mirror of
https://git.FreeBSD.org/src.git
synced 2025-01-13 14:40:22 +00:00
1126 lines
34 KiB
C
1126 lines
34 KiB
C
/*-
|
|
* Copyright (c) 2003-2005 Nate Lawson (SDG)
|
|
* Copyright (c) 2001 Michael Smith
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include "opt_acpi.h"
|
|
#include <sys/param.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/cpu.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/module.h>
|
|
#include <sys/pcpu.h>
|
|
#include <sys/power.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/sbuf.h>
|
|
#include <sys/smp.h>
|
|
|
|
#include <dev/pci/pcivar.h>
|
|
#include <machine/atomic.h>
|
|
#include <machine/bus.h>
|
|
#include <sys/rman.h>
|
|
|
|
#include <contrib/dev/acpica/acpi.h>
|
|
#include <dev/acpica/acpivar.h>
|
|
|
|
/*
|
|
* Support for ACPI Processor devices, including C[1-3] sleep states.
|
|
*/
|
|
|
|
/* Hooks for the ACPI CA debugging infrastructure */
|
|
#define _COMPONENT ACPI_PROCESSOR
|
|
ACPI_MODULE_NAME("PROCESSOR")
|
|
|
|
struct acpi_cx {
|
|
struct resource *p_lvlx; /* Register to read to enter state. */
|
|
uint32_t type; /* C1-3 (C4 and up treated as C3). */
|
|
uint32_t trans_lat; /* Transition latency (usec). */
|
|
uint32_t power; /* Power consumed (mW). */
|
|
int res_type; /* Resource type for p_lvlx. */
|
|
};
|
|
#define MAX_CX_STATES 8
|
|
|
|
struct acpi_cpu_softc {
|
|
device_t cpu_dev;
|
|
ACPI_HANDLE cpu_handle;
|
|
struct pcpu *cpu_pcpu;
|
|
uint32_t cpu_acpi_id; /* ACPI processor id */
|
|
uint32_t cpu_p_blk; /* ACPI P_BLK location */
|
|
uint32_t cpu_p_blk_len; /* P_BLK length (must be 6). */
|
|
struct acpi_cx cpu_cx_states[MAX_CX_STATES];
|
|
int cpu_cx_count; /* Number of valid Cx states. */
|
|
int cpu_prev_sleep;/* Last idle sleep duration. */
|
|
int cpu_features; /* Child driver supported features. */
|
|
/* Runtime state. */
|
|
int cpu_non_c3; /* Index of lowest non-C3 state. */
|
|
int cpu_short_slp; /* Count of < 1us sleeps. */
|
|
u_int cpu_cx_stats[MAX_CX_STATES];/* Cx usage history. */
|
|
/* Values for sysctl. */
|
|
struct sysctl_ctx_list cpu_sysctl_ctx;
|
|
struct sysctl_oid *cpu_sysctl_tree;
|
|
int cpu_cx_lowest;
|
|
char cpu_cx_supported[64];
|
|
int cpu_rid;
|
|
};
|
|
|
|
struct acpi_cpu_device {
|
|
struct resource_list ad_rl;
|
|
};
|
|
|
|
#define CPU_GET_REG(reg, width) \
|
|
(bus_space_read_ ## width(rman_get_bustag((reg)), \
|
|
rman_get_bushandle((reg)), 0))
|
|
#define CPU_SET_REG(reg, width, val) \
|
|
(bus_space_write_ ## width(rman_get_bustag((reg)), \
|
|
rman_get_bushandle((reg)), 0, (val)))
|
|
|
|
#define PM_USEC(x) ((x) >> 2) /* ~4 clocks per usec (3.57955 Mhz) */
|
|
|
|
#define ACPI_NOTIFY_CX_STATES 0x81 /* _CST changed. */
|
|
|
|
#define CPU_QUIRK_NO_C3 (1<<0) /* C3-type states are not usable. */
|
|
#define CPU_QUIRK_NO_BM_CTRL (1<<2) /* No bus mastering control. */
|
|
|
|
#define PCI_VENDOR_INTEL 0x8086
|
|
#define PCI_DEVICE_82371AB_3 0x7113 /* PIIX4 chipset for quirks. */
|
|
#define PCI_REVISION_A_STEP 0
|
|
#define PCI_REVISION_B_STEP 1
|
|
#define PCI_REVISION_4E 2
|
|
#define PCI_REVISION_4M 3
|
|
|
|
/* Platform hardware resource information. */
|
|
static uint32_t cpu_smi_cmd; /* Value to write to SMI_CMD. */
|
|
static uint8_t cpu_cst_cnt; /* Indicate we are _CST aware. */
|
|
static int cpu_quirks; /* Indicate any hardware bugs. */
|
|
|
|
/* Runtime state. */
|
|
static int cpu_disable_idle; /* Disable entry to idle function */
|
|
static int cpu_cx_count; /* Number of valid Cx states */
|
|
|
|
/* Values for sysctl. */
|
|
static struct sysctl_ctx_list cpu_sysctl_ctx;
|
|
static struct sysctl_oid *cpu_sysctl_tree;
|
|
static int cpu_cx_generic;
|
|
static int cpu_cx_lowest;
|
|
|
|
static device_t *cpu_devices;
|
|
static int cpu_ndevices;
|
|
static struct acpi_cpu_softc **cpu_softc;
|
|
ACPI_SERIAL_DECL(cpu, "ACPI CPU");
|
|
|
|
static int acpi_cpu_probe(device_t dev);
|
|
static int acpi_cpu_attach(device_t dev);
|
|
static int acpi_pcpu_get_id(uint32_t idx, uint32_t *acpi_id,
|
|
uint32_t *cpu_id);
|
|
static struct resource_list *acpi_cpu_get_rlist(device_t dev, device_t child);
|
|
static device_t acpi_cpu_add_child(device_t dev, int order, const char *name,
|
|
int unit);
|
|
static int acpi_cpu_read_ivar(device_t dev, device_t child, int index,
|
|
uintptr_t *result);
|
|
static int acpi_cpu_shutdown(device_t dev);
|
|
static void acpi_cpu_cx_probe(struct acpi_cpu_softc *sc);
|
|
static void acpi_cpu_generic_cx_probe(struct acpi_cpu_softc *sc);
|
|
static int acpi_cpu_cx_cst(struct acpi_cpu_softc *sc);
|
|
static void acpi_cpu_startup(void *arg);
|
|
static void acpi_cpu_startup_cx(struct acpi_cpu_softc *sc);
|
|
static void acpi_cpu_idle(void);
|
|
static void acpi_cpu_notify(ACPI_HANDLE h, UINT32 notify, void *context);
|
|
static int acpi_cpu_quirks(void);
|
|
static int acpi_cpu_usage_sysctl(SYSCTL_HANDLER_ARGS);
|
|
