1
0
mirror of https://git.FreeBSD.org/src.git synced 2025-01-10 14:02:43 +00:00
freebsd/sys/kern/sysv_sem.c
Robert Watson 91421ba234 o Move per-process jail pointer (p->pr_prison) to inside of the subject
credential structure, ucred (cr->cr_prison).
o Allow jail inheritence to be a function of credential inheritence.
o Abstract prison structure reference counting behind pr_hold() and
  pr_free(), invoked by the similarly named credential reference
  management functions, removing this code from per-ABI fork/exit code.
o Modify various jail() functions to use struct ucred arguments instead
  of struct proc arguments.
o Introduce jailed() function to determine if a credential is jailed,
  rather than directly checking pointers all over the place.
o Convert PRISON_CHECK() macro to prison_check() function.
o Move jail() function prototypes to jail.h.
o Emulate the P_JAILED flag in fill_kinfo_proc() and no longer set the
  flag in the process flags field itself.
o Eliminate that "const" qualifier from suser/p_can/etc to reflect
  mutex use.

Notes:

o Some further cleanup of the linux/jail code is still required.
o It's now possible to consider resolving some of the process vs
  credential based permission checking confusion in the socket code.
o Mutex protection of struct prison is still not present, and is
  required to protect the reference count plus some fields in the
  structure.

Reviewed by:	freebsd-arch
Obtained from:	TrustedBSD Project
2001-02-21 06:39:57 +00:00

1069 lines
25 KiB
C

/* $FreeBSD$ */
/*
* Implementation of SVID semaphores
*
* Author: Daniel Boulet
*
* This software is provided ``AS IS'' without any warranties of any kind.
*/
#include "opt_sysvipc.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sysproto.h>
#include <sys/kernel.h>
#include <sys/proc.h>
#include <sys/sem.h>
#include <sys/syscall.h>
#include <sys/sysent.h>
#include <sys/sysctl.h>
#include <sys/malloc.h>
#include <sys/jail.h>
static MALLOC_DEFINE(M_SEM, "sem", "SVID compatible semaphores");
static void seminit __P((void));
static int sysvsem_modload __P((struct module *, int, void *));
static int semunload __P((void));
static void semexit_myhook __P((struct proc *p));
#ifndef _SYS_SYSPROTO_H_
struct __semctl_args;
int __semctl __P((struct proc *p, struct __semctl_args *uap));
struct semget_args;
int semget __P((struct proc *p, struct semget_args *uap));
struct semop_args;
int semop __P((struct proc *p, struct semop_args *uap));
#endif
static struct sem_undo *semu_alloc __P((struct proc *p));
static int semundo_adjust __P((struct proc *p, struct sem_undo **supptr,
int semid, int semnum, int adjval));
static void semundo_clear __P((int semid, int semnum));
/* XXX casting to (sy_call_t *) is bogus, as usual. */
static sy_call_t *semcalls[] = {
(sy_call_t *)__semctl, (sy_call_t *)semget,
(sy_call_t *)semop
};
static int semtot = 0;
static struct semid_ds *sema; /* semaphore id pool */
static struct sem *sem; /* semaphore pool */
static struct sem_undo *semu_list; /* list of active undo structures */
static int *semu; /* undo structure pool */
struct sem {
u_short semval; /* semaphore value */
pid_t sempid; /* pid of last operation */
u_short semncnt; /* # awaiting semval > cval */
u_short semzcnt; /* # awaiting semval = 0 */
};
/*
* Undo structure (one per process)
*/
struct sem_undo {
struct sem_undo *un_next; /* ptr to next active undo structure */
struct proc *un_proc; /* owner of this structure */
short un_cnt; /* # of active entries */
struct undo {
short un_adjval; /* adjust on exit values */
short un_num; /* semaphore # */
int un_id; /* semid */
} un_ent[1]; /* undo entries */
};
/*
* Configuration parameters
*/
#ifndef SEMMNI
#define SEMMNI 10 /* # of semaphore identifiers */
#endif
#ifndef SEMMNS
#define SEMMNS 60 /* # of semaphores in system */
#endif
#ifndef SEMUME
#define SEMUME 10 /* max # of undo entries per process */
#endif
#ifndef SEMMNU
#define SEMMNU 30 /* # of undo structures in system */
#endif
/* shouldn't need tuning */
#ifndef SEMMAP
#define SEMMAP 30 /* # of entries in semaphore map */
#endif
#ifndef SEMMSL
#define SEMMSL SEMMNS /* max # of semaphores per id */
#endif
#ifndef SEMOPM
#define SEMOPM 100 /* max # of operations per semop call */
#endif
#define SEMVMX 32767 /* semaphore maximum value */
#define SEMAEM 16384 /* adjust on exit max value */
/*
* Due to the way semaphore memory is allocated, we have to ensure that
* SEMUSZ is properly aligned.
