1
0
mirror of https://git.FreeBSD.org/src.git synced 2024-12-22 11:17:19 +00:00
freebsd/sbin/fsck_ffs/suj.c
Ed Maste 1dc349ab95 prefix UFS symbols with UFS_ to reduce namespace pollution
Specifically:
  ROOTINO -> UFS_ROOTINO
  WINO -> UFS_WINO
  NXADDR -> UFS_NXADDR
  NDADDR -> UFS_NDADDR
  NIADDR -> UFS_NIADDR
  MAXSYMLINKLEN_UFS[12] -> UFS[12]_MAXSYMLINKLEN (for consistency)

Also prefix ext2's and nandfs's NDADDR and NIADDR with EXT2_ and NANDFS_

Reviewed by:	kib, mckusick
Obtained from:	NetBSD
MFC after:	1 month
Sponsored by:	The FreeBSD Foundation
Differential Revision:	https://reviews.freebsd.org/D9536
2017-02-15 19:50:26 +00:00

2803 lines
69 KiB
C

/*-
* Copyright 2009, 2010 Jeffrey W. Roberson <jeff@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/disk.h>
#include <sys/disklabel.h>
#include <sys/mount.h>
#include <sys/stat.h>
#include <ufs/ufs/ufsmount.h>
#include <ufs/ufs/dinode.h>
#include <ufs/ufs/dir.h>
#include <ufs/ffs/fs.h>
#include <assert.h>
#include <err.h>
#include <setjmp.h>
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <libufs.h>
#include <string.h>
#include <strings.h>
#include <sysexits.h>
#include <time.h>
#include "fsck.h"
#define DOTDOT_OFFSET DIRECTSIZ(1)
#define SUJ_HASHSIZE 2048
#define SUJ_HASHMASK (SUJ_HASHSIZE - 1)
#define SUJ_HASH(x) ((x * 2654435761) & SUJ_HASHMASK)
struct suj_seg {
TAILQ_ENTRY(suj_seg) ss_next;
struct jsegrec ss_rec;
uint8_t *ss_blk;
};
struct suj_rec {
TAILQ_ENTRY(suj_rec) sr_next;
union jrec *sr_rec;
};
TAILQ_HEAD(srechd, suj_rec);
struct suj_ino {
LIST_ENTRY(suj_ino) si_next;
struct srechd si_recs;
struct srechd si_newrecs;
struct srechd si_movs;
struct jtrncrec *si_trunc;
ino_t si_ino;
char si_skipparent;
char si_hasrecs;
char si_blkadj;
char si_linkadj;
int si_mode;
nlink_t si_nlinkadj;
nlink_t si_nlink;
nlink_t si_dotlinks;
};
LIST_HEAD(inohd, suj_ino);
struct suj_blk {
LIST_ENTRY(suj_blk) sb_next;
struct srechd sb_recs;
ufs2_daddr_t sb_blk;
};
LIST_HEAD(blkhd, suj_blk);
struct data_blk {
LIST_ENTRY(data_blk) db_next;
uint8_t *db_buf;
ufs2_daddr_t db_blk;
int db_size;
int db_dirty;
};
struct ino_blk {
LIST_ENTRY(ino_blk) ib_next;
uint8_t *ib_buf;
int ib_dirty;
ufs2_daddr_t ib_blk;
};
LIST_HEAD(iblkhd, ino_blk);
struct suj_cg {
LIST_ENTRY(suj_cg) sc_next;
struct blkhd sc_blkhash[SUJ_HASHSIZE];
struct inohd sc_inohash[SUJ_HASHSIZE];
struct iblkhd sc_iblkhash[SUJ_HASHSIZE];
struct ino_blk *sc_lastiblk;
struct suj_ino *sc_lastino;
struct suj_blk *sc_lastblk;
uint8_t *sc_cgbuf;
struct cg *sc_cgp;
int sc_dirty;
int sc_cgx;
};
static LIST_HEAD(cghd, suj_cg) cghash[SUJ_HASHSIZE];
static LIST_HEAD(dblkhd, data_blk) dbhash[SUJ_HASHSIZE];
static struct suj_cg *lastcg;
static struct data_blk *lastblk;
static TAILQ_HEAD(seghd, suj_seg) allsegs;
static uint64_t oldseq;
static struct uufsd *disk = NULL;
static struct fs *fs = NULL;
static ino_t sujino;
/*
* Summary statistics.
*/
static uint64_t freefrags;
static uint64_t freeblocks;
static uint64_t freeinos;
static uint64_t freedir;
static uint64_t jbytes;
static uint64_t jrecs;
static jmp_buf jmpbuf;
typedef void (*ino_visitor)(ino_t, ufs_lbn_t, ufs2_daddr_t, int);
static void err_suj(const char *, ...) __dead2;
static void ino_trunc(ino_t, off_t);
static void ino_decr(ino_t);
static void ino_adjust(struct suj_ino *);
static void ino_build(struct suj_ino *);
static int blk_isfree(ufs2_daddr_t);
static void initsuj(void);
static void *
errmalloc(size_t n)
{
void *a;
a = Malloc(n);
if (a == NULL)
err(EX_OSERR, "malloc(%zu)", n);
return (a);
}
/*
* When hit a fatal error in journalling check, print out
* the error and then offer to fallback to normal fsck.
*/
static void
err_suj(const char * restrict fmt, ...)
{
va_list ap;
if (preen)
(void)fprintf(stdout, "%s: ", cdevname);
va_start(ap, fmt);
(void)vfprintf(stdout, fmt, ap);
va_end(ap);
longjmp(jmpbuf, -1);
}
/*
* Open the given provider, load superblock.
*/
static void
opendisk(const char *devnam)
{
if (disk != NULL)
return;
disk = Malloc(sizeof(*disk));
if (disk == NULL)
err(EX_OSERR, "malloc(%zu)", sizeof(*disk));
if (ufs_disk_fillout(disk, devnam) == -1) {
err(EX_OSERR, "ufs_disk_fillout(%s) failed: %s", devnam,
disk->d_error);
}
fs = &disk->d_fs;
if (real_dev_bsize == 0 && ioctl(disk->d_fd, DIOCGSECTORSIZE,
&real_dev_bsize) == -1)
real_dev_bsize = secsize;
if (debug)
printf("dev_bsize %u\n", real_dev_bsize);
}
/*
* Mark file system as clean, write the super-block back, close the disk.
*/
static void
closedisk(const char *devnam)
{
struct csum *cgsum;
uint32_t i;
/*
* Recompute the fs summary info from correct cs summaries.
*/
bzero(&fs->fs_cstotal, sizeof(struct csum_total));
for (i = 0; i < fs->fs_ncg; i++) {
cgsum = &fs->fs_cs(fs, i);
fs->fs_cstotal.cs_nffree += cgsum->cs_nffree;
fs->fs_cstotal.cs_nbfree += cgsum->cs_nbfree;
fs->fs_cstotal.cs_nifree += cgsum->cs_nifree;
fs->fs_cstotal.cs_ndir += cgsum->cs_ndir;
}
fs->fs_pendinginodes = 0;
fs->fs_pendingblocks = 0;
fs->fs_clean = 1;
fs->fs_time = time(NULL);
fs->fs_mtime = time(NULL);
if (sbwrite(disk, 0) == -1)
err(EX_OSERR, "sbwrite(%s)", devnam);
if (ufs_disk_close(disk) == -1)
err(EX_OSERR, "ufs_disk_close(%s)", devnam);
free(disk);
disk = NULL;
fs = NULL;
}
/*
* Lookup a cg by number in the hash so we can keep track of which cgs
* need stats rebuilt.
*/
static struct suj_cg *
cg_lookup(int cgx)
{
struct cghd *hd;
struct suj_cg *sc;
if (cgx < 0 || cgx >= fs->fs_ncg)
err_suj("Bad cg number %d\n", cgx);
if (lastcg && lastcg->sc_cgx == cgx)
return (lastcg);
hd = &cghash[SUJ_HASH(cgx)];
LIST_FOREACH(sc, hd, sc_next)
if (sc->sc_cgx == cgx) {
lastcg = sc;
return (sc);
}
sc = errmalloc(sizeof(*sc));
bzero(sc, sizeof(*sc));
sc->sc_cgbuf = errmalloc(fs->fs_bsize);
sc->sc_cgp = (struct cg *)sc->sc_cgbuf;
sc->sc_cgx = cgx;
LIST_INSERT_HEAD(hd, sc, sc_next);
if (bread(disk, fsbtodb(fs, cgtod(fs, sc->sc_cgx)), sc->sc_cgbuf,
fs->fs_bsize) == -1)
err_suj("Unable to read cylinder group %d\n", sc->sc_cgx);
return (sc);
}
/*
* Lookup an inode number in the hash and allocate a suj_ino if it does
* not exist.
*/
static struct suj_ino *
ino_lookup(ino_t ino, int creat)
{
struct suj_ino *sino;
struct inohd *hd;
struct suj_cg *sc;
sc = cg_lookup(ino_to_cg(fs, ino));
if (sc->sc_lastino && sc->sc_lastino->si_ino == ino)
return (sc->sc_lastino);
hd = &sc->sc_inohash[SUJ_HASH(ino)];
LIST_FOREACH(sino, hd, si_next)
if (sino->si_ino == ino)
return (sino);
if (creat == 0)
return (NULL);
sino = errmalloc(sizeof(*sino));
bzero(sino, sizeof(*sino));
sino->si_ino = ino;
TAILQ_INIT(&sino->si_recs);
TAILQ_INIT(&sino->si_newrecs);
TAILQ_INIT(&sino->si_movs);
LIST_INSERT_HEAD(hd, sino, si_next);
return (sino);
}
/*
* Lookup a block number in the hash and allocate a suj_blk if it does
* not exist.
*/
static struct suj_blk *
blk_lookup(ufs2_daddr_t blk, int creat)
{
struct suj_blk *sblk;
struct suj_cg *sc;
struct blkhd *hd;
sc = cg_lookup(dtog(fs, blk));
if (sc->sc_lastblk && sc->sc_lastblk->sb_blk == blk)
return (sc->sc_lastblk);
hd = &sc->sc_blkhash[SUJ_HASH(fragstoblks(fs, blk))];
LIST_FOREACH(sblk, hd, sb_next)
if (sblk->sb_blk == blk)
return (sblk);
if (creat == 0)
return (NULL);
sblk = errmalloc(sizeof(*sblk));
bzero(sblk, sizeof(*sblk));
sblk->sb_blk = blk;
TAILQ_INIT(&sblk->sb_recs);
LIST_INSERT_HEAD(hd, sblk, sb_next);
return (sblk);
}
static struct data_blk *
dblk_lookup(ufs2_daddr_t blk)
{
struct data_blk *dblk;
struct dblkhd *hd;
hd = &dbhash[SUJ_HASH(fragstoblks(fs, blk))];
if (lastblk && lastblk->db_blk == blk)
return (lastblk);
LIST_FOREACH(dblk, hd, db_next)
if (dblk->db_blk == blk)
return (dblk);
/*
* The inode block wasn't located, allocate a new one.
