mirror of
https://git.FreeBSD.org/src.git
synced 2025-01-13 14:40:22 +00:00
4087 lines
109 KiB
C
4087 lines
109 KiB
C
/* Convert RTL to assembler code and output it, for GNU compiler.
|
||
Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
|
||
1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
|
||
Free Software Foundation, Inc.
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify it under
|
||
the terms of the GNU General Public License as published by the Free
|
||
Software Foundation; either version 2, or (at your option) any later
|
||
version.
|
||
|
||
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
||
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING. If not, write to the Free
|
||
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
|
||
02110-1301, USA. */
|
||
|
||
/* This is the final pass of the compiler.
|
||
It looks at the rtl code for a function and outputs assembler code.
|
||
|
||
Call `final_start_function' to output the assembler code for function entry,
|
||
`final' to output assembler code for some RTL code,
|
||
`final_end_function' to output assembler code for function exit.
|
||
If a function is compiled in several pieces, each piece is
|
||
output separately with `final'.
|
||
|
||
Some optimizations are also done at this level.
|
||
Move instructions that were made unnecessary by good register allocation
|
||
are detected and omitted from the output. (Though most of these
|
||
are removed by the last jump pass.)
|
||
|
||
Instructions to set the condition codes are omitted when it can be
|
||
seen that the condition codes already had the desired values.
|
||
|
||
In some cases it is sufficient if the inherited condition codes
|
||
have related values, but this may require the following insn
|
||
(the one that tests the condition codes) to be modified.
|
||
|
||
The code for the function prologue and epilogue are generated
|
||
directly in assembler by the target functions function_prologue and
|
||
function_epilogue. Those instructions never exist as rtl. */
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "coretypes.h"
|
||
#include "tm.h"
|
||
|
||
#include "tree.h"
|
||
#include "rtl.h"
|
||
#include "tm_p.h"
|
||
#include "regs.h"
|
||
#include "insn-config.h"
|
||
#include "insn-attr.h"
|
||
#include "recog.h"
|
||
#include "conditions.h"
|
||
#include "flags.h"
|
||
#include "real.h"
|
||
#include "hard-reg-set.h"
|
||
#include "output.h"
|
||
#include "except.h"
|
||
#include "function.h"
|
||
#include "toplev.h"
|
||
#include "reload.h"
|
||
#include "intl.h"
|
||
#include "basic-block.h"
|
||
#include "target.h"
|
||
#include "debug.h"
|
||
#include "expr.h"
|
||
#include "cfglayout.h"
|
||
#include "tree-pass.h"
|
||
#include "timevar.h"
|
||
#include "cgraph.h"
|
||
#include "coverage.h"
|
||
|
||
#ifdef XCOFF_DEBUGGING_INFO
|
||
#include "xcoffout.h" /* Needed for external data
|
||
declarations for e.g. AIX 4.x. */
|
||
#endif
|
||
|
||
#if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
|
||
#include "dwarf2out.h"
|
||
#endif
|
||
|
||
#ifdef DBX_DEBUGGING_INFO
|
||
#include "dbxout.h"
|
||
#endif
|
||
|
||
#ifdef SDB_DEBUGGING_INFO
|
||
#include "sdbout.h"
|
||
#endif
|
||
|
||
/* If we aren't using cc0, CC_STATUS_INIT shouldn't exist. So define a
|
||
null default for it to save conditionalization later. */
|
||
#ifndef CC_STATUS_INIT
|
||
#define CC_STATUS_INIT
|
||
#endif
|
||
|
||
/* How to start an assembler comment. */
|
||
#ifndef ASM_COMMENT_START
|
||
#define ASM_COMMENT_START ";#"
|
||
#endif
|
||
|
||
/* Is the given character a logical line separator for the assembler? */
|
||
#ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
|
||
#define IS_ASM_LOGICAL_LINE_SEPARATOR(C) ((C) == ';')
|
||
#endif
|
||
|
||
#ifndef JUMP_TABLES_IN_TEXT_SECTION
|
||
#define JUMP_TABLES_IN_TEXT_SECTION 0
|
||
#endif
|
||
|
||
/* Bitflags used by final_scan_insn. */
|
||
#define SEEN_BB 1
|
||
#define SEEN_NOTE 2
|
||
#define SEEN_EMITTED 4
|
||
|
||
/* Last insn processed by final_scan_insn. */
|
||
static rtx debug_insn;
|
||
rtx current_output_insn;
|
||
|
||
/* Line number of last NOTE. */
|
||
static int last_linenum;
|
||
|
||
/* Highest line number in current block. */
|
||
static int high_block_linenum;
|
||
|
||
/* Likewise for function. */
|
||
static int high_function_linenum;
|
||
|
||
/* Filename of last NOTE. */
|
||
static const char *last_filename;
|
||
|
||
/* Whether to force emission of a line note before the next insn. */
|
||
static bool force_source_line = false;
|
||
|
||
extern const int length_unit_log; /* This is defined in insn-attrtab.c. */
|
||
|
||
/* Nonzero while outputting an `asm' with operands.
|
||
This means that inconsistencies are the user's fault, so don't die.
|
||
The precise value is the insn being output, to pass to error_for_asm. */
|
||
rtx this_is_asm_operands;
|
||
|
||
/* Number of operands of this insn, for an `asm' with operands. */
|
||
static unsigned int insn_noperands;
|
||
|
||
/* Compare optimization flag. */
|
||
|
||
static rtx last_ignored_compare = 0;
|
||
|
||
/* Assign a unique number to each insn that is output.
|
||
This can be used to generate unique local labels. */
|
||
|
||
static int insn_counter = 0;
|
||
|
||
#ifdef HAVE_cc0
|
||
/* This variable contains machine-dependent flags (defined in tm.h)
|
||
set and examined by output routines
|
||
that describe how to interpret the condition codes properly. */
|
||
|
||
CC_STATUS cc_status;
|
||
|
||
/* During output of an insn, this contains a copy of cc_status
|
||
from before the insn. */
|
||
|
||
CC_STATUS cc_prev_status;
|
||
#endif
|
||
|
||
/* Indexed by hardware reg number, is 1 if that register is ever
|
||
used in the current function.
|
||
|
||
In life_analysis, or in stupid_life_analysis, this is set
|
||
up to record the hard regs used explicitly. Reload adds
|
||
in the hard regs used for holding pseudo regs. Final uses
|
||
it to generate the code in the function prologue and epilogue
|
||
to save and restore registers as needed. */
|
||
|
||
char regs_ever_live[FIRST_PSEUDO_REGISTER];
|
||
|
||
/* Like regs_ever_live, but 1 if a reg is set or clobbered from an asm.
|
||
Unlike regs_ever_live, elements of this array corresponding to
|
||
eliminable regs like the frame pointer are set if an asm sets them. */
|
||
|
||
char regs_asm_clobbered[FIRST_PSEUDO_REGISTER];
|
||
|
||
/* Nonzero means current function must be given a frame pointer.
|
||
Initialized in function.c to 0. Set only in reload1.c as per
|
||
the needs of the function. */
|
||
|
||
int frame_pointer_needed;
|
||
|
||
/* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
|
||
|
||
static int block_depth;
|
||
|
||
/* Nonzero if have enabled APP processing of our assembler output. */
|
||
|
||
static int app_on;
|
||
|
||
/* If we are outputting an insn sequence, this contains the sequence rtx.
|
||
Zero otherwise. */
|
||
|
||
rtx final_sequence;
|
||
|
||
#ifdef ASSEMBLER_DIALECT
|
||
|
||
/* Number of the assembler dialect to use, starting at 0. */
|
||
static int dialect_number;
|
||
#endif
|
||
|
||
#ifdef HAVE_conditional_execution
|
||
/* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
|
||
rtx current_insn_predicate;
|
||
#endif
|
||
|
||
#ifdef HAVE_ATTR_length
|
||
static int asm_insn_count (rtx);
|
||
#endif
|
||
static void profile_function (FILE *);
|
||
static void profile_after_prologue (FILE *);
|
||
static bool notice_source_line (rtx);
|
||
static rtx walk_alter_subreg (rtx *);
|
||
static void output_asm_name (void);
|
||
static void output_alternate_entry_point (FILE *, rtx);
|
||
static tree get_mem_expr_from_op (rtx, int *);
|
||
static void output_asm_operand_names (rtx *, int *, int);
|
||
static void output_operand (rtx, int);
|
||
#ifdef LEAF_REGISTERS
|
||
static void leaf_renumber_regs (rtx);
|
||
#endif
|
||
#ifdef HAVE_cc0
|
||
static int alter_cond (rtx);
|
||
#endif
|
||
#ifndef ADDR_VEC_ALIGN
|
||
static int final_addr_vec_align (rtx);
|
||
#endif
|
||
#ifdef HAVE_ATTR_length
|
||
static int align_fuzz (rtx, rtx, int, unsigned);
|
||
#endif
|
||
|
||
/* Initialize data in final at the beginning of a compilation. */
|
||
|
||
void
|
||
init_final (const char *filename ATTRIBUTE_UNUSED)
|
||
{
|
||
app_on = 0;
|
||
final_sequence = 0;
|
||
|
||
#ifdef ASSEMBLER_DIALECT
|
||
dialect_number = ASSEMBLER_DIALECT;
|
||
#endif
|
||
}
|
||
|
||
/* Default target function prologue and epilogue assembler output.
|
||
|
||
If not overridden for epilogue code, then the function body itself
|
||
contains return instructions wherever needed. */
|
||
void
|
||
default_function_pro_epilogue (FILE *file ATTRIBUTE_UNUSED,
|
||
HOST_WIDE_INT size ATTRIBUTE_UNUSED)
|
||
{
|
||
}
|
||
|
||
/* Default target hook that outputs nothing to a stream. */
|
||
void
|
||
no_asm_to_stream (FILE *file ATTRIBUTE_UNUSED)
|
||
{
|
||
}
|
||
|
||
/* Enable APP processing of subsequent output.
|
||
Used before the output from an `asm' statement. */
|
||
|
||
void
|
||
app_enable (void)
|
||
{
|
||
if (! app_on)
|
||
{
|
||
fputs (ASM_APP_ON, asm_out_file);
|
||
app_on = 1;
|
||
}
|
||
}
|
||
|
||
/* Disable APP processing of subsequent output.
|
||
Called from varasm.c before most kinds of output. */
|
||
|
||
void
|
||
app_disable (void)
|
||
{
|
||
if (app_on)
|
||
{
|
||
fputs (ASM_APP_OFF, asm_out_file);
|
||
app_on = 0;
|
||
}
|
||
}
|
||
|
||
/* Return the number of slots filled in the current
|
||
delayed branch sequence (we don't count the insn needing the
|
||
delay slot). Zero if not in a delayed branch sequence. */
|
||
|
||
#ifdef DELAY_SLOTS
|
||
int
|
||
dbr_sequence_length (void)
|
||
{
|
||
if (final_sequence != 0)
|
||
return XVECLEN (final_sequence, 0) - 1;
|
||
else
|
||
return 0;
|
||
}
|
||
#endif
|
||
|
||
/* The next two pages contain routines used to compute the length of an insn
|
||
and to shorten branches. */
|
||
|
||
/* Arrays for insn lengths, and addresses. The latter is referenced by
|
||
`insn_current_length'. */
|
||
|
||
static int *insn_lengths;
|
||
|
||
varray_type insn_addresses_;
|
||
|
||
/* Max uid for which the above arrays are valid. */
|
||
static int insn_lengths_max_uid;
|
||
|
||
/* Address of insn being processed. Used by `insn_current_length'. */
|
||
int insn_current_address;
|
||
|
||
/* Address of insn being processed in previous iteration. */
|
||
int insn_last_address;
|
||
|
||
/* known invariant alignment of insn being processed. */
|
||
int insn_current_align;
|
||
|
||
/* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
|
||
gives the next following alignment insn that increases the known
|
||
alignment, or NULL_RTX if there is no such insn.
|
||
For any alignment obtained this way, we can again index uid_align with
|
||
its uid to obtain the next following align that in turn increases the
|
||
alignment, till we reach NULL_RTX; the sequence obtained this way
|
||
for each insn we'll call the alignment chain of this insn in the following
|
||
comments. */
|
||
|
||
struct label_alignment
|
||
{
|
||
short alignment;
|
||
short max_skip;
|
||
};
|
||
|
||
static rtx *uid_align;
|
||
static int *uid_shuid;
|
||
static struct label_alignment *label_align;
|
||
|
||
/* Indicate that branch shortening hasn't yet been done. */
|
||
|
||
void
|
||
init_insn_lengths (void)
|
||
{
|
||
if (uid_shuid)
|
||
{
|
||
free (uid_shuid);
|
||
uid_shuid = 0;
|
||
}
|
||
if (insn_lengths)
|
||
{
|
||
free (insn_lengths);
|
||
insn_lengths = 0;
|
||
insn_lengths_max_uid = 0;
|
||
}
|
||
#ifdef HAVE_ATTR_length
|
||
INSN_ADDRESSES_FREE ();
|
||
#endif
|
||
if (uid_align)
|
||
{
|
||
free (uid_align);
|
||
uid_align = 0;
|
||
}
|
||
}
|
||
|
||
/* Obtain the current length of an insn. If branch shortening has been done,
|
||
get its actual length. Otherwise, use FALLBACK_FN to calculate the
|
||
length. */
|
||
static inline int
|
||
get_attr_length_1 (rtx insn ATTRIBUTE_UNUSED,
|
||
int (*fallback_fn) (rtx) ATTRIBUTE_UNUSED)
|
||
{
|
||
#ifdef HAVE_ATTR_length
|
||
rtx body;
|
||
int i;
|
||
int length = 0;
|
||
|
||
if (insn_lengths_max_uid > INSN_UID (insn))
|
||
return insn_lengths[INSN_UID (insn)];
|
||
else
|
||
switch (GET_CODE (insn))
|
||
{
|
||
case NOTE:
|
||
case BARRIER:
|
||
case CODE_LABEL:
|
||
return 0;
|
||
|
||
case CALL_INSN:
|
||
length = fallback_fn (insn);
|
||
break;
|
||
|
||
case JUMP_INSN:
|
||
body = PATTERN (insn);
|
||
if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
|
||
{
|
||
/* Alignment is machine-dependent and should be handled by
|
||
ADDR_VEC_ALIGN. */
|
||
}
|
||
else
|
||
length = fallback_fn (insn);
|
||
break;
|
||
|
||
case INSN:
|
||
body = PATTERN (insn);
|
||
if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
|
||
return 0;
|
||
|
||
else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
|
||
length = asm_insn_count (body) * fallback_fn (insn);
|
||
else if (GET_CODE (body) == SEQUENCE)
|
||
for (i = 0; i < XVECLEN (body, 0); i++)
|
||
length += get_attr_length (XVECEXP (body, 0, i));
|
||
else
|
||
length = fallback_fn (insn);
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
#ifdef ADJUST_INSN_LENGTH
|
||
ADJUST_INSN_LENGTH (insn, length);
|
||
#endif
|
||
return length;
|
||
#else /* not HAVE_ATTR_length */
|
||
return 0;
|
||
#define insn_default_length 0
|
||
#define insn_min_length 0
|
||
#endif /* not HAVE_ATTR_length */
|
||
}
|
||
|
||
/* Obtain the current length of an insn. If branch shortening has been done,
|
||
get its actual length. Otherwise, get its maximum length. */
|
||
int
|
||
get_attr_length (rtx insn)
|
||
{
|
||
return get_attr_length_1 (insn, insn_default_length);
|
||
}
|
||
|
||
/* Obtain the current length of an insn. If branch shortening has been done,
|
||
get its actual length. Otherwise, get its minimum length. */
|
||
int
|
||
get_attr_min_length (rtx insn)
|
||
{
|
||
return get_attr_length_1 (insn, insn_min_length);
|
||
}
|
||
|
||
/* Code to handle alignment inside shorten_branches. */
|
||
|
||
/* Here is an explanation how the algorithm in align_fuzz can give
|
||
proper results:
|
||
|
||
Call a sequence of instructions beginning with alignment point X
|
||
and continuing until the next alignment point `block X'. When `X'
|
||
is used in an expression, it means the alignment value of the
|
||
alignment point.
|
||
|
||
Call the distance between the start of the first insn of block X, and
|
||
the end of the last insn of block X `IX', for the `inner size of X'.
|
||
This is clearly the sum of the instruction lengths.
|
||
|
||
Likewise with the next alignment-delimited block following X, which we
|
||
shall call block Y.
|
||
|
||
Call the distance between the start of the first insn of block X, and
|
||
the start of the first insn of block Y `OX', for the `outer size of X'.
|
||
|
||
The estimated padding is then OX - IX.
|
||
|
||
OX can be safely estimated as
|
||
|
||
if (X >= Y)
|
||
OX = round_up(IX, Y)
|
||
else
|
||
OX = round_up(IX, X) + Y - X
|
||
|
||
Clearly est(IX) >= real(IX), because that only depends on the
|
||
instruction lengths, and those being overestimated is a given.
|
||
|
||
Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
|
||
we needn't worry about that when thinking about OX.
|
||
|
||
When X >= Y, the alignment provided by Y adds no uncertainty factor
|
||
for branch ranges starting before X, so we can just round what we have.