*/
#define SEM_ALIGN(bytes) (((bytes) + (sizeof(long) - 1)) & ~(sizeof(long) - 1))
/* actual size of an undo structure */
#define SEMUSZ SEM_ALIGN(offsetof(struct sem_undo, un_ent[SEMUME]))
/*
* Macro to find a particular sem_undo vector
*/
#define SEMU(ix) ((struct sem_undo *)(((intptr_t)semu)+ix * seminfo.semusz))
/*
* semaphore info struct
*/
struct seminfo seminfo = {
SEMMAP, /* # of entries in semaphore map */
SEMMNI, /* # of semaphore identifiers */
SEMMNS, /* # of semaphores in system */
SEMMNU, /* # of undo structures in system */
SEMMSL, /* max # of semaphores per id */
SEMOPM, /* max # of operations per semop call */
SEMUME, /* max # of undo entries per process */
SEMUSZ, /* size in bytes of undo structure */
SEMVMX, /* semaphore maximum value */
SEMAEM /* adjust on exit max value */
};
SYSCTL_DECL(_kern_ipc);
SYSCTL_INT(_kern_ipc, OID_AUTO, semmap, CTLFLAG_RW, &seminfo.semmap, 0, "");
SYSCTL_INT(_kern_ipc, OID_AUTO, semmni, CTLFLAG_RD, &seminfo.semmni, 0, "");
SYSCTL_INT(_kern_ipc, OID_AUTO, semmns, CTLFLAG_RD, &seminfo.semmns, 0, "");
SYSCTL_INT(_kern_ipc, OID_AUTO, semmnu, CTLFLAG_RD, &seminfo.semmnu, 0, "");
SYSCTL_INT(_kern_ipc, OID_AUTO, semmsl, CTLFLAG_RW, &seminfo.semmsl, 0, "");
SYSCTL_INT(_kern_ipc, OID_AUTO, semopm, CTLFLAG_RD, &seminfo.semopm, 0, "");
SYSCTL_INT(_kern_ipc, OID_AUTO, semume, CTLFLAG_RD, &seminfo.semume, 0, "");
SYSCTL_INT(_kern_ipc, OID_AUTO, semusz, CTLFLAG_RD, &seminfo.semusz, 0, "");
SYSCTL_INT(_kern_ipc, OID_AUTO, semvmx, CTLFLAG_RW, &seminfo.semvmx, 0, "");
SYSCTL_INT(_kern_ipc, OID_AUTO, semaem, CTLFLAG_RW, &seminfo.semaem, 0, "");
#if 0
RO seminfo.semmap /* SEMMAP unused */
RO seminfo.semmni
RO seminfo.semmns
RO seminfo.semmnu /* undo entries per system */
RW seminfo.semmsl
RO seminfo.semopm /* SEMOPM unused */
RO seminfo.semume
RO seminfo.semusz /* param - derived from SEMUME for per-proc sizeof */
RO seminfo.semvmx /* SEMVMX unused - user param */
RO seminfo.semaem /* SEMAEM unused - user param */
#endif
static void
seminit(void)
{
register int i;
sem = malloc(sizeof(struct sem) * seminfo.semmns, M_SEM, M_WAITOK);
if (sem == NULL)
panic("sem is NULL");
sema = malloc(sizeof(struct semid_ds) * seminfo.semmni, M_SEM, M_WAITOK);
if (sema == NULL)
panic("sema is NULL");
semu = malloc(seminfo.semmnu * seminfo.semusz, M_SEM, M_WAITOK);
if (semu == NULL)
panic("semu is NULL");
for (i = 0; i < seminfo.semmni; i++) {
sema[i].sem_base = 0;
sema[i].sem_perm.mode = 0;
}
for (i = 0; i < seminfo.semmnu; i++) {
register struct sem_undo *suptr = SEMU(i);
suptr->un_proc = NULL;
}
semu_list = NULL;
semexit_hook = &semexit_myhook;
}
static int
semunload(void)
{
if (semtot != 0)
return (EBUSY);
free(sem, M_SEM);
free(sema, M_SEM);
free(semu, M_SEM);
semexit_hook = NULL;
return (0);
}
static int
sysvsem_modload(struct module *module, int cmd, void *arg)
{
int error = 0;
switch (cmd) {
case MOD_LOAD:
seminit();