*/
dblk = errmalloc(sizeof(*dblk));
bzero(dblk, sizeof(*dblk));
LIST_INSERT_HEAD(hd, dblk, db_next);
dblk->db_blk = blk;
return (dblk);
}
static uint8_t *
dblk_read(ufs2_daddr_t blk, int size)
{
struct data_blk *dblk;
dblk = dblk_lookup(blk);
/*
* I doubt size mismatches can happen in practice but it is trivial
* to handle.
*/
if (size != dblk->db_size) {
if (dblk->db_buf)
free(dblk->db_buf);
dblk->db_buf = errmalloc(size);
dblk->db_size = size;
if (bread(disk, fsbtodb(fs, blk), dblk->db_buf, size) == -1)
err_suj("Failed to read data block %jd\n", blk);
}
return (dblk->db_buf);
}
static void
dblk_dirty(ufs2_daddr_t blk)
{
struct data_blk *dblk;
dblk = dblk_lookup(blk);
dblk->db_dirty = 1;
}
static void
dblk_write(void)
{
struct data_blk *dblk;
int i;
for (i = 0; i < SUJ_HASHSIZE; i++) {
LIST_FOREACH(dblk, &dbhash[i], db_next) {
if (dblk->db_dirty == 0 || dblk->db_size == 0)
continue;
if (bwrite(disk, fsbtodb(fs, dblk->db_blk),
dblk->db_buf, dblk->db_size) == -1)
err_suj("Unable to write block %jd\n",
dblk->db_blk);
}
}
}
static union dinode *
ino_read(ino_t ino)
{
struct ino_blk *iblk;
struct iblkhd *hd;
struct suj_cg *sc;
ufs2_daddr_t blk;
int off;
blk = ino_to_fsba(fs, ino);
sc = cg_lookup(ino_to_cg(fs, ino));
iblk = sc->sc_lastiblk;
if (iblk && iblk->ib_blk == blk)
goto found;
hd = &sc->sc_iblkhash[SUJ_HASH(fragstoblks(fs, blk))];
LIST_FOREACH(iblk, hd, ib_next)
if (iblk->ib_blk == blk)
goto found;
/*
* The inode block wasn't located, allocate a new one.
*/
iblk = errmalloc(sizeof(*iblk));
bzero(iblk, sizeof(*iblk));
iblk->ib_buf = errmalloc(fs->fs_bsize);
iblk->ib_blk = blk;
LIST_INSERT_HEAD(hd, iblk, ib_next);
if (bread(disk, fsbtodb(fs, blk), iblk->ib_buf, fs->fs_bsize) == -1)
err_suj("Failed to read inode block %jd\n", blk);
found:
sc->sc_lastiblk = iblk;
off = ino_to_fsbo(fs, ino);
if (fs->fs_magic == FS_UFS1_MAGIC)
return (union dinode *)&((struct ufs1_dinode *)iblk->ib_buf)[off];
else
return (union dinode *)&((struct ufs2_dinode *)iblk->ib_buf)[off];
}
static void
ino_dirty(ino_t ino)
{
struct ino_blk *iblk;
struct iblkhd *hd;
struct suj_cg *sc;
ufs2_daddr_t blk;
blk = ino_to_fsba(fs, ino);
sc = cg_lookup(ino_to_cg(fs, ino));
iblk = sc->sc_lastiblk;
if (iblk && iblk->ib_blk == blk) {
iblk->ib_dirty = 1;
return;
}
hd = &sc->sc_iblkhash[SUJ_HASH(fragstoblks(fs, blk))];
LIST_FOREACH(iblk, hd, ib_next) {
if (iblk->ib_blk == blk) {
iblk->ib_dirty = 1;
return;
}
}
ino_read(ino);
ino_dirty(ino);
}
static void
iblk_write(struct ino_blk *iblk)
{
if (iblk->ib_dirty == 0)
return;
if (bwrite(disk, fsbtodb(fs, iblk->ib_blk), iblk->ib_buf,
fs->fs_bsize) == -1)
err_suj("Failed to write inode block %jd\n", iblk->ib_blk);
}
static int
blk_overlaps(struct jblkrec *brec, ufs2_daddr_t start, int frags)
{
ufs2_daddr_t bstart;
ufs2_daddr_t bend;
ufs2_daddr_t end;
end = start + frags;
bstart = brec->jb_blkno + brec->jb_oldfrags;
bend = bstart + brec->jb_frags;
if (start < bend && end > bstart)
return (1);
return (0);
}
static int
blk_equals(struct jblkrec *brec, ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t start,
int frags)
{
if (brec->jb_ino != ino || brec->jb_lbn != lbn)
return (0);
if (brec->jb_blkno + brec->jb_oldfrags != start)
return (0);
if (brec->jb_frags < frags)
return (0);
return (1);
}
static void
blk_setmask(struct jblkrec *brec, int *mask)
{
int i;
for (i = brec->jb_oldfrags; i < brec->jb_oldfrags + brec->jb_frags; i++)
*mask |= 1 << i;
}
/*
* Determine whether a given block has been reallocated to a new location.
* Returns a mask of overlapping bits if any frags have been reused or
* zero if the block has not been re-used and the contents can be trusted.
*
* This is used to ensure that an orphaned pointer due to truncate is safe
* to be freed. The mask value can be used to free partial blocks.
*/
static int
blk_freemask(ufs2_daddr_t blk, ino_t ino, ufs_lbn_t lbn, int frags)
{
struct suj_blk *sblk;
struct suj_rec *srec;
struct jblkrec *brec;
int mask;
int off;
/*
* To be certain we're not freeing a reallocated block we lookup
* this block in the blk hash and see if there is an allocation
* journal record that overlaps with any fragments in the block
* we're concerned with. If any fragments have ben reallocated
* the block has already been freed and re-used for another purpose.
*/
mask = 0;
sblk = blk_lookup(blknum(fs, blk), 0);
if (sblk == NULL)
return (0);
off = blk - sblk->sb_blk;
TAILQ_FOREACH(srec, &sblk->sb_recs, sr_next) {
brec = (struct jblkrec *)srec->sr_rec;
/*
* If the block overlaps but does not match
* exactly this record refers to the current
* location.
*/
if (blk_overlaps(brec, blk, frags) == 0)
continue;
if (blk_equals(brec, ino, lbn, blk, frags) == 1)
mask = 0;
else
blk_setmask(brec, &mask);
}
if (debug)
printf("blk_freemask: blk %jd sblk %jd off %d mask 0x%X\n",
blk, sblk->sb_blk, off, mask);
return (mask >> off);
}
/*
* Determine whether it is safe to follow an indirect. It is not safe
* if any part of the indirect has been reallocated or the last journal
* entry was an allocation. Just allocated indirects may not have valid
* pointers yet and all of their children will have their own records.
* It is also not safe to follow an indirect if the cg bitmap has been
* cleared as a new allocation may write to the block prior to the journal
* being written.
*
* Returns 1 if it's safe to follow the indirect and 0 otherwise.
*/
static int
blk_isindir(ufs2_daddr_t blk, ino_t ino, ufs_lbn_t lbn)
{
struct suj_blk *sblk;
struct jblkrec *brec;
sblk = blk_lookup(blk, 0);
if (sblk == NULL)
return (1);
if (TAILQ_EMPTY(&sblk->sb_recs))
return (1);
brec = (struct jblkrec *)TAILQ_LAST(&sblk->sb_recs, srechd)->sr_rec;
if (blk_equals(brec, ino, lbn, blk, fs->fs_frag))
if (brec->jb_op == JOP_FREEBLK)
return (!blk_isfree(blk));
return (0);
}
/*
* Clear an inode from the cg bitmap. If the inode was already clear return
* 0 so the caller knows it does not have to check the inode contents.
*/
static int
ino_free(ino_t ino, int mode)
{
struct suj_cg *sc;
uint8_t *inosused;
struct cg *cgp;
int cg;
cg = ino_to_cg(fs, ino);
ino = ino % fs->fs_ipg;
sc = cg_lookup(cg);
cgp = sc->sc_cgp;
inosused = cg_inosused(cgp);
/*
* The bitmap may never have made it to the disk so we have to
* conditionally clear. We can avoid writing the cg in this case.
*/
if (isclr(inosused, ino))
return (0);
freeinos++;
clrbit(inosused, ino);
if (ino < cgp->cg_irotor)
cgp->cg_irotor = ino;
cgp->cg_cs.cs_nifree++;
if ((mode & IFMT) == IFDIR) {
freedir++;
cgp->cg_cs.cs_ndir--;
}
sc->sc_dirty = 1;
return (1);
}
/*
* Free 'frags' frags starting at filesystem block 'bno' skipping any frags
* set in the mask.
*/
static void
blk_free(ufs2_daddr_t bno, int mask, int frags)
{
ufs1_daddr_t fragno, cgbno;
struct suj_cg *sc;
struct cg *cgp;
int i, cg;
uint8_t *blksfree;
if (debug)
printf("Freeing %d frags at blk %jd mask 0x%x\n",
frags, bno, mask);
cg = dtog(fs, bno);
sc = cg_lookup(cg);
cgp = sc->sc_cgp;
cgbno = dtogd(fs, bno);
blksfree = cg_blksfree(cgp);
/*
* If it's not allocated we only wrote the journal entry
* and never the bitmaps. Here we unconditionally clear and
* resolve the cg summary later.
*/
if (frags == fs->fs_frag && mask == 0) {
fragno = fragstoblks(fs, cgbno);
ffs_setblock(fs, blksfree, fragno);
freeblocks++;
} else {
/*
* deallocate the fragment
*/
for (i = 0; i < frags; i++)
if ((mask & (1 << i)) == 0 && isclr(blksfree, cgbno +i)) {
freefrags++;
setbit(blksfree, cgbno + i);
}
}
sc->sc_dirty = 1;
}
/*
* Returns 1 if the whole block starting at 'bno' is marked free and 0
* otherwise.
*/
static int
blk_isfree(ufs2_daddr_t bno)
{
struct suj_cg *sc;
sc = cg_lookup(dtog(fs, bno));
return ffs_isblock(fs, cg_blksfree(sc->sc_cgp), dtogd(fs, bno));
}
/*
* Fetch an indirect block to find the block at a given lbn. The lbn
* may be negative to fetch a specific indirect block pointer or positive
* to fetch a specific block.