static int acpi_cpu_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS);
|
|
static int acpi_cpu_global_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS);
|
|
|
|
static device_method_t acpi_cpu_methods[] = {
|
|
/* Device interface */
|
|
DEVMETHOD(device_probe, acpi_cpu_probe),
|
|
DEVMETHOD(device_attach, acpi_cpu_attach),
|
|
DEVMETHOD(device_detach, bus_generic_detach),
|
|
DEVMETHOD(device_shutdown, acpi_cpu_shutdown),
|
|
DEVMETHOD(device_suspend, bus_generic_suspend),
|
|
DEVMETHOD(device_resume, bus_generic_resume),
|
|
|
|
/* Bus interface */
|
|
DEVMETHOD(bus_add_child, acpi_cpu_add_child),
|
|
DEVMETHOD(bus_read_ivar, acpi_cpu_read_ivar),
|
|
DEVMETHOD(bus_get_resource_list, acpi_cpu_get_rlist),
|
|
DEVMETHOD(bus_get_resource, bus_generic_rl_get_resource),
|
|
DEVMETHOD(bus_set_resource, bus_generic_rl_set_resource),
|
|
DEVMETHOD(bus_alloc_resource, bus_generic_rl_alloc_resource),
|
|
DEVMETHOD(bus_release_resource, bus_generic_rl_release_resource),
|
|
DEVMETHOD(bus_driver_added, bus_generic_driver_added),
|
|
DEVMETHOD(bus_activate_resource, bus_generic_activate_resource),
|
|
DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource),
|
|
DEVMETHOD(bus_setup_intr, bus_generic_setup_intr),
|
|
DEVMETHOD(bus_teardown_intr, bus_generic_teardown_intr),
|
|
|
|
{0, 0}
|
|
};
|
|
|
|
static driver_t acpi_cpu_driver = {
|
|
"cpu",
|
|
acpi_cpu_methods,
|
|
sizeof(struct acpi_cpu_softc),
|
|
};
|
|
|
|
static devclass_t acpi_cpu_devclass;
|
|
DRIVER_MODULE(cpu, acpi, acpi_cpu_driver, acpi_cpu_devclass, 0, 0);
|
|
MODULE_DEPEND(cpu, acpi, 1, 1, 1);
|
|
|
|
static int
|
|
acpi_cpu_probe(device_t dev)
|
|
{
|
|
int acpi_id, cpu_id;
|
|
ACPI_BUFFER buf;
|
|
ACPI_HANDLE handle;
|
|
ACPI_OBJECT *obj;
|
|
ACPI_STATUS status;
|
|
|
|
if (acpi_disabled("cpu") || acpi_get_type(dev) != ACPI_TYPE_PROCESSOR)
|
|
return (ENXIO);
|
|
|
|
handle = acpi_get_handle(dev);
|
|
if (cpu_softc == NULL)
|
|
cpu_softc = malloc(sizeof(struct acpi_cpu_softc *) *
|
|
(mp_maxid + 1), M_TEMP /* XXX */, M_WAITOK | M_ZERO);
|
|
|
|
/* Get our Processor object. */
|
|
buf.Pointer = NULL;
|
|
buf.Length = ACPI_ALLOCATE_BUFFER;
|
|
status = AcpiEvaluateObject(handle, NULL, NULL, &buf);
|
|
if (ACPI_FAILURE(status)) {
|
|
device_printf(dev, "probe failed to get Processor obj - %s\n",
|
|
AcpiFormatException(status));
|
|
return (ENXIO);
|
|
}
|
|
obj = (ACPI_OBJECT *)buf.Pointer;
|
|
if (obj->Type != ACPI_TYPE_PROCESSOR) {
|
|
device_printf(dev, "Processor object has bad type %d\n", obj->Type);
|
|
AcpiOsFree(obj);
|
|
return (ENXIO);
|
|
}
|
|
|
|
/*
|
|
* Find the processor associated with our unit. We could use the
|
|
* ProcId as a key, however, some boxes do not have the same values
|
|
* in their Processor object as the ProcId values in the MADT.
|
|
*/
|
|
acpi_id = obj->Processor.ProcId;
|
|
AcpiOsFree(obj);
|
|
if (acpi_pcpu_get_id(device_get_unit(dev), &acpi_id, &cpu_id) != 0)
|
|
return (ENXIO);
|
|
|
|
/*
|
|
* Check if we already probed this processor. We scan the bus twice
|
|
* so it's possible we've already seen this one.
|
|
*/
|
|
if (cpu_softc[cpu_id] != NULL)
|
|
return (ENXIO);
|
|
|
|
/* Mark this processor as in-use and save our derived id for attach. */
|
|
cpu_softc[cpu_id] = (void *)1;
|
|
acpi_set_magic(dev, cpu_id);
|
|
device_set_desc(dev, "ACPI CPU");
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
acpi_cpu_attach(device_t dev)
|
|
{
|
|
ACPI_BUFFER buf;
|
|
ACPI_OBJECT arg, *obj;
|
|
ACPI_OBJECT_LIST arglist;
|
|
struct pcpu *pcpu_data;
|
|
struct acpi_cpu_softc *sc;
|
|
struct acpi_softc *acpi_sc;
|
|
ACPI_STATUS status;
|
|
u_int features;
|
|
int cpu_id, drv_count, i;
|
|
driver_t **drivers;
|
|
uint32_t cap_set[3];
|
|
|
|
ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
|
|
|
|
sc = device_get_softc(dev);
|
|
sc->cpu_dev = dev;
|
|
sc->cpu_handle = acpi_get_handle(dev);
|
|
cpu_id = acpi_get_magic(dev);
|
|
cpu_softc[cpu_id] = sc;
|
|
pcpu_data = pcpu_find(cpu_id);
|
|
pcpu_data->pc_device = dev;
|
|
sc->cpu_pcpu = pcpu_data;
|
|
cpu_smi_cmd = AcpiGbl_FADT->SmiCmd;
|
|
cpu_cst_cnt = AcpiGbl_FADT->CstCnt;
|
|
|
|
buf.Pointer = NULL;
|
|
buf.Length = ACPI_ALLOCATE_BUFFER;
|
|
status = AcpiEvaluateObject(sc->cpu_handle, NULL, NULL, &buf);
|
|
if (ACPI_FAILURE(status)) {
|
|
device_printf(dev, "attach failed to get Processor obj - %s\n",
|
|
AcpiFormatException(status));
|
|
return (ENXIO);
|
|
}
|
|
obj = (ACPI_OBJECT *)buf.Pointer;
|
|
sc->cpu_p_blk = obj->Processor.PblkAddress;
|
|
sc->cpu_p_blk_len = obj->Processor.PblkLength;
|
|
sc->cpu_acpi_id = obj->Processor.ProcId;
|
|
AcpiOsFree(obj);
|
|
ACPI_DEBUG_PRINT((ACPI_DB_INFO, "acpi_cpu%d: P_BLK at %#x/%d\n",
|
|
device_get_unit(dev), sc->cpu_p_blk, sc->cpu_p_blk_len));
|
|
|
|
/*
|
|
* If this is the first cpu we attach, create and initialize the generic
|
|
* resources that will be used by all acpi cpu devices.