break;
case MOD_UNLOAD:
error = semunload();
break;
case MOD_SHUTDOWN:
break;
default:
error = EINVAL;
break;
}
return (error);
}
static moduledata_t sysvsem_mod = {
"sysvsem",
&sysvsem_modload,
NULL
};
SYSCALL_MODULE_HELPER(semsys, 5);
SYSCALL_MODULE_HELPER(__semctl, 4);
SYSCALL_MODULE_HELPER(semget, 3);
SYSCALL_MODULE_HELPER(semop, 3);
DECLARE_MODULE(sysvsem, sysvsem_mod,
SI_SUB_SYSV_SEM, SI_ORDER_FIRST);
MODULE_VERSION(sysvsem, 1);
/*
* Entry point for all SEM calls
*/
int
semsys(p, uap)
struct proc *p;
/* XXX actually varargs. */
struct semsys_args /* {
u_int which;
int a2;
int a3;
int a4;
int a5;
} */ *uap;
{
if (!jail_sysvipc_allowed && jailed(p->p_ucred))
return (ENOSYS);
if (uap->which >= sizeof(semcalls)/sizeof(semcalls[0]))
return (EINVAL);
return ((*semcalls[uap->which])(p, &uap->a2));
}
/*
* Allocate a new sem_undo structure for a process
* (returns ptr to structure or NULL if no more room)
*/
static struct sem_undo *
semu_alloc(p)
struct proc *p;
{
register int i;
register struct sem_undo *suptr;
register struct sem_undo **supptr;
int attempt;
/*
* Try twice to allocate something.
* (we'll purge any empty structures after the first pass so
* two passes are always enough)
*/
for (attempt = 0; attempt < 2; attempt++) {
/*
* Look for a free structure.
* Fill it in and return it if we find one.
*/
for (i = 0; i < seminfo.semmnu; i++) {
suptr = SEMU(i);
if (suptr->un_proc == NULL) {
suptr->un_next = semu_list;
semu_list = suptr;
suptr->un_cnt = 0;
suptr->un_proc = p;
return(suptr);
}
}
/*
* We didn't find a free one, if this is the first attempt
* then try to free some structures.
*/
if (attempt == 0) {
/* All the structures are in use - try to free some */
int did_something = 0;
supptr = &semu_list;
while ((suptr = *supptr) != NULL) {
if (suptr->un_cnt == 0) {
suptr->un_proc = NULL;
*supptr = suptr->un_next;
did_something = 1;
} else
supptr = &(suptr->un_next);
}
/* If we didn't free anything then just give-up */
if (!did_something)
return(NULL);
} else {
/*
* The second pass failed even though we freed
* something after the first pass!
* This is IMPOSSIBLE!
*/
panic("semu_alloc - second attempt failed");
}
}
return (NULL);
}
/*
* Adjust a particular entry for a particular proc
*/
static int
semundo_adjust(p, supptr, semid, semnum, adjval)
register struct proc *p;
struct sem_undo **supptr;
int semid, semnum;
int adjval;
{
register struct sem_undo *suptr;
register struct undo *sunptr;
int i;
/* Look for and remember the sem_undo if the caller doesn't provide
it */
suptr = *supptr;
if (suptr == NULL) {
for (suptr = semu_list; suptr != NULL;
suptr = suptr->un_next) {
if (suptr->un_proc == p) {
*supptr = suptr;
break;
}
}
if (suptr == NULL) {
if (adjval == 0)
return(0);
suptr = semu_alloc(p);
if (suptr == NULL)
return(ENOSPC);
*supptr = suptr;
}
}
/*
* Look for the requested entry and adjust it (delete if adjval becomes
* 0).
