1
0
mirror of https://git.FreeBSD.org/src.git synced 2025-01-26 16:18:31 +00:00
freebsd/contrib/bearssl/test/test_math.c
Simon J. Gerraty 0957b409a9 Add libbearssl
Disabled by default, used by loader and sbin/veriexec

Reviewed by:	emaste
Sponsored by:	Juniper Networks
Differential Revision: D16334
2019-02-26 05:59:22 +00:00

483 lines
11 KiB
C

/*
* Copyright (c) 2016 Thomas Pornin <pornin@bolet.org>
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdarg.h>
#include <time.h>
#include <gmp.h>
#include "bearssl.h"
#include "inner.h"
/*
* Pointers to implementations.
*/
typedef struct {
uint32_t word_size;
void (*zero)(uint32_t *x, uint32_t bit_len);
void (*decode)(uint32_t *x, const void *src, size_t len);
uint32_t (*decode_mod)(uint32_t *x,
const void *src, size_t len, const uint32_t *m);
void (*reduce)(uint32_t *x, const uint32_t *a, const uint32_t *m);
void (*decode_reduce)(uint32_t *x,
const void *src, size_t len, const uint32_t *m);
void (*encode)(void *dst, size_t len, const uint32_t *x);
uint32_t (*add)(uint32_t *a, const uint32_t *b, uint32_t ctl);
uint32_t (*sub)(uint32_t *a, const uint32_t *b, uint32_t ctl);
uint32_t (*ninv)(uint32_t x);
void (*montymul)(uint32_t *d, const uint32_t *x, const uint32_t *y,
const uint32_t *m, uint32_t m0i);
void (*to_monty)(uint32_t *x, const uint32_t *m);
void (*from_monty)(uint32_t *x, const uint32_t *m, uint32_t m0i);
void (*modpow)(uint32_t *x, const unsigned char *e, size_t elen,
const uint32_t *m, uint32_t m0i, uint32_t *t1, uint32_t *t2);
} int_impl;
static const int_impl i31_impl = {
31,
&br_i31_zero,
&br_i31_decode,
&br_i31_decode_mod,
&br_i31_reduce,
&br_i31_decode_reduce,
&br_i31_encode,
&br_i31_add,
&br_i31_sub,
&br_i31_ninv31,
&br_i31_montymul,
&br_i31_to_monty,
&br_i31_from_monty,
&br_i31_modpow
};
static const int_impl i32_impl = {
32,
&br_i32_zero,
&br_i32_decode,
&br_i32_decode_mod,
&br_i32_reduce,
&br_i32_decode_reduce,
&br_i32_encode,
&br_i32_add,
&br_i32_sub,
&br_i32_ninv32,
&br_i32_montymul,
&br_i32_to_monty,
&br_i32_from_monty,
&br_i32_modpow
};
static const int_impl *impl;
static gmp_randstate_t RNG;
/*
* Get a random prime of length 'size' bits. This function also guarantees
* that x-1 is not a multiple of 65537.
*/
static void
rand_prime(mpz_t x, int size)
{
for (;;) {
mpz_urandomb(x, RNG, size - 1);
mpz_setbit(x, 0);
mpz_setbit(x, size - 1);
if (mpz_probab_prime_p(x, 50)) {
mpz_sub_ui(x, x, 1);
if (mpz_divisible_ui_p(x, 65537)) {
continue;
}
mpz_add_ui(x, x, 1);
return;
}
}
}
/*
* Print out a GMP integer (for debug).
*/
static void
print_z(mpz_t z)
{
unsigned char zb[1000];
size_t zlen, k;
mpz_export(zb, &zlen, 1, 1, 0, 0, z);
if (zlen == 0) {
printf(" 00");
return;
}
if ((zlen & 3) != 0) {
k = 4 - (zlen & 3);
memmove(zb + k, zb, zlen);
memset(zb, 0, k);
zlen += k;
}
for (k = 0; k < zlen; k += 4) {
printf(" %02X%02X%02X%02X",
zb[k], zb[k + 1], zb[k + 2], zb[k + 3]);
}
}
/*
* Print out an i31 or i32 integer (for debug).
*/
static void
print_u(uint32_t *x)
{
size_t k;
if (x[0] == 0) {
printf(" 00000000 (0, 0)");
return;
}
for (k = (x[0] + 31) >> 5; k > 0; k --) {
printf(" %08lX", (unsigned long)x[k]);
}
printf(" (%u, %u)", (unsigned)(x[0] >> 5), (unsigned)(x[0] & 31));
}
/*
* Check that an i31/i32 number and a GMP number are equal.