*/
static ufs2_daddr_t
indir_blkatoff(ufs2_daddr_t blk, ino_t ino, ufs_lbn_t cur, ufs_lbn_t lbn)
{
ufs2_daddr_t *bap2;
ufs2_daddr_t *bap1;
ufs_lbn_t lbnadd;
ufs_lbn_t base;
int level;
int i;
if (blk == 0)
return (0);
level = lbn_level(cur);
if (level == -1)
err_suj("Invalid indir lbn %jd\n", lbn);
if (level == 0 && lbn < 0)
err_suj("Invalid lbn %jd\n", lbn);
bap2 = (void *)dblk_read(blk, fs->fs_bsize);
bap1 = (void *)bap2;
lbnadd = 1;
base = -(cur + level);
for (i = level; i > 0; i--)
lbnadd *= NINDIR(fs);
if (lbn > 0)
i = (lbn - base) / lbnadd;
else
i = (-lbn - base) / lbnadd;
if (i < 0 || i >= NINDIR(fs))
err_suj("Invalid indirect index %d produced by lbn %jd\n",
i, lbn);
if (level == 0)
cur = base + (i * lbnadd);
else
cur = -(base + (i * lbnadd)) - (level - 1);
if (fs->fs_magic == FS_UFS1_MAGIC)
blk = bap1[i];
else
blk = bap2[i];
if (cur == lbn)
return (blk);
if (level == 0)
err_suj("Invalid lbn %jd at level 0\n", lbn);
return indir_blkatoff(blk, ino, cur, lbn);
}
/*
* Finds the disk block address at the specified lbn within the inode
* specified by ip. This follows the whole tree and honors di_size and
* di_extsize so it is a true test of reachability. The lbn may be
* negative if an extattr or indirect block is requested.
*/
static ufs2_daddr_t
ino_blkatoff(union dinode *ip, ino_t ino, ufs_lbn_t lbn, int *frags)
{
ufs_lbn_t tmpval;
ufs_lbn_t cur;
ufs_lbn_t next;
int i;
/*
* Handle extattr blocks first.
*/
if (lbn < 0 && lbn >= -UFS_NXADDR) {
lbn = -1 - lbn;
if (lbn > lblkno(fs, ip->dp2.di_extsize - 1))
return (0);
*frags = numfrags(fs, sblksize(fs, ip->dp2.di_extsize, lbn));
return (ip->dp2.di_extb[lbn]);
}
/*
* Now direct and indirect.
*/
if (DIP(ip, di_mode) == IFLNK &&
DIP(ip, di_size) < fs->fs_maxsymlinklen)
return (0);
if (lbn >= 0 && lbn < UFS_NDADDR) {
*frags = numfrags(fs, sblksize(fs, DIP(ip, di_size), lbn));
return (DIP(ip, di_db[lbn]));
}
*frags = fs->fs_frag;
for (i = 0, tmpval = NINDIR(fs), cur = UFS_NDADDR; i < UFS_NIADDR; i++,
tmpval *= NINDIR(fs), cur = next) {
next = cur + tmpval;
if (lbn == -cur - i)
return (DIP(ip, di_ib[i]));
/*
* Determine whether the lbn in question is within this tree.
*/
if (lbn < 0 && -lbn >= next)
continue;
if (lbn > 0 && lbn >= next)
continue;
return indir_blkatoff(DIP(ip, di_ib[i]), ino, -cur - i, lbn);
}
err_suj("lbn %jd not in ino\n", lbn);
/* NOTREACHED */
}
/*
* Determine whether a block exists at a particular lbn in an inode.
* Returns 1 if found, 0 if not. lbn may be negative for indirects
* or ext blocks.
*/
static int
blk_isat(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int *frags)
{
union dinode *ip;
ufs2_daddr_t nblk;
ip = ino_read(ino);
if (DIP(ip, di_nlink) == 0 || DIP(ip, di_mode) == 0)
return (0);
nblk = ino_blkatoff(ip, ino, lbn, frags);
return (nblk == blk);
}
/*
* Clear the directory entry at diroff that should point to child. Minimal
* checking is done and it is assumed that this path was verified with isat.
*/
static void
ino_clrat(ino_t parent, off_t diroff, ino_t child)
{
union dinode *dip;
struct direct *dp;
ufs2_daddr_t blk;
uint8_t *block;
ufs_lbn_t lbn;
int blksize;
int frags;
int doff;
if (debug)
printf("Clearing inode %ju from parent %ju at offset %jd\n",
(uintmax_t)child, (uintmax_t)parent, diroff);
lbn = lblkno(fs, diroff);
doff = blkoff(fs, diroff);
dip = ino_read(parent);
blk = ino_blkatoff(dip, parent, lbn, &frags);
blksize = sblksize(fs, DIP(dip, di_size), lbn);
block = dblk_read(blk, blksize);
dp = (struct direct *)&block[doff];
if (dp->d_ino != child)
errx(1, "Inode %ju does not exist in %ju at %jd",
(uintmax_t)child, (uintmax_t)parent, diroff);
dp->d_ino = 0;
dblk_dirty(blk);
/*
* The actual .. reference count will already have been removed
* from the parent by the .. remref record.
*/
}
/*
* Determines whether a pointer to an inode exists within a directory
* at a specified offset. Returns the mode of the found entry.
*/
static int
ino_isat(ino_t parent, off_t diroff, ino_t child, int *mode, int *isdot)
{
union dinode *dip;
struct direct *dp;
ufs2_daddr_t blk;
uint8_t *block;
ufs_lbn_t lbn;
int blksize;
int frags;
int dpoff;
int doff;
*isdot = 0;
dip = ino_read(parent);
*mode = DIP(dip, di_mode);
if ((*mode & IFMT) != IFDIR) {
if (debug) {
/*
* This can happen if the parent inode
* was reallocated.
*/
if (*mode != 0)
printf("Directory %ju has bad mode %o\n",
(uintmax_t)parent, *mode);
else
printf("Directory %ju has zero mode\n",
(uintmax_t)parent);
}
return (0);
}
lbn = lblkno(fs, diroff);
doff = blkoff(fs, diroff);
blksize = sblksize(fs, DIP(dip, di_size), lbn);
if (diroff + DIRECTSIZ(1) > DIP(dip, di_size) || doff >= blksize) {
if (debug)
printf("ino %ju absent from %ju due to offset %jd"
" exceeding size %jd\n",
(uintmax_t)child, (uintmax_t)parent, diroff,
DIP(dip, di_size));
return (0);
}
blk = ino_blkatoff(dip, parent, lbn, &frags);
if (blk <= 0) {
if (debug)
printf("Sparse directory %ju", (uintmax_t)parent);
return (0);
}
block = dblk_read(blk, blksize);
/*
* Walk through the records from the start of the block to be
* certain we hit a valid record and not some junk in the middle
* of a file name. Stop when we reach or pass the expected offset.
*/
dpoff = rounddown(doff, DIRBLKSIZ);
do {
dp = (struct direct *)&block[dpoff];
if (dpoff == doff)
break;
if (dp->d_reclen == 0)
break;
dpoff += dp->d_reclen;
} while (dpoff <= doff);
if (dpoff > fs->fs_bsize)
err_suj("Corrupt directory block in dir ino %ju\n",
(uintmax_t)parent);
/* Not found. */
if (dpoff != doff) {
if (debug)
printf("ino %ju not found in %ju, lbn %jd, dpoff %d\n",
(uintmax_t)child, (uintmax_t)parent, lbn, dpoff);
return (0);
}
/*
* We found the item in question. Record the mode and whether it's
* a . or .. link for the caller.
*/
if (dp->d_ino == child) {
if (child == parent)
*isdot = 1;
else if (dp->d_namlen == 2 &&
dp->d_name[0] == '.' && dp->d_name[1] == '.')
*isdot = 1;
*mode = DTTOIF(dp->d_type);
return (1);
}
if (debug)
printf("ino %ju doesn't match dirent ino %ju in parent %ju\n",
(uintmax_t)child, (uintmax_t)dp->d_ino, (uintmax_t)parent);
return (0);
}
#define VISIT_INDIR 0x0001
#define VISIT_EXT 0x0002
#define VISIT_ROOT 0x0004 /* Operation came via root & valid pointers. */
/*
* Read an indirect level which may or may not be linked into an inode.
*/
static void
indir_visit(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, uint64_t *frags,
ino_visitor visitor, int flags)
{
ufs2_daddr_t *bap2;
ufs1_daddr_t *bap1;
ufs_lbn_t lbnadd;
ufs2_daddr_t nblk;
ufs_lbn_t nlbn;
int level;
int i;
/*
* Don't visit indirect blocks with contents we can't trust. This
* should only happen when indir_visit() is called to complete a
* truncate that never finished and not when a pointer is found via
* an inode.
*/
if (blk == 0)
return;
level = lbn_level(lbn);
if (level == -1)
err_suj("Invalid level for lbn %jd\n", lbn);
if ((flags & VISIT_ROOT) == 0 && blk_isindir(blk, ino, lbn) == 0) {
if (debug)
printf("blk %jd ino %ju lbn %jd(%d) is not indir.\n",
blk, (uintmax_t)ino, lbn, level);
goto out;
}
lbnadd = 1;
for (i = level; i > 0; i--)
lbnadd *= NINDIR(fs);
bap1 = (void *)dblk_read(blk, fs->fs_bsize);
bap2 = (void *)bap1;
for (i = 0; i < NINDIR(fs); i++) {
if (fs->fs_magic == FS_UFS1_MAGIC)
nblk = *bap1++;
else
nblk = *bap2++;
if (nblk == 0)
continue;
if (level == 0) {
nlbn = -lbn + i * lbnadd;
(*frags) += fs->fs_frag;
visitor(ino, nlbn, nblk, fs->fs_frag);
} else {
nlbn = (lbn + 1) - (i * lbnadd);
indir_visit(ino, nlbn, nblk, frags, visitor, flags);
}
}
out:
if (flags & VISIT_INDIR) {
(*frags) += fs->fs_frag;
visitor(ino, lbn, blk, fs->fs_frag);
}
}
/*
* Visit each block in an inode as specified by 'flags' and call a
* callback function. The callback may inspect or free blocks. The
* count of frags found according to the size in the file is returned.
* This is not valid for sparse files but may be used to determine
* the correct di_blocks for a file.
*/
static uint64_t
ino_visit(union dinode *ip, ino_t ino, ino_visitor visitor, int flags)
{
ufs_lbn_t nextlbn;
ufs_lbn_t tmpval;
ufs_lbn_t lbn;
uint64_t size;
uint64_t fragcnt;
int mode;
int frags;
int i;
size = DIP(ip, di_size);
mode = DIP(ip, di_mode) & IFMT;
fragcnt = 0;
if ((flags & VISIT_EXT) &&
fs->fs_magic == FS_UFS2_MAGIC && ip->dp2.di_extsize) {
for (i = 0; i < UFS_NXADDR; i++) {
if (ip->dp2.di_extb[i] == 0)
continue;
frags = sblksize(fs, ip->dp2.di_extsize, i);
frags = numfrags(fs, frags);
fragcnt += frags;
visitor(ino, -1 - i, ip->dp2.di_extb[i], frags);
}
}
/* Skip datablocks for short links and devices. */
if (mode == IFBLK || mode == IFCHR ||
(mode == IFLNK && size < fs->fs_maxsymlinklen))
return (fragcnt);
for (i = 0; i < UFS_NDADDR; i++) {
if (DIP(ip, di_db[i]) == 0)
continue;
frags = sblksize(fs, size, i);
frags = numfrags(fs, frags);
fragcnt += frags;
visitor(ino, i, DIP(ip, di_db[i]), frags);
}
/*
* We know the following indirects are real as we're following
* real pointers to them.