*/
sunptr = &suptr->un_ent[0];
for (i = 0; i < suptr->un_cnt; i++, sunptr++) {
if (sunptr->un_id != semid || sunptr->un_num != semnum)
continue;
if (adjval == 0)
sunptr->un_adjval = 0;
else
sunptr->un_adjval += adjval;
if (sunptr->un_adjval == 0) {
suptr->un_cnt--;
if (i < suptr->un_cnt)
suptr->un_ent[i] =
suptr->un_ent[suptr->un_cnt];
}
return(0);
}
/* Didn't find the right entry - create it */
if (adjval == 0)
return(0);
if (suptr->un_cnt != seminfo.semume) {
sunptr = &suptr->un_ent[suptr->un_cnt];
suptr->un_cnt++;
sunptr->un_adjval = adjval;
sunptr->un_id = semid; sunptr->un_num = semnum;
} else
return(EINVAL);
return(0);
}
static void
semundo_clear(semid, semnum)
int semid, semnum;
{
register struct sem_undo *suptr;
for (suptr = semu_list; suptr != NULL; suptr = suptr->un_next) {
register struct undo *sunptr = &suptr->un_ent[0];
register int i = 0;
while (i < suptr->un_cnt) {
if (sunptr->un_id == semid) {
if (semnum == -1 || sunptr->un_num == semnum) {
suptr->un_cnt--;
if (i < suptr->un_cnt) {
suptr->un_ent[i] =
suptr->un_ent[suptr->un_cnt];
continue;
}
}
if (semnum != -1)
break;
}
i++, sunptr++;
}
}
}
/*
* Note that the user-mode half of this passes a union, not a pointer
*/
#ifndef _SYS_SYSPROTO_H_
struct __semctl_args {
int semid;
int semnum;
int cmd;
union semun *arg;
};
#endif
int
__semctl(p, uap)
struct proc *p;
register struct __semctl_args *uap;
{
int semid = uap->semid;
int semnum = uap->semnum;
int cmd = uap->cmd;
union semun *arg = uap->arg;
union semun real_arg;
struct ucred *cred = p->p_ucred;
int i, rval, eval;
struct semid_ds sbuf;
register struct semid_ds *semaptr;
#ifdef SEM_DEBUG
printf("call to semctl(%d, %d, %d, 0x%x)\n", semid, semnum, cmd, arg);
#endif
if (!jail_sysvipc_allowed && jailed(p->p_ucred))
return (ENOSYS);
semid = IPCID_TO_IX(semid);
if (semid < 0 || semid >= seminfo.semmsl)
return(EINVAL);
semaptr = &sema[semid];
if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0 ||
semaptr->sem_perm.seq != IPCID_TO_SEQ(uap->semid))
return(EINVAL);
eval = 0;
rval = 0;
switch (cmd) {
case IPC_RMID:
if ((eval = ipcperm(p, &semaptr->sem_perm, IPC_M)))
return(eval);
semaptr->sem_perm.cuid = cred->cr_uid;
semaptr->sem_perm.uid = cred->cr_uid;
semtot -= semaptr->sem_nsems;
for (i = semaptr->sem_base - sem; i < semtot; i++)
sem[i] = sem[i + semaptr->sem_nsems];
for (i = 0; i < seminfo.semmni; i++) {
if ((sema[i].sem_perm.mode & SEM_ALLOC) &&
sema[i].sem_base > semaptr->sem_base)
sema[i].sem_base -= semaptr->sem_nsems;
}
semaptr->sem_perm.mode = 0;
semundo_clear(semid, -1);
wakeup((caddr_t)semaptr);
break;
case IPC_SET:
if ((eval = ipcperm(p, &semaptr->sem_perm, IPC_M)))
return(eval);
if ((eval = copyin(arg, &real_arg, sizeof(real_arg))) != 0)
return(eval);
if ((eval = copyin(real_arg.buf, (caddr_t)&sbuf,
sizeof(sbuf))) != 0)
return(eval);
semaptr->sem_perm.uid = sbuf.sem_perm.uid;
semaptr->sem_perm.gid = sbuf.sem_perm.gid;
semaptr->sem_perm.mode = (semaptr->sem_perm.mode & ~0777) |
(sbuf.sem_perm.mode & 0777);
semaptr->sem_ctime = time_second;
break;