*/
static void
check_eqz(uint32_t *x, mpz_t z)
{
unsigned char xb[1000];
unsigned char zb[1000];
size_t xlen, zlen;
int good;
xlen = ((x[0] + 31) & ~(uint32_t)31) >> 3;
impl->encode(xb, xlen, x);
mpz_export(zb, &zlen, 1, 1, 0, 0, z);
good = 1;
if (xlen < zlen) {
good = 0;
} else if (xlen > zlen) {
size_t u;
for (u = xlen; u > zlen; u --) {
if (xb[xlen - u] != 0) {
good = 0;
break;
}
}
}
good = good && memcmp(xb + xlen - zlen, zb, zlen) == 0;
if (!good) {
size_t u;
printf("Mismatch:\n");
printf(" x = ");
print_u(x);
printf("\n");
printf(" ex = ");
for (u = 0; u < xlen; u ++) {
printf("%02X", xb[u]);
}
printf("\n");
printf(" z = ");
print_z(z);
printf("\n");
exit(EXIT_FAILURE);
}
}
/* obsolete
static void
mp_to_br(uint32_t *mx, uint32_t x_bitlen, mpz_t x)
{
uint32_t x_ebitlen;
size_t xlen;
if (mpz_sizeinbase(x, 2) > x_bitlen) {
abort();
}
x_ebitlen = ((x_bitlen / 31) << 5) + (x_bitlen % 31);
br_i31_zero(mx, x_ebitlen);
mpz_export(mx + 1, &xlen, -1, sizeof *mx, 0, 1, x);
}
*/
static void
test_modint(void)
{
int i, j, k;
mpz_t p, a, b, v, t1;
printf("Test modular integers: ");
fflush(stdout);
gmp_randinit_mt(RNG);
mpz_init(p);
mpz_init(a);
mpz_init(b);
mpz_init(v);
mpz_init(t1);
mpz_set_ui(t1, (unsigned long)time(NULL));
gmp_randseed(RNG, t1);
for (k = 2; k <= 128; k ++) {
for (i = 0; i < 10; i ++) {
unsigned char ep[100], ea[100], eb[100], ev[100];
size_t plen, alen, blen, vlen;
uint32_t mp[40], ma[40], mb[40], mv[60], mx[100];
uint32_t mt1[40], mt2[40], mt3[40];
uint32_t ctl;
uint32_t mp0i;
rand_prime(p, k);
mpz_urandomm(a, RNG, p);
mpz_urandomm(b, RNG, p);
mpz_urandomb(v, RNG, k + 60);
if (mpz_sgn(b) == 0) {
mpz_set_ui(b, 1);
}
mpz_export(ep, &plen, 1, 1, 0, 0, p);
mpz_export(ea, &alen, 1, 1, 0, 0, a);
mpz_export(eb, &blen, 1, 1, 0, 0, b);
mpz_export(ev, &vlen, 1, 1, 0, 0, v);
impl->decode(mp, ep, plen);
if (impl->decode_mod(ma, ea, alen, mp) != 1) {
printf("Decode error\n");
printf(" ea = ");
print_z(a);
printf("\n");
printf(" p = ");
print_u(mp);
printf("\n");
exit(EXIT_FAILURE);
}
mp0i = impl->ninv(mp[1]);
if (impl->decode_mod(mb, eb, blen, mp) != 1) {
printf("Decode error\n");
printf(" eb = ");
print_z(b);
printf("\n");
printf(" p = ");
print_u(mp);
printf("\n");
exit(EXIT_FAILURE);
}
impl->decode(mv, ev, vlen);
check_eqz(mp, p);
check_eqz(ma, a);
check_eqz(mb, b);
check_eqz(mv, v);
impl->decode_mod(ma, ea, alen, mp);
impl->decode_mod(mb, eb, blen, mp);
ctl = impl->add(ma, mb, 1);
ctl |= impl->sub(ma, mp, 0) ^ (uint32_t)1;
impl->sub(ma, mp, ctl);
mpz_add(t1, a, b);
mpz_mod(t1, t1, p);
check_eqz(ma, t1);
impl->decode_mod(ma, ea, alen, mp);
impl->decode_mod(mb, eb, blen, mp);
impl->add(ma, mp, impl->sub(ma, mb, 1));
mpz_sub(t1, a, b);
mpz_mod(t1, t1, p);
check_eqz(ma, t1);
impl->decode_reduce(ma, ev, vlen, mp);
mpz_mod(t1, v, p);
check_eqz(ma, t1);
impl->decode(mv, ev, vlen);
impl->reduce(ma, mv, mp);
mpz_mod(t1, v, p);
check_eqz(ma, t1);
impl->decode_mod(ma, ea, alen, mp);
impl->to_monty(ma, mp);
mpz_mul_2exp(t1, a, ((k + impl->word_size - 1)
/ impl->word_size) * impl->word_size);
mpz_mod(t1, t1, p);
check_eqz(ma, t1);
impl->from_monty(ma, mp, mp0i);
