mirror of
https://git.FreeBSD.org/src.git
synced 2024-12-24 11:29:10 +00:00
7f911abe54
- Add a kvaddr_type to represent kernel virtual addresses instead of unsigned long. - Add a struct kvm_nlist which is a stripped down version of struct nlist that uses kvaddr_t for n_value. - Add a kvm_native() routine that returns true if an open kvm descriptor is for a native kernel and memory image. - Add a kvm_open2() function similar to kvm_openfiles(). It drops the unused 'swapfile' argument and adds a new function pointer argument for a symbol resolving function. Native kernels still use _fdnlist() from libc to resolve symbols if a resolver function is not supplied, but cross kernels require a resolver. - Add a kvm_nlist2() function similar to kvm_nlist() except that it uses struct kvm_nlist instead of struct nlist. - Add a kvm_read2() function similar to kvm_read() except that it uses kvaddr_t instead of unsigned long for the kernel virtual address. - Add a new kvm_arch switch of routines needed by a vmcore backend. Each backend is responsible for implementing kvm_read2() for a given vmcore format. - Use libelf to read headers from ELF kernels and cores (except for powerpc cores). - Add internal helper routines for the common page offset hash table used by the minidump backends. - Port all of the existing kvm backends to implement a kvm_arch switch and to be cross-friendly by using private constants instead of ones that vary by platform (e.g. PAGE_SIZE). Static assertions are present when a given backend is compiled natively to ensure the private constants match the real ones. - Enable all of the existing vmcore backends on all platforms. This means that libkvm on any platform should be able to perform KVA translation and read data from a vmcore of any platform. Tested on: amd64, i386, sparc64 (marius) Differential Revision: https://reviews.freebsd.org/D3341
898 lines
21 KiB
C
898 lines
21 KiB
C
/*-
|
|
* Copyright (c) 1989, 1992, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* This code is derived from software developed by the Computer Systems
|
|
* Engineering group at Lawrence Berkeley Laboratory under DARPA contract
|
|
* BG 91-66 and contributed to Berkeley.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#if defined(LIBC_SCCS) && !defined(lint)
|
|
#if 0
|
|
static char sccsid[] = "@(#)kvm.c 8.2 (Berkeley) 2/13/94";
|
|
#endif
|
|
#endif /* LIBC_SCCS and not lint */
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/fnv_hash.h>
|
|
|
|
#define _WANT_VNET
|
|
|
|
#include <sys/user.h>
|
|
#include <sys/linker.h>
|
|
#include <sys/pcpu.h>
|
|
#include <sys/stat.h>
|
|
|
|
#include <net/vnet.h>
|
|
|
|
#include <fcntl.h>
|
|
#include <kvm.h>
|
|
#include <limits.h>
|
|
#include <paths.h>
|
|
#include <stdint.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <unistd.h>
|
|
|
|
#include "kvm_private.h"
|
|
|
|
SET_DECLARE(kvm_arch, struct kvm_arch);
|
|
|
|
/* from src/lib/libc/gen/nlist.c */
|
|
int __fdnlist(int, struct nlist *);
|
|
|
|
static int
|
|
kvm_fdnlist(kvm_t *kd, struct kvm_nlist *list)
|
|
{
|
|
kvaddr_t addr;
|
|
int error, nfail;
|
|
|
|
if (kd->resolve_symbol == NULL) {
|
|
struct nlist *nl;
|
|
int count, i;
|
|
|
|
for (count = 0; list[count].n_name != NULL &&
|
|
list[count].n_name[0] != '\0'; count++)
|
|
;
|
|
nl = calloc(count + 1, sizeof(*nl));
|
|
for (i = 0; i < count; i++)
|
|
nl[i].n_name = list[i].n_name;
|
|
nfail = __fdnlist(kd->nlfd, nl);
|
|
for (i = 0; i < count; i++) {
|
|
list[i].n_type = nl[i].n_type;
|
|
list[i].n_value = nl[i].n_value;
|
|
}
|
|
free(nl);
|
|
return (nfail);
|
|
}
|
|
|
|
nfail = 0;
|
|
while (list->n_name != NULL && list->n_name[0] != '\0') {
|
|
error = kd->resolve_symbol(list->n_name, &addr);
|
|
if (error != 0) {
|
|
nfail++;
|
|
list->n_value = 0;
|
|
list->n_type = 0;
|
|
} else {
|
|
list->n_value = addr;
|
|
list->n_type = N_DATA | N_EXT;
|
|
}
|
|
list++;
|
|
}
|
|
return (nfail);
|
|
}
|
|
|
|
char *
|
|
kvm_geterr(kvm_t *kd)
|
|
{
|
|
return (kd->errbuf);
|
|
}
|
|
|
|
#include <stdarg.h>
|
|
|
|
/*
|
|
* Report an error using printf style arguments. "program" is kd->program
|
|
* on hard errors, and 0 on soft errors, so that under sun error emulation,
|
|
* only hard errors are printed out (otherwise, programs like gdb will
|
|
* generate tons of error messages when trying to access bogus pointers).
