
|
|
|
|
/* SACK block for the received segment. */
|
|
head_blk.start = rcv_start;
|
|
head_blk.end = rcv_end;
|
|
|
|
/*
|
|
* Merge updated SACK blocks into head_blk, and
|
|
* save unchanged SACK blocks into saved_blks[].
|
|
* num_saved will have the number of the saved SACK blocks.
|
|
*/
|
|
num_saved = 0;
|
|
for (i = 0; i < tp->rcv_numsacks; i++) {
|
|
tcp_seq start = tp->sackblks[i].start;
|
|
tcp_seq end = tp->sackblks[i].end;
|
|
if (SEQ_GEQ(start, end) || SEQ_LEQ(start, tp->rcv_nxt)) {
|
|
/*
|
|
* Discard this SACK block.
|
|
*/
|
|
} else if (SEQ_LEQ(head_blk.start, end) &&
|
|
SEQ_GEQ(head_blk.end, start)) {
|
|
/*
|
|
* Merge this SACK block into head_blk.
|
|
* This SACK block itself will be discarded.
|
|
*/
|
|
if (SEQ_GT(head_blk.start, start))
|
|
head_blk.start = start;
|
|
if (SEQ_LT(head_blk.end, end))
|
|
head_blk.end = end;
|
|
} else {
|
|
/*
|
|
* Save this SACK block.
|
|
*/
|
|
saved_blks[num_saved].start = start;
|
|
saved_blks[num_saved].end = end;
|
|
num_saved++;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Update SACK list in tp->sackblks[].
|
|
*/
|
|
num_head = 0;
|
|
if (SEQ_GT(head_blk.start, tp->rcv_nxt)) {
|
|
/*
|
|
* The received data segment is an out-of-order segment.
|
|
* Put head_blk at the top of SACK list.
|
|
*/
|
|
tp->sackblks[0] = head_blk;
|
|
num_head = 1;
|
|
/*
|
|
* If the number of saved SACK blocks exceeds its limit,
|
|
* discard the last SACK block.
|
|
*/
|
|
if (num_saved >= MAX_SACK_BLKS)
|
|
num_saved--;
|
|
}
|
|
if (num_saved > 0) {
|
|
/*
|
|
* Copy the saved SACK blocks back.
|
|
*/
|
|
bcopy(saved_blks, &tp->sackblks[num_head],
|
|
sizeof(struct sackblk) * num_saved);
|
|
}
|
|
|
|
/* Save the number of SACK blocks. */
|
|
tp->rcv_numsacks = num_head + num_saved;
|
|
}
|
|
|
|
/*
|
|
* Delete all receiver-side SACK information.
|
|
*/
|
|
void
|
|
tcp_clean_sackreport(tp)
|
|
struct tcpcb *tp;
|
|
{
|
|
int i;
|
|
|
|
INP_LOCK_ASSERT(tp->t_inpcb);
|
|
tp->rcv_numsacks = 0;
|
|
for (i = 0; i < MAX_SACK_BLKS; i++)
|
|
tp->sackblks[i].start = tp->sackblks[i].end=0;
|
|
}
|
|
|
|
/*
|
|
* Allocate struct sackhole.
|
|
*/
|
|
static struct sackhole *
|
|
tcp_sackhole_alloc(struct tcpcb *tp, tcp_seq start, tcp_seq end)
|
|
{
|
|
struct sackhole *hole;
|
|
|
|
if (tp->snd_numholes >= tcp_sack_maxholes ||
|
|
tcp_sack_globalholes >= tcp_sack_globalmaxholes) {
|
|
tcpstat.tcps_sack_sboverflow++;
|
|
return NULL;
|
|
}
|
|
|
|
hole = (struct sackhole *)uma_zalloc(sack_hole_zone, M_NOWAIT);
|
|
if (hole == NULL)
|
|
return NULL;
|
|
|
|
hole->start = start;
|
|
hole->end = end;
|
|
hole->rxmit = start;
|
|
|
|
tp->snd_numholes++;
|
|
tcp_sack_globalholes++;
|
|
|
|
return hole;
|
|
}
|
|
|
|
/*
|
|
* Free struct sackhole.
|
|
*/
|
|
static void
|
|
tcp_sackhole_free(struct tcpcb *tp, struct sackhole *hole)
|
|
{
|
|
uma_zfree(sack_hole_zone, hole);
|
|
|
|
tp->snd_numholes--;
|
|
tcp_sack_globalholes--;
|
|
|
|
KASSERT(tp->snd_numholes >= 0, ("tp->snd_numholes >= 0"));
|
|
KASSERT(tcp_sack_globalholes >= 0, ("tcp_sack_globalholes >= 0"));
|
|
}
|
|
|
|
/*
|
|
* Insert new SACK hole into scoreboard.