check_eqz(ma, a);
impl->decode_mod(ma, ea, alen, mp);
impl->decode_mod(mb, eb, blen, mp);
impl->to_monty(ma, mp);
impl->montymul(mt1, ma, mb, mp, mp0i);
mpz_mul(t1, a, b);
mpz_mod(t1, t1, p);
check_eqz(mt1, t1);
impl->decode_mod(ma, ea, alen, mp);
impl->modpow(ma, ev, vlen, mp, mp0i, mt1, mt2);
mpz_powm(t1, a, v, p);
check_eqz(ma, t1);
/*
br_modint_decode(ma, mp, ea, alen);
br_modint_decode(mb, mp, eb, blen);
if (!br_modint_div(ma, mb, mp, mt1, mt2, mt3)) {
fprintf(stderr, "division failed\n");
exit(EXIT_FAILURE);
}
mpz_sub_ui(t1, p, 2);
mpz_powm(t1, b, t1, p);
mpz_mul(t1, a, t1);
mpz_mod(t1, t1, p);
check_eqz(ma, t1);
br_modint_decode(ma, mp, ea, alen);
br_modint_decode(mb, mp, eb, blen);
for (j = 0; j <= (2 * k + 5); j ++) {
br_int_add(mx, j, ma, mb);
mpz_add(t1, a, b);
mpz_tdiv_r_2exp(t1, t1, j);
check_eqz(mx, t1);
br_int_mul(mx, j, ma, mb);
mpz_mul(t1, a, b);
mpz_tdiv_r_2exp(t1, t1, j);
check_eqz(mx, t1);
}
*/
}
printf(".");
fflush(stdout);
}
mpz_clear(p);
mpz_clear(a);
mpz_clear(b);
mpz_clear(v);
mpz_clear(t1);
printf(" done.\n");
fflush(stdout);
}
#if 0
static void
test_RSA_core(void)
{
int i, j, k;
mpz_t n, e, d, p, q, dp, dq, iq, t1, t2, phi;
printf("Test RSA core: ");
fflush(stdout);
gmp_randinit_mt(RNG);
mpz_init(n);
mpz_init(e);
mpz_init(d);
mpz_init(p);
mpz_init(q);
mpz_init(dp);
mpz_init(dq);
mpz_init(iq);
mpz_init(t1);
mpz_init(t2);
mpz_init(phi);
mpz_set_ui(t1, (unsigned long)time(NULL));
gmp_randseed(RNG, t1);
/*
* To test corner cases, we want to try RSA keys such that the
* lengths of both factors can be arbitrary modulo 2^32. Factors
* p and q need not be of the same length; p can be greater than
* q and q can be greater than p.
*
* To keep computation time reasonable, we use p and q factors of
* less than 128 bits; this is way too small for secure RSA,
* but enough to exercise all code paths (since we work only with
* 32-bit words).
*/
for (i = 64; i <= 96; i ++) {
rand_prime(p, i);
for (j = i - 33; j <= i + 33; j ++) {
uint32_t mp[40], mq[40], mdp[40], mdq[40], miq[40];
/*
* Generate a RSA key pair, with p of length i bits,
* and q of length j bits.
*/
do {
rand_prime(q, j);
} while (mpz_cmp(p, q) == 0);
mpz_mul(n, p, q);
mpz_set_ui(e, 65537);
mpz_sub_ui(t1, p, 1);
mpz_sub_ui(t2, q, 1);
mpz_mul(phi, t1, t2);
mpz_invert(d, e, phi);
mpz_mod(dp, d, t1);
mpz_mod(dq, d, t2);
mpz_invert(iq, q, p);
/*
* Convert the key pair elements to BearSSL arrays.
*/
mp_to_br(mp, mpz_sizeinbase(p, 2), p);
mp_to_br(mq, mpz_sizeinbase(q, 2), q);
mp_to_br(mdp, mpz_sizeinbase(dp, 2), dp);
mp_to_br(mdq, mpz_sizeinbase(dq, 2), dq);
mp_to_br(miq, mp[0], iq);
/*
* Compute and check ten public/private operations.
*/
for (k = 0; k < 10; k ++) {
uint32_t mx[40];
mpz_urandomm(t1, RNG, n);
mpz_powm(t2, t1, e, n);
mp_to_br(mx, mpz_sizeinbase(n, 2), t2);
br_rsa_private_core(mx, mp, mq, mdp, mdq, miq);
check_eqz(mx, t1);
}
}
printf(".");
fflush(stdout);
}
printf(" done.\n");
fflush(stdout);
}
#endif
int
main(void)
{
printf("===== i32 ======\n");
impl = &i32_impl;
test_modint();
printf("===== i31 ======\n");
impl = &i31_impl;
test_modint();
/*
test_RSA_core();
*/
return 0;
}