|
|
*/
|
|
void
|
|
_kvm_err(kvm_t *kd, const char *program, const char *fmt, ...)
|
|
{
|
|
va_list ap;
|
|
|
|
va_start(ap, fmt);
|
|
if (program != NULL) {
|
|
(void)fprintf(stderr, "%s: ", program);
|
|
(void)vfprintf(stderr, fmt, ap);
|
|
(void)fputc('\n', stderr);
|
|
} else
|
|
(void)vsnprintf(kd->errbuf,
|
|
sizeof(kd->errbuf), fmt, ap);
|
|
|
|
va_end(ap);
|
|
}
|
|
|
|
void
|
|
_kvm_syserr(kvm_t *kd, const char *program, const char *fmt, ...)
|
|
{
|
|
va_list ap;
|
|
int n;
|
|
|
|
va_start(ap, fmt);
|
|
if (program != NULL) {
|
|
(void)fprintf(stderr, "%s: ", program);
|
|
(void)vfprintf(stderr, fmt, ap);
|
|
(void)fprintf(stderr, ": %s\n", strerror(errno));
|
|
} else {
|
|
char *cp = kd->errbuf;
|
|
|
|
(void)vsnprintf(cp, sizeof(kd->errbuf), fmt, ap);
|
|
n = strlen(cp);
|
|
(void)snprintf(&cp[n], sizeof(kd->errbuf) - n, ": %s",
|
|
strerror(errno));
|
|
}
|
|
va_end(ap);
|
|
}
|
|
|
|
void *
|
|
_kvm_malloc(kvm_t *kd, size_t n)
|
|
{
|
|
void *p;
|
|
|
|
if ((p = calloc(n, sizeof(char))) == NULL)
|
|
_kvm_err(kd, kd->program, "can't allocate %zu bytes: %s",
|
|
n, strerror(errno));
|
|
return (p);
|
|
}
|
|
|
|
static int
|
|
_kvm_read_kernel_ehdr(kvm_t *kd)
|
|
{
|
|
Elf *elf;
|
|
|
|
if (elf_version(EV_CURRENT) == EV_NONE) {
|
|
_kvm_err(kd, kd->program, "Unsupported libelf");
|
|
return (-1);
|
|
}
|
|
elf = elf_begin(kd->nlfd, ELF_C_READ, NULL);
|
|
if (elf == NULL) {
|
|
_kvm_err(kd, kd->program, "%s", elf_errmsg(0));
|
|
return (-1);
|
|
}
|
|
if (elf_kind(elf) != ELF_K_ELF) {
|
|
_kvm_err(kd, kd->program, "kernel is not an ELF file");
|
|
return (-1);
|
|
}
|
|
if (gelf_getehdr(elf, &kd->nlehdr) == NULL) {
|
|
_kvm_err(kd, kd->program, "%s", elf_errmsg(0));
|
|
elf_end(elf);
|
|
return (-1);
|
|
}
|
|
elf_end(elf);
|
|
|
|
switch (kd->nlehdr.e_ident[EI_DATA]) {
|
|
case ELFDATA2LSB:
|
|
case ELFDATA2MSB:
|
|
return (0);
|
|
default:
|
|
_kvm_err(kd, kd->program,
|
|
"unsupported ELF data encoding for kernel");
|
|
return (-1);
|
|
}
|
|
}
|
|
|
|
int
|
|
_kvm_probe_elf_kernel(kvm_t *kd, int class, int machine)
|
|
{
|
|
|
|
return (kd->nlehdr.e_ident[EI_CLASS] == class &&
|
|
kd->nlehdr.e_type == ET_EXEC &&
|
|
kd->nlehdr.e_machine == machine);
|
|
}
|
|
|
|
int
|
|
_kvm_is_minidump(kvm_t *kd)
|
|
{
|
|
char minihdr[8];
|
|
|
|
if (kd->rawdump)
|
|
return (0);
|
|
if (pread(kd->pmfd, &minihdr, 8, 0) == 8 &&
|
|
memcmp(&minihdr, "minidump", 8) == 0)
|
|
return (1);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* The powerpc backend has a hack to strip a leading kerneldump
|
|
* header from the core before treating it as an ELF header.