|
||
But when X < Y, we don't know anything about the, so to speak,
|
||
`middle bits', so we have to assume the worst when aligning up from an
|
||
address mod X to one mod Y, which is Y - X. */
|
||
|
||
#ifndef LABEL_ALIGN
|
||
#define LABEL_ALIGN(LABEL) align_labels_log
|
||
#endif
|
||
|
||
#ifndef LABEL_ALIGN_MAX_SKIP
|
||
#define LABEL_ALIGN_MAX_SKIP align_labels_max_skip
|
||
#endif
|
||
|
||
#ifndef LOOP_ALIGN
|
||
#define LOOP_ALIGN(LABEL) align_loops_log
|
||
#endif
|
||
|
||
#ifndef LOOP_ALIGN_MAX_SKIP
|
||
#define LOOP_ALIGN_MAX_SKIP align_loops_max_skip
|
||
#endif
|
||
|
||
#ifndef LABEL_ALIGN_AFTER_BARRIER
|
||
#define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
|
||
#endif
|
||
|
||
#ifndef LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP
|
||
#define LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP 0
|
||
#endif
|
||
|
||
#ifndef JUMP_ALIGN
|
||
#define JUMP_ALIGN(LABEL) align_jumps_log
|
||
#endif
|
||
|
||
#ifndef JUMP_ALIGN_MAX_SKIP
|
||
#define JUMP_ALIGN_MAX_SKIP align_jumps_max_skip
|
||
#endif
|
||
|
||
#ifndef ADDR_VEC_ALIGN
|
||
static int
|
||
final_addr_vec_align (rtx addr_vec)
|
||
{
|
||
int align = GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec)));
|
||
|
||
if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT)
|
||
align = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
|
||
return exact_log2 (align);
|
||
|
||
}
|
||
|
||
#define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
|
||
#endif
|
||
|
||
#ifndef INSN_LENGTH_ALIGNMENT
|
||
#define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
|
||
#endif
|
||
|
||
#define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
|
||
|
||
static int min_labelno, max_labelno;
|
||
|
||
#define LABEL_TO_ALIGNMENT(LABEL) \
|
||
(label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
|
||
|
||
#define LABEL_TO_MAX_SKIP(LABEL) \
|
||
(label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
|
||
|
||
/* For the benefit of port specific code do this also as a function. */
|
||
|
||
int
|
||
label_to_alignment (rtx label)
|
||
{
|
||
return LABEL_TO_ALIGNMENT (label);
|
||
}
|
||
|
||
#ifdef HAVE_ATTR_length
|
||
/* The differences in addresses
|
||
between a branch and its target might grow or shrink depending on
|
||
the alignment the start insn of the range (the branch for a forward
|
||
branch or the label for a backward branch) starts out on; if these
|
||
differences are used naively, they can even oscillate infinitely.
|
||
We therefore want to compute a 'worst case' address difference that
|
||
is independent of the alignment the start insn of the range end
|
||
up on, and that is at least as large as the actual difference.
|
||
The function align_fuzz calculates the amount we have to add to the
|
||
naively computed difference, by traversing the part of the alignment
|
||
chain of the start insn of the range that is in front of the end insn
|
||
of the range, and considering for each alignment the maximum amount
|
||
that it might contribute to a size increase.
|
||
|
||
For casesi tables, we also want to know worst case minimum amounts of
|
||
address difference, in case a machine description wants to introduce
|
||
some common offset that is added to all offsets in a table.
|
||
For this purpose, align_fuzz with a growth argument of 0 computes the
|
||
appropriate adjustment. */
|
||
|
||
/* Compute the maximum delta by which the difference of the addresses of
|
||
START and END might grow / shrink due to a different address for start
|
||
which changes the size of alignment insns between START and END.
|
||
KNOWN_ALIGN_LOG is the alignment known for START.
|
||
GROWTH should be ~0 if the objective is to compute potential code size
|
||
increase, and 0 if the objective is to compute potential shrink.
|
||
The return value is undefined for any other value of GROWTH. */
|
||
|
||
static int
|
||
align_fuzz (rtx start, rtx end, int known_align_log, unsigned int growth)
|
||
{
|
||
int uid = INSN_UID (start);
|
||
rtx align_label;
|
||
int known_align = 1 << known_align_log;
|
||
int end_shuid = INSN_SHUID (end);
|
||
int fuzz = 0;
|
||
|
||
for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid])
|
||
{
|
||
int align_addr, new_align;
|
||
|
||
uid = INSN_UID (align_label);
|
||
align_addr = INSN_ADDRESSES (uid) - insn_lengths[uid];
|
||
if (uid_shuid[uid] > end_shuid)
|
||
break;
|
||
known_align_log = LABEL_TO_ALIGNMENT (align_label);
|
||
new_align = 1 << known_align_log;
|
||
if (new_align < known_align)
|
||
continue;
|
||
fuzz += (-align_addr ^ growth) & (new_align - known_align);
|
||
known_align = new_align;
|
||
}
|
||
return fuzz;
|
||
}
|
||
|
||
/* Compute a worst-case reference address of a branch so that it
|
||
can be safely used in the presence of aligned labels. Since the
|
||
size of the branch itself is unknown, the size of the branch is
|
||
not included in the range. I.e. for a forward branch, the reference
|
||
address is the end address of the branch as known from the previous
|
||
branch shortening pass, minus a value to account for possible size
|
||
increase due to alignment. For a backward branch, it is the start
|
||
address of the branch as known from the current pass, plus a value
|
||
to account for possible size increase due to alignment.
|
||
NB.: Therefore, the maximum offset allowed for backward branches needs
|
||
to exclude the branch size. */
|
||
|
||
int
|
||
insn_current_reference_address (rtx branch)
|
||
{
|
||
rtx dest, seq;
|
||
int seq_uid;
|
||
|
||
if (! INSN_ADDRESSES_SET_P ())
|
||
return 0;
|
||
|
||
seq = NEXT_INSN (PREV_INSN (branch));
|
||
seq_uid = INSN_UID (seq);
|
||
if (!JUMP_P (branch))
|
||
/* This can happen for example on the PA; the objective is to know the
|
||
offset to address something in front of the start of the function.
|
||
Thus, we can treat it like a backward branch.
|
||
We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
|
||
any alignment we'd encounter, so we skip the call to align_fuzz. */
|
||
return insn_current_address;
|
||
dest = JUMP_LABEL (branch);
|
||
|
||
/* BRANCH has no proper alignment chain set, so use SEQ.
|
||
BRANCH also has no INSN_SHUID. */
|
||
if (INSN_SHUID (seq) < INSN_SHUID (dest))
|
||
{
|
||
/* Forward branch. */
|
||
return (insn_last_address + insn_lengths[seq_uid]
|
||
- align_fuzz (seq, dest, length_unit_log, ~0));
|
||
}
|
||
else
|
||
{
|
||
/* Backward branch. */
|
||
return (insn_current_address
|
||
+ align_fuzz (dest, seq, length_unit_log, ~0));
|
||
}
|
||
}
|
||
#endif /* HAVE_ATTR_length */
|
||
|
||
/* Compute branch alignments based on frequency information in the
|
||
CFG. */
|
||
|
||
static unsigned int
|
||
compute_alignments (void)
|
||
{
|
||
int log, max_skip, max_log;
|
||
basic_block bb;
|
||
|
||
if (label_align)
|
||
{
|
||
free (label_align);
|
||
label_align = 0;
|
||
}
|
||
|
||
max_labelno = max_label_num ();
|
||
min_labelno = get_first_label_num ();
|
||
label_align = XCNEWVEC (struct label_alignment, max_labelno - min_labelno + 1);
|
||
|
||
/* If not optimizing or optimizing for size, don't assign any alignments. */
|
||
if (! optimize || optimize_size)
|
||
return 0;
|
||
|
||
FOR_EACH_BB (bb)
|
||
{
|
||
rtx label = BB_HEAD (bb);
|
||
int fallthru_frequency = 0, branch_frequency = 0, has_fallthru = 0;
|
||
edge e;
|
||
edge_iterator ei;
|
||
|
||
if (!LABEL_P (label)
|
||
|| probably_never_executed_bb_p (bb))
|
||
continue;
|
||
max_log = LABEL_ALIGN (label);
|
||
max_skip = LABEL_ALIGN_MAX_SKIP;
|
||
|
||
FOR_EACH_EDGE (e, ei, bb->preds)
|
||
{
|
||
if (e->flags & EDGE_FALLTHRU)
|
||
has_fallthru = 1, fallthru_frequency += EDGE_FREQUENCY (e);
|
||
else
|
||
branch_frequency += EDGE_FREQUENCY (e);
|
||
}
|
||
|
||
/* There are two purposes to align block with no fallthru incoming edge:
|
||
1) to avoid fetch stalls when branch destination is near cache boundary
|
||
2) to improve cache efficiency in case the previous block is not executed
|
||
(so it does not need to be in the cache).
|
||
|
||
We to catch first case, we align frequently executed blocks.
|
||
To catch the second, we align blocks that are executed more frequently
|
||
than the predecessor and the predecessor is likely to not be executed
|
||
when function is called. */
|
||
|
||
if (!has_fallthru
|
||
&& (branch_frequency > BB_FREQ_MAX / 10
|
||
|| (bb->frequency > bb->prev_bb->frequency * 10
|
||
&& (bb->prev_bb->frequency
|
||
<= ENTRY_BLOCK_PTR->frequency / 2))))
|
||
{
|
||
log = JUMP_ALIGN (label);
|
||
if (max_log < log)
|
||
{
|
||
max_log = log;
|
||
max_skip = JUMP_ALIGN_MAX_SKIP;
|
||
}
|
||
}
|
||
/* In case block is frequent and reached mostly by non-fallthru edge,
|
||
align it. It is most likely a first block of loop. */
|
||
if (has_fallthru
|
||
&& maybe_hot_bb_p (bb)
|
||
&& branch_frequency + fallthru_frequency > BB_FREQ_MAX / 10
|
||
&& branch_frequency > fallthru_frequency * 2)
|
||
{
|
||
log = LOOP_ALIGN (label);
|
||
if (max_log < log)
|
||
{
|
||
max_log = log;
|
||
max_skip = LOOP_ALIGN_MAX_SKIP;
|
||
}
|
||
}
|
||
LABEL_TO_ALIGNMENT (label) = max_log;
|
||
LABEL_TO_MAX_SKIP (label) = max_skip;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
struct tree_opt_pass pass_compute_alignments =
|
||
{
|
||
NULL, /* name */
|
||
NULL, /* gate */
|
||
compute_alignments, /* execute */
|
||
NULL, /* sub */
|
||
NULL, /* next */
|
||
0, /* static_pass_number */
|
||
0, /* tv_id */
|
||
0, /* properties_required */
|
||
0, /* properties_provided */
|
||
0, /* properties_destroyed */
|
||
0, /* todo_flags_start */
|
||
0, /* todo_flags_finish */
|
||
0 /* letter */
|
||
};
|
||
|
||
|
||
/* Make a pass over all insns and compute their actual lengths by shortening
|
||
any branches of variable length if possible. */
|
||
|
||
/* shorten_branches might be called multiple times: for example, the SH
|
||
port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
|
||
In order to do this, it needs proper length information, which it obtains
|
||
by calling shorten_branches. This cannot be collapsed with
|
||
shorten_branches itself into a single pass unless we also want to integrate
|
||
reorg.c, since the branch splitting exposes new instructions with delay
|
||
slots. */
|
||
|
||
void
|
||
shorten_branches (rtx first ATTRIBUTE_UNUSED)
|
||
{
|
||
rtx insn;
|
||
int max_uid;
|
||
int i;
|
||
int max_log;
|
||
int max_skip;
|
||
#ifdef HAVE_ATTR_length
|
||
#define MAX_CODE_ALIGN 16
|
||
rtx seq;
|
||
int something_changed = 1;
|
||
char *varying_length;
|
||
rtx body;
|
||
int uid;
|
||
rtx align_tab[MAX_CODE_ALIGN];
|
||
|
||
#endif
|
||
|
||
/* Compute maximum UID and allocate label_align / uid_shuid. */
|
||
max_uid = get_max_uid ();
|
||
|
||
/* Free uid_shuid before reallocating it. */
|
||
free (uid_shuid);
|
||
|
||
uid_shuid = XNEWVEC (int, max_uid);
|
||
|
||
if (max_labelno != max_label_num ())
|
||
{
|
||
int old = max_labelno;
|
||
int n_labels;
|
||
int n_old_labels;
|
||
|
||
max_labelno = max_label_num ();
|
||
|
||
n_labels = max_labelno - min_labelno + 1;
|
||
n_old_labels = old - min_labelno + 1;
|
||
|
||
label_align = xrealloc (label_align,
|
||
n_labels * sizeof (struct label_alignment));
|
||
|
||
/* Range of labels grows monotonically in the function. Failing here
|
||
means that the initialization of array got lost. */
|
||
gcc_assert (n_old_labels <= n_labels);
|
||
|
||
memset (label_align + n_old_labels, 0,
|
||
(n_labels - n_old_labels) * sizeof (struct label_alignment));
|
||
}
|
||
|
||
/* Initialize label_align and set up uid_shuid to be strictly
|
||
monotonically rising with insn order. */
|
||
/* We use max_log here to keep track of the maximum alignment we want to
|
||
impose on the next CODE_LABEL (or the current one if we are processing
|
||
the CODE_LABEL itself). */
|
||
|
||
max_log = 0;
|
||
max_skip = 0;
|
||
|
||
for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
|
||
{
|
||
int log;
|
||
|
||
INSN_SHUID (insn) = i++;
|
||
if (INSN_P (insn))
|
||
continue;
|
||
|
||
if (LABEL_P (insn))
|
||
{
|
||
rtx next;
|
||
|
||
/* Merge in alignments computed by compute_alignments. */
|
||
log = LABEL_TO_ALIGNMENT (insn);
|
||
if (max_log < log)
|
||
{
|
||
max_log = log;
|
||
max_skip = LABEL_TO_MAX_SKIP (insn);
|
||
}
|
||
|
||
log = LABEL_ALIGN (insn);
|
||
if (max_log < log)
|
||
{
|
||
max_log = log;
|
||
max_skip = LABEL_ALIGN_MAX_SKIP;
|
||
}
|
||
next = next_nonnote_insn (insn);
|
||
/* ADDR_VECs only take room if read-only data goes into the text
|
||
section. */
|
||
if (JUMP_TABLES_IN_TEXT_SECTION
|
||
|| readonly_data_section == text_section)
|
||
if (next && JUMP_P (next))
|
||
{
|
||
rtx nextbody = PATTERN (next);
|
||
if (GET_CODE (nextbody) == ADDR_VEC
|
||
|| GET_CODE (nextbody) == ADDR_DIFF_VEC)
|
||
{
|
||
log = ADDR_VEC_ALIGN (next);
|
||
if (max_log < log)
|
||
{
|
||
max_log = log;
|
||
max_skip = LABEL_ALIGN_MAX_SKIP;
|
||
}
|
||
}
|
||
}
|
||
LABEL_TO_ALIGNMENT (insn) = max_log;
|
||
LABEL_TO_MAX_SKIP (insn) = max_skip;
|
||
max_log = 0;
|
||
max_skip = 0;
|
||
}
|
||
else if (BARRIER_P (insn))
|
||
{
|
||
rtx label;
|
||
|
||
for (label = insn; label && ! INSN_P (label);
|
||
label = NEXT_INSN (label))
|
||
if (LABEL_P (label))
|
||
{
|
||
log = LABEL_ALIGN_AFTER_BARRIER (insn);
|
||
if (max_log < log)
|
||
{
|
||
max_log = log;
|
||
max_skip = LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP;
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
#ifdef HAVE_ATTR_length
|
||
|
||
/* Allocate the rest of the arrays. */
|
||
insn_lengths = XNEWVEC (int, max_uid);
|
||
insn_lengths_max_uid = max_uid;
|
||
/* Syntax errors can lead to labels being outside of the main insn stream.