case IPC_STAT:
if ((eval = ipcperm(p, &semaptr->sem_perm, IPC_R)))
return(eval);
if ((eval = copyin(arg, &real_arg, sizeof(real_arg))) != 0)
return(eval);
eval = copyout((caddr_t)semaptr, real_arg.buf,
sizeof(struct semid_ds));
break;
case GETNCNT:
if ((eval = ipcperm(p, &semaptr->sem_perm, IPC_R)))
return(eval);
if (semnum < 0 || semnum >= semaptr->sem_nsems)
return(EINVAL);
rval = semaptr->sem_base[semnum].semncnt;
break;
case GETPID:
if ((eval = ipcperm(p, &semaptr->sem_perm, IPC_R)))
return(eval);
if (semnum < 0 || semnum >= semaptr->sem_nsems)
return(EINVAL);
rval = semaptr->sem_base[semnum].sempid;
break;
case GETVAL:
if ((eval = ipcperm(p, &semaptr->sem_perm, IPC_R)))
return(eval);
if (semnum < 0 || semnum >= semaptr->sem_nsems)
return(EINVAL);
rval = semaptr->sem_base[semnum].semval;
break;
case GETALL:
if ((eval = ipcperm(p, &semaptr->sem_perm, IPC_R)))
return(eval);
if ((eval = copyin(arg, &real_arg, sizeof(real_arg))) != 0)
return(eval);
for (i = 0; i < semaptr->sem_nsems; i++) {
eval = copyout((caddr_t)&semaptr->sem_base[i].semval,
&real_arg.array[i], sizeof(real_arg.array[0]));
if (eval != 0)
break;
}
break;
case GETZCNT:
if ((eval = ipcperm(p, &semaptr->sem_perm, IPC_R)))
return(eval);
if (semnum < 0 || semnum >= semaptr->sem_nsems)
return(EINVAL);
rval = semaptr->sem_base[semnum].semzcnt;
break;
case SETVAL:
if ((eval = ipcperm(p, &semaptr->sem_perm, IPC_W)))
return(eval);
if (semnum < 0 || semnum >= semaptr->sem_nsems)
return(EINVAL);
if ((eval = copyin(arg, &real_arg, sizeof(real_arg))) != 0)
return(eval);
semaptr->sem_base[semnum].semval = real_arg.val;
semundo_clear(semid, semnum);
wakeup((caddr_t)semaptr);
break;
case SETALL:
if ((eval = ipcperm(p, &semaptr->sem_perm, IPC_W)))
return(eval);
if ((eval = copyin(arg, &real_arg, sizeof(real_arg))) != 0)
return(eval);
for (i = 0; i < semaptr->sem_nsems; i++) {
eval = copyin(&real_arg.array[i],
(caddr_t)&semaptr->sem_base[i].semval,
sizeof(real_arg.array[0]));
if (eval != 0)
break;
}
semundo_clear(semid, -1);
wakeup((caddr_t)semaptr);
break;
default:
return(EINVAL);
}
if (eval == 0)
p->p_retval[0] = rval;
return(eval);
}
#ifndef _SYS_SYSPROTO_H_
struct semget_args {
key_t key;
int nsems;
int semflg;
};
#endif
int
semget(p, uap)
struct proc *p;
register struct semget_args *uap;
{
int semid, eval;
int key = uap->key;
int nsems = uap->nsems;
int semflg = uap->semflg;
struct ucred *cred = p->p_ucred;
#ifdef SEM_DEBUG
printf("semget(0x%x, %d, 0%o)\n", key, nsems, semflg);
#endif
if (!jail_sysvipc_allowed && jailed(p->p_ucred))
return (ENOSYS);
if (key != IPC_PRIVATE) {
for (semid = 0; semid < seminfo.semmni; semid++) {
if ((sema[semid].sem_perm.mode & SEM_ALLOC) &&
sema[semid].sem_perm.key == key)
break;
}
if (semid < seminfo.semmni) {
#ifdef SEM_DEBUG
printf("found public key\n");
#endif
if ((eval = ipcperm(p, &sema[semid].sem_perm,
semflg & 0700)))
return(eval);
if (nsems > 0 && sema[semid].sem_nsems < nsems) {
#ifdef SEM_DEBUG
printf("too small\n");
#endif
return(EINVAL);
}
if ((semflg & IPC_CREAT) && (semflg & IPC_EXCL)) {