|
|
*
|
|
* We can add that here if we can get a change to libelf to support
|
|
* an inital offset into the file. Alternatively we could patch
|
|
* savecore to extract cores from a regular file instead.
|
|
*/
|
|
int
|
|
_kvm_read_core_phdrs(kvm_t *kd, size_t *phnump, GElf_Phdr **phdrp)
|
|
{
|
|
GElf_Ehdr ehdr;
|
|
GElf_Phdr *phdr;
|
|
Elf *elf;
|
|
size_t i, phnum;
|
|
|
|
elf = elf_begin(kd->pmfd, ELF_C_READ, NULL);
|
|
if (elf == NULL) {
|
|
_kvm_err(kd, kd->program, "%s", elf_errmsg(0));
|
|
return (-1);
|
|
}
|
|
if (elf_kind(elf) != ELF_K_ELF) {
|
|
_kvm_err(kd, kd->program, "invalid core");
|
|
goto bad;
|
|
}
|
|
if (gelf_getclass(elf) != kd->nlehdr.e_ident[EI_CLASS]) {
|
|
_kvm_err(kd, kd->program, "invalid core");
|
|
goto bad;
|
|
}
|
|
if (gelf_getehdr(elf, &ehdr) == NULL) {
|
|
_kvm_err(kd, kd->program, "%s", elf_errmsg(0));
|
|
goto bad;
|
|
}
|
|
if (ehdr.e_type != ET_CORE) {
|
|
_kvm_err(kd, kd->program, "invalid core");
|
|
goto bad;
|
|
}
|
|
if (ehdr.e_machine != kd->nlehdr.e_machine) {
|
|
_kvm_err(kd, kd->program, "invalid core");
|
|
goto bad;
|
|
}
|
|
|
|
if (elf_getphdrnum(elf, &phnum) == -1) {
|
|
_kvm_err(kd, kd->program, "%s", elf_errmsg(0));
|
|
goto bad;
|
|
}
|
|
|
|
phdr = calloc(phnum, sizeof(*phdr));
|
|
if (phdr == NULL) {
|
|
_kvm_err(kd, kd->program, "failed to allocate phdrs");
|
|
goto bad;
|
|
}
|
|
|
|
for (i = 0; i < phnum; i++) {
|
|
if (gelf_getphdr(elf, i, &phdr[i]) == NULL) {
|
|
_kvm_err(kd, kd->program, "%s", elf_errmsg(0));
|
|
goto bad;
|
|
}
|
|
}
|
|
elf_end(elf);
|
|
*phnump = phnum;
|
|
*phdrp = phdr;
|
|
return (0);
|
|
|
|
bad:
|
|
elf_end(elf);
|
|
return (-1);
|
|
}
|
|
|
|
static void
|
|
_kvm_hpt_insert(struct hpt *hpt, uint64_t pa, off_t off)
|
|
{
|
|
struct hpte *hpte;
|
|
uint32_t fnv = FNV1_32_INIT;
|
|
|
|
fnv = fnv_32_buf(&pa, sizeof(pa), fnv);
|
|
fnv &= (HPT_SIZE - 1);
|
|
hpte = malloc(sizeof(*hpte));
|
|
hpte->pa = pa;
|
|
hpte->off = off;
|
|
hpte->next = hpt->hpt_head[fnv];
|
|
hpt->hpt_head[fnv] = hpte;
|
|
}
|
|
|
|
void
|
|
_kvm_hpt_init(kvm_t *kd, struct hpt *hpt, void *base, size_t len, off_t off,
|
|
int page_size, int word_size)
|
|
{
|
|
uint64_t bits, idx, pa;
|
|
uint64_t *base64;
|
|
uint32_t *base32;
|
|
|
|
base64 = base;
|
|
base32 = base;
|
|
for (idx = 0; idx < len / word_size; idx++) {
|
|
if (word_size == sizeof(uint64_t))
|
|
bits = _kvm64toh(kd, base64[idx]);
|
|
else
|
|
bits = _kvm32toh(kd, base32[idx]);
|
|