|
|
*/
|
|
if (device_get_unit(dev) == 0) {
|
|
/* Assume we won't be using generic Cx mode by default */
|
|
cpu_cx_generic = FALSE;
|
|
|
|
/* Install hw.acpi.cpu sysctl tree */
|
|
acpi_sc = acpi_device_get_parent_softc(dev);
|
|
sysctl_ctx_init(&cpu_sysctl_ctx);
|
|
cpu_sysctl_tree = SYSCTL_ADD_NODE(&cpu_sysctl_ctx,
|
|
SYSCTL_CHILDREN(acpi_sc->acpi_sysctl_tree), OID_AUTO, "cpu",
|
|
CTLFLAG_RD, 0, "node for CPU children");
|
|
|
|
/* Queue post cpu-probing task handler */
|
|
AcpiOsQueueForExecution(OSD_PRIORITY_LO, acpi_cpu_startup, NULL);
|
|
}
|
|
|
|
/*
|
|
* Before calling any CPU methods, collect child driver feature hints
|
|
* and notify ACPI of them. We support unified SMP power control
|
|
* so advertise this ourselves. Note this is not the same as independent
|
|
* SMP control where each CPU can have different settings.
|
|
*/
|
|
sc->cpu_features = ACPI_CAP_SMP_SAME | ACPI_CAP_SMP_SAME_C3;
|
|
if (devclass_get_drivers(acpi_cpu_devclass, &drivers, &drv_count) == 0) {
|
|
for (i = 0; i < drv_count; i++) {
|
|
if (ACPI_GET_FEATURES(drivers[i], &features) == 0)
|
|
sc->cpu_features |= features;
|
|
}
|
|
free(drivers, M_TEMP);
|
|
}
|
|
|
|
/*
|
|
* CPU capabilities are specified as a buffer of 32-bit integers:
|
|
* revision, count, and one or more capabilities. The revision of
|
|
* "1" is not specified anywhere but seems to match Linux. We should
|
|
* also support _OSC here.
|
|
*/
|
|
if (sc->cpu_features) {
|
|
arglist.Pointer = &arg;
|
|
arglist.Count = 1;
|
|
arg.Type = ACPI_TYPE_BUFFER;
|
|
arg.Buffer.Length = sizeof(cap_set);
|
|
arg.Buffer.Pointer = (uint8_t *)cap_set;
|
|
cap_set[0] = 1; /* revision */
|
|
cap_set[1] = 1; /* number of capabilities integers */
|
|
cap_set[2] = sc->cpu_features;
|
|
AcpiEvaluateObject(sc->cpu_handle, "_PDC", &arglist, NULL);
|
|
}
|
|
|
|
/* Probe for Cx state support. */
|
|
acpi_cpu_cx_probe(sc);
|
|
|
|
/* Finally, call identify and probe/attach for child devices. */
|
|
bus_generic_probe(dev);
|
|
bus_generic_attach(dev);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Find the nth present CPU and return its pc_cpuid as well as set the
|
|
* pc_acpi_id from the most reliable source.
|
|
*/
|
|
static int
|
|
acpi_pcpu_get_id(uint32_t idx, uint32_t *acpi_id, uint32_t *cpu_id)
|
|
{
|
|
struct pcpu *pcpu_data;
|
|
uint32_t i;
|
|
|
|
KASSERT(acpi_id != NULL, ("Null acpi_id"));
|
|
KASSERT(cpu_id != NULL, ("Null cpu_id"));
|
|
for (i = 0; i <= mp_maxid; i++) {
|
|
if (CPU_ABSENT(i))
|
|
continue;
|
|
pcpu_data = pcpu_find(i);
|
|
KASSERT(pcpu_data != NULL, ("no pcpu data for %d", i));
|
|
if (idx-- == 0) {
|
|
/*
|
|
* If pc_acpi_id was not initialized (e.g., a non-APIC UP box)
|
|
* override it with the value from the ASL. Otherwise, if the
|
|
* two don't match, prefer the MADT-derived value. Finally,
|
|
* return the pc_cpuid to reference this processor.