*/
flags |= VISIT_ROOT;
for (i = 0, tmpval = NINDIR(fs), lbn = UFS_NDADDR; i < UFS_NIADDR; i++,
lbn = nextlbn) {
nextlbn = lbn + tmpval;
tmpval *= NINDIR(fs);
if (DIP(ip, di_ib[i]) == 0)
continue;
indir_visit(ino, -lbn - i, DIP(ip, di_ib[i]), &fragcnt, visitor,
flags);
}
return (fragcnt);
}
/*
* Null visitor function used when we just want to count blocks and
* record the lbn.
*/
ufs_lbn_t visitlbn;
static void
null_visit(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags)
{
if (lbn > 0)
visitlbn = lbn;
}
/*
* Recalculate di_blocks when we discover that a block allocation or
* free was not successfully completed. The kernel does not roll this back
* because it would be too expensive to compute which indirects were
* reachable at the time the inode was written.
*/
static void
ino_adjblks(struct suj_ino *sino)
{
union dinode *ip;
uint64_t blocks;
uint64_t frags;
off_t isize;
off_t size;
ino_t ino;
ino = sino->si_ino;
ip = ino_read(ino);
/* No need to adjust zero'd inodes. */
if (DIP(ip, di_mode) == 0)
return;
/*
* Visit all blocks and count them as well as recording the last
* valid lbn in the file. If the file size doesn't agree with the
* last lbn we need to truncate to fix it. Otherwise just adjust
* the blocks count.
*/
visitlbn = 0;
frags = ino_visit(ip, ino, null_visit, VISIT_INDIR | VISIT_EXT);
blocks = fsbtodb(fs, frags);
/*
* We assume the size and direct block list is kept coherent by
* softdep. For files that have extended into indirects we truncate
* to the size in the inode or the maximum size permitted by
* populated indirects.
*/
if (visitlbn >= UFS_NDADDR) {
isize = DIP(ip, di_size);
size = lblktosize(fs, visitlbn + 1);
if (isize > size)
isize = size;
/* Always truncate to free any unpopulated indirects. */
ino_trunc(sino->si_ino, isize);
return;
}
if (blocks == DIP(ip, di_blocks))
return;
if (debug)
printf("ino %ju adjusting block count from %jd to %jd\n",
(uintmax_t)ino, DIP(ip, di_blocks), blocks);
DIP_SET(ip, di_blocks, blocks);
ino_dirty(ino);
}
static void
blk_free_visit(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags)
{
blk_free(blk, blk_freemask(blk, ino, lbn, frags), frags);
}
/*
* Free a block or tree of blocks that was previously rooted in ino at
* the given lbn. If the lbn is an indirect all children are freed
* recursively.
*/
static void
blk_free_lbn(ufs2_daddr_t blk, ino_t ino, ufs_lbn_t lbn, int frags, int follow)
{
uint64_t resid;
int mask;
mask = blk_freemask(blk, ino, lbn, frags);
resid = 0;
if (lbn <= -UFS_NDADDR && follow && mask == 0)
indir_visit(ino, lbn, blk, &resid, blk_free_visit, VISIT_INDIR);
else
blk_free(blk, mask, frags);
}
static void
ino_setskip(struct suj_ino *sino, ino_t parent)
{
int isdot;
int mode;
if (ino_isat(sino->si_ino, DOTDOT_OFFSET, parent, &mode, &isdot))
sino->si_skipparent = 1;
}
static void
ino_remref(ino_t parent, ino_t child, uint64_t diroff, int isdotdot)
{
struct suj_ino *sino;
struct suj_rec *srec;
struct jrefrec *rrec;
/*
* Lookup this inode to see if we have a record for it.
*/
sino = ino_lookup(child, 0);
/*
* Tell any child directories we've already removed their
* parent link cnt. Don't try to adjust our link down again.
*/
if (sino != NULL && isdotdot == 0)
ino_setskip(sino, parent);
/*
* No valid record for this inode. Just drop the on-disk
* link by one.
*/
if (sino == NULL || sino->si_hasrecs == 0) {
ino_decr(child);
return;
}
/*
* Use ino_adjust() if ino_check() has already processed this
* child. If we lose the last non-dot reference to a
* directory it will be discarded.
*/
if (sino->si_linkadj) {
sino->si_nlink--;
if (isdotdot)
sino->si_dotlinks--;
ino_adjust(sino);
return;
}
/*
* If we haven't yet processed this inode we need to make
* sure we will successfully discover the lost path. If not
* use nlinkadj to remember.
*/
TAILQ_FOREACH(srec, &sino->si_recs, sr_next) {
rrec = (struct jrefrec *)srec->sr_rec;
if (rrec->jr_parent == parent &&
rrec->jr_diroff == diroff)
return;
}
sino->si_nlinkadj++;
}
/*
* Free the children of a directory when the directory is discarded.
*/
static void
ino_free_children(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags)
{
struct suj_ino *sino;
struct direct *dp;
off_t diroff;
uint8_t *block;
int skipparent;
int isdotdot;
int dpoff;
int size;
sino = ino_lookup(ino, 0);
if (sino)
skipparent = sino->si_skipparent;
else
skipparent = 0;
size = lfragtosize(fs, frags);
block = dblk_read(blk, size);
dp = (struct direct *)&block[0];
for (dpoff = 0; dpoff < size && dp->d_reclen; dpoff += dp->d_reclen) {
dp = (struct direct *)&block[dpoff];
if (dp->d_ino == 0 || dp->d_ino == UFS_WINO)
continue;
if (dp->d_namlen == 1 && dp->d_name[0] == '.')
continue;
isdotdot = dp->d_namlen == 2 && dp->d_name[0] == '.' &&
dp->d_name[1] == '.';
if (isdotdot && skipparent == 1)
continue;
if (debug)
printf("Directory %ju removing ino %ju name %s\n",
(uintmax_t)ino, (uintmax_t)dp->d_ino, dp->d_name);
diroff = lblktosize(fs, lbn) + dpoff;
ino_remref(ino, dp->d_ino, diroff, isdotdot);
}
}
/*
* Reclaim an inode, freeing all blocks and decrementing all children's
* link counts. Free the inode back to the cg.
*/
static void
ino_reclaim(union dinode *ip, ino_t ino, int mode)
{
uint32_t gen;
if (ino == UFS_ROOTINO)
err_suj("Attempting to free UFS_ROOTINO\n");
if (debug)
printf("Truncating and freeing ino %ju, nlink %d, mode %o\n",
(uintmax_t)ino, DIP(ip, di_nlink), DIP(ip, di_mode));
/* We are freeing an inode or directory. */
if ((DIP(ip, di_mode) & IFMT) == IFDIR)
ino_visit(ip, ino, ino_free_children, 0);
DIP_SET(ip, di_nlink, 0);
ino_visit(ip, ino, blk_free_visit, VISIT_EXT | VISIT_INDIR);
/* Here we have to clear the inode and release any blocks it holds. */
gen = DIP(ip, di_gen);
if (fs->fs_magic == FS_UFS1_MAGIC)
bzero(ip, sizeof(struct ufs1_dinode));
else
bzero(ip, sizeof(struct ufs2_dinode));
DIP_SET(ip, di_gen, gen);
ino_dirty(ino);
ino_free(ino, mode);
return;
}
/*
* Adjust an inode's link count down by one when a directory goes away.
*/
static void
ino_decr(ino_t ino)
{
union dinode *ip;
int reqlink;
int nlink;
int mode;
ip = ino_read(ino);
nlink = DIP(ip, di_nlink);
mode = DIP(ip, di_mode);
if (nlink < 1)
err_suj("Inode %d link count %d invalid\n", ino, nlink);
if (mode == 0)
err_suj("Inode %d has a link of %d with 0 mode\n", ino, nlink);
nlink--;
if ((mode & IFMT) == IFDIR)
reqlink = 2;
else
reqlink = 1;
if (nlink < reqlink) {
if (debug)
printf("ino %ju not enough links to live %d < %d\n",
(uintmax_t)ino, nlink, reqlink);
ino_reclaim(ip, ino, mode);
return;
}
DIP_SET(ip, di_nlink, nlink);
ino_dirty(ino);
}
/*
* Adjust the inode link count to 'nlink'. If the count reaches zero
* free it.
*/
static void
ino_adjust(struct suj_ino *sino)
{
struct jrefrec *rrec;
struct suj_rec *srec;
struct suj_ino *stmp;
union dinode *ip;
nlink_t nlink;
int recmode;
int reqlink;
int isdot;
int mode;
ino_t ino;
nlink = sino->si_nlink;
ino = sino->si_ino;
mode = sino->si_mode & IFMT;
/*
* If it's a directory with no dot links, it was truncated before
* the name was cleared. We need to clear the dirent that
* points at it.
*/
if (mode == IFDIR && nlink == 1 && sino->si_dotlinks == 0) {
sino->si_nlink = nlink = 0;
TAILQ_FOREACH(srec, &sino->si_recs, sr_next) {
rrec = (struct jrefrec *)srec->sr_rec;
if (ino_isat(rrec->jr_parent, rrec->jr_diroff, ino,
&recmode, &isdot) == 0)
continue;
ino_clrat(rrec->jr_parent, rrec->jr_diroff, ino);
break;
}
if (srec == NULL)
errx(1, "Directory %ju name not found", (uintmax_t)ino);
}
/*
* If it's a directory with no real names pointing to it go ahead
* and truncate it. This will free any children.
*/
if (mode == IFDIR && nlink - sino->si_dotlinks == 0) {
sino->si_nlink = nlink = 0;
/*
* Mark any .. links so they know not to free this inode
* when they are removed.