#ifdef SEM_DEBUG
printf("not exclusive\n");
#endif
return(EEXIST);
}
goto found;
}
}
#ifdef SEM_DEBUG
printf("need to allocate the semid_ds\n");
#endif
if (key == IPC_PRIVATE || (semflg & IPC_CREAT)) {
if (nsems <= 0 || nsems > seminfo.semmsl) {
#ifdef SEM_DEBUG
printf("nsems out of range (0<%d<=%d)\n", nsems,
seminfo.semmsl);
#endif
return(EINVAL);
}
if (nsems > seminfo.semmns - semtot) {
#ifdef SEM_DEBUG
printf("not enough semaphores left (need %d, got %d)\n",
nsems, seminfo.semmns - semtot);
#endif
return(ENOSPC);
}
for (semid = 0; semid < seminfo.semmni; semid++) {
if ((sema[semid].sem_perm.mode & SEM_ALLOC) == 0)
break;
}
if (semid == seminfo.semmni) {
#ifdef SEM_DEBUG
printf("no more semid_ds's available\n");
#endif
return(ENOSPC);
}
#ifdef SEM_DEBUG
printf("semid %d is available\n", semid);
#endif
sema[semid].sem_perm.key = key;
sema[semid].sem_perm.cuid = cred->cr_uid;
sema[semid].sem_perm.uid = cred->cr_uid;
sema[semid].sem_perm.cgid = cred->cr_gid;
sema[semid].sem_perm.gid = cred->cr_gid;
sema[semid].sem_perm.mode = (semflg & 0777) | SEM_ALLOC;
sema[semid].sem_perm.seq =
(sema[semid].sem_perm.seq + 1) & 0x7fff;
sema[semid].sem_nsems = nsems;
sema[semid].sem_otime = 0;
sema[semid].sem_ctime = time_second;
sema[semid].sem_base = &sem[semtot];
semtot += nsems;
bzero(sema[semid].sem_base,
sizeof(sema[semid].sem_base[0])*nsems);
#ifdef SEM_DEBUG
printf("sembase = 0x%x, next = 0x%x\n", sema[semid].sem_base,
&sem[semtot]);
#endif
} else {
#ifdef SEM_DEBUG
printf("didn't find it and wasn't asked to create it\n");
#endif
return(ENOENT);
}
found:
p->p_retval[0] = IXSEQ_TO_IPCID(semid, sema[semid].sem_perm);
return(0);
}
#ifndef _SYS_SYSPROTO_H_
struct semop_args {
int semid;
struct sembuf *sops;
int nsops;
};
#endif
int
semop(p, uap)
struct proc *p;
register struct semop_args *uap;
{
int semid = uap->semid;
int nsops = uap->nsops;
struct sembuf sops[MAX_SOPS];
register struct semid_ds *semaptr;
register struct sembuf *sopptr;
register struct sem *semptr;
struct sem_undo *suptr = NULL;
int i, j, eval;
int do_wakeup, do_undos;
#ifdef SEM_DEBUG
printf("call to semop(%d, 0x%x, %d)\n", semid, sops, nsops);
#endif
if (!jail_sysvipc_allowed && jailed(p->p_ucred))
return (ENOSYS);
semid = IPCID_TO_IX(semid); /* Convert back to zero origin */
if (semid < 0 || semid >= seminfo.semmsl)
return(EINVAL);
semaptr = &sema[semid];
if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0)
return(EINVAL);
if (semaptr->sem_perm.seq != IPCID_TO_SEQ(uap->semid))
return(EINVAL);
if ((eval = ipcperm(p, &semaptr->sem_perm, IPC_W))) {
#ifdef SEM_DEBUG
printf("eval = %d from ipaccess\n", eval);
#endif
return(eval);
}
if (nsops > MAX_SOPS) {
#ifdef SEM_DEBUG
printf("too many sops (max=%d, nsops=%d)\n", MAX_SOPS, nsops);
#endif
return(E2BIG);
}
if ((eval = copyin(uap->sops, &sops, nsops * sizeof(sops[0]))) != 0) {
#ifdef SEM_DEBUG
printf("eval = %d from copyin(%08x, %08x, %d)\n", eval,
uap->sops, &sops, nsops * sizeof(sops[0]));
#endif
return(eval);
}
/*
* Loop trying to satisfy the vector of requests.