|
|
*/
|
|
if (pcpu_data->pc_acpi_id == 0xffffffff)
|
|
pcpu_data->pc_acpi_id = *acpi_id;
|
|
else if (pcpu_data->pc_acpi_id != *acpi_id)
|
|
*acpi_id = pcpu_data->pc_acpi_id;
|
|
*cpu_id = pcpu_data->pc_cpuid;
|
|
return (0);
|
|
}
|
|
}
|
|
|
|
return (ESRCH);
|
|
}
|
|
|
|
static struct resource_list *
|
|
acpi_cpu_get_rlist(device_t dev, device_t child)
|
|
{
|
|
struct acpi_cpu_device *ad;
|
|
|
|
ad = device_get_ivars(child);
|
|
if (ad == NULL)
|
|
return (NULL);
|
|
return (&ad->ad_rl);
|
|
}
|
|
|
|
static device_t
|
|
acpi_cpu_add_child(device_t dev, int order, const char *name, int unit)
|
|
{
|
|
struct acpi_cpu_device *ad;
|
|
device_t child;
|
|
|
|
if ((ad = malloc(sizeof(*ad), M_TEMP, M_NOWAIT | M_ZERO)) == NULL)
|
|
return (NULL);
|
|
|
|
resource_list_init(&ad->ad_rl);
|
|
|
|
child = device_add_child_ordered(dev, order, name, unit);
|
|
if (child != NULL)
|
|
device_set_ivars(child, ad);
|
|
else
|
|
free(ad, M_TEMP);
|
|
return (child);
|
|
}
|
|
|
|
static int
|
|
acpi_cpu_read_ivar(device_t dev, device_t child, int index, uintptr_t *result)
|
|
{
|
|
struct acpi_cpu_softc *sc;
|
|
|
|
sc = device_get_softc(dev);
|
|
switch (index) {
|
|
case ACPI_IVAR_HANDLE:
|
|
*result = (uintptr_t)sc->cpu_handle;
|
|
break;
|
|
case CPU_IVAR_PCPU:
|
|
*result = (uintptr_t)sc->cpu_pcpu;
|
|
break;
|
|
default:
|
|
return (ENOENT);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
acpi_cpu_shutdown(device_t dev)
|
|
{
|
|
ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
|
|
|
|
/* Allow children to shutdown first. */
|
|
bus_generic_shutdown(dev);
|
|
|
|
/* Disable any entry to the idle function. */
|
|
cpu_disable_idle = TRUE;
|
|
|
|
/* Signal and wait for all processors to exit acpi_cpu_idle(). */
|
|
smp_rendezvous(NULL, NULL, NULL, NULL);
|
|
|
|
return_VALUE (0);
|
|
}
|
|
|
|
static void
|
|
acpi_cpu_cx_probe(struct acpi_cpu_softc *sc)
|
|
{
|
|
ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
|
|
|
|
/* Use initial sleep value of 1 sec. to start with lowest idle state. */
|
|
sc->cpu_prev_sleep = 1000000;
|
|
sc->cpu_cx_lowest = 0;
|
|
|
|
/*
|
|
* Check for the ACPI 2.0 _CST sleep states object. If we can't find
|
|
* any, we'll revert to generic FADT/P_BLK Cx control method which will
|
|
* be handled by acpi_cpu_startup. We need to defer to after having
|
|
* probed all the cpus in the system before probing for generic Cx
|
|
* states as we may already have found cpus with valid _CST packages
|
|
*/
|
|
if (!cpu_cx_generic && acpi_cpu_cx_cst(sc) != 0) {
|
|
/*
|
|
* We were unable to find a _CST package for this cpu or there
|
|
* was an error parsing it. Switch back to generic mode.
|
|
*/
|
|
cpu_cx_generic = TRUE;
|
|
if (bootverbose)
|
|
device_printf(sc->cpu_dev, "switching to generic Cx mode\n");
|
|
}
|
|
|
|
/*
|
|
* TODO: _CSD Package should be checked here.
|
|
*/
|
|
}
|
|
|
|
static void
|
|
acpi_cpu_generic_cx_probe(struct acpi_cpu_softc *sc)
|
|
{
|
|
ACPI_GENERIC_ADDRESS gas;
|
|
struct acpi_cx *cx_ptr;
|
|
|
|
sc->cpu_cx_count = 0;
|
|
cx_ptr = sc->cpu_cx_states;
|
|
|
|
/* Use initial sleep value of 1 sec. to start with lowest idle state. */
|
|
sc->cpu_prev_sleep = 1000000;
|
|
|
|
/* C1 has been required since just after ACPI 1.0 */
|
|
cx_ptr->type = ACPI_STATE_C1;
|
|
cx_ptr->trans_lat = 0;
|
|
cx_ptr++;
|
|
sc->cpu_cx_count++;
|
|
|
|
/*
|
|
* The spec says P_BLK must be 6 bytes long. However, some systems
|
|
* use it to indicate a fractional set of features present so we
|
|
* take 5 as C2. Some may also have a value of 7 to indicate
|
|
* another C3 but most use _CST for this (as required) and having
|
|
* "only" C1-C3 is not a hardship.
|
|
*/
|
|
if (sc->cpu_p_blk_len < 5)
|
|
return;
|
|
|
|
/* Validate and allocate resources for C2 (P_LVL2). */
|
|
gas.AddressSpaceId = ACPI_ADR_SPACE_SYSTEM_IO;
|
|
gas.RegisterBitWidth = 8;
|
|
if (AcpiGbl_FADT->Plvl2Lat <= 100) {
|
|
gas.Address = sc->cpu_p_blk + 4;
|
|
acpi_bus_alloc_gas(sc->cpu_dev, &cx_ptr->res_type, &sc->cpu_rid,
|
|
&gas, &cx_ptr->p_lvlx, RF_SHAREABLE);
|
|
if (cx_ptr->p_lvlx != NULL) {
|
|
sc->cpu_rid++;
|
|
cx_ptr->type = ACPI_STATE_C2;
|
|
cx_ptr->trans_lat = AcpiGbl_FADT->Plvl2Lat;
|
|
cx_ptr++;
|
|
sc->cpu_cx_count++;
|
|
}
|
|
}
|
|
if (sc->cpu_p_blk_len < 6)
|
|
return;
|
|
|
|
/* Validate and allocate resources for C3 (P_LVL3). */
|
|
if (AcpiGbl_FADT->Plvl3Lat <= 1000) {
|
|
gas.Address = sc->cpu_p_blk + 5;
|
|
acpi_bus_alloc_gas(sc->cpu_dev, &cx_ptr->res_type, &sc->cpu_rid, &gas,
|
|
&cx_ptr->p_lvlx, RF_SHAREABLE);
|
|
if (cx_ptr->p_lvlx != NULL) {
|
|
sc->cpu_rid++;
|
|
cx_ptr->type = ACPI_STATE_C3;
|
|
cx_ptr->trans_lat = AcpiGbl_FADT->Plvl3Lat;
|
|
cx_ptr++;
|
|
sc->cpu_cx_count++;
|
|
}
|
|
}
|
|
|
|
/* Update the largest cx_count seen so far */
|
|
if (sc->cpu_cx_count > cpu_cx_count)
|
|
cpu_cx_count = sc->cpu_cx_count;
|
|
}
|
|
|
|
/*
|
|
* Parse a _CST package and set up its Cx states. Since the _CST object
|
|
* can change dynamically, our notify handler may call this function
|
|
* to clean up and probe the new _CST package.