*/
TAILQ_FOREACH(srec, &sino->si_recs, sr_next) {
rrec = (struct jrefrec *)srec->sr_rec;
if (rrec->jr_diroff == DOTDOT_OFFSET) {
stmp = ino_lookup(rrec->jr_parent, 0);
if (stmp)
ino_setskip(stmp, ino);
}
}
}
ip = ino_read(ino);
mode = DIP(ip, di_mode) & IFMT;
if (nlink > LINK_MAX)
err_suj("ino %ju nlink manipulation error, new %ju, old %d\n",
(uintmax_t)ino, (uintmax_t)nlink, DIP(ip, di_nlink));
if (debug)
printf("Adjusting ino %ju, nlink %ju, old link %d lastmode %o\n",
(uintmax_t)ino, (uintmax_t)nlink, DIP(ip, di_nlink),
sino->si_mode);
if (mode == 0) {
if (debug)
printf("ino %ju, zero inode freeing bitmap\n",
(uintmax_t)ino);
ino_free(ino, sino->si_mode);
return;
}
/* XXX Should be an assert? */
if (mode != sino->si_mode && debug)
printf("ino %ju, mode %o != %o\n",
(uintmax_t)ino, mode, sino->si_mode);
if ((mode & IFMT) == IFDIR)
reqlink = 2;
else
reqlink = 1;
/* If the inode doesn't have enough links to live, free it. */
if (nlink < reqlink) {
if (debug)
printf("ino %ju not enough links to live %ju < %ju\n",
(uintmax_t)ino, (uintmax_t)nlink,
(uintmax_t)reqlink);
ino_reclaim(ip, ino, mode);
return;
}
/* If required write the updated link count. */
if (DIP(ip, di_nlink) == nlink) {
if (debug)
printf("ino %ju, link matches, skipping.\n",
(uintmax_t)ino);
return;
}
DIP_SET(ip, di_nlink, nlink);
ino_dirty(ino);
}
/*
* Truncate some or all blocks in an indirect, freeing any that are required
* and zeroing the indirect.
*/
static void
indir_trunc(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, ufs_lbn_t lastlbn)
{
ufs2_daddr_t *bap2;
ufs1_daddr_t *bap1;
ufs_lbn_t lbnadd;
ufs2_daddr_t nblk;
ufs_lbn_t next;
ufs_lbn_t nlbn;
int dirty;
int level;
int i;
if (blk == 0)
return;
dirty = 0;
level = lbn_level(lbn);
if (level == -1)
err_suj("Invalid level for lbn %jd\n", lbn);
lbnadd = 1;
for (i = level; i > 0; i--)
lbnadd *= NINDIR(fs);
bap1 = (void *)dblk_read(blk, fs->fs_bsize);
bap2 = (void *)bap1;
for (i = 0; i < NINDIR(fs); i++) {
if (fs->fs_magic == FS_UFS1_MAGIC)
nblk = *bap1++;
else
nblk = *bap2++;
if (nblk == 0)
continue;
if (level != 0) {
nlbn = (lbn + 1) - (i * lbnadd);
/*
* Calculate the lbn of the next indirect to
* determine if any of this indirect must be
* reclaimed.
*/
next = -(lbn + level) + ((i+1) * lbnadd);
if (next <= lastlbn)
continue;
indir_trunc(ino, nlbn, nblk, lastlbn);
/* If all of this indirect was reclaimed, free it. */
nlbn = next - lbnadd;
if (nlbn < lastlbn)
continue;
} else {
nlbn = -lbn + i * lbnadd;
if (nlbn < lastlbn)
continue;
}
dirty = 1;
blk_free(nblk, 0, fs->fs_frag);
if (fs->fs_magic == FS_UFS1_MAGIC)
*(bap1 - 1) = 0;
else
*(bap2 - 1) = 0;
}
if (dirty)
dblk_dirty(blk);
}
/*
* Truncate an inode to the minimum of the given size or the last populated
* block after any over size have been discarded. The kernel would allocate
* the last block in the file but fsck does not and neither do we. This
* code never extends files, only shrinks them.
*/
static void
ino_trunc(ino_t ino, off_t size)
{
union dinode *ip;
ufs2_daddr_t bn;
uint64_t totalfrags;
ufs_lbn_t nextlbn;
ufs_lbn_t lastlbn;
ufs_lbn_t tmpval;
ufs_lbn_t lbn;
ufs_lbn_t i;
int frags;
off_t cursize;
off_t off;
int mode;
ip = ino_read(ino);
mode = DIP(ip, di_mode) & IFMT;
cursize = DIP(ip, di_size);
if (debug)
printf("Truncating ino %ju, mode %o to size %jd from size %jd\n",
(uintmax_t)ino, mode, size, cursize);
/* Skip datablocks for short links and devices. */
if (mode == 0 || mode == IFBLK || mode == IFCHR ||
(mode == IFLNK && cursize < fs->fs_maxsymlinklen))
return;
/* Don't extend. */
if (size > cursize)
size = cursize;
lastlbn = lblkno(fs, blkroundup(fs, size));
for (i = lastlbn; i < UFS_NDADDR; i++) {
if (DIP(ip, di_db[i]) == 0)
continue;
frags = sblksize(fs, cursize, i);
frags = numfrags(fs, frags);
blk_free(DIP(ip, di_db[i]), 0, frags);
DIP_SET(ip, di_db[i], 0);
}
/*
* Follow indirect blocks, freeing anything required.
*/
for (i = 0, tmpval = NINDIR(fs), lbn = UFS_NDADDR; i < UFS_NIADDR; i++,
lbn = nextlbn) {
nextlbn = lbn + tmpval;
tmpval *= NINDIR(fs);
/* If we're not freeing any in this indirect range skip it. */
if (lastlbn >= nextlbn)
continue;
if (DIP(ip, di_ib[i]) == 0)
continue;
indir_trunc(ino, -lbn - i, DIP(ip, di_ib[i]), lastlbn);
/* If we freed everything in this indirect free the indir. */
if (lastlbn > lbn)
continue;
blk_free(DIP(ip, di_ib[i]), 0, frags);
DIP_SET(ip, di_ib[i], 0);
}
ino_dirty(ino);
/*
* Now that we've freed any whole blocks that exceed the desired
* truncation size, figure out how many blocks remain and what the
* last populated lbn is. We will set the size to this last lbn
* rather than worrying about allocating the final lbn as the kernel
* would've done. This is consistent with normal fsck behavior.
*/
visitlbn = 0;
totalfrags = ino_visit(ip, ino, null_visit, VISIT_INDIR | VISIT_EXT);
if (size > lblktosize(fs, visitlbn + 1))
size = lblktosize(fs, visitlbn + 1);
/*
* If we're truncating direct blocks we have to adjust frags
* accordingly.
*/
if (visitlbn < UFS_NDADDR && totalfrags) {
long oldspace, newspace;
bn = DIP(ip, di_db[visitlbn]);
if (bn == 0)
err_suj("Bad blk at ino %ju lbn %jd\n",
(uintmax_t)ino, visitlbn);
oldspace = sblksize(fs, cursize, visitlbn);
newspace = sblksize(fs, size, visitlbn);
if (oldspace != newspace) {
bn += numfrags(fs, newspace);
frags = numfrags(fs, oldspace - newspace);
blk_free(bn, 0, frags);
totalfrags -= frags;
}
}
DIP_SET(ip, di_blocks, fsbtodb(fs, totalfrags));
DIP_SET(ip, di_size, size);
/*
* If we've truncated into the middle of a block or frag we have
* to zero it here. Otherwise the file could extend into
* uninitialized space later.
*/
off = blkoff(fs, size);
if (off && DIP(ip, di_mode) != IFDIR) {
uint8_t *buf;
long clrsize;
bn = ino_blkatoff(ip, ino, visitlbn, &frags);
if (bn == 0)
err_suj("Block missing from ino %ju at lbn %jd\n",
(uintmax_t)ino, visitlbn);
clrsize = frags * fs->fs_fsize;
buf = dblk_read(bn, clrsize);
clrsize -= off;
buf += off;
bzero(buf, clrsize);
dblk_dirty(bn);
}
return;
}
/*
* Process records available for one inode and determine whether the
* link count is correct or needs adjusting.
*/
static void
ino_check(struct suj_ino *sino)
{
struct suj_rec *srec;
struct jrefrec *rrec;
nlink_t dotlinks;
int newlinks;
int removes;
int nlink;
ino_t ino;
int isdot;
int isat;
int mode;
if (sino->si_hasrecs == 0)
return;
ino = sino->si_ino;
rrec = (struct jrefrec *)TAILQ_FIRST(&sino->si_recs)->sr_rec;
nlink = rrec->jr_nlink;
newlinks = 0;
dotlinks = 0;
removes = sino->si_nlinkadj;
TAILQ_FOREACH(srec, &sino->si_recs, sr_next) {
rrec = (struct jrefrec *)srec->sr_rec;
isat = ino_isat(rrec->jr_parent, rrec->jr_diroff,
rrec->jr_ino, &mode, &isdot);
if (isat && (mode & IFMT) != (rrec->jr_mode & IFMT))
err_suj("Inode mode/directory type mismatch %o != %o\n",
mode, rrec->jr_mode);
if (debug)
printf("jrefrec: op %d ino %ju, nlink %ju, parent %ju, "
"diroff %jd, mode %o, isat %d, isdot %d\n",
rrec->jr_op, (uintmax_t)rrec->jr_ino,
(uintmax_t)rrec->jr_nlink,
(uintmax_t)rrec->jr_parent,
(uintmax_t)rrec->jr_diroff,
rrec->jr_mode, isat, isdot);
mode = rrec->jr_mode & IFMT;
if (rrec->jr_op == JOP_REMREF)
removes++;
newlinks += isat;
if (isdot)
dotlinks += isat;
}
/*
* The number of links that remain are the starting link count
* subtracted by the total number of removes with the total
* links discovered back in. An incomplete remove thus
* makes no change to the link count but an add increases
* by one.
*/
if (debug)
printf(
"ino %ju nlink %ju newlinks %ju removes %ju dotlinks %ju\n",
(uintmax_t)ino, (uintmax_t)nlink, (uintmax_t)newlinks,
(uintmax_t)removes, (uintmax_t)dotlinks);
nlink += newlinks;
nlink -= removes;
sino->si_linkadj = 1;
sino->si_nlink = nlink;
sino->si_dotlinks = dotlinks;
sino->si_mode = mode;
ino_adjust(sino);
}
/*
* Process records available for one block and determine whether it is
* still allocated and whether the owning inode needs to be updated or
* a free completed.
*/
static void
blk_check(struct suj_blk *sblk)
{
struct suj_rec *srec;
struct jblkrec *brec;
struct suj_ino *sino;
ufs2_daddr_t blk;
int mask;
int frags;
int isat;
/*
* Each suj_blk actually contains records for any fragments in that
* block. As a result we must evaluate each record individually.
*/
sino = NULL;
TAILQ_FOREACH(srec, &sblk->sb_recs, sr_next) {
brec = (struct jblkrec *)srec->sr_rec;
frags = brec->jb_frags;
blk = brec->jb_blkno + brec->jb_oldfrags;
isat = blk_isat(brec->jb_ino, brec->jb_lbn, blk, &frags);
if (sino == NULL || sino->si_ino != brec->jb_ino) {
sino = ino_lookup(brec->jb_ino, 1);
sino->si_blkadj = 1;
}
if (debug)
printf("op %d blk %jd ino %ju lbn %jd frags %d isat %d (%d)\n",
brec->jb_op, blk, (uintmax_t)brec->jb_ino,
brec->jb_lbn, brec->jb_frags, isat, frags);
/*
* If we found the block at this address we still have to
* determine if we need to free the tail end that was
* added by adding contiguous fragments from the same block.