|
||
Initialize insn_addresses, so that we get reproducible results. */
|
||
INSN_ADDRESSES_ALLOC (max_uid);
|
||
|
||
varying_length = XCNEWVEC (char, max_uid);
|
||
|
||
/* Initialize uid_align. We scan instructions
|
||
from end to start, and keep in align_tab[n] the last seen insn
|
||
that does an alignment of at least n+1, i.e. the successor
|
||
in the alignment chain for an insn that does / has a known
|
||
alignment of n. */
|
||
uid_align = XCNEWVEC (rtx, max_uid);
|
||
|
||
for (i = MAX_CODE_ALIGN; --i >= 0;)
|
||
align_tab[i] = NULL_RTX;
|
||
seq = get_last_insn ();
|
||
for (; seq; seq = PREV_INSN (seq))
|
||
{
|
||
int uid = INSN_UID (seq);
|
||
int log;
|
||
log = (LABEL_P (seq) ? LABEL_TO_ALIGNMENT (seq) : 0);
|
||
uid_align[uid] = align_tab[0];
|
||
if (log)
|
||
{
|
||
/* Found an alignment label. */
|
||
uid_align[uid] = align_tab[log];
|
||
for (i = log - 1; i >= 0; i--)
|
||
align_tab[i] = seq;
|
||
}
|
||
}
|
||
#ifdef CASE_VECTOR_SHORTEN_MODE
|
||
if (optimize)
|
||
{
|
||
/* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
|
||
label fields. */
|
||
|
||
int min_shuid = INSN_SHUID (get_insns ()) - 1;
|
||
int max_shuid = INSN_SHUID (get_last_insn ()) + 1;
|
||
int rel;
|
||
|
||
for (insn = first; insn != 0; insn = NEXT_INSN (insn))
|
||
{
|
||
rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
|
||
int len, i, min, max, insn_shuid;
|
||
int min_align;
|
||
addr_diff_vec_flags flags;
|
||
|
||
if (!JUMP_P (insn)
|
||
|| GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
|
||
continue;
|
||
pat = PATTERN (insn);
|
||
len = XVECLEN (pat, 1);
|
||
gcc_assert (len > 0);
|
||
min_align = MAX_CODE_ALIGN;
|
||
for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
|
||
{
|
||
rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
|
||
int shuid = INSN_SHUID (lab);
|
||
if (shuid < min)
|
||
{
|
||
min = shuid;
|
||
min_lab = lab;
|
||
}
|
||
if (shuid > max)
|
||
{
|
||
max = shuid;
|
||
max_lab = lab;
|
||
}
|
||
if (min_align > LABEL_TO_ALIGNMENT (lab))
|
||
min_align = LABEL_TO_ALIGNMENT (lab);
|
||
}
|
||
XEXP (pat, 2) = gen_rtx_LABEL_REF (Pmode, min_lab);
|
||
XEXP (pat, 3) = gen_rtx_LABEL_REF (Pmode, max_lab);
|
||
insn_shuid = INSN_SHUID (insn);
|
||
rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
|
||
memset (&flags, 0, sizeof (flags));
|
||
flags.min_align = min_align;
|
||
flags.base_after_vec = rel > insn_shuid;
|
||
flags.min_after_vec = min > insn_shuid;
|
||
flags.max_after_vec = max > insn_shuid;
|
||
flags.min_after_base = min > rel;
|
||
flags.max_after_base = max > rel;
|
||
ADDR_DIFF_VEC_FLAGS (pat) = flags;
|
||
}
|
||
}
|
||
#endif /* CASE_VECTOR_SHORTEN_MODE */
|
||
|
||
/* Compute initial lengths, addresses, and varying flags for each insn. */
|
||
for (insn_current_address = 0, insn = first;
|
||
insn != 0;
|
||
insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
|
||
{
|
||
uid = INSN_UID (insn);
|
||
|
||
insn_lengths[uid] = 0;
|
||
|
||
if (LABEL_P (insn))
|
||
{
|
||
int log = LABEL_TO_ALIGNMENT (insn);
|
||
if (log)
|
||
{
|
||
int align = 1 << log;
|
||
int new_address = (insn_current_address + align - 1) & -align;
|
||
insn_lengths[uid] = new_address - insn_current_address;
|
||
}
|
||
}
|
||
|
||
INSN_ADDRESSES (uid) = insn_current_address + insn_lengths[uid];
|
||
|
||
if (NOTE_P (insn) || BARRIER_P (insn)
|
||
|| LABEL_P (insn))
|
||
continue;
|
||
if (INSN_DELETED_P (insn))
|
||
continue;
|
||
|
||
body = PATTERN (insn);
|
||
if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
|
||
{
|
||
/* This only takes room if read-only data goes into the text
|
||
section. */
|
||
if (JUMP_TABLES_IN_TEXT_SECTION
|
||
|| readonly_data_section == text_section)
|
||
insn_lengths[uid] = (XVECLEN (body,
|
||
GET_CODE (body) == ADDR_DIFF_VEC)
|
||
* GET_MODE_SIZE (GET_MODE (body)));
|
||
/* Alignment is handled by ADDR_VEC_ALIGN. */
|
||
}
|
||
else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
|
||
insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
|
||
else if (GET_CODE (body) == SEQUENCE)
|
||
{
|
||
int i;
|
||
int const_delay_slots;
|
||
#ifdef DELAY_SLOTS
|
||
const_delay_slots = const_num_delay_slots (XVECEXP (body, 0, 0));
|
||
#else
|
||
const_delay_slots = 0;
|
||
#endif
|
||
/* Inside a delay slot sequence, we do not do any branch shortening
|
||
if the shortening could change the number of delay slots
|
||
of the branch. */
|
||
for (i = 0; i < XVECLEN (body, 0); i++)
|
||
{
|
||
rtx inner_insn = XVECEXP (body, 0, i);
|
||
int inner_uid = INSN_UID (inner_insn);
|
||
int inner_length;
|
||
|
||
if (GET_CODE (body) == ASM_INPUT
|
||
|| asm_noperands (PATTERN (XVECEXP (body, 0, i))) >= 0)
|
||
inner_length = (asm_insn_count (PATTERN (inner_insn))
|
||
* insn_default_length (inner_insn));
|
||
else
|
||
inner_length = insn_default_length (inner_insn);
|
||
|
||
insn_lengths[inner_uid] = inner_length;
|
||
if (const_delay_slots)
|
||
{
|
||
if ((varying_length[inner_uid]
|
||
= insn_variable_length_p (inner_insn)) != 0)
|
||
varying_length[uid] = 1;
|
||
INSN_ADDRESSES (inner_uid) = (insn_current_address
|
||
+ insn_lengths[uid]);
|
||
}
|
||
else
|
||
varying_length[inner_uid] = 0;
|
||
insn_lengths[uid] += inner_length;
|
||
}
|
||
}
|
||
else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER)
|
||
{
|
||
insn_lengths[uid] = insn_default_length (insn);
|
||
varying_length[uid] = insn_variable_length_p (insn);
|
||
}
|
||
|
||
/* If needed, do any adjustment. */
|
||
#ifdef ADJUST_INSN_LENGTH
|
||
ADJUST_INSN_LENGTH (insn, insn_lengths[uid]);
|
||
if (insn_lengths[uid] < 0)
|
||
fatal_insn ("negative insn length", insn);
|
||
#endif
|
||
}
|
||
|
||
/* Now loop over all the insns finding varying length insns. For each,
|
||
get the current insn length. If it has changed, reflect the change.
|
||
When nothing changes for a full pass, we are done. */
|
||
|
||
while (something_changed)
|
||
{
|
||
something_changed = 0;
|
||
insn_current_align = MAX_CODE_ALIGN - 1;
|
||
for (insn_current_address = 0, insn = first;
|
||
insn != 0;
|
||
insn = NEXT_INSN (insn))
|
||
{
|
||
int new_length;
|
||
#ifdef ADJUST_INSN_LENGTH
|
||
int tmp_length;
|
||
#endif
|
||
int length_align;
|
||
|
||
uid = INSN_UID (insn);
|
||
|
||
if (LABEL_P (insn))
|
||
{
|
||
int log = LABEL_TO_ALIGNMENT (insn);
|
||
if (log > insn_current_align)
|
||
{
|
||
int align = 1 << log;
|
||
int new_address= (insn_current_address + align - 1) & -align;
|
||
insn_lengths[uid] = new_address - insn_current_address;
|
||
insn_current_align = log;
|
||
insn_current_address = new_address;
|
||
}
|
||
else
|
||
insn_lengths[uid] = 0;
|
||
INSN_ADDRESSES (uid) = insn_current_address;
|
||
continue;
|
||
}
|
||
|
||
length_align = INSN_LENGTH_ALIGNMENT (insn);
|
||
if (length_align < insn_current_align)
|
||
insn_current_align = length_align;
|
||
|
||
insn_last_address = INSN_ADDRESSES (uid);
|
||
INSN_ADDRESSES (uid) = insn_current_address;
|
||
|
||
#ifdef CASE_VECTOR_SHORTEN_MODE
|
||
if (optimize && JUMP_P (insn)
|
||
&& GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
|
||
{
|
||
rtx body = PATTERN (insn);
|
||
int old_length = insn_lengths[uid];
|
||
rtx rel_lab = XEXP (XEXP (body, 0), 0);
|
||
rtx min_lab = XEXP (XEXP (body, 2), 0);
|
||
rtx max_lab = XEXP (XEXP (body, 3), 0);
|
||
int rel_addr = INSN_ADDRESSES (INSN_UID (rel_lab));
|
||
int min_addr = INSN_ADDRESSES (INSN_UID (min_lab));
|
||
int max_addr = INSN_ADDRESSES (INSN_UID (max_lab));
|
||
rtx prev;
|
||
int rel_align = 0;
|
||
addr_diff_vec_flags flags;
|
||
|
||
/* Avoid automatic aggregate initialization. */
|
||
flags = ADDR_DIFF_VEC_FLAGS (body);
|
||
|
||
/* Try to find a known alignment for rel_lab. */
|
||
for (prev = rel_lab;
|
||
prev
|
||
&& ! insn_lengths[INSN_UID (prev)]
|
||
&& ! (varying_length[INSN_UID (prev)] & 1);
|
||
prev = PREV_INSN (prev))
|
||
if (varying_length[INSN_UID (prev)] & 2)
|
||
{
|
||
rel_align = LABEL_TO_ALIGNMENT (prev);
|
||
break;
|
||
}
|
||
|
||
/* See the comment on addr_diff_vec_flags in rtl.h for the
|
||
meaning of the flags values. base: REL_LAB vec: INSN */
|
||
/* Anything after INSN has still addresses from the last
|
||
pass; adjust these so that they reflect our current
|
||
estimate for this pass. */
|
||
if (flags.base_after_vec)
|
||
rel_addr += insn_current_address - insn_last_address;
|
||
if (flags.min_after_vec)
|
||
min_addr += insn_current_address - insn_last_address;
|
||
if (flags.max_after_vec)
|
||
max_addr += insn_current_address - insn_last_address;
|
||
/* We want to know the worst case, i.e. lowest possible value
|
||
for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
|
||
its offset is positive, and we have to be wary of code shrink;
|
||
otherwise, it is negative, and we have to be vary of code
|
||
size increase. */
|
||
if (flags.min_after_base)
|
||
{
|
||
/* If INSN is between REL_LAB and MIN_LAB, the size
|
||
changes we are about to make can change the alignment
|
||
within the observed offset, therefore we have to break
|
||
it up into two parts that are independent. */
|
||
if (! flags.base_after_vec && flags.min_after_vec)
|
||
{
|
||
min_addr -= align_fuzz (rel_lab, insn, rel_align, 0);
|
||
min_addr -= align_fuzz (insn, min_lab, 0, 0);
|
||
}
|
||
else
|
||
min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0);
|
||
}
|
||
else
|
||
{
|
||
if (flags.base_after_vec && ! flags.min_after_vec)
|
||
{
|
||
min_addr -= align_fuzz (min_lab, insn, 0, ~0);
|
||
min_addr -= align_fuzz (insn, rel_lab, 0, ~0);
|
||
}
|
||
else
|
||
min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0);
|
||
}
|
||
/* Likewise, determine the highest lowest possible value
|
||
for the offset of MAX_LAB. */
|
||
if (flags.max_after_base)
|
||
{
|
||
if (! flags.base_after_vec && flags.max_after_vec)
|
||
{
|
||
max_addr += align_fuzz (rel_lab, insn, rel_align, ~0);
|
||
max_addr += align_fuzz (insn, max_lab, 0, ~0);
|
||
}
|
||
else
|
||
max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0);
|
||
}
|
||
else
|
||
{
|
||
if (flags.base_after_vec && ! flags.max_after_vec)
|
||
{
|
||
max_addr += align_fuzz (max_lab, insn, 0, 0);
|
||
max_addr += align_fuzz (insn, rel_lab, 0, 0);
|
||
}
|
||
else
|
||
max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
|
||
}
|
||
PUT_MODE (body, CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
|
||
max_addr - rel_addr,
|
||
body));
|
||
if (JUMP_TABLES_IN_TEXT_SECTION
|
||
|| readonly_data_section == text_section)
|
||
{
|
||
insn_lengths[uid]
|
||
= (XVECLEN (body, 1) * GET_MODE_SIZE (GET_MODE (body)));
|
||
insn_current_address += insn_lengths[uid];
|
||
if (insn_lengths[uid] != old_length)
|
||
something_changed = 1;
|
||
}
|
||
|
||
continue;
|
||
}
|
||
#endif /* CASE_VECTOR_SHORTEN_MODE */
|
||
|
||
if (! (varying_length[uid]))
|
||
{
|
||
if (NONJUMP_INSN_P (insn)
|
||
&& GET_CODE (PATTERN (insn)) == SEQUENCE)
|
||
{
|
||
int i;
|
||
|
||
body = PATTERN (insn);
|
||
for (i = 0; i < XVECLEN (body, 0); i++)
|
||
{
|
||
rtx inner_insn = XVECEXP (body, 0, i);
|
||
int inner_uid = INSN_UID (inner_insn);
|
||
|
||
INSN_ADDRESSES (inner_uid) = insn_current_address;
|
||
|
||
insn_current_address += insn_lengths[inner_uid];
|
||
}
|
||
}
|
||
else
|
||
insn_current_address += insn_lengths[uid];
|
||
|
||
continue;
|
||
}
|
||
|
||
if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
|
||
{
|
||
int i;
|
||
|
||
body = PATTERN (insn);
|
||
new_length = 0;
|
||
for (i = 0; i < XVECLEN (body, 0); i++)
|
||
{
|
||
rtx inner_insn = XVECEXP (body, 0, i);
|
||
int inner_uid = INSN_UID (inner_insn);
|
||
int inner_length;
|
||
|
||
INSN_ADDRESSES (inner_uid) = insn_current_address;
|
||
|
||
/* insn_current_length returns 0 for insns with a
|
||
non-varying length. */
|
||
if (! varying_length[inner_uid])
|
||
inner_length = insn_lengths[inner_uid];
|
||
else
|
||
inner_length = insn_current_length (inner_insn);
|
||
|
||
if (inner_length != insn_lengths[inner_uid])
|
||
{
|
||
insn_lengths[inner_uid] = inner_length;
|
||
something_changed = 1;
|
||
}
|
||
insn_current_address += insn_lengths[inner_uid];
|
||
new_length += inner_length;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
new_length = insn_current_length (insn);
|
||
insn_current_address += new_length;
|
||
}
|
||
|
||
#ifdef ADJUST_INSN_LENGTH
|
||
/* If needed, do any adjustment. */
|
||
tmp_length = new_length;
|
||
ADJUST_INSN_LENGTH (insn, new_length);
|
||
insn_current_address += (new_length - tmp_length);
|
||
#endif
|
||
|
||
if (new_length != insn_lengths[uid])
|
||
{
|
||
insn_lengths[uid] = new_length;
|
||
something_changed = 1;
|
||
}
|
||
}
|
||
/* For a non-optimizing compile, do only a single pass. */
|
||
if (!optimize)
|
||
break;
|
||
}
|
||
|
||
free (varying_length);
|
||
|
||
#endif /* HAVE_ATTR_length */
|
||
}
|
||
|
||
#ifdef HAVE_ATTR_length
|
||
/* Given the body of an INSN known to be generated by an ASM statement, return
|
||
the number of machine instructions likely to be generated for this insn.
|
||
This is used to compute its length. */
|
||
|
||
static int
|
||
asm_insn_count (rtx body)
|
||
{
|
||
const char *template;
|
||
int count = 1;
|
||
|
||
if (GET_CODE (body) == ASM_INPUT)
|
||
template = XSTR (body, 0);
|
||
else
|
||
template = decode_asm_operands (body, NULL, NULL, NULL, NULL);
|
||
|
||
for (; *template; template++)
|
||
if (IS_ASM_LOGICAL_LINE_SEPARATOR (*template) || *template == '\n')
|
||
count++;
|
||
|
||
return count;
|
||
}
|
||
#endif
|
||
|
||
/* Output assembler code for the start of a function,
|
||
and initialize some of the variables in this file
|
||
for the new function. The label for the function and associated
|
||
assembler pseudo-ops have already been output in `assemble_start_function'.
|
||
|
||
FIRST is the first insn of the rtl for the function being compiled.
|
||
FILE is the file to write assembler code to.
|
||
OPTIMIZE is nonzero if we should eliminate redundant
|
||
test and compare insns. */
|
||
|
||
void
|
||
final_start_function (rtx first ATTRIBUTE_UNUSED, FILE *file,
|
||
int optimize ATTRIBUTE_UNUSED)
|
||
{
|
||
block_depth = 0;
|
||
|
||
this_is_asm_operands = 0;
|
||
|
||
last_filename = locator_file (prologue_locator);
|
||
last_linenum = locator_line (prologue_locator);
|
||
|
||
high_block_linenum = high_function_linenum = last_linenum;
|
||
|
||
(*debug_hooks->begin_prologue) (last_linenum, last_filename);
|
||
|
||
#if defined (DWARF2_UNWIND_INFO) || defined (TARGET_UNWIND_INFO)
|
||
if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG)
|
||
dwarf2out_begin_prologue (0, NULL);
|
||
#endif
|
||
|
||
#ifdef LEAF_REG_REMAP
|
||
if (current_function_uses_only_leaf_regs)
|
||
leaf_renumber_regs (first);
|
||
#endif
|
||
|
||
/* The Sun386i and perhaps other machines don't work right
|
||
if the profiling code comes after the prologue. */
|
||
#ifdef PROFILE_BEFORE_PROLOGUE
|
||
if (current_function_profile)
|
||
profile_function (file);
|
||
#endif /* PROFILE_BEFORE_PROLOGUE */
|
||
|
||
#if defined (DWARF2_UNWIND_INFO) && defined (HAVE_prologue)
|
||
if (dwarf2out_do_frame ())
|
||
dwarf2out_frame_debug (NULL_RTX, false);
|
||
#endif
|
||
|
||
/* If debugging, assign block numbers to all of the blocks in this
|
||
function. */
|
||
if (write_symbols)
|
||
{
|
||
reemit_insn_block_notes ();
|
||
number_blocks (current_function_decl);
|
||
/* We never actually put out begin/end notes for the top-level
|
||
block in the function. But, conceptually, that block is
|
||
always needed. */
|
||
TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl)) = 1;
|
||
}
|
||
|
||
/* First output the function prologue: code to set up the stack frame. */
|
||
targetm.asm_out.function_prologue (file, get_frame_size ());
|
||
|
||
/* If the machine represents the prologue as RTL, the profiling code must
|
||
be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
|
||
#ifdef HAVE_prologue
|
||
if (! HAVE_prologue)
|
||
#endif
|
||
profile_after_prologue (file);
|
||
}
|
||
|
||
static void
|
||
profile_after_prologue (FILE *file ATTRIBUTE_UNUSED)
|
||
{
|
||
#ifndef PROFILE_BEFORE_PROLOGUE
|
||
if (current_function_profile)
|
||
profile_function (file);
|
||
#endif /* not PROFILE_BEFORE_PROLOGUE */
|
||
}
|
||
|
||
static void
|
||
profile_function (FILE *file ATTRIBUTE_UNUSED)
|
||
{
|
||
#ifndef NO_PROFILE_COUNTERS
|
||
# define NO_PROFILE_COUNTERS 0
|
||
#endif
|
||
#if defined(ASM_OUTPUT_REG_PUSH)
|
||
int sval = current_function_returns_struct;
|
||
rtx svrtx = targetm.calls.struct_value_rtx (TREE_TYPE (current_function_decl), 1);
|
||
#if defined(STATIC_CHAIN_INCOMING_REGNUM) || defined(STATIC_CHAIN_REGNUM)
|
||
int cxt = cfun->static_chain_decl != NULL;
|
||
#endif
|
||
#endif /* ASM_OUTPUT_REG_PUSH */
|
||
|
||
if (! NO_PROFILE_COUNTERS)
|
||
{
|
||
int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
|
||
switch_to_section (data_section);
|
||
ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
|
||
targetm.asm_out.internal_label (file, "LP", current_function_funcdef_no);
|
||
assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, align, 1);
|
||
}
|
||
|
||
switch_to_section (current_function_section ());
|
||
|
||
#if defined(ASM_OUTPUT_REG_PUSH)
|
||
if (sval && svrtx != NULL_RTX && REG_P (svrtx))
|
||
ASM_OUTPUT_REG_PUSH (file, REGNO (svrtx));
|
||
#endif
|
||
|
||
#if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
|
||
if (cxt)
|
||
ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_INCOMING_REGNUM);
|
||
#else
|
||
#if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
|
||
if (cxt)
|
||
{
|
||
ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_REGNUM);
|
||
}
|
||
#endif
|
||
#endif
|
||
|
||
FUNCTION_PROFILER (file, current_function_funcdef_no);
|
||
|
||
#if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
|
||
if (cxt)
|
||
ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_INCOMING_REGNUM);
|
||
#else
|
||
#if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
|
||
if (cxt)
|
||
{
|
||
ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_REGNUM);
|
||
}
|
||
#endif
|
||
#endif
|
||
|
||
#if defined(ASM_OUTPUT_REG_PUSH)
|
||
if (sval && svrtx != NULL_RTX && REG_P (svrtx))
|
||
ASM_OUTPUT_REG_POP (file, REGNO (svrtx));
|
||
#endif
|
||
}
|
||
|
||
/* Output assembler code for the end of a function.