pa = idx * word_size * NBBY * page_size;
|
|
for (; bits != 0; bits >>= 1, pa += page_size) {
|
|
if ((bits & 1) == 0)
|
|
continue;
|
|
_kvm_hpt_insert(hpt, pa, off);
|
|
off += page_size;
|
|
}
|
|
}
|
|
}
|
|
|
|
off_t
|
|
_kvm_hpt_find(struct hpt *hpt, uint64_t pa)
|
|
{
|
|
struct hpte *hpte;
|
|
uint32_t fnv = FNV1_32_INIT;
|
|
|
|
fnv = fnv_32_buf(&pa, sizeof(pa), fnv);
|
|
fnv &= (HPT_SIZE - 1);
|
|
for (hpte = hpt->hpt_head[fnv]; hpte != NULL; hpte = hpte->next) {
|
|
if (pa == hpte->pa)
|
|
return (hpte->off);
|
|
}
|
|
return (-1);
|
|
}
|
|
|
|
void
|
|
_kvm_hpt_free(struct hpt *hpt)
|
|
{
|
|
struct hpte *hpte, *next;
|
|
int i;
|
|
|
|
for (i = 0; i < HPT_SIZE; i++) {
|
|
for (hpte = hpt->hpt_head[i]; hpte != NULL; hpte = next) {
|
|
next = hpte->next;
|
|
free(hpte);
|
|
}
|
|
}
|
|
}
|
|
|
|
static kvm_t *
|
|
_kvm_open(kvm_t *kd, const char *uf, const char *mf, int flag, char *errout)
|
|
{
|
|
struct kvm_arch **parch;
|
|
struct stat st;
|
|
|
|
kd->vmfd = -1;
|
|
kd->pmfd = -1;
|
|
kd->nlfd = -1;
|
|
kd->vmst = 0;
|
|
kd->procbase = 0;
|
|
kd->argspc = 0;
|
|
kd->argv = 0;
|
|
|
|
if (uf == 0)
|
|
uf = getbootfile();
|
|
else if (strlen(uf) >= MAXPATHLEN) {
|
|
_kvm_err(kd, kd->program, "exec file name too long");
|
|
goto failed;
|
|
}
|
|
if (flag & ~O_RDWR) {
|
|
_kvm_err(kd, kd->program, "bad flags arg");
|
|
goto failed;
|
|
}
|
|
if (mf == 0)
|
|
mf = _PATH_MEM;
|
|
|
|
if ((kd->pmfd = open(mf, flag | O_CLOEXEC, 0)) < 0) {
|
|
_kvm_syserr(kd, kd->program, "%s", mf);
|
|
goto failed;
|
|
}
|
|
if (fstat(kd->pmfd, &st) < 0) {
|
|
_kvm_syserr(kd, kd->program, "%s", mf);
|
|
goto failed;
|
|
}
|
|
if (S_ISREG(st.st_mode) && st.st_size <= 0) {
|
|
errno = EINVAL;
|
|
_kvm_syserr(kd, kd->program, "empty file");
|
|
goto failed;
|
|
}
|
|
if (S_ISCHR(st.st_mode)) {
|
|
/*
|
|
* If this is a character special device, then check that
|
|
* it's /dev/mem. If so, open kmem too. (Maybe we should
|
|
* make it work for either /dev/mem or /dev/kmem -- in either
|
|
* case you're working with a live kernel.)
|
|
*/
|
|
if (strcmp(mf, _PATH_DEVNULL) == 0) {
|
|
kd->vmfd = open(_PATH_DEVNULL, O_RDONLY | O_CLOEXEC);
|
|
return (kd);
|
|
} else if (strcmp(mf, _PATH_MEM) == 0) {
|
|
if ((kd->vmfd = open(_PATH_KMEM, flag | O_CLOEXEC)) <
|
|
0) {
|
|
_kvm_syserr(kd, kd->program, "%s", _PATH_KMEM);
|
|
goto failed;
|
|
}
|
|
return (kd);
|
|
}
|
|
}
|
|
/*
|
|
* This is a crash dump.
|
|
* Open the namelist fd and determine the architecture.