*/
if (isat == 1) {
if (frags == brec->jb_frags)
continue;
mask = blk_freemask(blk, brec->jb_ino, brec->jb_lbn,
brec->jb_frags);
mask >>= frags;
blk += frags;
frags = brec->jb_frags - frags;
blk_free(blk, mask, frags);
continue;
}
/*
* The block wasn't found, attempt to free it. It won't be
* freed if it was actually reallocated. If this was an
* allocation we don't want to follow indirects as they
* may not be written yet. Any children of the indirect will
* have their own records. If it's a free we need to
* recursively free children.
*/
blk_free_lbn(blk, brec->jb_ino, brec->jb_lbn, brec->jb_frags,
brec->jb_op == JOP_FREEBLK);
}
}
/*
* Walk the list of inode records for this cg and resolve moved and duplicate
* inode references now that we have a complete picture.
*/
static void
cg_build(struct suj_cg *sc)
{
struct suj_ino *sino;
int i;
for (i = 0; i < SUJ_HASHSIZE; i++)
LIST_FOREACH(sino, &sc->sc_inohash[i], si_next)
ino_build(sino);
}
/*
* Handle inodes requiring truncation. This must be done prior to
* looking up any inodes in directories.
*/
static void
cg_trunc(struct suj_cg *sc)
{
struct suj_ino *sino;
int i;
for (i = 0; i < SUJ_HASHSIZE; i++) {
LIST_FOREACH(sino, &sc->sc_inohash[i], si_next) {
if (sino->si_trunc) {
ino_trunc(sino->si_ino,
sino->si_trunc->jt_size);
sino->si_blkadj = 0;
sino->si_trunc = NULL;
}
if (sino->si_blkadj)
ino_adjblks(sino);
}
}
}
static void
cg_adj_blk(struct suj_cg *sc)
{
struct suj_ino *sino;
int i;
for (i = 0; i < SUJ_HASHSIZE; i++) {
LIST_FOREACH(sino, &sc->sc_inohash[i], si_next) {
if (sino->si_blkadj)
ino_adjblks(sino);
}
}
}
/*
* Free any partially allocated blocks and then resolve inode block
* counts.
*/
static void
cg_check_blk(struct suj_cg *sc)
{
struct suj_blk *sblk;
int i;
for (i = 0; i < SUJ_HASHSIZE; i++)
LIST_FOREACH(sblk, &sc->sc_blkhash[i], sb_next)
blk_check(sblk);
}
/*
* Walk the list of inode records for this cg, recovering any
* changes which were not complete at the time of crash.
*/
static void
cg_check_ino(struct suj_cg *sc)
{
struct suj_ino *sino;
int i;
for (i = 0; i < SUJ_HASHSIZE; i++)
LIST_FOREACH(sino, &sc->sc_inohash[i], si_next)
ino_check(sino);
}
/*
* Write a potentially dirty cg. Recalculate the summary information and
* update the superblock summary.
*/
static void
cg_write(struct suj_cg *sc)
{
ufs1_daddr_t fragno, cgbno, maxbno;
u_int8_t *blksfree;
struct cg *cgp;
int blk;
int i;
if (sc->sc_dirty == 0)
return;
/*
* Fix the frag and cluster summary.
*/
cgp = sc->sc_cgp;
cgp->cg_cs.cs_nbfree = 0;
cgp->cg_cs.cs_nffree = 0;
bzero(&cgp->cg_frsum, sizeof(cgp->cg_frsum));
maxbno = fragstoblks(fs, fs->fs_fpg);
if (fs->fs_contigsumsize > 0) {
for (i = 1; i <= fs->fs_contigsumsize; i++)
cg_clustersum(cgp)[i] = 0;
bzero(cg_clustersfree(cgp), howmany(maxbno, CHAR_BIT));
}
blksfree = cg_blksfree(cgp);
for (cgbno = 0; cgbno < maxbno; cgbno++) {
if (ffs_isfreeblock(fs, blksfree, cgbno))
continue;
if (ffs_isblock(fs, blksfree, cgbno)) {
ffs_clusteracct(fs, cgp, cgbno, 1);
cgp->cg_cs.cs_nbfree++;
continue;
}
fragno = blkstofrags(fs, cgbno);
blk = blkmap(fs, blksfree, fragno);
ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
for (i = 0; i < fs->fs_frag; i++)
if (isset(blksfree, fragno + i))
cgp->cg_cs.cs_nffree++;
}
/*
* Update the superblock cg summary from our now correct values
* before writing the block.
*/
fs->fs_cs(fs, sc->sc_cgx) = cgp->cg_cs;
if (bwrite(disk, fsbtodb(fs, cgtod(fs, sc->sc_cgx)), sc->sc_cgbuf,
fs->fs_bsize) == -1)
err_suj("Unable to write cylinder group %d\n", sc->sc_cgx);
}
/*
* Write out any modified inodes.
*/
static void
cg_write_inos(struct suj_cg *sc)
{
struct ino_blk *iblk;
int i;
for (i = 0; i < SUJ_HASHSIZE; i++)
LIST_FOREACH(iblk, &sc->sc_iblkhash[i], ib_next)
if (iblk->ib_dirty)
iblk_write(iblk);
}
static void
cg_apply(void (*apply)(struct suj_cg *))
{
struct suj_cg *scg;
int i;
for (i = 0; i < SUJ_HASHSIZE; i++)
LIST_FOREACH(scg, &cghash[i], sc_next)
apply(scg);
}
/*
* Process the unlinked but referenced file list. Freeing all inodes.
*/
static void
ino_unlinked(void)
{
union dinode *ip;
uint16_t mode;
ino_t inon;
ino_t ino;
ino = fs->fs_sujfree;
fs->fs_sujfree = 0;
while (ino != 0) {
ip = ino_read(ino);
mode = DIP(ip, di_mode) & IFMT;
inon = DIP(ip, di_freelink);
DIP_SET(ip, di_freelink, 0);
/*
* XXX Should this be an errx?
*/
if (DIP(ip, di_nlink) == 0) {
if (debug)
printf("Freeing unlinked ino %ju mode %o\n",
(uintmax_t)ino, mode);
ino_reclaim(ip, ino, mode);
} else if (debug)
printf("Skipping ino %ju mode %o with link %d\n",
(uintmax_t)ino, mode, DIP(ip, di_nlink));
ino = inon;
}
}
/*
* Append a new record to the list of records requiring processing.
*/
static void
ino_append(union jrec *rec)
{
struct jrefrec *refrec;
struct jmvrec *mvrec;
struct suj_ino *sino;
struct suj_rec *srec;
mvrec = &rec->rec_jmvrec;
refrec = &rec->rec_jrefrec;
if (debug && mvrec->jm_op == JOP_MVREF)
printf("ino move: ino %ju, parent %ju, "
"diroff %jd, oldoff %jd\n",
(uintmax_t)mvrec->jm_ino, (uintmax_t)mvrec->jm_parent,
(uintmax_t)mvrec->jm_newoff, (uintmax_t)mvrec->jm_oldoff);
else if (debug &&
(refrec->jr_op == JOP_ADDREF || refrec->jr_op == JOP_REMREF))
printf("ino ref: op %d, ino %ju, nlink %ju, "
"parent %ju, diroff %jd\n",
refrec->jr_op, (uintmax_t)refrec->jr_ino,
(uintmax_t)refrec->jr_nlink,
(uintmax_t)refrec->jr_parent, (uintmax_t)refrec->jr_diroff);
sino = ino_lookup(((struct jrefrec *)rec)->jr_ino, 1);
sino->si_hasrecs = 1;
srec = errmalloc(sizeof(*srec));
srec->sr_rec = rec;
TAILQ_INSERT_TAIL(&sino->si_newrecs, srec, sr_next);
}
/*
* Add a reference adjustment to the sino list and eliminate dups. The
* primary loop in ino_build_ref() checks for dups but new ones may be
* created as a result of offset adjustments.
*/
static void
ino_add_ref(struct suj_ino *sino, struct suj_rec *srec)
{
struct jrefrec *refrec;
struct suj_rec *srn;
struct jrefrec *rrn;
refrec = (struct jrefrec *)srec->sr_rec;
/*
* We walk backwards so that the oldest link count is preserved. If
* an add record conflicts with a remove keep the remove. Redundant
* removes are eliminated in ino_build_ref. Otherwise we keep the
* oldest record at a given location.
*/
for (srn = TAILQ_LAST(&sino->si_recs, srechd); srn;
srn = TAILQ_PREV(srn, srechd, sr_next)) {
rrn = (struct jrefrec *)srn->sr_rec;
if (rrn->jr_parent != refrec->jr_parent ||
rrn->jr_diroff != refrec->jr_diroff)
continue;
if (rrn->jr_op == JOP_REMREF || refrec->jr_op == JOP_ADDREF) {
rrn->jr_mode = refrec->jr_mode;
return;
}
/*
* Adding a remove.
*
* Replace the record in place with the old nlink in case
* we replace the head of the list. Abandon srec as a dup.
*/
refrec->jr_nlink = rrn->jr_nlink;
srn->sr_rec = srec->sr_rec;
return;
}
TAILQ_INSERT_TAIL(&sino->si_recs, srec, sr_next);
}
/*
* Create a duplicate of a reference at a previous location.
*/
static void
ino_dup_ref(struct suj_ino *sino, struct jrefrec *refrec, off_t diroff)
{
struct jrefrec *rrn;
struct suj_rec *srn;
rrn = errmalloc(sizeof(*refrec));
*rrn = *refrec;
rrn->jr_op = JOP_ADDREF;
rrn->jr_diroff = diroff;
srn = errmalloc(sizeof(*srn));
srn->sr_rec = (union jrec *)rrn;
ino_add_ref(sino, srn);
}
/*
* Add a reference to the list at all known locations. We follow the offset
* changes for a single instance and create duplicate add refs at each so
* that we can tolerate any version of the directory block. Eliminate
* removes which collide with adds that are seen in the journal. They should
* not adjust the link count down.
*/
static void
ino_build_ref(struct suj_ino *sino, struct suj_rec *srec)
{
struct jrefrec *refrec;
struct jmvrec *mvrec;
struct suj_rec *srp;
struct suj_rec *srn;
struct jrefrec *rrn;
off_t diroff;
refrec = (struct jrefrec *)srec->sr_rec;
/*
* Search for a mvrec that matches this offset. Whether it's an add
* or a remove we can delete the mvref after creating a dup record in
* the old location.
*/
if (!TAILQ_EMPTY(&sino->si_movs)) {
diroff = refrec->jr_diroff;
for (srn = TAILQ_LAST(&sino->si_movs, srechd); srn; srn = srp) {
srp = TAILQ_PREV(srn, srechd, sr_next);
mvrec = (struct jmvrec *)srn->sr_rec;
if (mvrec->jm_parent != refrec->jr_parent ||
mvrec->jm_newoff != diroff)
continue;
diroff = mvrec->jm_oldoff;
TAILQ_REMOVE(&sino->si_movs, srn, sr_next);
free(srn);
ino_dup_ref(sino, refrec, diroff);
}
}
/*
* If a remove wasn't eliminated by an earlier add just append it to
* the list.