|
||
For clarity, args are same as those of `final_start_function'
|
||
even though not all of them are needed. */
|
||
|
||
void
|
||
final_end_function (void)
|
||
{
|
||
app_disable ();
|
||
|
||
(*debug_hooks->end_function) (high_function_linenum);
|
||
|
||
/* Finally, output the function epilogue:
|
||
code to restore the stack frame and return to the caller. */
|
||
targetm.asm_out.function_epilogue (asm_out_file, get_frame_size ());
|
||
|
||
/* And debug output. */
|
||
(*debug_hooks->end_epilogue) (last_linenum, last_filename);
|
||
|
||
#if defined (DWARF2_UNWIND_INFO)
|
||
if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG
|
||
&& dwarf2out_do_frame ())
|
||
dwarf2out_end_epilogue (last_linenum, last_filename);
|
||
#endif
|
||
}
|
||
|
||
/* Output assembler code for some insns: all or part of a function.
|
||
For description of args, see `final_start_function', above. */
|
||
|
||
void
|
||
final (rtx first, FILE *file, int optimize)
|
||
{
|
||
rtx insn;
|
||
int max_uid = 0;
|
||
int seen = 0;
|
||
|
||
last_ignored_compare = 0;
|
||
|
||
#ifdef SDB_DEBUGGING_INFO
|
||
/* When producing SDB debugging info, delete troublesome line number
|
||
notes from inlined functions in other files as well as duplicate
|
||
line number notes. */
|
||
if (write_symbols == SDB_DEBUG)
|
||
{
|
||
rtx last = 0;
|
||
for (insn = first; insn; insn = NEXT_INSN (insn))
|
||
if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
|
||
{
|
||
if (last != 0
|
||
#ifdef USE_MAPPED_LOCATION
|
||
&& NOTE_SOURCE_LOCATION (insn) == NOTE_SOURCE_LOCATION (last)
|
||
#else
|
||
&& NOTE_LINE_NUMBER (insn) == NOTE_LINE_NUMBER (last)
|
||
&& NOTE_SOURCE_FILE (insn) == NOTE_SOURCE_FILE (last)
|
||
#endif
|
||
)
|
||
{
|
||
delete_insn (insn); /* Use delete_note. */
|
||
continue;
|
||
}
|
||
last = insn;
|
||
}
|
||
}
|
||
#endif
|
||
|
||
for (insn = first; insn; insn = NEXT_INSN (insn))
|
||
{
|
||
if (INSN_UID (insn) > max_uid) /* Find largest UID. */
|
||
max_uid = INSN_UID (insn);
|
||
#ifdef HAVE_cc0
|
||
/* If CC tracking across branches is enabled, record the insn which
|
||
jumps to each branch only reached from one place. */
|
||
if (optimize && JUMP_P (insn))
|
||
{
|
||
rtx lab = JUMP_LABEL (insn);
|
||
if (lab && LABEL_NUSES (lab) == 1)
|
||
{
|
||
LABEL_REFS (lab) = insn;
|
||
}
|
||
}
|
||
#endif
|
||
}
|
||
|
||
init_recog ();
|
||
|
||
CC_STATUS_INIT;
|
||
|
||
/* Output the insns. */
|
||
for (insn = NEXT_INSN (first); insn;)
|
||
{
|
||
#ifdef HAVE_ATTR_length
|
||
if ((unsigned) INSN_UID (insn) >= INSN_ADDRESSES_SIZE ())
|
||
{
|
||
/* This can be triggered by bugs elsewhere in the compiler if
|
||
new insns are created after init_insn_lengths is called. */
|
||
gcc_assert (NOTE_P (insn));
|
||
insn_current_address = -1;
|
||
}
|
||
else
|
||
insn_current_address = INSN_ADDRESSES (INSN_UID (insn));
|
||
#endif /* HAVE_ATTR_length */
|
||
|
||
insn = final_scan_insn (insn, file, optimize, 0, &seen);
|
||
}
|
||
}
|
||
|
||
const char *
|
||
get_insn_template (int code, rtx insn)
|
||
{
|
||
switch (insn_data[code].output_format)
|
||
{
|
||
case INSN_OUTPUT_FORMAT_SINGLE:
|
||
return insn_data[code].output.single;
|
||
case INSN_OUTPUT_FORMAT_MULTI:
|
||
return insn_data[code].output.multi[which_alternative];
|
||
case INSN_OUTPUT_FORMAT_FUNCTION:
|
||
gcc_assert (insn);
|
||
return (*insn_data[code].output.function) (recog_data.operand, insn);
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
|
||
/* Emit the appropriate declaration for an alternate-entry-point
|
||
symbol represented by INSN, to FILE. INSN is a CODE_LABEL with
|
||
LABEL_KIND != LABEL_NORMAL.
|
||
|
||
The case fall-through in this function is intentional. */
|
||
static void
|
||
output_alternate_entry_point (FILE *file, rtx insn)
|
||
{
|
||
const char *name = LABEL_NAME (insn);
|
||
|
||
switch (LABEL_KIND (insn))
|
||
{
|
||
case LABEL_WEAK_ENTRY:
|
||
#ifdef ASM_WEAKEN_LABEL
|
||
ASM_WEAKEN_LABEL (file, name);
|
||
#endif
|
||
case LABEL_GLOBAL_ENTRY:
|
||
targetm.asm_out.globalize_label (file, name);
|
||
case LABEL_STATIC_ENTRY:
|
||
#ifdef ASM_OUTPUT_TYPE_DIRECTIVE
|
||
ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function");
|
||
#endif
|
||
ASM_OUTPUT_LABEL (file, name);
|
||
break;
|
||
|
||
case LABEL_NORMAL:
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
|
||
/* The final scan for one insn, INSN.
|
||
Args are same as in `final', except that INSN
|
||
is the insn being scanned.
|
||
Value returned is the next insn to be scanned.
|
||
|
||
NOPEEPHOLES is the flag to disallow peephole processing (currently
|
||
used for within delayed branch sequence output).
|
||
|
||
SEEN is used to track the end of the prologue, for emitting
|
||
debug information. We force the emission of a line note after
|
||
both NOTE_INSN_PROLOGUE_END and NOTE_INSN_FUNCTION_BEG, or
|
||
at the beginning of the second basic block, whichever comes
|
||
first. */
|
||
|
||
rtx
|
||
final_scan_insn (rtx insn, FILE *file, int optimize ATTRIBUTE_UNUSED,
|
||
int nopeepholes ATTRIBUTE_UNUSED, int *seen)
|
||
{
|
||
#ifdef HAVE_cc0
|
||
rtx set;
|
||
#endif
|
||
rtx next;
|
||
|
||
insn_counter++;
|
||
|
||
/* Ignore deleted insns. These can occur when we split insns (due to a
|
||
template of "#") while not optimizing. */
|
||
if (INSN_DELETED_P (insn))
|
||
return NEXT_INSN (insn);
|
||
|
||
switch (GET_CODE (insn))
|
||
{
|
||
case NOTE:
|
||
switch (NOTE_LINE_NUMBER (insn))
|
||
{
|
||
case NOTE_INSN_DELETED:
|
||
case NOTE_INSN_FUNCTION_END:
|
||
case NOTE_INSN_REPEATED_LINE_NUMBER:
|
||
case NOTE_INSN_EXPECTED_VALUE:
|
||
break;
|
||
|
||
case NOTE_INSN_SWITCH_TEXT_SECTIONS:
|
||
in_cold_section_p = !in_cold_section_p;
|
||
(*debug_hooks->switch_text_section) ();
|
||
switch_to_section (current_function_section ());
|
||
break;
|
||
|
||
case NOTE_INSN_BASIC_BLOCK:
|
||
#ifdef TARGET_UNWIND_INFO
|
||
targetm.asm_out.unwind_emit (asm_out_file, insn);
|
||
#endif
|
||
|
||
if (flag_debug_asm)
|
||
fprintf (asm_out_file, "\t%s basic block %d\n",
|
||
ASM_COMMENT_START, NOTE_BASIC_BLOCK (insn)->index);
|
||
|
||
if ((*seen & (SEEN_EMITTED | SEEN_BB)) == SEEN_BB)
|
||
{
|
||
*seen |= SEEN_EMITTED;
|
||
force_source_line = true;
|
||
}
|
||
else
|
||
*seen |= SEEN_BB;
|
||
|
||
break;
|
||
|
||
case NOTE_INSN_EH_REGION_BEG:
|
||
ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHB",
|
||
NOTE_EH_HANDLER (insn));
|
||
break;
|
||
|
||
case NOTE_INSN_EH_REGION_END:
|
||
ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHE",
|
||
NOTE_EH_HANDLER (insn));
|
||
break;
|
||
|
||
case NOTE_INSN_PROLOGUE_END:
|
||
targetm.asm_out.function_end_prologue (file);
|
||
profile_after_prologue (file);
|
||
|
||
if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
|
||
{
|
||
*seen |= SEEN_EMITTED;
|
||
force_source_line = true;
|
||
}
|
||
else
|
||
*seen |= SEEN_NOTE;
|
||
|
||
break;
|
||
|
||
case NOTE_INSN_EPILOGUE_BEG:
|
||
targetm.asm_out.function_begin_epilogue (file);
|
||
break;
|
||
|
||
case NOTE_INSN_FUNCTION_BEG:
|
||
app_disable ();
|
||
(*debug_hooks->end_prologue) (last_linenum, last_filename);
|
||
|
||
if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
|
||
{
|
||
*seen |= SEEN_EMITTED;
|
||
force_source_line = true;
|
||
}
|
||
else
|
||
*seen |= SEEN_NOTE;
|
||
|
||
break;
|
||
|
||
case NOTE_INSN_BLOCK_BEG:
|
||
if (debug_info_level == DINFO_LEVEL_NORMAL
|
||
|| debug_info_level == DINFO_LEVEL_VERBOSE
|
||
|| write_symbols == DWARF2_DEBUG
|
||
|| write_symbols == VMS_AND_DWARF2_DEBUG
|
||
|| write_symbols == VMS_DEBUG)
|
||
{
|
||
int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
|
||
|
||
app_disable ();
|
||
++block_depth;
|
||
high_block_linenum = last_linenum;
|
||
|
||
/* Output debugging info about the symbol-block beginning. */
|
||
(*debug_hooks->begin_block) (last_linenum, n);
|
||
|
||
/* Mark this block as output. */
|
||
TREE_ASM_WRITTEN (NOTE_BLOCK (insn)) = 1;
|
||
}
|
||
break;
|
||
|
||
case NOTE_INSN_BLOCK_END:
|
||
if (debug_info_level == DINFO_LEVEL_NORMAL
|
||
|| debug_info_level == DINFO_LEVEL_VERBOSE
|
||
|| write_symbols == DWARF2_DEBUG
|
||
|| write_symbols == VMS_AND_DWARF2_DEBUG
|
||
|| write_symbols == VMS_DEBUG)
|
||
{
|
||
int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
|
||
|
||
app_disable ();
|
||
|
||
/* End of a symbol-block. */
|
||
--block_depth;
|
||
gcc_assert (block_depth >= 0);
|
||
|
||
(*debug_hooks->end_block) (high_block_linenum, n);
|
||
}
|
||
break;
|
||
|
||
case NOTE_INSN_DELETED_LABEL:
|
||
/* Emit the label. We may have deleted the CODE_LABEL because
|
||
the label could be proved to be unreachable, though still
|
||
referenced (in the form of having its address taken. */
|
||
ASM_OUTPUT_DEBUG_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
|
||
break;
|
||
|
||
case NOTE_INSN_VAR_LOCATION:
|
||
(*debug_hooks->var_location) (insn);
|
||
break;
|
||
|
||
case 0:
|
||
break;
|
||
|
||
default:
|
||
gcc_assert (NOTE_LINE_NUMBER (insn) > 0);
|
||
break;
|
||
}
|
||
break;
|
||
|
||
case BARRIER:
|
||
#if defined (DWARF2_UNWIND_INFO)
|
||
if (dwarf2out_do_frame ())
|
||
dwarf2out_frame_debug (insn, false);
|
||
#endif
|
||
break;
|
||
|
||
case CODE_LABEL:
|
||
/* The target port might emit labels in the output function for
|
||
some insn, e.g. sh.c output_branchy_insn. */
|
||
if (CODE_LABEL_NUMBER (insn) <= max_labelno)
|
||
{
|
||
int align = LABEL_TO_ALIGNMENT (insn);
|
||
#ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
|
||
int max_skip = LABEL_TO_MAX_SKIP (insn);
|
||
#endif
|
||
|
||
if (align && NEXT_INSN (insn))
|
||
{
|
||
#ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
|
||
ASM_OUTPUT_MAX_SKIP_ALIGN (file, align, max_skip);
|
||
#else
|
||
#ifdef ASM_OUTPUT_ALIGN_WITH_NOP
|
||
ASM_OUTPUT_ALIGN_WITH_NOP (file, align);
|
||
#else
|
||
ASM_OUTPUT_ALIGN (file, align);
|
||
#endif
|
||
#endif
|
||
}
|
||
}
|
||
#ifdef HAVE_cc0
|
||
CC_STATUS_INIT;
|
||
/* If this label is reached from only one place, set the condition
|
||
codes from the instruction just before the branch. */
|
||
|
||
/* Disabled because some insns set cc_status in the C output code
|
||
and NOTICE_UPDATE_CC alone can set incorrect status. */
|
||
if (0 /* optimize && LABEL_NUSES (insn) == 1*/)
|
||
{
|
||
rtx jump = LABEL_REFS (insn);
|
||
rtx barrier = prev_nonnote_insn (insn);
|
||
rtx prev;
|
||
/* If the LABEL_REFS field of this label has been set to point
|
||
at a branch, the predecessor of the branch is a regular
|
||
insn, and that branch is the only way to reach this label,
|
||
set the condition codes based on the branch and its
|
||
predecessor. */
|
||
if (barrier && BARRIER_P (barrier)
|
||
&& jump && JUMP_P (jump)
|
||
&& (prev = prev_nonnote_insn (jump))
|
||
&& NONJUMP_INSN_P (prev))
|
||
{
|
||
NOTICE_UPDATE_CC (PATTERN (prev), prev);
|
||
NOTICE_UPDATE_CC (PATTERN (jump), jump);
|
||
}
|
||
}
|
||
#endif
|
||
|
||
if (LABEL_NAME (insn))
|
||
(*debug_hooks->label) (insn);
|
||
|
||
if (app_on)
|
||
{
|
||
fputs (ASM_APP_OFF, file);
|
||
app_on = 0;
|
||
}
|
||
|
||
next = next_nonnote_insn (insn);
|
||
if (next != 0 && JUMP_P (next))
|
||
{
|
||
rtx nextbody = PATTERN (next);
|
||
|
||
/* If this label is followed by a jump-table,
|
||
make sure we put the label in the read-only section. Also
|
||
possibly write the label and jump table together. */
|
||
|
||
if (GET_CODE (nextbody) == ADDR_VEC
|
||
|| GET_CODE (nextbody) == ADDR_DIFF_VEC)
|
||
{
|
||
#if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
|
||
/* In this case, the case vector is being moved by the
|
||
target, so don't output the label at all. Leave that
|
||
to the back end macros. */
|
||
#else
|
||
if (! JUMP_TABLES_IN_TEXT_SECTION)
|
||
{
|
||
int log_align;
|
||
|
||
switch_to_section (targetm.asm_out.function_rodata_section
|
||
(current_function_decl));
|
||
|
||
#ifdef ADDR_VEC_ALIGN
|
||
log_align = ADDR_VEC_ALIGN (next);
|
||
#else
|
||
log_align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
|
||
#endif
|
||
ASM_OUTPUT_ALIGN (file, log_align);
|
||
}
|
||
else
|
||
switch_to_section (current_function_section ());
|
||
|
||
#ifdef ASM_OUTPUT_CASE_LABEL
|
||
ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn),
|
||
next);
|
||
#else
|
||
targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
|
||
#endif
|
||
#endif
|
||
break;
|
||
}
|
||
}
|
||
if (LABEL_ALT_ENTRY_P (insn))
|
||
output_alternate_entry_point (file, insn);
|
||
else
|
||
targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
|
||
break;
|
||
|
||
default:
|
||
{
|
||
rtx body = PATTERN (insn);
|
||
int insn_code_number;
|
||
const char *template;
|
||
|
||
#ifdef HAVE_conditional_execution
|
||
/* Reset this early so it is correct for ASM statements. */
|
||
current_insn_predicate = NULL_RTX;
|
||
#endif
|
||
/* An INSN, JUMP_INSN or CALL_INSN.