|
|
*/
|
|
static int
|
|
acpi_cpu_cx_cst(struct acpi_cpu_softc *sc)
|
|
{
|
|
struct acpi_cx *cx_ptr;
|
|
ACPI_STATUS status;
|
|
ACPI_BUFFER buf;
|
|
ACPI_OBJECT *top;
|
|
ACPI_OBJECT *pkg;
|
|
uint32_t count;
|
|
int i;
|
|
|
|
ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
|
|
|
|
buf.Pointer = NULL;
|
|
buf.Length = ACPI_ALLOCATE_BUFFER;
|
|
status = AcpiEvaluateObject(sc->cpu_handle, "_CST", NULL, &buf);
|
|
if (ACPI_FAILURE(status))
|
|
return (ENXIO);
|
|
|
|
/* _CST is a package with a count and at least one Cx package. */
|
|
top = (ACPI_OBJECT *)buf.Pointer;
|
|
if (!ACPI_PKG_VALID(top, 2) || acpi_PkgInt32(top, 0, &count) != 0) {
|
|
device_printf(sc->cpu_dev, "invalid _CST package\n");
|
|
AcpiOsFree(buf.Pointer);
|
|
return (ENXIO);
|
|
}
|
|
if (count != top->Package.Count - 1) {
|
|
device_printf(sc->cpu_dev, "invalid _CST state count (%d != %d)\n",
|
|
count, top->Package.Count - 1);
|
|
count = top->Package.Count - 1;
|
|
}
|
|
if (count > MAX_CX_STATES) {
|
|
device_printf(sc->cpu_dev, "_CST has too many states (%d)\n", count);
|
|
count = MAX_CX_STATES;
|
|
}
|
|
|
|
/* Set up all valid states. */
|
|
sc->cpu_cx_count = 0;
|
|
cx_ptr = sc->cpu_cx_states;
|
|
for (i = 0; i < count; i++) {
|
|
pkg = &top->Package.Elements[i + 1];
|
|
if (!ACPI_PKG_VALID(pkg, 4) ||
|
|
acpi_PkgInt32(pkg, 1, &cx_ptr->type) != 0 ||
|
|
acpi_PkgInt32(pkg, 2, &cx_ptr->trans_lat) != 0 ||
|
|
acpi_PkgInt32(pkg, 3, &cx_ptr->power) != 0) {
|
|
|
|
device_printf(sc->cpu_dev, "skipping invalid Cx state package\n");
|
|
continue;
|
|
}
|
|
|
|
/* Validate the state to see if we should use it. */
|
|
switch (cx_ptr->type) {
|
|
case ACPI_STATE_C1:
|
|
sc->cpu_non_c3 = i;
|
|
cx_ptr++;
|
|
sc->cpu_cx_count++;
|
|
continue;
|
|
case ACPI_STATE_C2:
|
|
if (cx_ptr->trans_lat > 100) {
|
|
ACPI_DEBUG_PRINT((ACPI_DB_INFO,
|
|
"acpi_cpu%d: C2[%d] not available.\n",
|
|
device_get_unit(sc->cpu_dev), i));
|
|
continue;
|
|
}
|
|
sc->cpu_non_c3 = i;
|
|
break;
|
|
case ACPI_STATE_C3:
|
|
default:
|
|
if (cx_ptr->trans_lat > 1000 ||
|
|
(cpu_quirks & CPU_QUIRK_NO_C3) != 0) {
|
|
|
|
ACPI_DEBUG_PRINT((ACPI_DB_INFO,
|
|
"acpi_cpu%d: C3[%d] not available.\n",
|
|
device_get_unit(sc->cpu_dev), i));
|
|
continue;
|
|
}
|
|
break;
|
|
}
|
|
|
|
#ifdef notyet
|
|
/* Free up any previous register. */
|
|
if (cx_ptr->p_lvlx != NULL) {
|
|
bus_release_resource(sc->cpu_dev, 0, 0, cx_ptr->p_lvlx);
|
|
cx_ptr->p_lvlx = NULL;
|
|
}
|
|
#endif
|
|
|
|
/* Allocate the control register for C2 or C3. */
|
|
acpi_PkgGas(sc->cpu_dev, pkg, 0, &cx_ptr->res_type, &sc->cpu_rid,
|
|
&cx_ptr->p_lvlx, RF_SHAREABLE);
|
|
if (cx_ptr->p_lvlx) {
|
|
sc->cpu_rid++;
|
|
ACPI_DEBUG_PRINT((ACPI_DB_INFO,
|
|
"acpi_cpu%d: Got C%d - %d latency\n",
|
|
device_get_unit(sc->cpu_dev), cx_ptr->type,
|
|
cx_ptr->trans_lat));
|
|
cx_ptr++;
|
|
sc->cpu_cx_count++;
|
|
}
|
|
}
|
|
AcpiOsFree(buf.Pointer);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Call this *after* all CPUs have been attached.
|
|
*/
|
|
static void
|
|
acpi_cpu_startup(void *arg)
|
|
{
|
|
struct acpi_cpu_softc *sc;
|
|
int i;
|
|
|
|
/* Get set of CPU devices */
|
|
devclass_get_devices(acpi_cpu_devclass, &cpu_devices, &cpu_ndevices);
|
|
|
|
/*
|
|
* Setup any quirks that might necessary now that we have probed
|
|
* all the CPUs
|
|
*/
|
|
acpi_cpu_quirks();
|
|
|
|
cpu_cx_count = 0;
|
|
if (cpu_cx_generic) {
|
|
/*
|
|
* We are using generic Cx mode, probe for available Cx states
|
|
* for all processors.
|
|
*/
|
|
for (i = 0; i < cpu_ndevices; i++) {
|
|
sc = device_get_softc(cpu_devices[i]);
|
|
acpi_cpu_generic_cx_probe(sc);
|
|
}
|
|
|
|
/*
|
|
* Find the highest Cx state common to all CPUs
|
|
* in the system, taking quirks into account.
|
|
*/
|
|
for (i = 0; i < cpu_ndevices; i++) {
|
|
sc = device_get_softc(cpu_devices[i]);
|
|
if (sc->cpu_cx_count < cpu_cx_count)
|
|
cpu_cx_count = sc->cpu_cx_count;
|
|
}
|
|
} else {
|
|
/*
|
|
* We are using _CST mode, remove C3 state if necessary.