|
|
*/
|
|
static struct sackhole *
|
|
tcp_sackhole_insert(struct tcpcb *tp, tcp_seq start, tcp_seq end,
|
|
struct sackhole *after)
|
|
{
|
|
struct sackhole *hole;
|
|
|
|
/* Allocate a new SACK hole. */
|
|
hole = tcp_sackhole_alloc(tp, start, end);
|
|
if (hole == NULL)
|
|
return NULL;
|
|
|
|
/* Insert the new SACK hole into scoreboard */
|
|
if (after != NULL)
|
|
TAILQ_INSERT_AFTER(&tp->snd_holes, after, hole, scblink);
|
|
else
|
|
TAILQ_INSERT_TAIL(&tp->snd_holes, hole, scblink);
|
|
|
|
/* Update SACK hint. */
|
|
if (tp->sackhint.nexthole == NULL)
|
|
tp->sackhint.nexthole = hole;
|
|
|
|
return hole;
|
|
}
|
|
|
|
/*
|
|
* Remove SACK hole from scoreboard.
|
|
*/
|
|
static void
|
|
tcp_sackhole_remove(struct tcpcb *tp, struct sackhole *hole)
|
|
{
|
|
/* Update SACK hint. */
|
|
if (tp->sackhint.nexthole == hole)
|
|
tp->sackhint.nexthole = TAILQ_NEXT(hole, scblink);
|
|
|
|
/* Remove this SACK hole. */
|
|
TAILQ_REMOVE(&tp->snd_holes, hole, scblink);
|
|
|
|
/* Free this SACK hole. */
|
|
tcp_sackhole_free(tp, hole);
|
|
}
|
|
|
|
/*
|
|
* Process cumulative ACK and the TCP SACK option to update the scoreboard.
|
|
* tp->snd_holes is an ordered list of holes (oldest to newest, in terms of
|
|
* the sequence space).
|
|
*/
|
|
void
|
|
tcp_sack_doack(struct tcpcb *tp, struct tcpopt *to, tcp_seq th_ack)
|
|
{
|
|
struct sackhole *cur, *temp;
|
|
struct sackblk sack, sack_blocks[TCP_MAX_SACK + 1], *sblkp;
|
|
int i, j, num_sack_blks;
|
|
|
|
INP_LOCK_ASSERT(tp->t_inpcb);
|
|
|
|
num_sack_blks = 0;
|
|
/*
|
|
* If SND.UNA will be advanced by SEG.ACK, and if SACK holes exist,
|
|
* treat [SND.UNA, SEG.ACK) as if it is a SACK block.
|
|
*/
|
|
if (SEQ_LT(tp->snd_una, th_ack) && !TAILQ_EMPTY(&tp->snd_holes)) {
|
|
sack_blocks[num_sack_blks].start = tp->snd_una;
|
|
sack_blocks[num_sack_blks++].end = th_ack;
|
|
}
|
|
/*
|
|
* Append received valid SACK blocks to sack_blocks[], but only
|
|
* if we received new blocks from the other side.
|
|
*/
|
|
if (to->to_flags & TOF_SACK) {
|
|
for (i = 0; i < to->to_nsacks; i++) {
|
|
bcopy((to->to_sacks + i * TCPOLEN_SACK),
|
|
&sack, sizeof(sack));
|
|
sack.start = ntohl(sack.start);
|
|
sack.end = ntohl(sack.end);
|
|
if (SEQ_GT(sack.end, sack.start) &&
|
|
SEQ_GT(sack.start, tp->snd_una) &&
|
|
SEQ_GT(sack.start, th_ack) &&
|
|
SEQ_LT(sack.start, tp->snd_max) &&
|
|
SEQ_GT(sack.end, tp->snd_una) &&
|
|
SEQ_LEQ(sack.end, tp->snd_max))
|
|
sack_blocks[num_sack_blks++] = sack;
|
|
}
|
|
}
|
|
/*
|
|
* Return if SND.UNA is not advanced and no valid SACK block
|
|
* is received.
|
|
*/
|
|
if (num_sack_blks == 0)
|
|
return;
|
|
|
|
/*
|
|
* Sort the SACK blocks so we can update the scoreboard
|
|
* with just one pass. The overhead of sorting upto 4+1 elements
|
|
* is less than making upto 4+1 passes over the scoreboard.