* If we reach a point where we must wait, any requests already
* performed are rolled back and we go to sleep until some other
* process wakes us up. At this point, we start all over again.
*
* This ensures that from the perspective of other tasks, a set
* of requests is atomic (never partially satisfied).
*/
do_undos = 0;
for (;;) {
do_wakeup = 0;
for (i = 0; i < nsops; i++) {
sopptr = &sops[i];
if (sopptr->sem_num >= semaptr->sem_nsems)
return(EFBIG);
semptr = &semaptr->sem_base[sopptr->sem_num];
#ifdef SEM_DEBUG
printf("semop: semaptr=%x, sem_base=%x, semptr=%x, sem[%d]=%d : op=%d, flag=%s\n",
semaptr, semaptr->sem_base, semptr,
sopptr->sem_num, semptr->semval, sopptr->sem_op,
(sopptr->sem_flg & IPC_NOWAIT) ? "nowait" : "wait");
#endif
if (sopptr->sem_op < 0) {
if (semptr->semval + sopptr->sem_op < 0) {
#ifdef SEM_DEBUG
printf("semop: can't do it now\n");
#endif
break;
} else {
semptr->semval += sopptr->sem_op;
if (semptr->semval == 0 &&
semptr->semzcnt > 0)
do_wakeup = 1;
}
if (sopptr->sem_flg & SEM_UNDO)
do_undos = 1;
} else if (sopptr->sem_op == 0) {
if (semptr->semval > 0) {
#ifdef SEM_DEBUG
printf("semop: not zero now\n");
#endif
break;
}
} else {
if (semptr->semncnt > 0)
do_wakeup = 1;
semptr->semval += sopptr->sem_op;
if (sopptr->sem_flg & SEM_UNDO)
do_undos = 1;
}
}
/*
* Did we get through the entire vector?
*/
if (i >= nsops)
goto done;
/*
* No ... rollback anything that we've already done
*/
#ifdef SEM_DEBUG
printf("semop: rollback 0 through %d\n", i-1);
#endif
for (j = 0; j < i; j++)
semaptr->sem_base[sops[j].sem_num].semval -=
sops[j].sem_op;
/*
* If the request that we couldn't satisfy has the
* NOWAIT flag set then return with EAGAIN.
*/
if (sopptr->sem_flg & IPC_NOWAIT)
return(EAGAIN);
if (sopptr->sem_op == 0)
semptr->semzcnt++;
else
semptr->semncnt++;
#ifdef SEM_DEBUG
printf("semop: good night!\n");
#endif
eval = tsleep((caddr_t)semaptr, (PZERO - 4) | PCATCH,
"semwait", 0);
#ifdef SEM_DEBUG
printf("semop: good morning (eval=%d)!\n", eval);
#endif
suptr = NULL; /* sem_undo may have been reallocated */
if (eval != 0)
return(EINTR);
#ifdef SEM_DEBUG
printf("semop: good morning!\n");
#endif
/*
* Make sure that the semaphore still exists
*/
if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0 ||
semaptr->sem_perm.seq != IPCID_TO_SEQ(uap->semid))
return(EIDRM);
/*
* The semaphore is still alive. Readjust the count of
* waiting processes.
*/
if (sopptr->sem_op == 0)
semptr->semzcnt--;
else
semptr->semncnt--;
}
done:
/*
* Process any SEM_UNDO requests.
*/
if (do_undos) {
for (i = 0; i < nsops; i++) {
/*
* We only need to deal with SEM_UNDO's for non-zero
* op's.