|
|
* Update the largest Cx state supported in the global cpu_cx_count.
|
|
* It will be used in the global Cx sysctl handler.
|
|
* As we now know for sure that we will be using _CST mode
|
|
* install our notify handler.
|
|
*/
|
|
for (i = 0; i < cpu_ndevices; i++) {
|
|
sc = device_get_softc(cpu_devices[i]);
|
|
if (cpu_quirks && CPU_QUIRK_NO_C3) {
|
|
sc->cpu_cx_count = sc->cpu_non_c3 + 1;
|
|
}
|
|
if (sc->cpu_cx_count > cpu_cx_count)
|
|
cpu_cx_count = sc->cpu_cx_count;
|
|
AcpiInstallNotifyHandler(sc->cpu_handle, ACPI_DEVICE_NOTIFY,
|
|
acpi_cpu_notify, sc);
|
|
}
|
|
}
|
|
|
|
/* Perform Cx final initialization. */
|
|
for (i = 0; i < cpu_ndevices; i++) {
|
|
sc = device_get_softc(cpu_devices[i]);
|
|
acpi_cpu_startup_cx(sc);
|
|
}
|
|
|
|
/* Add a sysctl handler to handle global Cx lowest setting */
|
|
SYSCTL_ADD_PROC(&cpu_sysctl_ctx, SYSCTL_CHILDREN(cpu_sysctl_tree),
|
|
OID_AUTO, "cx_lowest", CTLTYPE_STRING | CTLFLAG_RW,
|
|
NULL, 0, acpi_cpu_global_cx_lowest_sysctl, "A",
|
|
"Global lowest Cx sleep state to use");
|
|
|
|
/* Take over idling from cpu_idle_default(). */
|
|
cpu_cx_lowest = 0;
|
|
cpu_disable_idle = FALSE;
|
|
cpu_idle_hook = acpi_cpu_idle;
|
|
}
|
|
|
|
static void
|
|
acpi_cpu_startup_cx(struct acpi_cpu_softc *sc)
|
|
{
|
|
struct sbuf sb;
|
|
int i;
|
|
|
|
/*
|
|
* Set up the list of Cx states
|
|
*/
|
|
sc->cpu_non_c3 = 0;
|
|
sbuf_new(&sb, sc->cpu_cx_supported, sizeof(sc->cpu_cx_supported),
|
|
SBUF_FIXEDLEN);
|
|
for (i = 0; i < sc->cpu_cx_count; i++) {
|
|
sbuf_printf(&sb, "C%d/%d ", i + 1, sc->cpu_cx_states[i].trans_lat);
|
|
if (sc->cpu_cx_states[i].type < ACPI_STATE_C3)
|
|
sc->cpu_non_c3 = i;
|
|
}
|
|
sbuf_trim(&sb);
|
|
sbuf_finish(&sb);
|
|
|
|
SYSCTL_ADD_STRING(&sc->cpu_sysctl_ctx,
|
|
SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)),
|
|
OID_AUTO, "cx_supported", CTLFLAG_RD,
|
|
sc->cpu_cx_supported, 0,
|
|
"Cx/microsecond values for supported Cx states");
|
|
SYSCTL_ADD_PROC(&sc->cpu_sysctl_ctx,
|
|
SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)),
|
|
OID_AUTO, "cx_lowest", CTLTYPE_STRING | CTLFLAG_RW,
|
|
(void *)sc, 0, acpi_cpu_cx_lowest_sysctl, "A",
|
|
"lowest Cx sleep state to use");
|
|
SYSCTL_ADD_PROC(&sc->cpu_sysctl_ctx,
|
|
SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)),
|
|
OID_AUTO, "cx_usage", CTLTYPE_STRING | CTLFLAG_RD,
|
|
(void *)sc, 0, acpi_cpu_usage_sysctl, "A",
|
|
"percent usage for each Cx state");
|
|
|
|
#ifdef notyet
|
|
/* Signal platform that we can handle _CST notification. */
|
|
if (!cpu_cx_generic && cpu_cst_cnt != 0) {
|
|
ACPI_LOCK(acpi);
|
|
AcpiOsWritePort(cpu_smi_cmd, cpu_cst_cnt, 8);
|
|
ACPI_UNLOCK(acpi);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Idle the CPU in the lowest state possible. This function is called with
|
|
* interrupts disabled. Note that once it re-enables interrupts, a task
|
|
* switch can occur so do not access shared data (i.e. the softc) after
|
|
* interrupts are re-enabled.
|
|
*/
|
|
static void
|
|
acpi_cpu_idle()
|
|
{
|
|
struct acpi_cpu_softc *sc;
|
|
struct acpi_cx *cx_next;
|
|
uint32_t start_time, end_time;
|
|
int bm_active, cx_next_idx, i;
|
|
|
|
/* If disabled, return immediately. */
|
|
if (cpu_disable_idle) {
|
|
ACPI_ENABLE_IRQS();
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Look up our CPU id to get our softc. If it's NULL, we'll use C1
|
|
* since there is no ACPI processor object for this CPU. This occurs
|
|
* for logical CPUs in the HTT case.
|
|
*/
|
|
sc = cpu_softc[PCPU_GET(cpuid)];
|
|
if (sc == NULL) {
|
|
acpi_cpu_c1();
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If we slept 100 us or more, use the lowest Cx state. Otherwise,
|
|
* find the lowest state that has a latency less than or equal to
|
|
* the length of our last sleep.
|
|
*/
|
|
cx_next_idx = sc->cpu_cx_lowest;
|
|
if (sc->cpu_prev_sleep < 100) {
|
|
/*
|
|
* If we sleep too short all the time, this system may not implement
|
|
* C2/3 correctly (i.e. reads return immediately). In this case,
|
|
* back off and use the next higher level.
|
|
* It seems that when you have a dual core cpu (like the Intel Core Duo)
|
|
* that both cores will get out of C3 state as soon as one of them
|
|
* requires it. This breaks the sleep detection logic as the sleep
|
|
* counter is local to each cpu. Disable the sleep logic for now as a
|
|
* workaround if there's more than one CPU. The right fix would probably
|
|
* be to add quirks for system that don't really support C3 state.