|
|
*/
|
|
if ((kd->nlfd = open(uf, O_RDONLY | O_CLOEXEC, 0)) < 0) {
|
|
_kvm_syserr(kd, kd->program, "%s", uf);
|
|
goto failed;
|
|
}
|
|
if (_kvm_read_kernel_ehdr(kd) < 0)
|
|
goto failed;
|
|
if (strncmp(mf, _PATH_FWMEM, strlen(_PATH_FWMEM)) == 0)
|
|
kd->rawdump = 1;
|
|
SET_FOREACH(parch, kvm_arch) {
|
|
if ((*parch)->ka_probe(kd)) {
|
|
kd->arch = *parch;
|
|
break;
|
|
}
|
|
}
|
|
if (kd->arch == NULL) {
|
|
_kvm_err(kd, kd->program, "unsupported architecture");
|
|
goto failed;
|
|
}
|
|
|
|
/*
|
|
* Non-native kernels require a symbol resolver.
|
|
*/
|
|
if (!kd->arch->ka_native(kd) && kd->resolve_symbol == NULL) {
|
|
_kvm_err(kd, kd->program,
|
|
"non-native kernel requires a symbol resolver");
|
|
goto failed;
|
|
}
|
|
|
|
/*
|
|
* Initialize the virtual address translation machinery.
|
|
*/
|
|
if (kd->arch->ka_initvtop(kd) < 0)
|
|
goto failed;
|
|
return (kd);
|
|
failed:
|
|
/*
|
|
* Copy out the error if doing sane error semantics.
|
|
*/
|
|
if (errout != 0)
|
|
strlcpy(errout, kd->errbuf, _POSIX2_LINE_MAX);
|
|
(void)kvm_close(kd);
|
|
return (0);
|
|
}
|
|
|
|
kvm_t *
|
|
kvm_openfiles(const char *uf, const char *mf, const char *sf __unused, int flag,
|
|
char *errout)
|
|
{
|
|
kvm_t *kd;
|
|
|
|
if ((kd = calloc(1, sizeof(*kd))) == NULL) {
|
|
(void)strlcpy(errout, strerror(errno), _POSIX2_LINE_MAX);
|
|
return (0);
|
|
}
|
|
return (_kvm_open(kd, uf, mf, flag, errout));
|
|
}
|
|
|
|
kvm_t *
|
|
kvm_open(const char *uf, const char *mf, const char *sf __unused, int flag,
|
|
const char *errstr)
|
|
{
|
|
kvm_t *kd;
|
|
|
|
if ((kd = calloc(1, sizeof(*kd))) == NULL) {
|
|
if (errstr != NULL)
|
|
(void)fprintf(stderr, "%s: %s\n",
|
|
errstr, strerror(errno));
|
|
return (0);
|
|
}
|
|
kd->program = errstr;
|
|
return (_kvm_open(kd, uf, mf, flag, NULL));
|
|
}
|
|
|
|
kvm_t *
|
|
kvm_open2(const char *uf, const char *mf, int flag, char *errout,
|
|
int (*resolver)(const char *, kvaddr_t *))
|
|
{
|
|
kvm_t *kd;
|
|
|
|
if ((kd = calloc(1, sizeof(*kd))) == NULL) {
|
|
(void)strlcpy(errout, strerror(errno), _POSIX2_LINE_MAX);
|
|
return (0);
|
|
}
|
|
kd->resolve_symbol = resolver;
|
|
return (_kvm_open(kd, uf, mf, flag, errout));
|
|
}
|
|
|
|
int
|
|
kvm_close(kvm_t *kd)
|
|
{
|
|
int error = 0;
|
|
|
|
if (kd->vmst != NULL)
|
|
kd->arch->ka_freevtop(kd);
|
|
if (kd->pmfd >= 0)
|
|
error |= close(kd->pmfd);
|
|
if (kd->vmfd >= 0)
|
|
error |= close(kd->vmfd);
|
|
if (kd->nlfd >= 0)
|
|
error |= close(kd->nlfd);
|
|
if (kd->procbase != 0)
|
|
free((void *)kd->procbase);
|
|
if (kd->argbuf != 0)
|
|
free((void *) kd->argbuf);
|
|
if (kd->argspc != 0)
|
|
free((void *) kd->argspc);
|
|
if (kd->argv != 0)
|
|
free((void *)kd->argv);
|
|
free((void *)kd);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Walk the list of unresolved symbols, generate a new list and prefix the
|
|
* symbol names, try again, and merge back what we could resolve.