*/
if (refrec->jr_op == JOP_REMREF) {
ino_add_ref(sino, srec);
return;
}
/*
* Walk the list of records waiting to be added to the list. We
* must check for moves that apply to our current offset and remove
* them from the list. Remove any duplicates to eliminate removes
* with corresponding adds.
*/
TAILQ_FOREACH_SAFE(srn, &sino->si_newrecs, sr_next, srp) {
switch (srn->sr_rec->rec_jrefrec.jr_op) {
case JOP_ADDREF:
/*
* This should actually be an error we should
* have a remove for every add journaled.
*/
rrn = (struct jrefrec *)srn->sr_rec;
if (rrn->jr_parent != refrec->jr_parent ||
rrn->jr_diroff != refrec->jr_diroff)
break;
TAILQ_REMOVE(&sino->si_newrecs, srn, sr_next);
break;
case JOP_REMREF:
/*
* Once we remove the current iteration of the
* record at this address we're done.
*/
rrn = (struct jrefrec *)srn->sr_rec;
if (rrn->jr_parent != refrec->jr_parent ||
rrn->jr_diroff != refrec->jr_diroff)
break;
TAILQ_REMOVE(&sino->si_newrecs, srn, sr_next);
ino_add_ref(sino, srec);
return;
case JOP_MVREF:
/*
* Update our diroff based on any moves that match
* and remove the move.
*/
mvrec = (struct jmvrec *)srn->sr_rec;
if (mvrec->jm_parent != refrec->jr_parent ||
mvrec->jm_oldoff != refrec->jr_diroff)
break;
ino_dup_ref(sino, refrec, mvrec->jm_oldoff);
refrec->jr_diroff = mvrec->jm_newoff;
TAILQ_REMOVE(&sino->si_newrecs, srn, sr_next);
break;
default:
err_suj("ino_build_ref: Unknown op %d\n",
srn->sr_rec->rec_jrefrec.jr_op);
}
}
ino_add_ref(sino, srec);
}
/*
* Walk the list of new records and add them in-order resolving any
* dups and adjusted offsets.
*/
static void
ino_build(struct suj_ino *sino)
{
struct suj_rec *srec;
while ((srec = TAILQ_FIRST(&sino->si_newrecs)) != NULL) {
TAILQ_REMOVE(&sino->si_newrecs, srec, sr_next);
switch (srec->sr_rec->rec_jrefrec.jr_op) {
case JOP_ADDREF:
case JOP_REMREF:
ino_build_ref(sino, srec);
break;
case JOP_MVREF:
/*
* Add this mvrec to the queue of pending mvs.
*/
TAILQ_INSERT_TAIL(&sino->si_movs, srec, sr_next);
break;
default:
err_suj("ino_build: Unknown op %d\n",
srec->sr_rec->rec_jrefrec.jr_op);
}
}
if (TAILQ_EMPTY(&sino->si_recs))
sino->si_hasrecs = 0;
}
/*
* Modify journal records so they refer to the base block number
* and a start and end frag range. This is to facilitate the discovery
* of overlapping fragment allocations.
*/
static void
blk_build(struct jblkrec *blkrec)
{
struct suj_rec *srec;
struct suj_blk *sblk;
struct jblkrec *blkrn;
ufs2_daddr_t blk;
int frag;
if (debug)
printf("blk_build: op %d blkno %jd frags %d oldfrags %d "
"ino %ju lbn %jd\n",
blkrec->jb_op, (uintmax_t)blkrec->jb_blkno,
blkrec->jb_frags, blkrec->jb_oldfrags,
(uintmax_t)blkrec->jb_ino, (uintmax_t)blkrec->jb_lbn);
blk = blknum(fs, blkrec->jb_blkno);
frag = fragnum(fs, blkrec->jb_blkno);
sblk = blk_lookup(blk, 1);
/*
* Rewrite the record using oldfrags to indicate the offset into
* the block. Leave jb_frags as the actual allocated count.
*/
blkrec->jb_blkno -= frag;
blkrec->jb_oldfrags = frag;
if (blkrec->jb_oldfrags + blkrec->jb_frags > fs->fs_frag)
err_suj("Invalid fragment count %d oldfrags %d\n",
blkrec->jb_frags, frag);
/*
* Detect dups. If we detect a dup we always discard the oldest
* record as it is superseded by the new record. This speeds up
* later stages but also eliminates free records which are used
* to indicate that the contents of indirects can be trusted.
*/
TAILQ_FOREACH(srec, &sblk->sb_recs, sr_next) {
blkrn = (struct jblkrec *)srec->sr_rec;
if (blkrn->jb_ino != blkrec->jb_ino ||
blkrn->jb_lbn != blkrec->jb_lbn ||
blkrn->jb_blkno != blkrec->jb_blkno ||
blkrn->jb_frags != blkrec->jb_frags ||
blkrn->jb_oldfrags != blkrec->jb_oldfrags)
continue;
if (debug)
printf("Removed dup.\n");
/* Discard the free which is a dup with an alloc. */
if (blkrec->jb_op == JOP_FREEBLK)
return;
TAILQ_REMOVE(&sblk->sb_recs, srec, sr_next);
free(srec);
break;
}
srec = errmalloc(sizeof(*srec));
srec->sr_rec = (union jrec *)blkrec;
TAILQ_INSERT_TAIL(&sblk->sb_recs, srec, sr_next);
}
static void
ino_build_trunc(struct jtrncrec *rec)
{
struct suj_ino *sino;
if (debug)
printf("ino_build_trunc: op %d ino %ju, size %jd\n",
rec->jt_op, (uintmax_t)rec->jt_ino,
(uintmax_t)rec->jt_size);
sino = ino_lookup(rec->jt_ino, 1);
if (rec->jt_op == JOP_SYNC) {
sino->si_trunc = NULL;
return;
}
if (sino->si_trunc == NULL || sino->si_trunc->jt_size > rec->jt_size)
sino->si_trunc = rec;
}
/*
* Build up tables of the operations we need to recover.
*/
static void
suj_build(void)
{
struct suj_seg *seg;
union jrec *rec;
int off;
int i;
TAILQ_FOREACH(seg, &allsegs, ss_next) {
if (debug)
printf("seg %jd has %d records, oldseq %jd.\n",
seg->ss_rec.jsr_seq, seg->ss_rec.jsr_cnt,
seg->ss_rec.jsr_oldest);
off = 0;
rec = (union jrec *)seg->ss_blk;
for (i = 0; i < seg->ss_rec.jsr_cnt; off += JREC_SIZE, rec++) {
/* skip the segrec. */
if ((off % real_dev_bsize) == 0)
continue;
switch (rec->rec_jrefrec.jr_op) {
case JOP_ADDREF:
case JOP_REMREF:
case JOP_MVREF:
ino_append(rec);
break;
case JOP_NEWBLK:
case JOP_FREEBLK:
blk_build((struct jblkrec *)rec);
break;
case JOP_TRUNC:
case JOP_SYNC:
ino_build_trunc((struct jtrncrec *)rec);
break;
default:
err_suj("Unknown journal operation %d (%d)\n",
rec->rec_jrefrec.jr_op, off);
}
i++;
}
}
}
/*
* Prune the journal segments to those we care about based on the
* oldest sequence in the newest segment. Order the segment list
* based on sequence number.
*/
static void
suj_prune(void)
{
struct suj_seg *seg;
struct suj_seg *segn;
uint64_t newseq;
int discard;
if (debug)
printf("Pruning up to %jd\n", oldseq);
/* First free the expired segments. */
TAILQ_FOREACH_SAFE(seg, &allsegs, ss_next, segn) {
if (seg->ss_rec.jsr_seq >= oldseq)
continue;
TAILQ_REMOVE(&allsegs, seg, ss_next);
free(seg->ss_blk);
free(seg);
}
/* Next ensure that segments are ordered properly. */
seg = TAILQ_FIRST(&allsegs);
if (seg == NULL) {
if (debug)
printf("Empty journal\n");
return;
}
newseq = seg->ss_rec.jsr_seq;
for (;;) {
seg = TAILQ_LAST(&allsegs, seghd);
if (seg->ss_rec.jsr_seq >= newseq)
break;
TAILQ_REMOVE(&allsegs, seg, ss_next);
TAILQ_INSERT_HEAD(&allsegs, seg, ss_next);
newseq = seg->ss_rec.jsr_seq;
}
if (newseq != oldseq) {
TAILQ_FOREACH(seg, &allsegs, ss_next) {
printf("%jd, ", seg->ss_rec.jsr_seq);
}
printf("\n");
err_suj("Journal file sequence mismatch %jd != %jd\n",
newseq, oldseq);
}
/*
* The kernel may asynchronously write segments which can create
* gaps in the sequence space. Throw away any segments after the
* gap as the kernel guarantees only those that are contiguously
* reachable are marked as completed.
*/
discard = 0;
TAILQ_FOREACH_SAFE(seg, &allsegs, ss_next, segn) {
if (!discard && newseq++ == seg->ss_rec.jsr_seq) {
jrecs += seg->ss_rec.jsr_cnt;
jbytes += seg->ss_rec.jsr_blocks * real_dev_bsize;
continue;
}
discard = 1;
if (debug)
printf("Journal order mismatch %jd != %jd pruning\n",
newseq-1, seg->ss_rec.jsr_seq);
TAILQ_REMOVE(&allsegs, seg, ss_next);
free(seg->ss_blk);
free(seg);
}
if (debug)
printf("Processing journal segments from %jd to %jd\n",
oldseq, newseq-1);
}
/*
* Verify the journal inode before attempting to read records.
*/
static int
suj_verifyino(union dinode *ip)
{
if (DIP(ip, di_nlink) != 1) {
printf("Invalid link count %d for journal inode %ju\n",
DIP(ip, di_nlink), (uintmax_t)sujino);
return (-1);
}
if ((DIP(ip, di_flags) & (SF_IMMUTABLE | SF_NOUNLINK)) !=
(SF_IMMUTABLE | SF_NOUNLINK)) {
printf("Invalid flags 0x%X for journal inode %ju\n",
DIP(ip, di_flags), (uintmax_t)sujino);
return (-1);
}
if (DIP(ip, di_mode) != (IFREG | IREAD)) {
printf("Invalid mode %o for journal inode %ju\n",
DIP(ip, di_mode), (uintmax_t)sujino);
return (-1);
}
if (DIP(ip, di_size) < SUJ_MIN) {
printf("Invalid size %jd for journal inode %ju\n",
DIP(ip, di_size), (uintmax_t)sujino);
return (-1);
}
if (DIP(ip, di_modrev) != fs->fs_mtime) {
printf("Journal timestamp does not match fs mount time\n");
return (-1);
}
return (0);
}
struct jblocks {
struct jextent *jb_extent; /* Extent array. */
int jb_avail; /* Available extents. */
int jb_used; /* Last used extent. */
int jb_head; /* Allocator head. */
int jb_off; /* Allocator extent offset. */
};
struct jextent {
ufs2_daddr_t je_daddr; /* Disk block address. */
int je_blocks; /* Disk block count. */
};
static struct jblocks *suj_jblocks;
static struct jblocks *
jblocks_create(void)
{
struct jblocks *jblocks;
int size;
jblocks = errmalloc(sizeof(*jblocks));
jblocks->jb_avail = 10;
jblocks->jb_used = 0;
jblocks->jb_head = 0;
jblocks->jb_off = 0;
size = sizeof(struct jextent) * jblocks->jb_avail;
jblocks->jb_extent = errmalloc(size);
bzero(jblocks->jb_extent, size);
return (jblocks);
}
/*
* Return the next available disk block and the amount of contiguous
* free space it contains.