|
||
First check for special kinds that recog doesn't recognize. */
|
||
|
||
if (GET_CODE (body) == USE /* These are just declarations. */
|
||
|| GET_CODE (body) == CLOBBER)
|
||
break;
|
||
|
||
#ifdef HAVE_cc0
|
||
{
|
||
/* If there is a REG_CC_SETTER note on this insn, it means that
|
||
the setting of the condition code was done in the delay slot
|
||
of the insn that branched here. So recover the cc status
|
||
from the insn that set it. */
|
||
|
||
rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
|
||
if (note)
|
||
{
|
||
NOTICE_UPDATE_CC (PATTERN (XEXP (note, 0)), XEXP (note, 0));
|
||
cc_prev_status = cc_status;
|
||
}
|
||
}
|
||
#endif
|
||
|
||
/* Detect insns that are really jump-tables
|
||
and output them as such. */
|
||
|
||
if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
|
||
{
|
||
#if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
|
||
int vlen, idx;
|
||
#endif
|
||
|
||
if (! JUMP_TABLES_IN_TEXT_SECTION)
|
||
switch_to_section (targetm.asm_out.function_rodata_section
|
||
(current_function_decl));
|
||
else
|
||
switch_to_section (current_function_section ());
|
||
|
||
if (app_on)
|
||
{
|
||
fputs (ASM_APP_OFF, file);
|
||
app_on = 0;
|
||
}
|
||
|
||
#if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
|
||
if (GET_CODE (body) == ADDR_VEC)
|
||
{
|
||
#ifdef ASM_OUTPUT_ADDR_VEC
|
||
ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body);
|
||
#else
|
||
gcc_unreachable ();
|
||
#endif
|
||
}
|
||
else
|
||
{
|
||
#ifdef ASM_OUTPUT_ADDR_DIFF_VEC
|
||
ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body);
|
||
#else
|
||
gcc_unreachable ();
|
||
#endif
|
||
}
|
||
#else
|
||
vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
|
||
for (idx = 0; idx < vlen; idx++)
|
||
{
|
||
if (GET_CODE (body) == ADDR_VEC)
|
||
{
|
||
#ifdef ASM_OUTPUT_ADDR_VEC_ELT
|
||
ASM_OUTPUT_ADDR_VEC_ELT
|
||
(file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
|
||
#else
|
||
gcc_unreachable ();
|
||
#endif
|
||
}
|
||
else
|
||
{
|
||
#ifdef ASM_OUTPUT_ADDR_DIFF_ELT
|
||
ASM_OUTPUT_ADDR_DIFF_ELT
|
||
(file,
|
||
body,
|
||
CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
|
||
CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
|
||
#else
|
||
gcc_unreachable ();
|
||
#endif
|
||
}
|
||
}
|
||
#ifdef ASM_OUTPUT_CASE_END
|
||
ASM_OUTPUT_CASE_END (file,
|
||
CODE_LABEL_NUMBER (PREV_INSN (insn)),
|
||
insn);
|
||
#endif
|
||
#endif
|
||
|
||
switch_to_section (current_function_section ());
|
||
|
||
break;
|
||
}
|
||
/* Output this line note if it is the first or the last line
|
||
note in a row. */
|
||
if (notice_source_line (insn))
|
||
{
|
||
(*debug_hooks->source_line) (last_linenum, last_filename);
|
||
}
|
||
|
||
if (GET_CODE (body) == ASM_INPUT)
|
||
{
|
||
const char *string = XSTR (body, 0);
|
||
|
||
/* There's no telling what that did to the condition codes. */
|
||
CC_STATUS_INIT;
|
||
|
||
if (string[0])
|
||
{
|
||
if (! app_on)
|
||
{
|
||
fputs (ASM_APP_ON, file);
|
||
app_on = 1;
|
||
}
|
||
fprintf (asm_out_file, "\t%s\n", string);
|
||
}
|
||
break;
|
||
}
|
||
|
||
/* Detect `asm' construct with operands. */
|
||
if (asm_noperands (body) >= 0)
|
||
{
|
||
unsigned int noperands = asm_noperands (body);
|
||
rtx *ops = alloca (noperands * sizeof (rtx));
|
||
const char *string;
|
||
|
||
/* There's no telling what that did to the condition codes. */
|
||
CC_STATUS_INIT;
|
||
|
||
/* Get out the operand values. */
|
||
string = decode_asm_operands (body, ops, NULL, NULL, NULL);
|
||
/* Inhibit dieing on what would otherwise be compiler bugs. */
|
||
insn_noperands = noperands;
|
||
this_is_asm_operands = insn;
|
||
|
||
#ifdef FINAL_PRESCAN_INSN
|
||
FINAL_PRESCAN_INSN (insn, ops, insn_noperands);
|
||
#endif
|
||
|
||
/* Output the insn using them. */
|
||
if (string[0])
|
||
{
|
||
if (! app_on)
|
||
{
|
||
fputs (ASM_APP_ON, file);
|
||
app_on = 1;
|
||
}
|
||
output_asm_insn (string, ops);
|
||
}
|
||
|
||
this_is_asm_operands = 0;
|
||
break;
|
||
}
|
||
|
||
if (app_on)
|
||
{
|
||
fputs (ASM_APP_OFF, file);
|
||
app_on = 0;
|
||
}
|
||
|
||
if (GET_CODE (body) == SEQUENCE)
|
||
{
|
||
/* A delayed-branch sequence */
|
||
int i;
|
||
|
||
final_sequence = body;
|
||
|
||
/* Record the delay slots' frame information before the branch.
|
||
This is needed for delayed calls: see execute_cfa_program(). */
|
||
#if defined (DWARF2_UNWIND_INFO)
|
||
if (dwarf2out_do_frame ())
|
||
for (i = 1; i < XVECLEN (body, 0); i++)
|
||
dwarf2out_frame_debug (XVECEXP (body, 0, i), false);
|
||
#endif
|
||
|
||
/* The first insn in this SEQUENCE might be a JUMP_INSN that will
|
||
force the restoration of a comparison that was previously
|
||
thought unnecessary. If that happens, cancel this sequence
|
||
and cause that insn to be restored. */
|
||
|
||
next = final_scan_insn (XVECEXP (body, 0, 0), file, 0, 1, seen);
|
||
if (next != XVECEXP (body, 0, 1))
|
||
{
|
||
final_sequence = 0;
|
||
return next;
|
||
}
|
||
|
||
for (i = 1; i < XVECLEN (body, 0); i++)
|
||
{
|
||
rtx insn = XVECEXP (body, 0, i);
|
||
rtx next = NEXT_INSN (insn);
|
||
/* We loop in case any instruction in a delay slot gets
|
||
split. */
|
||
do
|
||
insn = final_scan_insn (insn, file, 0, 1, seen);
|
||
while (insn != next);
|
||
}
|
||
#ifdef DBR_OUTPUT_SEQEND
|
||
DBR_OUTPUT_SEQEND (file);
|
||
#endif
|
||
final_sequence = 0;
|
||
|
||
/* If the insn requiring the delay slot was a CALL_INSN, the
|
||
insns in the delay slot are actually executed before the
|
||
called function. Hence we don't preserve any CC-setting
|
||
actions in these insns and the CC must be marked as being
|
||
clobbered by the function. */
|
||
if (CALL_P (XVECEXP (body, 0, 0)))
|
||
{
|
||
CC_STATUS_INIT;
|
||
}
|
||
break;
|
||
}
|
||
|
||
/* We have a real machine instruction as rtl. */
|
||
|
||
body = PATTERN (insn);
|
||
|
||
#ifdef HAVE_cc0
|
||
set = single_set (insn);
|
||
|
||
/* Check for redundant test and compare instructions
|
||
(when the condition codes are already set up as desired).
|
||
This is done only when optimizing; if not optimizing,
|
||
it should be possible for the user to alter a variable
|
||
with the debugger in between statements
|
||
and the next statement should reexamine the variable
|
||
to compute the condition codes. */
|
||
|
||
if (optimize)
|
||
{
|
||
if (set
|
||
&& GET_CODE (SET_DEST (set)) == CC0
|
||
&& insn != last_ignored_compare)
|
||
{
|
||
if (GET_CODE (SET_SRC (set)) == SUBREG)
|
||
SET_SRC (set) = alter_subreg (&SET_SRC (set));
|
||
else if (GET_CODE (SET_SRC (set)) == COMPARE)
|
||
{
|
||
if (GET_CODE (XEXP (SET_SRC (set), 0)) == SUBREG)
|
||
XEXP (SET_SRC (set), 0)
|
||
= alter_subreg (&XEXP (SET_SRC (set), 0));
|
||
if (GET_CODE (XEXP (SET_SRC (set), 1)) == SUBREG)
|
||
XEXP (SET_SRC (set), 1)
|
||
= alter_subreg (&XEXP (SET_SRC (set), 1));
|
||
}
|
||
if ((cc_status.value1 != 0
|
||
&& rtx_equal_p (SET_SRC (set), cc_status.value1))
|
||
|| (cc_status.value2 != 0
|
||
&& rtx_equal_p (SET_SRC (set), cc_status.value2)))
|
||
{
|
||
/* Don't delete insn if it has an addressing side-effect. */
|
||
if (! FIND_REG_INC_NOTE (insn, NULL_RTX)
|
||
/* or if anything in it is volatile. */
|
||
&& ! volatile_refs_p (PATTERN (insn)))
|
||
{
|
||
/* We don't really delete the insn; just ignore it. */
|
||
last_ignored_compare = insn;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
#endif
|
||
|
||
#ifdef HAVE_cc0
|
||
/* If this is a conditional branch, maybe modify it
|
||
if the cc's are in a nonstandard state
|
||
so that it accomplishes the same thing that it would
|
||
do straightforwardly if the cc's were set up normally. */
|
||
|
||
if (cc_status.flags != 0
|
||
&& JUMP_P (insn)
|
||
&& GET_CODE (body) == SET
|
||
&& SET_DEST (body) == pc_rtx
|
||
&& GET_CODE (SET_SRC (body)) == IF_THEN_ELSE
|
||
&& COMPARISON_P (XEXP (SET_SRC (body), 0))
|
||
&& XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx)
|
||
{
|
||
/* This function may alter the contents of its argument
|
||
and clear some of the cc_status.flags bits.
|
||
It may also return 1 meaning condition now always true
|
||
or -1 meaning condition now always false
|
||
or 2 meaning condition nontrivial but altered. */
|
||
int result = alter_cond (XEXP (SET_SRC (body), 0));
|
||
/* If condition now has fixed value, replace the IF_THEN_ELSE
|
||
with its then-operand or its else-operand. */
|
||
if (result == 1)
|
||
SET_SRC (body) = XEXP (SET_SRC (body), 1);
|
||
if (result == -1)
|
||
SET_SRC (body) = XEXP (SET_SRC (body), 2);
|
||
|
||
/* The jump is now either unconditional or a no-op.
|
||
If it has become a no-op, don't try to output it.
|
||
(It would not be recognized.) */
|
||
if (SET_SRC (body) == pc_rtx)
|
||
{
|
||
delete_insn (insn);
|
||
break;
|
||
}
|
||
else if (GET_CODE (SET_SRC (body)) == RETURN)
|
||
/* Replace (set (pc) (return)) with (return). */
|
||
PATTERN (insn) = body = SET_SRC (body);
|
||
|
||
/* Rerecognize the instruction if it has changed. */
|
||
if (result != 0)
|
||
INSN_CODE (insn) = -1;
|
||
}
|
||
|
||
/* Make same adjustments to instructions that examine the
|
||
condition codes without jumping and instructions that
|
||
handle conditional moves (if this machine has either one). */
|
||
|
||
if (cc_status.flags != 0
|
||
&& set != 0)
|
||
{
|
||
rtx cond_rtx, then_rtx, else_rtx;
|
||
|
||
if (!JUMP_P (insn)
|
||
&& GET_CODE (SET_SRC (set)) == IF_THEN_ELSE)
|
||
{
|
||
cond_rtx = XEXP (SET_SRC (set), 0);
|
||
then_rtx = XEXP (SET_SRC (set), 1);
|
||
else_rtx = XEXP (SET_SRC (set), 2);
|
||
}
|
||
else
|
||
{
|
||
cond_rtx = SET_SRC (set);
|
||
then_rtx = const_true_rtx;
|
||
else_rtx = const0_rtx;
|
||
}
|
||
|
||
switch (GET_CODE (cond_rtx))
|
||
{
|
||
case GTU:
|
||
case GT:
|
||
case LTU:
|
||
case LT:
|
||
case GEU:
|
||
case GE:
|
||
case LEU:
|
||
case LE:
|
||
case EQ:
|
||
case NE:
|
||
{
|
||
int result;
|
||
if (XEXP (cond_rtx, 0) != cc0_rtx)
|
||
break;
|
||
result = alter_cond (cond_rtx);
|
||
if (result == 1)
|
||
validate_change (insn, &SET_SRC (set), then_rtx, 0);
|
||
else if (result == -1)
|
||
validate_change (insn, &SET_SRC (set), else_rtx, 0);
|
||
else if (result == 2)
|
||
INSN_CODE (insn) = -1;
|
||
if (SET_DEST (set) == SET_SRC (set))
|
||
delete_insn (insn);
|
||
}
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
|
||
#endif
|
||
|
||
#ifdef HAVE_peephole
|
||
/* Do machine-specific peephole optimizations if desired. */
|
||
|
||
if (optimize && !flag_no_peephole && !nopeepholes)
|
||
{
|
||
rtx next = peephole (insn);
|
||
/* When peepholing, if there were notes within the peephole,
|
||
emit them before the peephole. */
|
||
if (next != 0 && next != NEXT_INSN (insn))
|
||
{
|
||
rtx note, prev = PREV_INSN (insn);
|
||
|
||
for (note = NEXT_INSN (insn); note != next;
|
||
note = NEXT_INSN (note))
|
||
final_scan_insn (note, file, optimize, nopeepholes, seen);
|
||
|
||
/* Put the notes in the proper position for a later
|
||
rescan. For example, the SH target can do this
|
||
when generating a far jump in a delayed branch
|
||
sequence. */
|
||
note = NEXT_INSN (insn);
|
||
PREV_INSN (note) = prev;
|
||
NEXT_INSN (prev) = note;
|
||
NEXT_INSN (PREV_INSN (next)) = insn;
|
||
PREV_INSN (insn) = PREV_INSN (next);
|
||
NEXT_INSN (insn) = next;
|
||
PREV_INSN (next) = insn;
|
||
}
|
||
|
||
/* PEEPHOLE might have changed this. */
|
||
body = PATTERN (insn);
|
||
}
|
||
#endif
|
||
|
||
/* Try to recognize the instruction.
|
||
If successful, verify that the operands satisfy the
|
||
constraints for the instruction. Crash if they don't,
|
||
since `reload' should have changed them so that they do. */
|
||
|
||
insn_code_number = recog_memoized (insn);
|
||
cleanup_subreg_operands (insn);
|
||
|
||
/* Dump the insn in the assembly for debugging. */
|
||
if (flag_dump_rtl_in_asm)
|
||
{
|
||
print_rtx_head = ASM_COMMENT_START;
|
||
print_rtl_single (asm_out_file, insn);
|
||
print_rtx_head = "";
|
||
}
|
||
|
||
if (! constrain_operands_cached (1))
|
||
fatal_insn_not_found (insn);
|
||
|
||
/* Some target machines need to prescan each insn before
|
||
it is output. */
|
||
|
||
#ifdef FINAL_PRESCAN_INSN
|
||
FINAL_PRESCAN_INSN (insn, recog_data.operand, recog_data.n_operands);
|
||
#endif
|
||
|
||
#ifdef HAVE_conditional_execution
|
||
if (GET_CODE (PATTERN (insn)) == COND_EXEC)
|
||
current_insn_predicate = COND_EXEC_TEST (PATTERN (insn));
|
||
#endif
|
||
|
||
#ifdef HAVE_cc0
|
||
cc_prev_status = cc_status;
|
||
|
||
/* Update `cc_status' for this instruction.
|
||
The instruction's output routine may change it further.
|
||
If the output routine for a jump insn needs to depend
|
||
on the cc status, it should look at cc_prev_status. */
|
||
|
||
NOTICE_UPDATE_CC (body, insn);
|
||
#endif
|
||
|
||
current_output_insn = debug_insn = insn;
|
||
|
||
#if defined (DWARF2_UNWIND_INFO)
|
||
if (CALL_P (insn) && dwarf2out_do_frame ())
|
||
dwarf2out_frame_debug (insn, false);
|
||
#endif
|
||
|
||
/* Find the proper template for this insn. */
|
||
template = get_insn_template (insn_code_number, insn);
|
||
|
||
/* If the C code returns 0, it means that it is a jump insn
|
||
which follows a deleted test insn, and that test insn
|
||
needs to be reinserted. */
|
||
if (template == 0)
|
||
{
|
||
rtx prev;
|
||
|
||
gcc_assert (prev_nonnote_insn (insn) == last_ignored_compare);
|
||
|
||
/* We have already processed the notes between the setter and
|
||
the user. Make sure we don't process them again, this is
|
||
particularly important if one of the notes is a block
|
||
scope note or an EH note. */
|
||
for (prev = insn;
|
||
prev != last_ignored_compare;
|
||
prev = PREV_INSN (prev))
|
||
{
|
||
if (NOTE_P (prev))
|
||
delete_insn (prev); /* Use delete_note. */
|
||
}
|
||
|
||
return prev;
|
||
}
|
||
|
||
/* If the template is the string "#", it means that this insn must
|
||
be split. */
|
||
if (template[0] == '#' && template[1] == '\0')
|
||
{
|
||
rtx new = try_split (body, insn, 0);
|
||
|
||
/* If we didn't split the insn, go away. */
|
||
if (new == insn && PATTERN (new) == body)
|
||
fatal_insn ("could not split insn", insn);
|
||
|
||
#ifdef HAVE_ATTR_length
|
||
/* This instruction should have been split in shorten_branches,
|
||
to ensure that we would have valid length info for the
|
||
splitees. */
|
||
gcc_unreachable ();
|
||
#endif
|
||
|
||
return new;
|
||
}
|
||
|
||
#ifdef TARGET_UNWIND_INFO
|
||
/* ??? This will put the directives in the wrong place if
|
||
get_insn_template outputs assembly directly. However calling it
|
||
before get_insn_template breaks if the insns is split. */
|
||
targetm.asm_out.unwind_emit (asm_out_file, insn);
|
||
#endif
|
||
|
||
/* Output assembler code from the template. */
|
||
output_asm_insn (template, recog_data.operand);
|
||
|
||
/* If necessary, report the effect that the instruction has on
|
||
the unwind info. We've already done this for delay slots
|
||
and call instructions. */
|
||
#if defined (DWARF2_UNWIND_INFO)
|
||
if (final_sequence == 0
|
||
#if !defined (HAVE_prologue)
|
||
&& !ACCUMULATE_OUTGOING_ARGS
|
||
#endif
|
||
&& dwarf2out_do_frame ())
|
||
dwarf2out_frame_debug (insn, true);
|
||
#endif
|
||
|
||
current_output_insn = debug_insn = 0;
|
||
}
|
||
}
|
||
return NEXT_INSN (insn);
|
||
}
|
||
|
||
/* Return whether a source line note needs to be emitted before INSN. */
|
||
|
||
static bool
|
||
notice_source_line (rtx insn)
|
||
{
|
||
const char *filename = insn_file (insn);
|
||
int linenum = insn_line (insn);
|
||
|
||
if (filename
|
||
&& (force_source_line
|
||
|| filename != last_filename
|
||
|| last_linenum != linenum))
|
||
{
|
||
force_source_line = false;
|
||
last_filename = filename;
|
||
last_linenum = linenum;
|
||
high_block_linenum = MAX (last_linenum, high_block_linenum);
|
||
high_function_linenum = MAX (last_linenum, high_function_linenum);
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
/* For each operand in INSN, simplify (subreg (reg)) so that it refers
|
||
directly to the desired hard register. */
|
||
|
||
void
|
||
cleanup_subreg_operands (rtx insn)
|
||
{
|
||
int i;
|
||
extract_insn_cached (insn);
|
||
for (i = 0; i < recog_data.n_operands; i++)
|
||
{
|
||
/* The following test cannot use recog_data.operand when testing
|
||
for a SUBREG: the underlying object might have been changed
|
||
already if we are inside a match_operator expression that
|
||
matches the else clause. Instead we test the underlying
|
||
expression directly. */
|
||
if (GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
|
||
recog_data.operand[i] = alter_subreg (recog_data.operand_loc[i]);
|
||
else if (GET_CODE (recog_data.operand[i]) == PLUS
|
||
|| GET_CODE (recog_data.operand[i]) == MULT
|
||
|| MEM_P (recog_data.operand[i]))
|
||
recog_data.operand[i] = walk_alter_subreg (recog_data.operand_loc[i]);
|
||
}
|
||
|
||
for (i = 0; i < recog_data.n_dups; i++)
|
||
{
|
||
if (GET_CODE (*recog_data.dup_loc[i]) == SUBREG)
|
||
*recog_data.dup_loc[i] = alter_subreg (recog_data.dup_loc[i]);
|
||
else if (GET_CODE (*recog_data.dup_loc[i]) == PLUS
|
||
|| GET_CODE (*recog_data.dup_loc[i]) == MULT
|
||
|| MEM_P (*recog_data.dup_loc[i]))
|
||
*recog_data.dup_loc[i] = walk_alter_subreg (recog_data.dup_loc[i]);
|
||
}
|
||
}
|
||
|
||
/* If X is a SUBREG, replace it with a REG or a MEM,
|
||
based on the thing it is a subreg of. */
|
||
|
||
rtx
|
||
alter_subreg (rtx *xp)
|
||
{
|
||
rtx x = *xp;
|
||
rtx y = SUBREG_REG (x);
|
||
|
||
/* simplify_subreg does not remove subreg from volatile references.