*/
int adjval;
if ((sops[i].sem_flg & SEM_UNDO) == 0)
continue;
adjval = sops[i].sem_op;
if (adjval == 0)
continue;
eval = semundo_adjust(p, &suptr, semid,
sops[i].sem_num, -adjval);
if (eval == 0)
continue;
/*
* Oh-Oh! We ran out of either sem_undo's or undo's.
* Rollback the adjustments to this point and then
* rollback the semaphore ups and down so we can return
* with an error with all structures restored. We
* rollback the undo's in the exact reverse order that
* we applied them. This guarantees that we won't run
* out of space as we roll things back out.
*/
for (j = i - 1; j >= 0; j--) {
if ((sops[j].sem_flg & SEM_UNDO) == 0)
continue;
adjval = sops[j].sem_op;
if (adjval == 0)
continue;
if (semundo_adjust(p, &suptr, semid,
sops[j].sem_num, adjval) != 0)
panic("semop - can't undo undos");
}
for (j = 0; j < nsops; j++)
semaptr->sem_base[sops[j].sem_num].semval -=
sops[j].sem_op;
#ifdef SEM_DEBUG
printf("eval = %d from semundo_adjust\n", eval);
#endif
return(eval);
} /* loop through the sops */
} /* if (do_undos) */
/* We're definitely done - set the sempid's */
for (i = 0; i < nsops; i++) {
sopptr = &sops[i];
semptr = &semaptr->sem_base[sopptr->sem_num];
semptr->sempid = p->p_pid;
}
/* Do a wakeup if any semaphore was up'd. */
if (do_wakeup) {
#ifdef SEM_DEBUG
printf("semop: doing wakeup\n");
#endif
wakeup((caddr_t)semaptr);
#ifdef SEM_DEBUG
printf("semop: back from wakeup\n");
#endif
}
#ifdef SEM_DEBUG
printf("semop: done\n");
#endif
p->p_retval[0] = 0;
return(0);
}
/*
* Go through the undo structures for this process and apply the adjustments to
* semaphores.
*/
static void
semexit_myhook(p)
struct proc *p;
{
register struct sem_undo *suptr;
register struct sem_undo **supptr;
int did_something;
did_something = 0;
/*
* Go through the chain of undo vectors looking for one
* associated with this process.
*/
for (supptr = &semu_list; (suptr = *supptr) != NULL;
supptr = &suptr->un_next) {
if (suptr->un_proc == p)
break;
}
if (suptr == NULL)
return;
#ifdef SEM_DEBUG
printf("proc @%08x has undo structure with %d entries\n", p,
suptr->un_cnt);
#endif
/*
* If there are any active undo elements then process them.
*/
if (suptr->un_cnt > 0) {
int ix;
for (ix = 0; ix < suptr->un_cnt; ix++) {
int semid = suptr->un_ent[ix].un_id;
int semnum = suptr->un_ent[ix].un_num;
int adjval = suptr->un_ent[ix].un_adjval;
struct semid_ds *semaptr;
semaptr = &sema[semid];
if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0)
panic("semexit - semid not allocated");
if (semnum >= semaptr->sem_nsems)
panic("semexit - semnum out of range");
#ifdef SEM_DEBUG
printf("semexit: %08x id=%d num=%d(adj=%d) ; sem=%d\n",
suptr->un_proc, suptr->un_ent[ix].un_id,
suptr->un_ent[ix].un_num,
suptr->un_ent[ix].un_adjval,
semaptr->sem_base[semnum].semval);
#endif
if (adjval < 0) {
if (semaptr->sem_base[semnum].semval < -adjval)
semaptr->sem_base[semnum].semval = 0;
else
semaptr->sem_base[semnum].semval +=
adjval;
} else
semaptr->sem_base[semnum].semval += adjval;
wakeup((caddr_t)semaptr);
#ifdef SEM_DEBUG
printf("semexit: back from wakeup\n");
#endif
}
}
/*
* Deallocate the undo vector.
*/
#ifdef SEM_DEBUG
printf("removing vector\n");
#endif
suptr->un_proc = NULL;
*supptr = suptr->un_next;
}