|
|
*/
|
|
for (i = 0; i < num_sack_blks; i++) {
|
|
for (j = i + 1; j < num_sack_blks; j++) {
|
|
if (SEQ_GT(sack_blocks[i].end, sack_blocks[j].end)) {
|
|
sack = sack_blocks[i];
|
|
sack_blocks[i] = sack_blocks[j];
|
|
sack_blocks[j] = sack;
|
|
}
|
|
}
|
|
}
|
|
if (TAILQ_EMPTY(&tp->snd_holes))
|
|
/*
|
|
* Empty scoreboard. Need to initialize snd_fack (it may be
|
|
* uninitialized or have a bogus value). Scoreboard holes
|
|
* (from the sack blocks received) are created later below (in
|
|
* the logic that adds holes to the tail of the scoreboard).
|
|
*/
|
|
tp->snd_fack = SEQ_MAX(tp->snd_una, th_ack);
|
|
/*
|
|
* In the while-loop below, incoming SACK blocks (sack_blocks[])
|
|
* and SACK holes (snd_holes) are traversed from their tails with
|
|
* just one pass in order to reduce the number of compares especially
|
|
* when the bandwidth-delay product is large.
|
|
* Note: Typically, in the first RTT of SACK recovery, the highest
|
|
* three or four SACK blocks with the same ack number are received.
|
|
* In the second RTT, if retransmitted data segments are not lost,
|
|
* the highest three or four SACK blocks with ack number advancing
|
|
* are received.
|
|
*/
|
|
sblkp = &sack_blocks[num_sack_blks - 1]; /* Last SACK block */
|
|
if (SEQ_LT(tp->snd_fack, sblkp->start)) {
|
|
/*
|
|
* The highest SACK block is beyond fack.
|
|
* Append new SACK hole at the tail.
|
|
* If the second or later highest SACK blocks are also
|
|
* beyond the current fack, they will be inserted by
|
|
* way of hole splitting in the while-loop below.
|
|
*/
|
|
temp = tcp_sackhole_insert(tp, tp->snd_fack,sblkp->start,NULL);
|
|
if (temp != NULL) {
|
|
tp->snd_fack = sblkp->end;
|
|
/* Go to the previous sack block. */
|
|
sblkp--;
|
|
} else {
|
|
/*
|
|
* We failed to add a new hole based on the current
|
|
* sack block. Skip over all the sack blocks that
|
|
* fall completely to the right of snd_fack and proceed
|
|
* to trim the scoreboard based on the remaining sack
|
|
* blocks. This also trims the scoreboard for th_ack
|
|
* (which is sack_blocks[0]).
|
|
*/
|
|
while (sblkp >= sack_blocks &&
|
|
SEQ_LT(tp->snd_fack, sblkp->start))
|
|
sblkp--;
|
|
if (sblkp >= sack_blocks &&
|
|
SEQ_LT(tp->snd_fack, sblkp->end))
|
|
tp->snd_fack = sblkp->end;
|
|
}
|
|
} else if (SEQ_LT(tp->snd_fack, sblkp->end))
|
|
/* fack is advanced. */
|
|
tp->snd_fack = sblkp->end;
|
|
/* We must have at least one SACK hole in scoreboard */
|
|
KASSERT(!TAILQ_EMPTY(&tp->snd_holes), ("SACK scoreboard must not be empty"));
|
|
cur = TAILQ_LAST(&tp->snd_holes, sackhole_head); /* Last SACK hole */
|
|
/*
|
|
* Since the incoming sack blocks are sorted, we can process them
|
|
* making one sweep of the scoreboard.
|
|
*/
|
|
while (sblkp >= sack_blocks && cur != NULL) {
|
|
if (SEQ_GEQ(sblkp->start, cur->end)) {
|
|
/*
|
|
* SACKs data beyond the current hole.
|
|
* Go to the previous sack block.
|
|
*/
|
|
sblkp--;
|
|
continue;
|
|
}
|
|
if (SEQ_LEQ(sblkp->end, cur->start)) {
|
|
/*
|
|
* SACKs data before the current hole.
|
|
* Go to the previous hole.