|
|
*/
|
|
if (mp_ncpus < 2 && sc->cpu_prev_sleep <= 1) {
|
|
sc->cpu_short_slp++;
|
|
if (sc->cpu_short_slp == 1000 && sc->cpu_cx_lowest != 0) {
|
|
if (sc->cpu_non_c3 == sc->cpu_cx_lowest && sc->cpu_non_c3 != 0)
|
|
sc->cpu_non_c3--;
|
|
sc->cpu_cx_lowest--;
|
|
sc->cpu_short_slp = 0;
|
|
device_printf(sc->cpu_dev,
|
|
"too many short sleeps, backing off to C%d\n",
|
|
sc->cpu_cx_lowest + 1);
|
|
}
|
|
} else
|
|
sc->cpu_short_slp = 0;
|
|
|
|
for (i = sc->cpu_cx_lowest; i >= 0; i--)
|
|
if (sc->cpu_cx_states[i].trans_lat <= sc->cpu_prev_sleep) {
|
|
cx_next_idx = i;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check for bus master activity. If there was activity, clear
|
|
* the bit and use the lowest non-C3 state. Note that the USB
|
|
* driver polling for new devices keeps this bit set all the
|
|
* time if USB is loaded.
|
|
*/
|
|
if ((cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) {
|
|
AcpiGetRegister(ACPI_BITREG_BUS_MASTER_STATUS, &bm_active,
|
|
ACPI_MTX_DO_NOT_LOCK);
|
|
if (bm_active != 0) {
|
|
AcpiSetRegister(ACPI_BITREG_BUS_MASTER_STATUS, 1,
|
|
ACPI_MTX_DO_NOT_LOCK);
|
|
cx_next_idx = min(cx_next_idx, sc->cpu_non_c3);
|
|
}
|
|
}
|
|
|
|
/* Select the next state and update statistics. */
|
|
cx_next = &sc->cpu_cx_states[cx_next_idx];
|
|
sc->cpu_cx_stats[cx_next_idx]++;
|
|
KASSERT(cx_next->type != ACPI_STATE_C0, ("acpi_cpu_idle: C0 sleep"));
|
|
|
|
/*
|
|
* Execute HLT (or equivalent) and wait for an interrupt. We can't
|
|
* calculate the time spent in C1 since the place we wake up is an
|
|
* ISR. Assume we slept one quantum and return.
|
|
*/
|
|
if (cx_next->type == ACPI_STATE_C1) {
|
|
sc->cpu_prev_sleep = 1000000 / hz;
|
|
acpi_cpu_c1();
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* For C3, disable bus master arbitration and enable bus master wake
|
|
* if BM control is available, otherwise flush the CPU cache.
|
|
*/
|
|
if (cx_next->type == ACPI_STATE_C3) {
|
|
if ((cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) {
|
|
AcpiSetRegister(ACPI_BITREG_ARB_DISABLE, 1, ACPI_MTX_DO_NOT_LOCK);
|
|
AcpiSetRegister(ACPI_BITREG_BUS_MASTER_RLD, 1,
|
|
ACPI_MTX_DO_NOT_LOCK);
|
|
} else
|
|
ACPI_FLUSH_CPU_CACHE();
|
|
}
|
|
|
|
/*
|
|
* Read from P_LVLx to enter C2(+), checking time spent asleep.
|
|
* Use the ACPI timer for measuring sleep time. Since we need to
|
|
* get the time very close to the CPU start/stop clock logic, this
|
|
* is the only reliable time source.
|
|
*/
|
|
AcpiHwLowLevelRead(32, &start_time, &AcpiGbl_FADT->XPmTmrBlk);
|
|
CPU_GET_REG(cx_next->p_lvlx, 1);
|
|
|
|
/*
|
|
* Read the end time twice. Since it may take an arbitrary time
|
|
* to enter the idle state, the first read may be executed before
|
|
* the processor has stopped. Doing it again provides enough
|
|
* margin that we are certain to have a correct value.
|
|
*/
|
|
AcpiHwLowLevelRead(32, &end_time, &AcpiGbl_FADT->XPmTmrBlk);
|
|
AcpiHwLowLevelRead(32, &end_time, &AcpiGbl_FADT->XPmTmrBlk);
|
|
|
|
/* Enable bus master arbitration and disable bus master wakeup. */
|
|
if (cx_next->type == ACPI_STATE_C3 &&
|
|
(cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) {
|
|
AcpiSetRegister(ACPI_BITREG_ARB_DISABLE, 0, ACPI_MTX_DO_NOT_LOCK);
|
|
AcpiSetRegister(ACPI_BITREG_BUS_MASTER_RLD, 0, ACPI_MTX_DO_NOT_LOCK);
|
|
}
|
|
ACPI_ENABLE_IRQS();
|
|
|
|
/* Find the actual time asleep in microseconds, minus overhead. */
|
|
end_time = acpi_TimerDelta(end_time, start_time);
|
|
sc->cpu_prev_sleep = PM_USEC(end_time) - cx_next->trans_lat;
|
|
}
|
|
|
|
/*
|
|
* Re-evaluate the _CST object when we are notified that it changed.
|
|
*
|
|
* XXX Re-evaluation disabled until locking is done.
|
|
*/
|
|
static void
|
|
acpi_cpu_notify(ACPI_HANDLE h, UINT32 notify, void *context)
|
|
{
|
|
struct acpi_cpu_softc *sc = (struct acpi_cpu_softc *)context;
|
|
|
|
if (notify != ACPI_NOTIFY_CX_STATES)
|
|
return;
|
|
|
|
device_printf(sc->cpu_dev, "Cx states changed\n");
|
|
/* acpi_cpu_cx_cst(sc); */
|
|
}
|
|
|
|
static int
|
|
acpi_cpu_quirks(void)
|
|
{
|
|
device_t acpi_dev;
|
|
|
|
ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
|
|
|
|
/*
|
|
* Bus mastering arbitration control is needed to keep caches coherent
|
|
* while sleeping in C3. If it's not present but a working flush cache
|
|
* instruction is present, flush the caches before entering C3 instead.
|
|
* Otherwise, just disable C3 completely.