|
||
We are required to. */
|
||
if (MEM_P (y))
|
||
{
|
||
int offset = SUBREG_BYTE (x);
|
||
|
||
/* For paradoxical subregs on big-endian machines, SUBREG_BYTE
|
||
contains 0 instead of the proper offset. See simplify_subreg. */
|
||
if (offset == 0
|
||
&& GET_MODE_SIZE (GET_MODE (y)) < GET_MODE_SIZE (GET_MODE (x)))
|
||
{
|
||
int difference = GET_MODE_SIZE (GET_MODE (y))
|
||
- GET_MODE_SIZE (GET_MODE (x));
|
||
if (WORDS_BIG_ENDIAN)
|
||
offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
|
||
if (BYTES_BIG_ENDIAN)
|
||
offset += difference % UNITS_PER_WORD;
|
||
}
|
||
|
||
*xp = adjust_address (y, GET_MODE (x), offset);
|
||
}
|
||
else
|
||
{
|
||
rtx new = simplify_subreg (GET_MODE (x), y, GET_MODE (y),
|
||
SUBREG_BYTE (x));
|
||
|
||
if (new != 0)
|
||
*xp = new;
|
||
else if (REG_P (y))
|
||
{
|
||
/* Simplify_subreg can't handle some REG cases, but we have to. */
|
||
unsigned int regno = subreg_regno (x);
|
||
*xp = gen_rtx_REG_offset (y, GET_MODE (x), regno, SUBREG_BYTE (x));
|
||
}
|
||
}
|
||
|
||
return *xp;
|
||
}
|
||
|
||
/* Do alter_subreg on all the SUBREGs contained in X. */
|
||
|
||
static rtx
|
||
walk_alter_subreg (rtx *xp)
|
||
{
|
||
rtx x = *xp;
|
||
switch (GET_CODE (x))
|
||
{
|
||
case PLUS:
|
||
case MULT:
|
||
case AND:
|
||
XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0));
|
||
XEXP (x, 1) = walk_alter_subreg (&XEXP (x, 1));
|
||
break;
|
||
|
||
case MEM:
|
||
case ZERO_EXTEND:
|
||
XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0));
|
||
break;
|
||
|
||
case SUBREG:
|
||
return alter_subreg (xp);
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
return *xp;
|
||
}
|
||
|
||
#ifdef HAVE_cc0
|
||
|
||
/* Given BODY, the body of a jump instruction, alter the jump condition
|
||
as required by the bits that are set in cc_status.flags.
|
||
Not all of the bits there can be handled at this level in all cases.
|
||
|
||
The value is normally 0.
|
||
1 means that the condition has become always true.
|
||
-1 means that the condition has become always false.
|
||
2 means that COND has been altered. */
|
||
|
||
static int
|
||
alter_cond (rtx cond)
|
||
{
|
||
int value = 0;
|
||
|
||
if (cc_status.flags & CC_REVERSED)
|
||
{
|
||
value = 2;
|
||
PUT_CODE (cond, swap_condition (GET_CODE (cond)));
|
||
}
|
||
|
||
if (cc_status.flags & CC_INVERTED)
|
||
{
|
||
value = 2;
|
||
PUT_CODE (cond, reverse_condition (GET_CODE (cond)));
|
||
}
|
||
|
||
if (cc_status.flags & CC_NOT_POSITIVE)
|
||
switch (GET_CODE (cond))
|
||
{
|
||
case LE:
|
||
case LEU:
|
||
case GEU:
|
||
/* Jump becomes unconditional. */
|
||
return 1;
|
||
|
||
case GT:
|
||
case GTU:
|
||
case LTU:
|
||
/* Jump becomes no-op. */
|
||
return -1;
|
||
|
||
case GE:
|
||
PUT_CODE (cond, EQ);
|
||
value = 2;
|
||
break;
|
||
|
||
case LT:
|
||
PUT_CODE (cond, NE);
|
||
value = 2;
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
if (cc_status.flags & CC_NOT_NEGATIVE)
|
||
switch (GET_CODE (cond))
|
||
{
|
||
case GE:
|
||
case GEU:
|
||
/* Jump becomes unconditional. */
|
||
return 1;
|
||
|
||
case LT:
|
||
case LTU:
|
||
/* Jump becomes no-op. */
|
||
return -1;
|
||
|
||
case LE:
|
||
case LEU:
|
||
PUT_CODE (cond, EQ);
|
||
value = 2;
|
||
break;
|
||
|
||
case GT:
|
||
case GTU:
|
||
PUT_CODE (cond, NE);
|
||
value = 2;
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
if (cc_status.flags & CC_NO_OVERFLOW)
|
||
switch (GET_CODE (cond))
|
||
{
|
||
case GEU:
|
||
/* Jump becomes unconditional. */
|
||
return 1;
|
||
|
||
case LEU:
|
||
PUT_CODE (cond, EQ);
|
||
value = 2;
|
||
break;
|
||
|
||
case GTU:
|
||
PUT_CODE (cond, NE);
|
||
value = 2;
|
||
break;
|
||
|
||
case LTU:
|
||
/* Jump becomes no-op. */
|
||
return -1;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N))
|
||
switch (GET_CODE (cond))
|
||
{
|
||
default:
|
||
gcc_unreachable ();
|
||
|
||
case NE:
|
||
PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT);
|
||
value = 2;
|
||
break;
|
||
|
||
case EQ:
|
||
PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE);
|
||
value = 2;
|
||
break;
|
||
}
|
||
|
||
if (cc_status.flags & CC_NOT_SIGNED)
|
||
/* The flags are valid if signed condition operators are converted
|
||
to unsigned. */
|
||
switch (GET_CODE (cond))
|
||
{
|
||
case LE:
|
||
PUT_CODE (cond, LEU);
|
||
value = 2;
|
||
break;
|
||
|
||
case LT:
|
||
PUT_CODE (cond, LTU);
|
||
value = 2;
|
||
break;
|
||
|
||
case GT:
|
||
PUT_CODE (cond, GTU);
|
||
value = 2;
|
||
break;
|
||
|
||
case GE:
|
||
PUT_CODE (cond, GEU);
|
||
value = 2;
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
return value;
|
||
}
|
||
#endif
|
||
|
||
/* Report inconsistency between the assembler template and the operands.
|
||
In an `asm', it's the user's fault; otherwise, the compiler's fault. */
|
||
|
||
void
|
||
output_operand_lossage (const char *cmsgid, ...)
|
||
{
|
||
char *fmt_string;
|
||
char *new_message;
|
||
const char *pfx_str;
|
||
va_list ap;
|
||
|
||
va_start (ap, cmsgid);
|
||
|
||
pfx_str = this_is_asm_operands ? _("invalid 'asm': ") : "output_operand: ";
|
||
asprintf (&fmt_string, "%s%s", pfx_str, _(cmsgid));
|
||
vasprintf (&new_message, fmt_string, ap);
|
||
|
||
if (this_is_asm_operands)
|
||
error_for_asm (this_is_asm_operands, "%s", new_message);
|
||
else
|
||
internal_error ("%s", new_message);
|
||
|
||
free (fmt_string);
|
||
free (new_message);
|
||
va_end (ap);
|
||
}
|
||
|
||
/* Output of assembler code from a template, and its subroutines. */
|
||
|
||
/* Annotate the assembly with a comment describing the pattern and
|
||
alternative used. */
|
||
|
||
static void
|
||
output_asm_name (void)
|
||
{
|
||
if (debug_insn)
|
||
{
|
||
int num = INSN_CODE (debug_insn);
|
||
fprintf (asm_out_file, "\t%s %d\t%s",
|
||
ASM_COMMENT_START, INSN_UID (debug_insn),
|
||
insn_data[num].name);
|
||
if (insn_data[num].n_alternatives > 1)
|
||
fprintf (asm_out_file, "/%d", which_alternative + 1);
|
||
#ifdef HAVE_ATTR_length
|
||
fprintf (asm_out_file, "\t[length = %d]",
|
||
get_attr_length (debug_insn));
|
||
#endif
|
||
/* Clear this so only the first assembler insn
|
||
of any rtl insn will get the special comment for -dp. */
|
||
debug_insn = 0;
|
||
}
|
||
}
|
||
|
||
/* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
|
||
or its address, return that expr . Set *PADDRESSP to 1 if the expr
|
||
corresponds to the address of the object and 0 if to the object. */
|
||
|
||
static tree
|
||
get_mem_expr_from_op (rtx op, int *paddressp)
|
||
{
|
||
tree expr;
|
||
int inner_addressp;
|
||
|
||
*paddressp = 0;
|
||
|
||
if (REG_P (op))
|
||
return REG_EXPR (op);
|
||
else if (!MEM_P (op))
|
||
return 0;
|
||
|
||
if (MEM_EXPR (op) != 0)
|
||
return MEM_EXPR (op);
|
||
|
||
/* Otherwise we have an address, so indicate it and look at the address. */
|
||
*paddressp = 1;
|
||
op = XEXP (op, 0);
|
||
|
||
/* First check if we have a decl for the address, then look at the right side
|
||
if it is a PLUS. Otherwise, strip off arithmetic and keep looking.
|
||
But don't allow the address to itself be indirect. */
|
||
if ((expr = get_mem_expr_from_op (op, &inner_addressp)) && ! inner_addressp)
|
||
return expr;
|
||
else if (GET_CODE (op) == PLUS
|
||
&& (expr = get_mem_expr_from_op (XEXP (op, 1), &inner_addressp)))
|
||
return expr;
|
||
|
||
while (GET_RTX_CLASS (GET_CODE (op)) == RTX_UNARY
|
||
|| GET_RTX_CLASS (GET_CODE (op)) == RTX_BIN_ARITH)
|
||
op = XEXP (op, 0);
|
||
|
||
expr = get_mem_expr_from_op (op, &inner_addressp);
|
||
return inner_addressp ? 0 : expr;
|
||
}
|
||
|
||
/* Output operand names for assembler instructions. OPERANDS is the
|
||
operand vector, OPORDER is the order to write the operands, and NOPS
|
||
is the number of operands to write. */
|
||
|
||
static void
|
||
output_asm_operand_names (rtx *operands, int *oporder, int nops)
|
||
{
|
||
int wrote = 0;
|
||
int i;
|
||
|
||
for (i = 0; i < nops; i++)
|
||
{
|
||
int addressp;
|
||
rtx op = operands[oporder[i]];
|
||
tree expr = get_mem_expr_from_op (op, &addressp);
|
||
|
||
fprintf (asm_out_file, "%c%s",
|
||
wrote ? ',' : '\t', wrote ? "" : ASM_COMMENT_START);
|
||
wrote = 1;
|
||
if (expr)
|
||
{
|
||
fprintf (asm_out_file, "%s",
|
||
addressp ? "*" : "");
|
||
print_mem_expr (asm_out_file, expr);
|
||
wrote = 1;
|
||
}
|
||
else if (REG_P (op) && ORIGINAL_REGNO (op)
|
||
&& ORIGINAL_REGNO (op) != REGNO (op))
|
||
fprintf (asm_out_file, " tmp%i", ORIGINAL_REGNO (op));
|
||
}
|
||
}
|
||
|
||
/* Output text from TEMPLATE to the assembler output file,
|
||
obeying %-directions to substitute operands taken from
|
||
the vector OPERANDS.
|
||
|
||
%N (for N a digit) means print operand N in usual manner.
|
||
%lN means require operand N to be a CODE_LABEL or LABEL_REF
|
||
and print the label name with no punctuation.
|
||
%cN means require operand N to be a constant
|
||
and print the constant expression with no punctuation.
|
||
%aN means expect operand N to be a memory address
|
||
(not a memory reference!) and print a reference
|
||
to that address.
|
||
%nN means expect operand N to be a constant
|
||
and print a constant expression for minus the value
|
||
of the operand, with no other punctuation. */
|
||
|
||
void
|
||
output_asm_insn (const char *template, rtx *operands)
|
||
{
|
||
const char *p;
|
||
int c;
|
||
#ifdef ASSEMBLER_DIALECT
|
||
int dialect = 0;
|
||
#endif
|
||
int oporder[MAX_RECOG_OPERANDS];
|
||
char opoutput[MAX_RECOG_OPERANDS];
|
||
int ops = 0;
|
||
|
||
/* An insn may return a null string template
|
||
in a case where no assembler code is needed. */
|
||
if (*template == 0)
|
||
return;
|
||
|
||
memset (opoutput, 0, sizeof opoutput);
|
||
p = template;
|
||
putc ('\t', asm_out_file);
|
||
|
||
#ifdef ASM_OUTPUT_OPCODE
|
||
ASM_OUTPUT_OPCODE (asm_out_file, p);
|
||
#endif
|
||
|
||
while ((c = *p++))
|
||
switch (c)
|
||
{
|
||
case '\n':
|
||
if (flag_verbose_asm)
|
||
output_asm_operand_names (operands, oporder, ops);
|
||
if (flag_print_asm_name)
|
||
output_asm_name ();
|
||
|
||
ops = 0;
|
||
memset (opoutput, 0, sizeof opoutput);
|
||
|
||
putc (c, asm_out_file);
|
||
#ifdef ASM_OUTPUT_OPCODE
|
||
while ((c = *p) == '\t')
|
||
{
|
||
putc (c, asm_out_file);
|
||
p++;
|
||
}
|
||
ASM_OUTPUT_OPCODE (asm_out_file, p);
|
||
#endif
|
||
break;
|
||
|
||
#ifdef ASSEMBLER_DIALECT
|
||
case '{':
|
||
{
|
||
int i;
|
||
|
||
if (dialect)
|
||
output_operand_lossage ("nested assembly dialect alternatives");
|
||
else
|
||
dialect = 1;
|
||
|
||
/* If we want the first dialect, do nothing. Otherwise, skip
|
||
DIALECT_NUMBER of strings ending with '|'. */
|
||
for (i = 0; i < dialect_number; i++)
|
||
{
|
||
while (*p && *p != '}' && *p++ != '|')
|
||
;
|
||
if (*p == '}')
|
||
break;
|
||
if (*p == '|')
|
||
p++;
|
||
}
|
||
|
||
if (*p == '\0')
|
||
output_operand_lossage ("unterminated assembly dialect alternative");
|
||
}
|
||
break;
|
||
|
||
case '|':
|
||
if (dialect)
|
||
{
|
||
/* Skip to close brace. */
|
||
do
|
||
{
|
||
if (*p == '\0')
|
||
{
|
||
output_operand_lossage ("unterminated assembly dialect alternative");
|
||
break;
|
||
}
|
||
}
|
||
while (*p++ != '}');
|
||
dialect = 0;
|
||
}
|
||
else
|
||
putc (c, asm_out_file);
|
||
break;
|
||
|
||
case '}':
|
||
if (! dialect)
|
||
putc (c, asm_out_file);
|
||
dialect = 0;
|
||
break;
|
||
#endif
|
||
|
||
case '%':
|
||
/* %% outputs a single %. */
|
||
if (*p == '%')
|
||
{
|
||
p++;
|
||
putc (c, asm_out_file);
|
||
}
|
||
/* %= outputs a number which is unique to each insn in the entire
|
||
compilation. This is useful for making local labels that are
|
||
referred to more than once in a given insn. */
|
||
else if (*p == '=')
|
||
{
|
||
p++;
|
||
fprintf (asm_out_file, "%d", insn_counter);
|
||
}
|
||
/* % followed by a letter and some digits
|
||
outputs an operand in a special way depending on the letter.
|
||
Letters `acln' are implemented directly.