|
|
*/
|
|
cur = TAILQ_PREV(cur, sackhole_head, scblink);
|
|
continue;
|
|
}
|
|
tp->sackhint.sack_bytes_rexmit -= (cur->rxmit - cur->start);
|
|
KASSERT(tp->sackhint.sack_bytes_rexmit >= 0,
|
|
("sackhint bytes rtx >= 0"));
|
|
if (SEQ_LEQ(sblkp->start, cur->start)) {
|
|
/* Data acks at least the beginning of hole */
|
|
if (SEQ_GEQ(sblkp->end, cur->end)) {
|
|
/* Acks entire hole, so delete hole */
|
|
temp = cur;
|
|
cur = TAILQ_PREV(cur, sackhole_head, scblink);
|
|
tcp_sackhole_remove(tp, temp);
|
|
/*
|
|
* The sack block may ack all or part of the next
|
|
* hole too, so continue onto the next hole.
|
|
*/
|
|
continue;
|
|
} else {
|
|
/* Move start of hole forward */
|
|
cur->start = sblkp->end;
|
|
cur->rxmit = SEQ_MAX(cur->rxmit, cur->start);
|
|
}
|
|
} else {
|
|
/* Data acks at least the end of hole */
|
|
if (SEQ_GEQ(sblkp->end, cur->end)) {
|
|
/* Move end of hole backward */
|
|
cur->end = sblkp->start;
|
|
cur->rxmit = SEQ_MIN(cur->rxmit, cur->end);
|
|
} else {
|
|
/*
|
|
* ACKs some data in middle of a hole; need to
|
|
* split current hole
|
|
*/
|
|
temp = tcp_sackhole_insert(tp, sblkp->end,
|
|
cur->end, cur);
|
|
if (temp != NULL) {
|
|
if (SEQ_GT(cur->rxmit, temp->rxmit)) {
|
|
temp->rxmit = cur->rxmit;
|
|
tp->sackhint.sack_bytes_rexmit
|
|
+= (temp->rxmit
|
|
- temp->start);
|
|
}
|
|
cur->end = sblkp->start;
|
|
cur->rxmit = SEQ_MIN(cur->rxmit,
|
|
cur->end);
|
|
}
|
|
}
|
|
}
|
|
tp->sackhint.sack_bytes_rexmit += (cur->rxmit - cur->start);
|
|
/*
|
|
* Testing sblkp->start against cur->start tells us whether
|
|
* we're done with the sack block or the sack hole.
|
|
* Accordingly, we advance one or the other.
|
|
*/
|
|
if (SEQ_LEQ(sblkp->start, cur->start))
|
|
cur = TAILQ_PREV(cur, sackhole_head, scblink);
|
|
else
|
|
sblkp--;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Free all SACK holes to clear the scoreboard.
|
|
*/
|
|
void
|
|
tcp_free_sackholes(struct tcpcb *tp)
|
|
{
|
|
struct sackhole *q;
|
|
|
|
INP_LOCK_ASSERT(tp->t_inpcb);
|
|
while ((q = TAILQ_FIRST(&tp->snd_holes)) != NULL)
|
|
tcp_sackhole_remove(tp, q);
|
|
tp->sackhint.sack_bytes_rexmit = 0;
|
|
|
|
KASSERT(tp->snd_numholes == 0, ("tp->snd_numholes == 0"));
|
|
KASSERT(tp->sackhint.nexthole == NULL,
|
|
("tp->sackhint.nexthole == NULL"));
|
|
}
|
|
|
|
/*
|
|
* Partial ack handling within a sack recovery episode.
|
|
* Keeping this very simple for now. When a partial ack
|
|
* is received, force snd_cwnd to a value that will allow
|
|
* the sender to transmit no more than 2 segments.
|
|
* If necessary, a better scheme can be adopted at a
|
|
* later point, but for now, the goal is to prevent the
|
|
* sender from bursting a large amount of data in the midst
|
|
* of sack recovery.
|
|
*/
|
|
void
|
|
tcp_sack_partialack(struct tcpcb *tp, struct tcphdr *th)
|
|
{
|
|
int num_segs = 1;
|
|
|
|
INP_LOCK_ASSERT(tp->t_inpcb);
|
|
tcp_timer_activate(tp, TT_REXMT, 0);
|
|
tp->t_rtttime = 0;
|
|
/* send one or 2 segments based on how much new data was acked */
|
|
if (((th->th_ack - tp->snd_una) / tp->t_maxseg) > 2)
|
|
num_segs = 2;
|
|
tp->snd_cwnd = (tp->sackhint.sack_bytes_rexmit +
|
|
(tp->snd_nxt - tp->sack_newdata) +
|
|
num_segs * tp->t_maxseg);
|
|
if (tp->snd_cwnd > tp->snd_ssthresh)
|
|
tp->snd_cwnd = tp->snd_ssthresh;
|
|
tp->t_flags |= TF_ACKNOW;
|
|
(void) tcp_output(tp);
|
|
}
|
|
|
|
#if 0
|
|
/*
|
|
* Debug version of tcp_sack_output() that walks the scoreboard. Used for
|
|
* now to sanity check the hint.