|
|
*/
|
|
static int
|
|
kvm_fdnlist_prefix(kvm_t *kd, struct kvm_nlist *nl, int missing,
|
|
const char *prefix, kvaddr_t (*validate_fn)(kvm_t *, kvaddr_t))
|
|
{
|
|
struct kvm_nlist *n, *np, *p;
|
|
char *cp, *ce;
|
|
const char *ccp;
|
|
size_t len;
|
|
int slen, unresolved;
|
|
|
|
/*
|
|
* Calculate the space we need to malloc for nlist and names.
|
|
* We are going to store the name twice for later lookups: once
|
|
* with the prefix and once the unmodified name delmited by \0.
|
|
*/
|
|
len = 0;
|
|
unresolved = 0;
|
|
for (p = nl; p->n_name && p->n_name[0]; ++p) {
|
|
if (p->n_type != N_UNDF)
|
|
continue;
|
|
len += sizeof(struct kvm_nlist) + strlen(prefix) +
|
|
2 * (strlen(p->n_name) + 1);
|
|
unresolved++;
|
|
}
|
|
if (unresolved == 0)
|
|
return (unresolved);
|
|
/* Add space for the terminating nlist entry. */
|
|
len += sizeof(struct kvm_nlist);
|
|
unresolved++;
|
|
|
|
/* Alloc one chunk for (nlist, [names]) and setup pointers. */
|
|
n = np = malloc(len);
|
|
bzero(n, len);
|
|
if (n == NULL)
|
|
return (missing);
|
|
cp = ce = (char *)np;
|
|
cp += unresolved * sizeof(struct kvm_nlist);
|
|
ce += len;
|
|
|
|
/* Generate shortened nlist with special prefix. */
|
|
unresolved = 0;
|
|
for (p = nl; p->n_name && p->n_name[0]; ++p) {
|
|
if (p->n_type != N_UNDF)
|
|
continue;
|
|
*np = *p;
|
|
/* Save the new\0orig. name so we can later match it again. */
|
|
slen = snprintf(cp, ce - cp, "%s%s%c%s", prefix,
|
|
(prefix[0] != '\0' && p->n_name[0] == '_') ?
|
|
(p->n_name + 1) : p->n_name, '\0', p->n_name);
|
|
if (slen < 0 || slen >= ce - cp)
|
|
continue;
|
|
np->n_name = cp;
|
|
cp += slen + 1;
|
|
np++;
|
|
unresolved++;
|
|
}
|
|
|
|
/* Do lookup on the reduced list. */
|
|
np = n;
|
|
unresolved = kvm_fdnlist(kd, np);
|
|
|
|
/* Check if we could resolve further symbols and update the list. */
|
|
if (unresolved >= 0 && unresolved < missing) {
|
|
/* Find the first freshly resolved entry. */
|
|
for (; np->n_name && np->n_name[0]; np++)
|
|
if (np->n_type != N_UNDF)
|
|
break;
|
|
/*
|
|
* The lists are both in the same order,
|
|
* so we can walk them in parallel.
|
|
*/
|
|
for (p = nl; np->n_name && np->n_name[0] &&
|
|
p->n_name && p->n_name[0]; ++p) {
|
|
if (p->n_type != N_UNDF)
|
|
continue;
|
|
/* Skip expanded name and compare to orig. one. */
|
|
ccp = np->n_name + strlen(np->n_name) + 1;
|
|
if (strcmp(ccp, p->n_name) != 0)
|
|
continue;
|
|
/* Update nlist with new, translated results. */
|
|
p->n_type = np->n_type;
|
|
if (validate_fn)
|
|
p->n_value = (*validate_fn)(kd, np->n_value);
|
|
else
|
|
p->n_value = np->n_value;
|
|
missing--;
|
|
/* Find next freshly resolved entry. */
|
|
for (np++; np->n_name && np->n_name[0]; np++)
|
|
if (np->n_type != N_UNDF)
|
|
break;
|
|
}
|
|
}
|
|
/* We could assert missing = unresolved here. */
|
|
|
|
free(n);
|
|
return (unresolved);
|
|
}
|
|
|
|
int
|
|
_kvm_nlist(kvm_t *kd, struct kvm_nlist *nl, int initialize)
|
|
{
|
|
struct kvm_nlist *p;
|
|
int nvalid;
|
|
struct kld_sym_lookup lookup;
|
|
int error;
|
|
const char *prefix = "";
|
|
char symname[1024]; /* XXX-BZ symbol name length limit? */
|
|
int tried_vnet, tried_dpcpu;
|
|
|
|
/*
|
|
* If we can't use the kld symbol lookup, revert to the
|
|
* slow library call.