|
||
Other letters are passed to `output_operand' so that
|
||
the PRINT_OPERAND macro can define them. */
|
||
else if (ISALPHA (*p))
|
||
{
|
||
int letter = *p++;
|
||
unsigned long opnum;
|
||
char *endptr;
|
||
|
||
opnum = strtoul (p, &endptr, 10);
|
||
|
||
if (endptr == p)
|
||
output_operand_lossage ("operand number missing "
|
||
"after %%-letter");
|
||
else if (this_is_asm_operands && opnum >= insn_noperands)
|
||
output_operand_lossage ("operand number out of range");
|
||
else if (letter == 'l')
|
||
output_asm_label (operands[opnum]);
|
||
else if (letter == 'a')
|
||
output_address (operands[opnum]);
|
||
else if (letter == 'c')
|
||
{
|
||
if (CONSTANT_ADDRESS_P (operands[opnum]))
|
||
output_addr_const (asm_out_file, operands[opnum]);
|
||
else
|
||
output_operand (operands[opnum], 'c');
|
||
}
|
||
else if (letter == 'n')
|
||
{
|
||
if (GET_CODE (operands[opnum]) == CONST_INT)
|
||
fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC,
|
||
- INTVAL (operands[opnum]));
|
||
else
|
||
{
|
||
putc ('-', asm_out_file);
|
||
output_addr_const (asm_out_file, operands[opnum]);
|
||
}
|
||
}
|
||
else
|
||
output_operand (operands[opnum], letter);
|
||
|
||
if (!opoutput[opnum])
|
||
oporder[ops++] = opnum;
|
||
opoutput[opnum] = 1;
|
||
|
||
p = endptr;
|
||
c = *p;
|
||
}
|
||
/* % followed by a digit outputs an operand the default way. */
|
||
else if (ISDIGIT (*p))
|
||
{
|
||
unsigned long opnum;
|
||
char *endptr;
|
||
|
||
opnum = strtoul (p, &endptr, 10);
|
||
if (this_is_asm_operands && opnum >= insn_noperands)
|
||
output_operand_lossage ("operand number out of range");
|
||
else
|
||
output_operand (operands[opnum], 0);
|
||
|
||
if (!opoutput[opnum])
|
||
oporder[ops++] = opnum;
|
||
opoutput[opnum] = 1;
|
||
|
||
p = endptr;
|
||
c = *p;
|
||
}
|
||
/* % followed by punctuation: output something for that
|
||
punctuation character alone, with no operand.
|
||
The PRINT_OPERAND macro decides what is actually done. */
|
||
#ifdef PRINT_OPERAND_PUNCT_VALID_P
|
||
else if (PRINT_OPERAND_PUNCT_VALID_P ((unsigned char) *p))
|
||
output_operand (NULL_RTX, *p++);
|
||
#endif
|
||
else
|
||
output_operand_lossage ("invalid %%-code");
|
||
break;
|
||
|
||
default:
|
||
putc (c, asm_out_file);
|
||
}
|
||
|
||
/* Write out the variable names for operands, if we know them. */
|
||
if (flag_verbose_asm)
|
||
output_asm_operand_names (operands, oporder, ops);
|
||
if (flag_print_asm_name)
|
||
output_asm_name ();
|
||
|
||
putc ('\n', asm_out_file);
|
||
}
|
||
|
||
/* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
|
||
|
||
void
|
||
output_asm_label (rtx x)
|
||
{
|
||
char buf[256];
|
||
|
||
if (GET_CODE (x) == LABEL_REF)
|
||
x = XEXP (x, 0);
|
||
if (LABEL_P (x)
|
||
|| (NOTE_P (x)
|
||
&& NOTE_LINE_NUMBER (x) == NOTE_INSN_DELETED_LABEL))
|
||
ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
|
||
else
|
||
output_operand_lossage ("'%%l' operand isn't a label");
|
||
|
||
assemble_name (asm_out_file, buf);
|
||
}
|
||
|
||
/* Print operand X using machine-dependent assembler syntax.
|
||
The macro PRINT_OPERAND is defined just to control this function.
|
||
CODE is a non-digit that preceded the operand-number in the % spec,
|
||
such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
|
||
between the % and the digits.
|
||
When CODE is a non-letter, X is 0.
|
||
|
||
The meanings of the letters are machine-dependent and controlled
|
||
by PRINT_OPERAND. */
|
||
|
||
static void
|
||
output_operand (rtx x, int code ATTRIBUTE_UNUSED)
|
||
{
|
||
if (x && GET_CODE (x) == SUBREG)
|
||
x = alter_subreg (&x);
|
||
|
||
/* X must not be a pseudo reg. */
|
||
gcc_assert (!x || !REG_P (x) || REGNO (x) < FIRST_PSEUDO_REGISTER);
|
||
|
||
PRINT_OPERAND (asm_out_file, x, code);
|
||
}
|
||
|
||
/* Print a memory reference operand for address X
|
||
using machine-dependent assembler syntax.
|
||
The macro PRINT_OPERAND_ADDRESS exists just to control this function. */
|
||
|
||
void
|
||
output_address (rtx x)
|
||
{
|
||
walk_alter_subreg (&x);
|
||
PRINT_OPERAND_ADDRESS (asm_out_file, x);
|
||
}
|
||
|
||
/* Print an integer constant expression in assembler syntax.
|
||
Addition and subtraction are the only arithmetic
|
||
that may appear in these expressions. */
|
||
|
||
void
|
||
output_addr_const (FILE *file, rtx x)
|
||
{
|
||
char buf[256];
|
||
|
||
restart:
|
||
switch (GET_CODE (x))
|
||
{
|
||
case PC:
|
||
putc ('.', file);
|
||
break;
|
||
|
||
case SYMBOL_REF:
|
||
if (SYMBOL_REF_DECL (x))
|
||
mark_decl_referenced (SYMBOL_REF_DECL (x));
|
||
#ifdef ASM_OUTPUT_SYMBOL_REF
|
||
ASM_OUTPUT_SYMBOL_REF (file, x);
|
||
#else
|
||
assemble_name (file, XSTR (x, 0));
|
||
#endif
|
||
break;
|
||
|
||
case LABEL_REF:
|
||
x = XEXP (x, 0);
|
||
/* Fall through. */
|
||
case CODE_LABEL:
|
||
ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
|
||
#ifdef ASM_OUTPUT_LABEL_REF
|
||
ASM_OUTPUT_LABEL_REF (file, buf);
|
||
#else
|
||
assemble_name (file, buf);
|
||
#endif
|
||
break;
|
||
|
||
case CONST_INT:
|
||
fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
|
||
break;
|
||
|
||
case CONST:
|
||
/* This used to output parentheses around the expression,
|
||
but that does not work on the 386 (either ATT or BSD assembler). */
|
||
output_addr_const (file, XEXP (x, 0));
|
||
break;
|
||
|
||
case CONST_DOUBLE:
|
||
if (GET_MODE (x) == VOIDmode)
|
||
{
|
||
/* We can use %d if the number is one word and positive. */
|
||
if (CONST_DOUBLE_HIGH (x))
|
||
fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
|
||
CONST_DOUBLE_HIGH (x), CONST_DOUBLE_LOW (x));
|
||
else if (CONST_DOUBLE_LOW (x) < 0)
|
||
fprintf (file, HOST_WIDE_INT_PRINT_HEX, CONST_DOUBLE_LOW (x));
|
||
else
|
||
fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
|
||
}
|
||
else
|
||
/* We can't handle floating point constants;
|
||
PRINT_OPERAND must handle them. */
|
||
output_operand_lossage ("floating constant misused");
|
||
break;
|
||
|
||
case PLUS:
|
||
/* Some assemblers need integer constants to appear last (eg masm). */
|
||
if (GET_CODE (XEXP (x, 0)) == CONST_INT)
|
||
{
|
||
output_addr_const (file, XEXP (x, 1));
|
||
if (INTVAL (XEXP (x, 0)) >= 0)
|
||
fprintf (file, "+");
|
||
output_addr_const (file, XEXP (x, 0));
|
||
}
|
||
else
|
||
{
|
||
output_addr_const (file, XEXP (x, 0));
|
||
if (GET_CODE (XEXP (x, 1)) != CONST_INT
|
||
|| INTVAL (XEXP (x, 1)) >= 0)
|
||
fprintf (file, "+");
|
||
output_addr_const (file, XEXP (x, 1));
|
||
}
|
||
break;
|
||
|
||
case MINUS:
|
||
/* Avoid outputting things like x-x or x+5-x,
|
||
since some assemblers can't handle that. */
|
||
x = simplify_subtraction (x);
|
||
if (GET_CODE (x) != MINUS)
|
||
goto restart;
|
||
|
||
output_addr_const (file, XEXP (x, 0));
|
||
fprintf (file, "-");
|
||
if ((GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0)
|
||
|| GET_CODE (XEXP (x, 1)) == PC
|
||
|| GET_CODE (XEXP (x, 1)) == SYMBOL_REF)
|
||
output_addr_const (file, XEXP (x, 1));
|
||
else
|
||
{
|
||
fputs (targetm.asm_out.open_paren, file);
|
||
output_addr_const (file, XEXP (x, 1));
|
||
fputs (targetm.asm_out.close_paren, file);
|
||
}
|
||
break;
|
||
|
||
case ZERO_EXTEND:
|
||
case SIGN_EXTEND:
|
||
case SUBREG:
|
||
output_addr_const (file, XEXP (x, 0));
|
||
break;
|
||
|
||
default:
|
||
#ifdef OUTPUT_ADDR_CONST_EXTRA
|
||
OUTPUT_ADDR_CONST_EXTRA (file, x, fail);
|
||
break;
|
||
|
||
fail:
|
||
#endif
|
||
output_operand_lossage ("invalid expression as operand");
|
||
}
|
||
}
|
||
|
||
/* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
|
||
%R prints the value of REGISTER_PREFIX.
|
||
%L prints the value of LOCAL_LABEL_PREFIX.
|
||
%U prints the value of USER_LABEL_PREFIX.
|
||
%I prints the value of IMMEDIATE_PREFIX.
|
||
%O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
|
||
Also supported are %d, %i, %u, %x, %X, %o, %c, %s and %%.
|
||
|
||
We handle alternate assembler dialects here, just like output_asm_insn. */
|
||
|
||
void
|
||
asm_fprintf (FILE *file, const char *p, ...)
|
||
{
|
||
char buf[10];
|
||
char *q, c;
|
||
va_list argptr;
|
||
|
||
va_start (argptr, p);
|
||
|
||
buf[0] = '%';
|
||
|
||
while ((c = *p++))
|
||
switch (c)
|
||
{
|
||
#ifdef ASSEMBLER_DIALECT
|
||
case '{':
|
||
{
|
||
int i;
|
||
|
||
/* If we want the first dialect, do nothing. Otherwise, skip
|
||
DIALECT_NUMBER of strings ending with '|'. */
|
||
for (i = 0; i < dialect_number; i++)
|
||
{
|
||
while (*p && *p++ != '|')
|
||
;
|
||
|
||
if (*p == '|')
|
||
p++;
|
||
}
|
||
}
|
||
break;
|
||
|
||
case '|':
|
||
/* Skip to close brace. */
|
||
while (*p && *p++ != '}')
|
||
;
|
||
break;
|
||
|
||
case '}':
|
||
break;
|
||
#endif
|
||
|
||
case '%':
|
||
c = *p++;
|
||
q = &buf[1];
|
||
while (strchr ("-+ #0", c))
|
||
{
|
||
*q++ = c;
|
||
c = *p++;
|
||
}
|
||
while (ISDIGIT (c) || c == '.')
|
||
{
|
||
*q++ = c;
|
||
c = *p++;
|
||
}
|
||
switch (c)
|
||
{
|
||
case '%':
|
||
putc ('%', file);
|
||
break;
|
||
|
||
case 'd': case 'i': case 'u':
|
||
case 'x': case 'X': case 'o':
|
||
case 'c':
|
||
*q++ = c;
|
||
*q = 0;
|
||
fprintf (file, buf, va_arg (argptr, int));
|
||
break;
|
||
|
||
case 'w':
|
||
/* This is a prefix to the 'd', 'i', 'u', 'x', 'X', and
|
||
'o' cases, but we do not check for those cases. It
|
||
means that the value is a HOST_WIDE_INT, which may be
|
||
either `long' or `long long'. */
|
||
memcpy (q, HOST_WIDE_INT_PRINT, strlen (HOST_WIDE_INT_PRINT));
|
||
q += strlen (HOST_WIDE_INT_PRINT);
|
||
*q++ = *p++;
|
||
*q = 0;
|
||
fprintf (file, buf, va_arg (argptr, HOST_WIDE_INT));
|
||
break;
|
||
|
||
case 'l':
|
||
*q++ = c;
|
||
#ifdef HAVE_LONG_LONG
|
||
if (*p == 'l')
|
||
{
|
||
*q++ = *p++;
|
||
*q++ = *p++;
|
||
*q = 0;
|
||
fprintf (file, buf, va_arg (argptr, long long));
|
||
}
|
||
else
|
||
#endif
|
||
{
|
||
*q++ = *p++;
|
||
*q = 0;
|
||
fprintf (file, buf, va_arg (argptr, long));
|
||
}
|
||
|
||
break;
|
||
|
||
case 's':
|
||
*q++ = c;
|
||
*q = 0;
|
||
fprintf (file, buf, va_arg (argptr, char *));
|
||
break;
|
||
|
||
case 'O':
|
||
#ifdef ASM_OUTPUT_OPCODE
|
||
ASM_OUTPUT_OPCODE (asm_out_file, p);
|
||
#endif
|
||
break;
|
||
|
||
case 'R':
|
||
#ifdef REGISTER_PREFIX
|
||
fprintf (file, "%s", REGISTER_PREFIX);
|
||
#endif
|
||
break;
|
||
|
||
case 'I':
|
||
#ifdef IMMEDIATE_PREFIX
|
||
fprintf (file, "%s", IMMEDIATE_PREFIX);
|
||
#endif
|
||
break;
|
||
|
||
case 'L':
|
||
#ifdef LOCAL_LABEL_PREFIX
|
||
fprintf (file, "%s", LOCAL_LABEL_PREFIX);
|
||
#endif
|
||
break;
|
||
|
||
case 'U':
|
||
fputs (user_label_prefix, file);
|
||
break;
|
||
|
||
#ifdef ASM_FPRINTF_EXTENSIONS
|
||
/* Uppercase letters are reserved for general use by asm_fprintf
|
||
and so are not available to target specific code. In order to
|
||
prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
|
||
they are defined here. As they get turned into real extensions
|
||
to asm_fprintf they should be removed from this list. */
|
||
case 'A': case 'B': case 'C': case 'D': case 'E':
|
||
case 'F': case 'G': case 'H': case 'J': case 'K':
|
||
case 'M': case 'N': case 'P': case 'Q': case 'S':
|
||
case 'T': case 'V': case 'W': case 'Y': case 'Z':
|
||
break;
|
||
|
||
ASM_FPRINTF_EXTENSIONS (file, argptr, p)
|
||
#endif
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
break;
|
||
|
||
default:
|
||
putc (c, file);
|
||
}
|
||
va_end (argptr);
|
||
}
|
||
|
||
/* Split up a CONST_DOUBLE or integer constant rtx
|
||
into two rtx's for single words,
|
||
storing in *FIRST the word that comes first in memory in the target
|
||
and in *SECOND the other. */
|
||
|
||
void
|
||
split_double (rtx value, rtx *first, rtx *second)
|
||
{
|
||
if (GET_CODE (value) == CONST_INT)
|
||
{
|
||
if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
|
||
{
|
||
/* In this case the CONST_INT holds both target words.
|
||
Extract the bits from it into two word-sized pieces.
|
||
Sign extend each half to HOST_WIDE_INT. */
|
||
unsigned HOST_WIDE_INT low, high;
|
||
unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
|
||
|
||
/* Set sign_bit to the most significant bit of a word. */
|
||
sign_bit = 1;
|
||
sign_bit <<= BITS_PER_WORD - 1;
|
||
|
||
/* Set mask so that all bits of the word are set. We could
|
||
have used 1 << BITS_PER_WORD instead of basing the
|
||
calculation on sign_bit. However, on machines where
|
||
HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
|
||
compiler warning, even though the code would never be
|
||
executed. */
|
||
mask = sign_bit << 1;
|
||
mask--;
|
||
|
||
/* Set sign_extend as any remaining bits. */
|
||
sign_extend = ~mask;
|
||
|
||
/* Pick the lower word and sign-extend it. */
|
||
low = INTVAL (value);
|
||
low &= mask;
|
||
if (low & sign_bit)
|
||
low |= sign_extend;
|
||
|
||
/* Pick the higher word, shifted to the least significant
|
||
bits, and sign-extend it. */
|
||
high = INTVAL (value);
|
||
high >>= BITS_PER_WORD - 1;
|
||
high >>= 1;
|
||
high &= mask;
|
||
if (high & sign_bit)
|
||
high |= sign_extend;
|
||
|
||
/* Store the words in the target machine order. */
|
||
if (WORDS_BIG_ENDIAN)
|
||
{
|
||
*first = GEN_INT (high);
|
||
*second = GEN_INT (low);
|
||
}
|
||
else
|
||
{
|
||
*first = GEN_INT (low);
|
||
*second = GEN_INT (high);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* The rule for using CONST_INT for a wider mode
|
||
is that we regard the value as signed.
|
||
So sign-extend it. */
|
||
rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
|
||
if (WORDS_BIG_ENDIAN)
|
||
{
|
||
*first = high;
|
||
*second = value;
|
||
}
|
||
else
|
||
{
|
||
*first = value;
|
||
*second = high;
|
||
}
|
||
}
|
||
}
|
||
else if (GET_CODE (value) != CONST_DOUBLE)
|
||
{
|
||
if (WORDS_BIG_ENDIAN)
|
||
{
|
||
*first = const0_rtx;
|
||
*second = value;
|
||
}
|
||
else
|
||
{
|
||
*first = value;
|
||
*second = const0_rtx;
|
||
}
|
||
}
|
||
else if (GET_MODE (value) == VOIDmode
|
||
/* This is the old way we did CONST_DOUBLE integers. */
|
||
|| GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
|
||
{
|
||
/* In an integer, the words are defined as most and least significant.