*/
static ufs2_daddr_t
jblocks_next(struct jblocks *jblocks, int bytes, int *actual)
{
struct jextent *jext;
ufs2_daddr_t daddr;
int freecnt;
int blocks;
blocks = bytes / disk->d_bsize;
jext = &jblocks->jb_extent[jblocks->jb_head];
freecnt = jext->je_blocks - jblocks->jb_off;
if (freecnt == 0) {
jblocks->jb_off = 0;
if (++jblocks->jb_head > jblocks->jb_used)
return (0);
jext = &jblocks->jb_extent[jblocks->jb_head];
freecnt = jext->je_blocks;
}
if (freecnt > blocks)
freecnt = blocks;
*actual = freecnt * disk->d_bsize;
daddr = jext->je_daddr + jblocks->jb_off;
return (daddr);
}
/*
* Advance the allocation head by a specified number of bytes, consuming
* one journal segment.
*/
static void
jblocks_advance(struct jblocks *jblocks, int bytes)
{
jblocks->jb_off += bytes / disk->d_bsize;
}
static void
jblocks_destroy(struct jblocks *jblocks)
{
free(jblocks->jb_extent);
free(jblocks);
}
static void
jblocks_add(struct jblocks *jblocks, ufs2_daddr_t daddr, int blocks)
{
struct jextent *jext;
int size;
jext = &jblocks->jb_extent[jblocks->jb_used];
/* Adding the first block. */
if (jext->je_daddr == 0) {
jext->je_daddr = daddr;
jext->je_blocks = blocks;
return;
}
/* Extending the last extent. */
if (jext->je_daddr + jext->je_blocks == daddr) {
jext->je_blocks += blocks;
return;
}
/* Adding a new extent. */
if (++jblocks->jb_used == jblocks->jb_avail) {
jblocks->jb_avail *= 2;
size = sizeof(struct jextent) * jblocks->jb_avail;
jext = errmalloc(size);
bzero(jext, size);
bcopy(jblocks->jb_extent, jext,
sizeof(struct jextent) * jblocks->jb_used);
free(jblocks->jb_extent);
jblocks->jb_extent = jext;
}
jext = &jblocks->jb_extent[jblocks->jb_used];
jext->je_daddr = daddr;
jext->je_blocks = blocks;
return;
}
/*
* Add a file block from the journal to the extent map. We can't read
* each file block individually because the kernel treats it as a circular
* buffer and segments may span mutliple contiguous blocks.
*/
static void
suj_add_block(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags)
{
jblocks_add(suj_jblocks, fsbtodb(fs, blk), fsbtodb(fs, frags));
}
static void
suj_read(void)
{
uint8_t block[1 * 1024 * 1024];
struct suj_seg *seg;
struct jsegrec *recn;
struct jsegrec *rec;
ufs2_daddr_t blk;
int readsize;
int blocks;
int recsize;
int size;
int i;
/*
* Read records until we exhaust the journal space. If we find
* an invalid record we start searching for a valid segment header
* at the next block. This is because we don't have a head/tail
* pointer and must recover the information indirectly. At the gap
* between the head and tail we won't necessarily have a valid
* segment.
*/
restart:
for (;;) {
size = sizeof(block);
blk = jblocks_next(suj_jblocks, size, &readsize);
if (blk == 0)
return;
size = readsize;
/*
* Read 1MB at a time and scan for records within this block.
*/
if (bread(disk, blk, &block, size) == -1) {
err_suj("Error reading journal block %jd\n",
(intmax_t)blk);
}
for (rec = (void *)block; size; size -= recsize,
rec = (struct jsegrec *)((uintptr_t)rec + recsize)) {
recsize = real_dev_bsize;
if (rec->jsr_time != fs->fs_mtime) {
if (debug)
printf("Rec time %jd != fs mtime %jd\n",
rec->jsr_time, fs->fs_mtime);
jblocks_advance(suj_jblocks, recsize);
continue;
}
if (rec->jsr_cnt == 0) {
if (debug)
printf("Found illegal count %d\n",
rec->jsr_cnt);
jblocks_advance(suj_jblocks, recsize);
continue;
}
blocks = rec->jsr_blocks;
recsize = blocks * real_dev_bsize;
if (recsize > size) {
/*
* We may just have run out of buffer, restart
* the loop to re-read from this spot.
*/
if (size < fs->fs_bsize &&
size != readsize &&
recsize <= fs->fs_bsize)
goto restart;
if (debug)
printf("Found invalid segsize %d > %d\n",
recsize, size);
recsize = real_dev_bsize;
jblocks_advance(suj_jblocks, recsize);
continue;
}
/*
* Verify that all blocks in the segment are present.
*/
for (i = 1; i < blocks; i++) {
recn = (void *)((uintptr_t)rec) + i *
real_dev_bsize;
if (recn->jsr_seq == rec->jsr_seq &&
recn->jsr_time == rec->jsr_time)
continue;
if (debug)
printf("Incomplete record %jd (%d)\n",
rec->jsr_seq, i);
recsize = i * real_dev_bsize;
jblocks_advance(suj_jblocks, recsize);
goto restart;
}
seg = errmalloc(sizeof(*seg));
seg->ss_blk = errmalloc(recsize);
seg->ss_rec = *rec;
bcopy((void *)rec, seg->ss_blk, recsize);
if (rec->jsr_oldest > oldseq)
oldseq = rec->jsr_oldest;
TAILQ_INSERT_TAIL(&allsegs, seg, ss_next);
jblocks_advance(suj_jblocks, recsize);
}
}
}
/*
* Search a directory block for the SUJ_FILE.
*/
static void
suj_find(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags)
{
char block[MAXBSIZE];
struct direct *dp;
int bytes;
int off;
if (sujino)
return;
bytes = lfragtosize(fs, frags);
if (bread(disk, fsbtodb(fs, blk), block, bytes) <= 0)
err_suj("Failed to read UFS_ROOTINO directory block %jd\n",
blk);
for (off = 0; off < bytes; off += dp->d_reclen) {
dp = (struct direct *)&block[off];
if (dp->d_reclen == 0)
break;
if (dp->d_ino == 0)
continue;
if (dp->d_namlen != strlen(SUJ_FILE))
continue;
if (bcmp(dp->d_name, SUJ_FILE, dp->d_namlen) != 0)
continue;
sujino = dp->d_ino;
return;
}
}
/*
* Orchestrate the verification of a filesystem via the softupdates journal.
*/
int
suj_check(const char *filesys)
{
union dinode *jip;
union dinode *ip;
uint64_t blocks;
int retval;
struct suj_seg *seg;
struct suj_seg *segn;
initsuj();
opendisk(filesys);
/*
* Set an exit point when SUJ check failed
*/
retval = setjmp(jmpbuf);
if (retval != 0) {
pwarn("UNEXPECTED SU+J INCONSISTENCY\n");
TAILQ_FOREACH_SAFE(seg, &allsegs, ss_next, segn) {
TAILQ_REMOVE(&allsegs, seg, ss_next);
free(seg->ss_blk);
free(seg);
}
if (reply("FALLBACK TO FULL FSCK") == 0) {
ckfini(0);
exit(EEXIT);
} else
return (-1);
}
/*
* Find the journal inode.
*/
ip = ino_read(UFS_ROOTINO);
sujino = 0;
ino_visit(ip, UFS_ROOTINO, suj_find, 0);
if (sujino == 0) {
printf("Journal inode removed. Use tunefs to re-create.\n");
sblock.fs_flags &= ~FS_SUJ;
sblock.fs_sujfree = 0;
return (-1);
}
/*
* Fetch the journal inode and verify it.
*/
jip = ino_read(sujino);
printf("** SU+J Recovering %s\n", filesys);
if (suj_verifyino(jip) != 0)
return (-1);
/*
* Build a list of journal blocks in jblocks before parsing the
* available journal blocks in with suj_read().
*/
printf("** Reading %jd byte journal from inode %ju.\n",
DIP(jip, di_size), (uintmax_t)sujino);
suj_jblocks = jblocks_create();
blocks = ino_visit(jip, sujino, suj_add_block, 0);
if (blocks != numfrags(fs, DIP(jip, di_size))) {
printf("Sparse journal inode %ju.\n", (uintmax_t)sujino);
return (-1);
}
suj_read();
jblocks_destroy(suj_jblocks);
suj_jblocks = NULL;
if (preen || reply("RECOVER")) {
printf("** Building recovery table.\n");
suj_prune();
suj_build();
cg_apply(cg_build);
printf("** Resolving unreferenced inode list.\n");
ino_unlinked();
printf("** Processing journal entries.\n");
cg_apply(cg_trunc);
cg_apply(cg_check_blk);
cg_apply(cg_adj_blk);
cg_apply(cg_check_ino);
}
if (preen == 0 && (jrecs > 0 || jbytes > 0) && reply("WRITE CHANGES") == 0)
return (0);
/*
* To remain idempotent with partial truncations the free bitmaps
* must be written followed by indirect blocks and lastly inode
* blocks. This preserves access to the modified pointers until
* they are freed.
*/
cg_apply(cg_write);
dblk_write();
cg_apply(cg_write_inos);
/* Write back superblock. */
closedisk(filesys);
if (jrecs > 0 || jbytes > 0) {
printf("** %jd journal records in %jd bytes for %.2f%% utilization\n",
jrecs, jbytes, ((float)jrecs / (float)(jbytes / JREC_SIZE)) * 100);
printf("** Freed %jd inodes (%jd dirs) %jd blocks, and %jd frags.\n",
freeinos, freedir, freeblocks, freefrags);
}
return (0);
}
static void
initsuj(void)
{
int i;
for (i = 0; i < SUJ_HASHSIZE; i++) {
LIST_INIT(&cghash[i]);
LIST_INIT(&dbhash[i]);
}
lastcg = NULL;
lastblk = NULL;
TAILQ_INIT(&allsegs);
oldseq = 0;
disk = NULL;
fs = NULL;
sujino = 0;
freefrags = 0;
freeblocks = 0;
freeinos = 0;
freedir = 0;
jbytes = 0;
jrecs = 0;
suj_jblocks = NULL;
}