|
|
*/
|
|
if (!ISALIVE(kd)) {
|
|
error = kvm_fdnlist(kd, nl);
|
|
if (error <= 0) /* Hard error or success. */
|
|
return (error);
|
|
|
|
if (_kvm_vnet_initialized(kd, initialize))
|
|
error = kvm_fdnlist_prefix(kd, nl, error,
|
|
VNET_SYMPREFIX, _kvm_vnet_validaddr);
|
|
|
|
if (error > 0 && _kvm_dpcpu_initialized(kd, initialize))
|
|
error = kvm_fdnlist_prefix(kd, nl, error,
|
|
DPCPU_SYMPREFIX, _kvm_dpcpu_validaddr);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* We can use the kld lookup syscall. Go through each nlist entry
|
|
* and look it up with a kldsym(2) syscall.
|
|
*/
|
|
nvalid = 0;
|
|
tried_vnet = 0;
|
|
tried_dpcpu = 0;
|
|
again:
|
|
for (p = nl; p->n_name && p->n_name[0]; ++p) {
|
|
if (p->n_type != N_UNDF)
|
|
continue;
|
|
|
|
lookup.version = sizeof(lookup);
|
|
lookup.symvalue = 0;
|
|
lookup.symsize = 0;
|
|
|
|
error = snprintf(symname, sizeof(symname), "%s%s", prefix,
|
|
(prefix[0] != '\0' && p->n_name[0] == '_') ?
|
|
(p->n_name + 1) : p->n_name);
|
|
if (error < 0 || error >= (int)sizeof(symname))
|
|
continue;
|
|
lookup.symname = symname;
|
|
if (lookup.symname[0] == '_')
|
|
lookup.symname++;
|
|
|
|
if (kldsym(0, KLDSYM_LOOKUP, &lookup) != -1) {
|
|
p->n_type = N_TEXT;
|
|
if (_kvm_vnet_initialized(kd, initialize) &&
|
|
strcmp(prefix, VNET_SYMPREFIX) == 0)
|
|
p->n_value =
|
|
_kvm_vnet_validaddr(kd, lookup.symvalue);
|
|
else if (_kvm_dpcpu_initialized(kd, initialize) &&
|
|
strcmp(prefix, DPCPU_SYMPREFIX) == 0)
|
|
p->n_value =
|
|
_kvm_dpcpu_validaddr(kd, lookup.symvalue);
|
|
else
|
|
p->n_value = lookup.symvalue;
|
|
++nvalid;
|
|
/* lookup.symsize */
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check the number of entries that weren't found. If they exist,
|
|
* try again with a prefix for virtualized or DPCPU symbol names.
|
|
*/
|
|
error = ((p - nl) - nvalid);
|
|
if (error && _kvm_vnet_initialized(kd, initialize) && !tried_vnet) {
|
|
tried_vnet = 1;
|
|
prefix = VNET_SYMPREFIX;
|
|
goto again;
|
|
}
|
|
if (error && _kvm_dpcpu_initialized(kd, initialize) && !tried_dpcpu) {
|
|
tried_dpcpu = 1;
|
|
prefix = DPCPU_SYMPREFIX;
|
|
goto again;
|
|
}
|
|
|
|
/*
|
|
* Return the number of entries that weren't found. If they exist,
|
|
* also fill internal error buffer.
|
|
*/
|
|
error = ((p - nl) - nvalid);
|
|
if (error)
|
|
_kvm_syserr(kd, kd->program, "kvm_nlist");
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
kvm_nlist2(kvm_t *kd, struct kvm_nlist *nl)
|
|
{
|
|
|
|
/*
|
|
* If called via the public interface, permit intialization of
|
|
* further virtualized modules on demand.
|
|
*/
|
|
return (_kvm_nlist(kd, nl, 1));
|
|
}
|
|
|
|
int
|
|
kvm_nlist(kvm_t *kd, struct nlist *nl)
|
|
{
|
|
struct kvm_nlist *kl;
|
|
int count, i, nfail;
|
|
|
|
/*
|
|
* Avoid reporting truncated addresses by failing for non-native
|
|
* cores.