|
||
So order them by the target's convention. */
|
||
if (WORDS_BIG_ENDIAN)
|
||
{
|
||
*first = GEN_INT (CONST_DOUBLE_HIGH (value));
|
||
*second = GEN_INT (CONST_DOUBLE_LOW (value));
|
||
}
|
||
else
|
||
{
|
||
*first = GEN_INT (CONST_DOUBLE_LOW (value));
|
||
*second = GEN_INT (CONST_DOUBLE_HIGH (value));
|
||
}
|
||
}
|
||
else
|
||
{
|
||
REAL_VALUE_TYPE r;
|
||
long l[2];
|
||
REAL_VALUE_FROM_CONST_DOUBLE (r, value);
|
||
|
||
/* Note, this converts the REAL_VALUE_TYPE to the target's
|
||
format, splits up the floating point double and outputs
|
||
exactly 32 bits of it into each of l[0] and l[1] --
|
||
not necessarily BITS_PER_WORD bits. */
|
||
REAL_VALUE_TO_TARGET_DOUBLE (r, l);
|
||
|
||
/* If 32 bits is an entire word for the target, but not for the host,
|
||
then sign-extend on the host so that the number will look the same
|
||
way on the host that it would on the target. See for instance
|
||
simplify_unary_operation. The #if is needed to avoid compiler
|
||
warnings. */
|
||
|
||
#if HOST_BITS_PER_LONG > 32
|
||
if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
|
||
{
|
||
if (l[0] & ((long) 1 << 31))
|
||
l[0] |= ((long) (-1) << 32);
|
||
if (l[1] & ((long) 1 << 31))
|
||
l[1] |= ((long) (-1) << 32);
|
||
}
|
||
#endif
|
||
|
||
*first = GEN_INT (l[0]);
|
||
*second = GEN_INT (l[1]);
|
||
}
|
||
}
|
||
|
||
/* Return nonzero if this function has no function calls. */
|
||
|
||
int
|
||
leaf_function_p (void)
|
||
{
|
||
rtx insn;
|
||
rtx link;
|
||
|
||
if (current_function_profile || profile_arc_flag)
|
||
return 0;
|
||
|
||
for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
|
||
{
|
||
if (CALL_P (insn)
|
||
&& ! SIBLING_CALL_P (insn))
|
||
return 0;
|
||
if (NONJUMP_INSN_P (insn)
|
||
&& GET_CODE (PATTERN (insn)) == SEQUENCE
|
||
&& CALL_P (XVECEXP (PATTERN (insn), 0, 0))
|
||
&& ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
|
||
return 0;
|
||
}
|
||
for (link = current_function_epilogue_delay_list;
|
||
link;
|
||
link = XEXP (link, 1))
|
||
{
|
||
insn = XEXP (link, 0);
|
||
|
||
if (CALL_P (insn)
|
||
&& ! SIBLING_CALL_P (insn))
|
||
return 0;
|
||
if (NONJUMP_INSN_P (insn)
|
||
&& GET_CODE (PATTERN (insn)) == SEQUENCE
|
||
&& CALL_P (XVECEXP (PATTERN (insn), 0, 0))
|
||
&& ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
|
||
return 0;
|
||
}
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Return 1 if branch is a forward branch.
|
||
Uses insn_shuid array, so it works only in the final pass. May be used by
|
||
output templates to customary add branch prediction hints.
|
||
*/
|
||
int
|
||
final_forward_branch_p (rtx insn)
|
||
{
|
||
int insn_id, label_id;
|
||
|
||
gcc_assert (uid_shuid);
|
||
insn_id = INSN_SHUID (insn);
|
||
label_id = INSN_SHUID (JUMP_LABEL (insn));
|
||
/* We've hit some insns that does not have id information available. */
|
||
gcc_assert (insn_id && label_id);
|
||
return insn_id < label_id;
|
||
}
|
||
|
||
/* On some machines, a function with no call insns
|
||
can run faster if it doesn't create its own register window.
|
||
When output, the leaf function should use only the "output"
|
||
registers. Ordinarily, the function would be compiled to use
|
||
the "input" registers to find its arguments; it is a candidate
|
||
for leaf treatment if it uses only the "input" registers.
|
||
Leaf function treatment means renumbering so the function
|
||
uses the "output" registers instead. */
|
||
|
||
#ifdef LEAF_REGISTERS
|
||
|
||
/* Return 1 if this function uses only the registers that can be
|
||
safely renumbered. */
|
||
|
||
int
|
||
only_leaf_regs_used (void)
|
||
{
|
||
int i;
|
||
const char *const permitted_reg_in_leaf_functions = LEAF_REGISTERS;
|
||
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
if ((regs_ever_live[i] || global_regs[i])
|
||
&& ! permitted_reg_in_leaf_functions[i])
|
||
return 0;
|
||
|
||
if (current_function_uses_pic_offset_table
|
||
&& pic_offset_table_rtx != 0
|
||
&& REG_P (pic_offset_table_rtx)
|
||
&& ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)])
|
||
return 0;
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Scan all instructions and renumber all registers into those
|
||
available in leaf functions. */
|
||
|
||
static void
|
||
leaf_renumber_regs (rtx first)
|
||
{
|
||
rtx insn;
|
||
|
||
/* Renumber only the actual patterns.
|
||
The reg-notes can contain frame pointer refs,
|
||
and renumbering them could crash, and should not be needed. */
|
||
for (insn = first; insn; insn = NEXT_INSN (insn))
|
||
if (INSN_P (insn))
|
||
leaf_renumber_regs_insn (PATTERN (insn));
|
||
for (insn = current_function_epilogue_delay_list;
|
||
insn;
|
||
insn = XEXP (insn, 1))
|
||
if (INSN_P (XEXP (insn, 0)))
|
||
leaf_renumber_regs_insn (PATTERN (XEXP (insn, 0)));
|
||
}
|
||
|
||
/* Scan IN_RTX and its subexpressions, and renumber all regs into those
|
||
available in leaf functions. */
|
||
|
||
void
|
||
leaf_renumber_regs_insn (rtx in_rtx)
|
||
{
|
||
int i, j;
|
||
const char *format_ptr;
|
||
|
||
if (in_rtx == 0)
|
||
return;
|
||
|
||
/* Renumber all input-registers into output-registers.
|
||
renumbered_regs would be 1 for an output-register;
|
||
they */
|
||
|
||
if (REG_P (in_rtx))
|
||
{
|
||
int newreg;
|
||
|
||
/* Don't renumber the same reg twice. */
|
||
if (in_rtx->used)
|
||
return;
|
||
|
||
newreg = REGNO (in_rtx);
|
||
/* Don't try to renumber pseudo regs. It is possible for a pseudo reg
|
||
to reach here as part of a REG_NOTE. */
|
||
if (newreg >= FIRST_PSEUDO_REGISTER)
|
||
{
|
||
in_rtx->used = 1;
|
||
return;
|
||
}
|
||
newreg = LEAF_REG_REMAP (newreg);
|
||
gcc_assert (newreg >= 0);
|
||
regs_ever_live[REGNO (in_rtx)] = 0;
|
||
regs_ever_live[newreg] = 1;
|
||
REGNO (in_rtx) = newreg;
|
||
in_rtx->used = 1;
|
||
}
|
||
|
||
if (INSN_P (in_rtx))
|
||
{
|
||
/* Inside a SEQUENCE, we find insns.
|
||
Renumber just the patterns of these insns,
|
||
just as we do for the top-level insns. */
|
||
leaf_renumber_regs_insn (PATTERN (in_rtx));
|
||
return;
|
||
}
|
||
|
||
format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx));
|
||
|
||
for (i = 0; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++)
|
||
switch (*format_ptr++)
|
||
{
|
||
case 'e':
|
||
leaf_renumber_regs_insn (XEXP (in_rtx, i));
|
||
break;
|
||
|
||
case 'E':
|
||
if (NULL != XVEC (in_rtx, i))
|
||
{
|
||
for (j = 0; j < XVECLEN (in_rtx, i); j++)
|
||
leaf_renumber_regs_insn (XVECEXP (in_rtx, i, j));
|
||
}
|
||
break;
|
||
|
||
case 'S':
|
||
case 's':
|
||
case '0':
|
||
case 'i':
|
||
case 'w':
|
||
case 'n':
|
||
case 'u':
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
#endif
|
||
|
||
|
||
/* When -gused is used, emit debug info for only used symbols. But in
|
||
addition to the standard intercepted debug_hooks there are some direct
|
||
calls into this file, i.e., dbxout_symbol, dbxout_parms, and dbxout_reg_params.
|
||
Those routines may also be called from a higher level intercepted routine. So
|
||
to prevent recording data for an inner call to one of these for an intercept,
|
||
we maintain an intercept nesting counter (debug_nesting). We only save the
|
||
intercepted arguments if the nesting is 1. */
|
||
int debug_nesting = 0;
|
||
|
||
static tree *symbol_queue;
|
||
int symbol_queue_index = 0;
|
||
static int symbol_queue_size = 0;
|
||
|
||
/* Generate the symbols for any queued up type symbols we encountered
|
||
while generating the type info for some originally used symbol.
|
||
This might generate additional entries in the queue. Only when
|
||
the nesting depth goes to 0 is this routine called. */
|
||
|
||
void
|
||
debug_flush_symbol_queue (void)
|
||
{
|
||
int i;
|
||
|
||
/* Make sure that additionally queued items are not flushed
|
||
prematurely. */
|
||
|
||
++debug_nesting;
|
||
|
||
for (i = 0; i < symbol_queue_index; ++i)
|
||
{
|
||
/* If we pushed queued symbols then such symbols must be
|
||
output no matter what anyone else says. Specifically,
|
||
we need to make sure dbxout_symbol() thinks the symbol was
|
||
used and also we need to override TYPE_DECL_SUPPRESS_DEBUG
|
||
which may be set for outside reasons. */
|
||
int saved_tree_used = TREE_USED (symbol_queue[i]);
|
||
int saved_suppress_debug = TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]);
|
||
TREE_USED (symbol_queue[i]) = 1;
|
||
TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]) = 0;
|
||
|
||
#ifdef DBX_DEBUGGING_INFO
|
||
dbxout_symbol (symbol_queue[i], 0);
|
||
#endif
|
||
|
||
TREE_USED (symbol_queue[i]) = saved_tree_used;
|
||
TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]) = saved_suppress_debug;
|
||
}
|
||
|
||
symbol_queue_index = 0;
|
||
--debug_nesting;
|
||
}
|
||
|
||
/* Queue a type symbol needed as part of the definition of a decl
|
||
symbol. These symbols are generated when debug_flush_symbol_queue()
|
||
is called. */
|
||
|
||
void
|
||
debug_queue_symbol (tree decl)
|
||
{
|
||
if (symbol_queue_index >= symbol_queue_size)
|
||
{
|
||
symbol_queue_size += 10;
|
||
symbol_queue = xrealloc (symbol_queue,
|
||
symbol_queue_size * sizeof (tree));
|
||
}
|
||
|
||
symbol_queue[symbol_queue_index++] = decl;
|
||
}
|
||
|
||
/* Free symbol queue. */
|
||
void
|
||
debug_free_queue (void)
|
||
{
|
||
if (symbol_queue)
|
||
{
|
||
free (symbol_queue);
|
||
symbol_queue = NULL;
|
||
symbol_queue_size = 0;
|
||
}
|
||
}
|
||
|
||
/* Turn the RTL into assembly. */
|
||
static unsigned int
|
||
rest_of_handle_final (void)
|
||
{
|
||
rtx x;
|
||
const char *fnname;
|
||
|
||
/* Get the function's name, as described by its RTL. This may be
|
||
different from the DECL_NAME name used in the source file. */
|
||
|
||
x = DECL_RTL (current_function_decl);
|
||
gcc_assert (MEM_P (x));
|
||
x = XEXP (x, 0);
|
||
gcc_assert (GET_CODE (x) == SYMBOL_REF);
|
||
fnname = XSTR (x, 0);
|
||
|
||
assemble_start_function (current_function_decl, fnname);
|
||
final_start_function (get_insns (), asm_out_file, optimize);
|
||
final (get_insns (), asm_out_file, optimize);
|
||
final_end_function ();
|
||
|
||
#ifdef TARGET_UNWIND_INFO
|
||
/* ??? The IA-64 ".handlerdata" directive must be issued before
|
||
the ".endp" directive that closes the procedure descriptor. */
|
||
output_function_exception_table ();
|
||
#endif
|
||
|
||
assemble_end_function (current_function_decl, fnname);
|
||
|
||
#ifndef TARGET_UNWIND_INFO
|
||
/* Otherwise, it feels unclean to switch sections in the middle. */
|
||
output_function_exception_table ();
|
||
#endif
|
||
|
||
user_defined_section_attribute = false;
|
||
|
||
if (! quiet_flag)
|
||
fflush (asm_out_file);
|
||
|
||
/* Release all memory allocated by flow. */
|
||
free_basic_block_vars ();
|
||
|
||
/* Write DBX symbols if requested. */
|
||
|
||
/* Note that for those inline functions where we don't initially
|
||
know for certain that we will be generating an out-of-line copy,
|
||
the first invocation of this routine (rest_of_compilation) will
|
||
skip over this code by doing a `goto exit_rest_of_compilation;'.
|
||
Later on, wrapup_global_declarations will (indirectly) call
|
||
rest_of_compilation again for those inline functions that need
|
||
to have out-of-line copies generated. During that call, we
|
||
*will* be routed past here. */
|
||
|
||
timevar_push (TV_SYMOUT);
|
||
(*debug_hooks->function_decl) (current_function_decl);
|
||
timevar_pop (TV_SYMOUT);
|
||
return 0;
|
||
}
|
||
|
||
struct tree_opt_pass pass_final =
|
||
{
|
||
NULL, /* name */
|
||
NULL, /* gate */
|
||
rest_of_handle_final, /* execute */
|
||
NULL, /* sub */
|
||
NULL, /* next */
|
||
0, /* static_pass_number */
|
||
TV_FINAL, /* tv_id */
|
||
0, /* properties_required */
|
||
0, /* properties_provided */
|
||
0, /* properties_destroyed */
|
||
0, /* todo_flags_start */
|
||
TODO_ggc_collect, /* todo_flags_finish */
|
||
0 /* letter */
|
||
};
|
||
|
||
|
||
static unsigned int
|
||
rest_of_handle_shorten_branches (void)
|
||
{
|
||
/* Shorten branches. */
|
||
shorten_branches (get_insns ());
|
||
return 0;
|
||
}
|
||
|
||
struct tree_opt_pass pass_shorten_branches =
|
||
{
|
||
"shorten", /* name */
|
||
NULL, /* gate */
|
||
rest_of_handle_shorten_branches, /* execute */
|
||
NULL, /* sub */
|
||
NULL, /* next */
|
||
0, /* static_pass_number */
|
||
TV_FINAL, /* tv_id */
|
||
0, /* properties_required */
|
||
0, /* properties_provided */
|
||
0, /* properties_destroyed */
|
||
0, /* todo_flags_start */
|
||
TODO_dump_func, /* todo_flags_finish */
|
||
0 /* letter */
|
||
};
|
||
|
||
|
||
static unsigned int
|
||
rest_of_clean_state (void)
|
||
{
|
||
rtx insn, next;
|
||
|
||
/* It is very important to decompose the RTL instruction chain here:
|
||
debug information keeps pointing into CODE_LABEL insns inside the function
|
||
body. If these remain pointing to the other insns, we end up preserving
|
||
whole RTL chain and attached detailed debug info in memory. */
|
||
for (insn = get_insns (); insn; insn = next)
|
||
{
|
||
next = NEXT_INSN (insn);
|
||
NEXT_INSN (insn) = NULL;
|
||
PREV_INSN (insn) = NULL;
|
||
}
|
||
|
||
/* In case the function was not output,
|
||
don't leave any temporary anonymous types
|
||
queued up for sdb output. */
|
||
#ifdef SDB_DEBUGGING_INFO
|
||
if (write_symbols == SDB_DEBUG)
|
||
sdbout_types (NULL_TREE);
|
||
#endif
|
||
|
||
reload_completed = 0;
|
||
epilogue_completed = 0;
|
||
flow2_completed = 0;
|
||
no_new_pseudos = 0;
|
||
#ifdef STACK_REGS
|
||
regstack_completed = 0;
|
||
#endif
|
||
|
||
/* Clear out the insn_length contents now that they are no
|
||
longer valid. */
|
||
init_insn_lengths ();
|
||
|
||
/* Show no temporary slots allocated. */
|
||
init_temp_slots ();
|
||
|
||
free_basic_block_vars ();
|
||
free_bb_for_insn ();
|
||
|
||
|
||
if (targetm.binds_local_p (current_function_decl))
|
||
{
|
||
int pref = cfun->preferred_stack_boundary;
|
||
if (cfun->stack_alignment_needed > cfun->preferred_stack_boundary)
|
||
pref = cfun->stack_alignment_needed;
|
||
cgraph_rtl_info (current_function_decl)->preferred_incoming_stack_boundary
|
||
= pref;
|
||
}
|
||
|
||
/* Make sure volatile mem refs aren't considered valid operands for
|
||
arithmetic insns. We must call this here if this is a nested inline
|
||
function, since the above code leaves us in the init_recog state,
|
||
and the function context push/pop code does not save/restore volatile_ok.
|
||
|
||
??? Maybe it isn't necessary for expand_start_function to call this
|
||
anymore if we do it here? */
|
||
|
||
init_recog_no_volatile ();
|
||
|
||
/* We're done with this function. Free up memory if we can. */
|
||
free_after_parsing (cfun);
|
||
free_after_compilation (cfun);
|
||
return 0;
|
||
}
|
||
|
||
struct tree_opt_pass pass_clean_state =
|
||
{
|
||
NULL, /* name */
|
||
NULL, /* gate */
|
||
rest_of_clean_state, /* execute */
|
||
NULL, /* sub */
|
||
NULL, /* next */
|
||
0, /* static_pass_number */
|
||
TV_FINAL, /* tv_id */
|
||
0, /* properties_required */
|
||
0, /* properties_provided */
|
||
PROP_rtl, /* properties_destroyed */
|
||
0, /* todo_flags_start */
|
||
0, /* todo_flags_finish */
|
||
0 /* letter */
|
||
};
|
||
|