|
|
*/
|
|
if (AcpiGbl_FADT->V1_Pm2CntBlk == 0 || AcpiGbl_FADT->Pm2CntLen == 0) {
|
|
if (AcpiGbl_FADT->WbInvd && AcpiGbl_FADT->WbInvdFlush == 0) {
|
|
cpu_quirks |= CPU_QUIRK_NO_BM_CTRL;
|
|
ACPI_DEBUG_PRINT((ACPI_DB_INFO,
|
|
"acpi_cpu: no BM control, using flush cache method\n"));
|
|
} else {
|
|
cpu_quirks |= CPU_QUIRK_NO_C3;
|
|
ACPI_DEBUG_PRINT((ACPI_DB_INFO,
|
|
"acpi_cpu: no BM control, C3 not available\n"));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If we are using generic Cx mode, C3 on multiple CPUs requires using
|
|
* the expensive flush cache instruction.
|
|
*/
|
|
if (cpu_cx_generic && mp_ncpus > 1) {
|
|
cpu_quirks |= CPU_QUIRK_NO_BM_CTRL;
|
|
ACPI_DEBUG_PRINT((ACPI_DB_INFO,
|
|
"acpi_cpu: SMP, using flush cache mode for C3\n"));
|
|
}
|
|
|
|
/* Look for various quirks of the PIIX4 part. */
|
|
acpi_dev = pci_find_device(PCI_VENDOR_INTEL, PCI_DEVICE_82371AB_3);
|
|
if (acpi_dev != NULL) {
|
|
switch (pci_get_revid(acpi_dev)) {
|
|
/*
|
|
* Disable C3 support for all PIIX4 chipsets. Some of these parts
|
|
* do not report the BMIDE status to the BM status register and
|
|
* others have a livelock bug if Type-F DMA is enabled. Linux
|
|
* works around the BMIDE bug by reading the BM status directly
|
|
* but we take the simpler approach of disabling C3 for these
|
|
* parts.
|
|
*
|
|
* See erratum #18 ("C3 Power State/BMIDE and Type-F DMA
|
|
* Livelock") from the January 2002 PIIX4 specification update.
|
|
* Applies to all PIIX4 models.
|
|
*/
|
|
case PCI_REVISION_4E:
|
|
case PCI_REVISION_4M:
|
|
cpu_quirks |= CPU_QUIRK_NO_C3;
|
|
ACPI_DEBUG_PRINT((ACPI_DB_INFO,
|
|
"acpi_cpu: working around PIIX4 bug, disabling C3\n"));
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
acpi_cpu_usage_sysctl(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct acpi_cpu_softc *sc;
|
|
struct sbuf sb;
|
|
char buf[128];
|
|
int i;
|
|
uintmax_t fract, sum, whole;
|
|
|
|
sc = (struct acpi_cpu_softc *) arg1;
|
|
sum = 0;
|
|
for (i = 0; i < sc->cpu_cx_count; i++)
|
|
sum += sc->cpu_cx_stats[i];
|
|
sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
|
|
for (i = 0; i < sc->cpu_cx_count; i++) {
|
|
if (sum > 0) {
|
|
whole = (uintmax_t)sc->cpu_cx_stats[i] * 100;
|
|
fract = (whole % sum) * 100;
|
|
sbuf_printf(&sb, "%u.%02u%% ", (u_int)(whole / sum),
|
|
(u_int)(fract / sum));
|
|
} else
|
|
sbuf_printf(&sb, "0%% ");
|
|
}
|
|
sbuf_trim(&sb);
|
|
sbuf_finish(&sb);
|
|
sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
|
|
sbuf_delete(&sb);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
acpi_cpu_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct acpi_cpu_softc *sc;
|
|
char state[8];
|
|
int val, error, i;
|
|
|
|
sc = (struct acpi_cpu_softc *) arg1;
|
|
snprintf(state, sizeof(state), "C%d", sc->cpu_cx_lowest + 1);
|
|
error = sysctl_handle_string(oidp, state, sizeof(state), req);
|
|
if (error != 0 || req->newptr == NULL)
|
|
return (error);
|
|
if (strlen(state) < 2 || toupper(state[0]) != 'C')
|
|
return (EINVAL);
|
|
val = (int) strtol(state + 1, NULL, 10) - 1;
|
|
if (val < 0 || val > sc->cpu_cx_count - 1)
|
|
return (EINVAL);
|
|
|
|
ACPI_SERIAL_BEGIN(cpu);
|
|
sc->cpu_cx_lowest = val;
|
|
|
|
/* If not disabling, cache the new lowest non-C3 state. */
|
|
sc->cpu_non_c3 = 0;
|
|
for (i = sc->cpu_cx_lowest; i >= 0; i--) {
|
|
if (sc->cpu_cx_states[i].type < ACPI_STATE_C3) {
|
|
sc->cpu_non_c3 = i;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Reset the statistics counters. */
|
|
bzero(sc->cpu_cx_stats, sizeof(sc->cpu_cx_stats));
|
|
ACPI_SERIAL_END(cpu);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
acpi_cpu_global_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct acpi_cpu_softc *sc;
|
|
char state[8];
|
|
int val, error, i, j;
|
|
|
|
snprintf(state, sizeof(state), "C%d", cpu_cx_lowest + 1);
|
|
error = sysctl_handle_string(oidp, state, sizeof(state), req);
|
|
if (error != 0 || req->newptr == NULL)
|
|
return (error);
|
|
if (strlen(state) < 2 || toupper(state[0]) != 'C')
|
|
return (EINVAL);
|
|
val = (int) strtol(state + 1, NULL, 10) - 1;
|
|
if (val < 0 || val > cpu_cx_count - 1)
|
|
return (EINVAL);
|
|
|
|
cpu_cx_lowest = val;
|
|
|
|
/*
|
|
* Update the new lowest useable Cx state for all CPUs
|
|
*/
|
|
ACPI_SERIAL_BEGIN(cpu);
|
|
for (i = 0; i < cpu_ndevices; i++) {
|
|
sc = device_get_softc(cpu_devices[i]);
|
|
sc->cpu_cx_lowest = cpu_cx_lowest;
|
|
sc->cpu_non_c3 = 0;
|
|
for (j = sc->cpu_cx_lowest; j >= 0; j++) {
|
|
if (sc->cpu_cx_states[i].type < ACPI_STATE_C3) {
|
|
sc->cpu_non_c3 = i;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Reset the statistics counters. */
|
|
bzero(sc->cpu_cx_stats, sizeof(sc->cpu_cx_stats));
|
|
}
|
|
ACPI_SERIAL_END(cpu);
|
|
|
|
return (0);
|
|
}
|