|
|
*/
|
|
if (!kvm_native(kd)) {
|
|
_kvm_err(kd, kd->program, "kvm_nlist of non-native vmcore");
|
|
return (-1);
|
|
}
|
|
|
|
for (count = 0; nl[count].n_name != NULL && nl[count].n_name[0] != '\0';
|
|
count++)
|
|
;
|
|
if (count == 0)
|
|
return (0);
|
|
kl = calloc(count + 1, sizeof(*kl));
|
|
for (i = 0; i < count; i++)
|
|
kl[i].n_name = nl[i].n_name;
|
|
nfail = kvm_nlist2(kd, kl);
|
|
for (i = 0; i < count; i++) {
|
|
nl[i].n_type = kl[i].n_type;
|
|
nl[i].n_other = 0;
|
|
nl[i].n_desc = 0;
|
|
nl[i].n_value = kl[i].n_value;
|
|
}
|
|
return (nfail);
|
|
}
|
|
|
|
ssize_t
|
|
kvm_read(kvm_t *kd, u_long kva, void *buf, size_t len)
|
|
{
|
|
|
|
return (kvm_read2(kd, kva, buf, len));
|
|
}
|
|
|
|
ssize_t
|
|
kvm_read2(kvm_t *kd, kvaddr_t kva, void *buf, size_t len)
|
|
{
|
|
int cc;
|
|
ssize_t cr;
|
|
off_t pa;
|
|
char *cp;
|
|
|
|
if (ISALIVE(kd)) {
|
|
/*
|
|
* We're using /dev/kmem. Just read straight from the
|
|
* device and let the active kernel do the address translation.
|
|
*/
|
|
errno = 0;
|
|
if (lseek(kd->vmfd, (off_t)kva, 0) == -1 && errno != 0) {
|
|
_kvm_err(kd, 0, "invalid address (0x%jx)",
|
|
(uintmax_t)kva);
|
|
return (-1);
|
|
}
|
|
cr = read(kd->vmfd, buf, len);
|
|
if (cr < 0) {
|
|
_kvm_syserr(kd, 0, "kvm_read");
|
|
return (-1);
|
|
} else if (cr < (ssize_t)len)
|
|
_kvm_err(kd, kd->program, "short read");
|
|
return (cr);
|
|
}
|
|
|
|
cp = buf;
|
|
while (len > 0) {
|
|
cc = kd->arch->ka_kvatop(kd, kva, &pa);
|
|
if (cc == 0)
|
|
return (-1);
|
|
if (cc > (ssize_t)len)
|
|
cc = len;
|
|
errno = 0;
|
|
if (lseek(kd->pmfd, pa, 0) == -1 && errno != 0) {
|
|
_kvm_syserr(kd, 0, _PATH_MEM);
|
|
break;
|
|
}
|
|
cr = read(kd->pmfd, cp, cc);
|
|
if (cr < 0) {
|
|
_kvm_syserr(kd, kd->program, "kvm_read");
|
|
break;
|
|
}
|
|
/*
|
|
* If ka_kvatop returns a bogus value or our core file is
|
|
* truncated, we might wind up seeking beyond the end of the
|
|
* core file in which case the read will return 0 (EOF).
|
|
*/
|
|
if (cr == 0)
|
|
break;
|
|
cp += cr;
|
|
kva += cr;
|
|
len -= cr;
|
|
}
|
|
|
|
return (cp - (char *)buf);
|
|
}
|
|
|
|
ssize_t
|
|
kvm_write(kvm_t *kd, u_long kva, const void *buf, size_t len)
|
|
{
|
|
int cc;
|
|
|
|
if (ISALIVE(kd)) {
|
|
/*
|
|
* Just like kvm_read, only we write.
|
|
*/
|
|
errno = 0;
|
|
if (lseek(kd->vmfd, (off_t)kva, 0) == -1 && errno != 0) {
|
|
_kvm_err(kd, 0, "invalid address (%lx)", kva);
|
|
return (-1);
|
|
}
|
|
cc = write(kd->vmfd, buf, len);
|
|
if (cc < 0) {
|
|
_kvm_syserr(kd, 0, "kvm_write");
|
|
return (-1);
|
|
} else if ((size_t)cc < len)
|
|
_kvm_err(kd, kd->program, "short write");
|
|
return (cc);
|
|
} else {
|
|
_kvm_err(kd, kd->program,
|
|
"kvm_write not implemented for dead kernels");
|
|
return (-1);
|
|
}
|
|
/* NOTREACHED */
|
|
}
|
|
|
|
int
|
|
kvm_native(kvm_t *kd)
|
|
{
|
|
|
|
if (ISALIVE(kd))
|
|
return (1);
|
|
return (kd->arch->ka_native(kd));
|
|
}
|