|
|
*/
|
|
static struct sackhole *
|
|
tcp_sack_output_debug(struct tcpcb *tp, int *sack_bytes_rexmt)
|
|
{
|
|
struct sackhole *p;
|
|
|
|
INP_LOCK_ASSERT(tp->t_inpcb);
|
|
*sack_bytes_rexmt = 0;
|
|
TAILQ_FOREACH(p, &tp->snd_holes, scblink) {
|
|
if (SEQ_LT(p->rxmit, p->end)) {
|
|
if (SEQ_LT(p->rxmit, tp->snd_una)) {/* old SACK hole */
|
|
continue;
|
|
}
|
|
*sack_bytes_rexmt += (p->rxmit - p->start);
|
|
break;
|
|
}
|
|
*sack_bytes_rexmt += (p->rxmit - p->start);
|
|
}
|
|
return (p);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Returns the next hole to retransmit and the number of retransmitted bytes
|
|
* from the scoreboard. We store both the next hole and the number of
|
|
* retransmitted bytes as hints (and recompute these on the fly upon SACK/ACK
|
|
* reception). This avoids scoreboard traversals completely.
|
|
*
|
|
* The loop here will traverse *at most* one link. Here's the argument.
|
|
* For the loop to traverse more than 1 link before finding the next hole to
|
|
* retransmit, we would need to have at least 1 node following the current hint
|
|
* with (rxmit == end). But, for all holes following the current hint,
|
|
* (start == rxmit), since we have not yet retransmitted from them. Therefore,
|
|
* in order to traverse more 1 link in the loop below, we need to have at least
|
|
* one node following the current hint with (start == rxmit == end).
|
|
* But that can't happen, (start == end) means that all the data in that hole
|
|
* has been sacked, in which case, the hole would have been removed from the
|
|
* scoreboard.
|
|
*/
|
|
struct sackhole *
|
|
tcp_sack_output(struct tcpcb *tp, int *sack_bytes_rexmt)
|
|
{
|
|
struct sackhole *hole = NULL;
|
|
|
|
INP_LOCK_ASSERT(tp->t_inpcb);
|
|
*sack_bytes_rexmt = tp->sackhint.sack_bytes_rexmit;
|
|
hole = tp->sackhint.nexthole;
|
|
if (hole == NULL || SEQ_LT(hole->rxmit, hole->end))
|
|
goto out;
|
|
while ((hole = TAILQ_NEXT(hole, scblink)) != NULL) {
|
|
if (SEQ_LT(hole->rxmit, hole->end)) {
|
|
tp->sackhint.nexthole = hole;
|
|
break;
|
|
}
|
|
}
|
|
out:
|
|
return (hole);
|
|
}
|
|
|
|
/*
|
|
* After a timeout, the SACK list may be rebuilt. This SACK information
|
|
* should be used to avoid retransmitting SACKed data. This function
|
|
* traverses the SACK list to see if snd_nxt should be moved forward.
|
|
*/
|
|
void
|
|
tcp_sack_adjust(struct tcpcb *tp)
|
|
{
|
|
struct sackhole *p, *cur = TAILQ_FIRST(&tp->snd_holes);
|
|
|
|
INP_LOCK_ASSERT(tp->t_inpcb);
|
|
if (cur == NULL)
|
|
return; /* No holes */
|
|
if (SEQ_GEQ(tp->snd_nxt, tp->snd_fack))
|
|
return; /* We're already beyond any SACKed blocks */
|
|
/*
|
|
* Two cases for which we want to advance snd_nxt:
|
|
* i) snd_nxt lies between end of one hole and beginning of another
|
|
* ii) snd_nxt lies between end of last hole and snd_fack
|
|
*/
|
|
while ((p = TAILQ_NEXT(cur, scblink)) != NULL) {
|
|
if (SEQ_LT(tp->snd_nxt, cur->end))
|
|
return;
|
|
if (SEQ_GEQ(tp->snd_nxt, p->start))
|
|
cur = p;
|
|
else {
|
|
tp->snd_nxt = p->start;
|
|
return;
|
|
}
|
|
}
|
|
if (SEQ_LT(tp->snd_nxt, cur->end))
|
|
return;
|
|
tp->snd_nxt = tp->snd_fack;
|
|
return;
|
|
}
|